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Abstract

The paper proposes a demand model of product usage in continuous time. Our setting is flexible
enough to simultaneously explain usage frequency, duration of usage, and consumer response to prod-
uct features and firm’s actions. Based on product usage literature, we define the main components
of our model to include intrinsic motivations, product characteristics, external rewards provided by
the firm, and past consumption. In our model, the influence of past consumer choices on decisions
takes the form of a cue-based habit formation mechanism. The model is estimated on a novel dataset
of online game usage where we observe the usage decisions of a large sample of individuals with a
periodicity of 10 minutes. We provide managerial insights on product design and reward systems by
testing different product configurations and measuring shirk with changes in reward frequency and
product complexity. The proposed model can be applicable to a large number of product categories
characterized by repeated product usage or content consumption.
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1 Introduction

To generate loyalty and repeat purchases, many firms rely on frequent incentives for continuous product

usage: they either introduce stimulating product features that increase consumption enjoyment, or

provide valuable reward systems that generate long-term goals for consumers. With each product usage

occasion, consumers obtain a stream of utility with a hedonic component from the experience of using

the product and also a goal-driven value from getting closer to and eventually obtaining a reward. Both

intrinsic motivation resulting from a steady flow of feelings and emotions experienced while using a

product and external rewards linked to the utilitarian uses of a product have been shown to be major

drivers of product usage (Holbrook and Hirschman, 1982; Novak et al., 2003).

Additional factors and dimensions should also be considered to fully understand motivations for prod-

uct consumption, including usage proficiency or mastery, cue-based consumption and habit formation,

and complexity of tasks and information processing. First, usage proficiency or mastery development

is present in productive and intellectual activities, sports, and other leisure activities, when a user has

an opportunity to test one’s abilities and conquer the environment in some way (London et al., 1977).

Learning to use product features is a result of a number of usage occasions, and a level of experience or

proficiency affects consumer enjoyment and derived utility (Lakshmanan et al., 2010). Second, literature

on cue-based consumption and habit formation has shown that the presence of the cue raises marginal

utility of consumption, and pairing a cue and consumption eventually creates cue-based complemen-

tarities (Laibson, 2001). Finally, complexity of tasks leads to changes in consumption patterns when

products, experiences, and content lead to higher personal relevance or motivate a multiplicity of cogni-

tive responses if there is a necessity to process information (Leavitt, Greenwald, and Obermiller 1981).

Berlyne (1971) showed that there is a strong non-monotonic relation between stimulus complexity and

hedonic value, arguing that to investigate the consumption experience, stimuli should be designed to

vary in complexity over a range broad enough to permit the full relationship with enjoyment to appear.

Examples of product usage where these elements are common come from a wide variety of cate-

gories and many can be found among entertainment products such as computer games, television series,

computer software in general, educational products, and leisure activities, such as hobbies and sports.

Demanding a high level of expertise and information processing to use software or a computer game, or

an increasing complexity of a story-line in a television series can reduce enjoyment and lead to shirking.

Consumers who demonstrate low levels of enjoyment or interest reduce their frequency of consumption,
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for example, they watch an episode of a TV series or play sports only occasionally and not in a habitual

pattern. These are also individuals who are more likely to abandon the product or activity. The sporadic

usage with low enjoyment also correlates with low or negative consumer reviews for the products.

Most of the product usage drivers are at some level controllable by managers or influenced by

marketing actions, and therefore, firms are inevitably interested in understanding the relation between

the usage drivers and the long-term user participation, loyalty, and shirk rates. Understanding of the

post-purchase dynamic is also an invaluable input into the firm’s innovation agenda. For example, e-book

vendors such as Amazon.com, Barnes&Noble and Kobo.Inc try to study behavior of users of their digital

book reading devices. They track how far readers get into a particular book, how fast they read it, what

lines they highlight, how readers of particular genres engage with books. Some of those companies share

the knowledge with the publishers to help them create books that hold consumers’ attention (The Wall

Street Journal, 2012). In general, the “big data” trend of gathering massive amounts of information about

consumer interactions with products along multiple dimensions, as well as many traditional products

going digital, is bringing rich data on consumer post-purchase behavior that were not available before.

Our contribution to the marketing field is two-fold. First, we propose a model of product usage

in continuous time, based on recent developments in dynamic structural discrete choice modeling (Do-

raszelski and Judd, 2011; Arcidiacono et al., 2012). We find that the flexibility of being able to model

a large number of consumer decisions made with varying frequency and changes in the product features

that occur sequentially, makes these methods very appealing for explaining product usage. In other

areas, continuous time approaches are frequently used, for example, in the finance and macroeconomics

fields, often yielding closed form solutions for problems that demand computationally intensive methods

or simulations under discrete time. For example, pricing decisions and wage dispersion were analyzed

using a continuous time approach (Calvo, 1983; Burdett and Mortensen, 1998). Doraszelski and Judd

(2011) and Arcidiacono et al. (2012) contribute to these methods by developing estimation methods

for dynamic discrete choice models in both single- and multi-agent problems. We extend the model in

Arcidiacono et al. (2012) to accommodate consumer behavioral processes that are generally unobserved,

such as habit development.

Our application is one of the first to fully utilize the advantages of a continuous time discrete choice

model to address a marketing problem. Our approach (1) allows for a flexible decision schedule for

consumers instead of using ad-hoc assumptions that individuals make usage decisions rigidly every day
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or every hour; (2) builds a consumer utility function that structurally reflects not only the instantaneous

value of using the product that is present in discrete time models but also the duration of product

usage; (3) permits simultaneous modeling of multiple types of consumer decisions, such as when and for

how long to use the product, whether to respond to usage cues and rewards provided by the firm, and

whether to abandon the product.

Additionally, our approach provides valuable insights into several marketing aspects related to prod-

uct usage, especially product design, and depth and frequency of rewards. Table 1 lists examples of

previous work and defines the place of this paper in this literature. Early literature (e.g., Holbrook and

Hirshman, 1982; Unger and Kerman, 1983) developed the main theoretical body of work that described

the main motivations and dimensions of usage. Subsequent papers applied this framework using surveys

and experimental exercises to investigate the role of innovation and a state of experiential flow in product

usage, explaining either frequency or duration decisions (e.g., Novak et al., 2003; Shih and Venkatesh,

2004; Huh and Kim, 2007; Lakshmanan et al., 2010). Increasing availability of data on consumer product

usage makes it possible to implement studies based on revealed preferences (Albuquerque and Nevskaya,

2012; Huang et al., 2012; this paper), which have the advantage of observing multiple consumption

actions of the same individual over time. While Albuquerque and Nevskaya (2012) focus on the relation

between innovation and content consumption choices across alternatives and Huang et al. (2012) model

consumer trade-off between short-term needs of hydration and mood pick-up and long-term health re-

lated goals in beverage consumption, we focus on the measurement of frequency and duration of usage

decisions, modeling habit formation, and providing insights on product design, usage cues, and reward

programs.

We empirically demonstrate the value of our approach using an individual-level panel dataset of

consumers using an online video game World of Warcraft by Blizzard Entertainment. This category is

very suitable for our analysis. First, the online games category is becoming one of the dominant ones

in the entertainment industry, generating more revenues than the film industry (Wolf, 2006). Second,

“gamification” of a number of products is now becoming very frequent, which makes it important to

understand how consumers react to game-like product features and rewards. More specifically, in the

game under study we observe a complex design created to motivate consumption and involvement. The

game has multiple environments accessible to consumers, a wide variety of content that requires from a

few seconds to many hours of playtime to consume, provides frequent feedback about accomplishments,
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and a complex reward system that motivates long-term and goal-driven usage.

Our model is used to measure the impact of changes in several components that explain usage. First,

looking at the product design, we test alternative requirements for the amount of experience and mastery

that needs to be accumulated by consumers to use advanced features of the product. Second, we change

the frequency of the usage cues provided by the firm and measure its impact on habit formation and

resulting frequency and duration of usage. Third, we provide findings on the depth and frequency of

rewards obtained through product usage.

The rest of the paper is organized as follows. The next section describes the model. Section 3

provides information about the online games industry and details about the data used in our empirical

application. In section 4 we discuss the estimation procedure. Section 5 discusses the results. We provide

managerial implications of our results in section 6 and conclude in section 7.

2 A Continuous Time Model of Product Usage

In this section, we develop a model of product usage based on theory on experiential utility from

consumption, valuation of rewards, and cue-based habit formation. As described in the previous section,

these components have been shown to be essential drivers of product usage decisions.

2.1 A Framework for Product Usage Decisions

Consumers maximize their utility by dividing their time between using a product and engaging in other

activities (the outside option), i.e. by making decisions about when to start using the product, for how

long to use it until stopping, and whether to completely abandon the product. The decisions to start

using a product are made in response to contextual cues that consumers receive from their environment

that remind or prompt them to use a product (Wood and Neal, 2007, 2009; Laibson, 2001). For example,

seeing an advertisement or having some free time may remind individuals of entertainment products and

hobbies, leading them to a choice occasion. Note, that these cue arrivals can be controlled by the firm

in certain cases through establishing communication channels with consumers.

In this setting, consumers are assumed to be in either active state g = 1 (using the product), or in idle

state g = 0 (being engaged in some other activity), or in the absorbing shirk state g = 2 (having decided

to abandon the product). At each choice opportunity driven by a cue arrival, an inactive consumer can

decide to continue being idle (action a = 0) or start using the product (action a = 1). The action a = 1
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will result in a transition from the idle state g = 0 to the active state g = 1. When a consumer is in the

active state, she chooses between actions a = 1 (continue using the product), a = 0 (stop using), and

a = 2 (abandon the product).

Once a consumer starts using a product, she obtains some utility for as long as she is actively

engaged with the product. The utility provides an intrinsic motivation to use a product, and in some

cases, consumers immerse themselves in the usage process and pay little attention to what happens

around them, at least for some period of time. Early studies of product usage and leisure activities

documented evidence of high involvement or total absorption in an activity, with consumers becoming

so involved that they enter a “microcosm distinct from daily life” (Unger and Kerman, 1983; Gordon,

Gaitz, and Scott 1976; Foote 1966). More recently, this high involvement also became known as a state

of flow (Csíkszentmihályi, 1990). It has been shown that web-browsing and some other digital content

consumption activities, e.g. video gaming, can lead to the state of “flow” (Cowley, 2008; Novak et al,

2003). The state of flow has limited duration, and upon the end of the flow state a consumer has an

opportunity to make a decision.

Consumers gain experience with the product through the usage process. Consumer experience, or

mastery of content, impacts product utility in two ways: by changing the intrinsic utility of product

features that the consumer currently uses and by providing access to more advanced product features.

We define the product mastery level by l = 1, ..., L. With prolonged usage, consumers may receive

extrinsic rewards. Extrinsic rewards can be broadly defined as related to the goals of product usage and

provide an additional value to consumers to use the product again. The firm decides on the frequency

and depth of rewards and the amount of product usage experience necessary to obtain a reward. In our

empirical application to online video games, the rewards take the form of access to additional content

and virtual goods. The consumer valuation of these rewards might affect the utility derived from product

usage.

As a result of continued interaction with the product, consumers might develop a habit for product

usage. Following psychology and neuroscience literatures, this paper defines habit “as a psychological

disposition to repeat past behavior” (Wood and Neal, 2007, 2009). The habit can also be understood

as a general state of high consumer involvement with the product. We denote the habit strength by

discrete levels h = 0, 1, .., ¯H. Consumer develops a strong habit for product usage when she consistently

responds to cues by using the product. We assume that the level of habit strength increases with every
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session of product usage, thereby h goes up to h+1. Habit might lead to the change in the utility derived

from product usage, as well as in the way contextual cues are interpreted. Consumers with stronger

habit might interpret certain cues as prompting to use the product; the same cues would have not been

interpreted this way if the habit were absent. The habit strength can be reduced and, eventually, the

habit can be completely broken by consistently abstaining from product usage in response to a cue

arrival. This process works as follows. If upon a cue arrival a consumer decides not to use a product, the

habit strength decreases with probability �. In other words, in order for the habit strength to decrease,

a consumer has to deny herself using the product when prompted by a cue, and she might have to repeat

this pattern of “receive cue, do not use the product” several times before the habit strength subsides

and, eventually, the habit is erased completely. Finally, we assume that consumers are forward-looking

about the habit formation process.

2.2 Consumer Utility from Product Usage

A consumer receives intrinsic utility from product usage while she is in active state g = 1 and utility

from an outside activity when she is in idle state g = 0. We define the intrinsic utility as follows:

U
intrinsic

(s) =

8
>><

>>:

↵1 + ↵2f2(l) + ↵3f3(h), if g = active,

0, otherwise.

(1)

In the above, s = (g, l, h) is a consumer state at time t, where g is a usage state, l is the level of

experience with the product, and h is a habit state. The intrinsic utility of product usage depends on

some base preference for the product measured by ↵1; the return of the level of product mastery on

consumer intrinsic utility is measured by the term ↵2f2(l); and the change in consumer intrinsic utility

due to habit is measured by ↵3f3(h). The f2(·) and f3(·) are functions to be specified. The intrinsic

utility of being in the inactive state g = 0 or the shirk state g = 2 are normalized to zero for identification

purposes.

Because the consumer receives intrinsic utility at all instants of time, the total utility over some time

period of duration ⌧ can be represented as:

U ⌧

intrinsic

(s) =

⌧Z

0

e�⇢tU
intrinsic

(s)dt. (2)
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This formulation implies that a consumer exponentially discounts future payoffs at a rate ⇢. Without

loss of generality, we define [0, ⌧) to be the time interval when no change in the consumer state occurs.

Therefore, during this period the consumer makes no product usage decisions: during an idle period

g = 0 no cues arrive prompting her to use a product; during an active period g = 1 the consumer is

in a state of flow and is not able to make usage decisions as well. Also, during time interval [0, ⌧), the

consumer does not change her level of product mastery l. At time ⌧ , the state of flow ends (if g = 1) or

a cue arrives (if g = 0), both leading to a choice opportunity. Alternatively, at time ⌧ the change in the

product experience level l occurs if g = 1.

While the intrinsic utility is specified as being received continuously over time, the utility from

extrinsic rewards is defined as an instantaneous utility that consumer obtains at the moment when the

reward is provided. The instantaneous utility of extrinsic rewards is defined as:

U
extrinsic

(s) = �1 + �2fe(l,Xe

). (3)

In the above expression, �1 defines a base utility derived from getting an extrinsic reward; the term

�2fe(l,Xe

) makes the valuation of the reward be a function of the product experience level l and the

reward type X
e

. The firm decides on the timing and design of the rewards by choosing at which level of

experience consumers receive the reward and the characteristics of those rewards.

Finally, we assume that the consumer may also get some instantaneous utility (in some cases, disu-

tility) from the act of starting or finishing the usage session itself, e.g. from the setup needed to get the

product ready to use. Formally, we define the instantaneous utility of action a = 0, 1, 2 as follows:

U
a

(s) =  
a

(s) + e
a

. (4)

The term e
a

is a random shock to consumer utility of action a. It follows Type II extreme value

distribution and it is identically and independently distributed across time and consumer actions.

2.3 Evolution of Consumer States

A consumer makes decisions about product usage with certain frequency. In the idle state g = 0 the

environmental cues prompting product usage arrive via a Poisson process defined by the rate �cue
h

. The

rate of cue arrivals is made a function of the consumer habit state h because consumers with a strong
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usage habit may have a higher disposition to interpret the contextual signals as usage cues. Upon a cue

arrival, the consumer makes a decision about product usage.

If a consumer starts using a product, she gets into the “flow” state for some period of time. In the

“flow” state she is completely absorbed in the product usage activity and does not think about stopping

it. The length of the “flow” period follows an exponential distribution with the rate �flow
h

. When the

“flow” state ends, the consumer has the opportunity to make a decision to continue or stop using the

product1.

Additionally, while using the product, changes in the consumer mastery of the product occur2. We

assume that those changes follow a Poisson process, with the arrival rate �exp
l

. The arrival rate of product

mastery changes is influenced by two factors. First, usage allows consumers to gain knowledge about

the product. Second, and perhaps more important, the firm’s decisions on product complexity and on

requirements for access to advanced product features strongly impact how fast a consumer masters a

product. In cases where advanced features require a lot of knowledge and experience, or if some content

is made available only to individuals that have been using the product for a long time, the arrival rate

of gains from product usage will be considerably slower.

2.4 Consumer Decisions

Given the randomness of the cue arrival process, the “flow” durations, and the uncertainty in the timing

of product mastery accumulation, the consumer has uncertainty about the timing of her next decision

and the timing of the change to her state l. It is also generally true for many experiential products,

that the consumer does not know for sure, which event will happen next: opportunity for him to make a

decision about product usage provided by the cue arrival / the “flow” state interruption or the arrival of

the exogenous event that would change her level of product usage. For example, in many video games

progression happens rather fast, and a consumer is able to pass through several levels of the game during

one period of “flow”. We denote the probability that the next event is the opportunity to make a choice
1The products with very short instances of usage do not place consumers into the “flow” state. The model still applies

but there is no need to model the duration of the usage session.
2The mastery of the product usage can be understood broadly as a level of product usage. The level of product usage

can be influenced by the user herself or by the firm. For example, in some online video games progression through the
levels is exogenous and its speed is defined by the game developer: the gamer cannot deliberately select the level to play
at, instead all the gamer can do to reach a higher level is to invest more time in the game. For some products, such as
a video camera, the level of product usage is endogenous: consumers can use an automatic setting or use more advanced
controls. Both endogenous decision and exogenous changes in the product usage levels can be easily accommodated by the
model.
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as ⇡
a

(s) and the probability that the next event is the change in the product usage level as ⇡
l

(s). These

probabilities are derived based on the properties of exponential distribution3.

In our empirical application to the online video games the change in the product usage level l occurs

only while the user is active (g = 1). Thus, in our case the probabilities ⇡
l

(s) and ⇡
a

(s) are defined as:

⇡
l

(s) =

8
>>><

>>>:

�exp
l

�exp
l

+ �flow
h

, if g = 1,

0, if g = 0.

(5)

and

⇡
a

(s) =

8
>>><

>>>:

�flow
h

�exp
l

+ �flow
h

, if g = 1,

1, if g = 0.

(6)

Consumers are forward-looking, and hence take into account both the current enjoyment from product

usage and the consequences of the present choices for the future utility. Let v
a

(s) denote a continuation

value received by the consumer after making a choice a in state s = (g, l, h). All consumer choices lead to

a deterministic resulting activity state g, however there might be uncertainty about the resulting habit

state h. Also, by choosing the terminal action a = 2 consumer decides to never use the product again,

and we set the continuation value of this choice to zero. Hence, formally we define the continuation

value as:

v
a

(g, l, h) =

8
>>>>>>>>>><

>>>>>>>>>>:

� · V (s = (0, l,max [0, h� 1])) + (1� �) · V (s = (0, l, h)) , if g = 0 and a = 0,

V (s = (1, l, h)) if g = 0, 1 and a = 1,

V (s = (0, l,min
⇥
h+ 1, ¯H

⇤
)) if g = 1 and a = 0,

0 if g = 1 and a = 2.

(7)

The term V (s) above stands for the value function that assigns to each state s the present discounted

value of all future utility obtained from starting in that state and behaving optimally from there on.
3If X ⇠ exp(A) and Y ⇠ exp(B) then min(X,Y ) ⇠ exp(A + B). Then it follows, the probability that a realization of

X is smaller than a realization of Y is A

A+B

.
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The value function for state s is defined recursively as follows:

V (s) = E


U ⌧

intrinsic

(s) + e�⇢⌧

✓
⇡
l

(s)
⇥
U
extrinsic

(s) + V (s0)
⇤
+ ⇡

a

(s) max

a2A(s)
( 

a

(s) + e
a

+ v
a

(s))

◆�
, (8)

where s0 is new consumer state at the end of the period [0, ⌧), with s0 = (g, l0, h). The expectation E

in the value function is taken with respect to the duration of time ⌧ during which the consumer state

s does not change. The three elements in the expectation E that compose the value function represent

the following: first, over the duration ⌧ , the consumer in state s gets the integrated intrinsic utility,

U ⌧

intrinsic

(s); second, upon the end of that period, a change in level l to l0 will occur with probability

⇡
l

(s) and value of the new state s0 is V (s0); third, an opportunity to make a decision will arrive with

probability ⇡
a

(s) and she will obtain the value from the best action a that belongs to the action set

A(s). The second and third elements in expectation E represent the expected future value received from

the end of duration ⌧ onward and are exponentially discounted by discount rate ⇢.

The assumption about the extreme value distribution of the error terms in the utility gives rise to

the conditional choice probabilities:

P (a |s) = exp [(v
a

(s) +  
a

(s))� (v0(s) +  0(s))]X

a

02A
g

exp [(v
a

0
(s) +  

a

0
(s))� (v0(s) +  0(s))]

. (9)

3 Data

In this section, we describe the industry and product setting of our empirical application. Our model is

general and can be applied to a large number of categories, but here we use our model in the context of

online video games. Hence, we clearly define what the dimensions of product usage and reward outcomes

are in the video game industry. We provide the generalization of our application and expected results

to other categories when we discuss managerial implications in section 6.

3.1 Patterns of Product Usage

With about $15 billion in sales in 2010 and additional sales of virtual goods in excess of $1 billion, the

online video gaming industry is becoming one of the dominant areas in entertainment (Playlogic Enter-
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tainment Inc, 2010), especially benefiting from the new technologies that allow almost permanent online

connectivity. We use data from the online game World of Warcraft, launched by Blizzard Entertainment,

a division of Activision Blizzard, in 2004. Using a description of the game’s website, World of Warcraft

is a “Massively Multiplayer Online Role-Playing Game (MMORPG), set in the high-fantasy universe

centered around persistent online personae”. In other words, a player chooses a character, develops him

over time while gaming and uses him to explore the environment created by the game developer. It

was the bestselling PC game of 2005 and 2006 and had more than 10.2 million subscribers worldwide in

2011.4

The firm designed the game in a way that applies all the motivation elements described previously in

section 1. First, intrinsic motivation is created by the large simulated environment where consumers enjoy

a storyline by making their chosen characters do tasks in the game. Second, the player advancement in

the game is built as a complex reward system: a consumer gains access to more game content and features

the more she plays. The virtual goods are also provided as a recompense for the user’s accomplishments

at specific stages of the game. We note that players can at any time terminate a gaming session without

any penalty, with the restarting point being the last location and level that they had when they finished,

which allows for rewards based on the entire time played in the game. With a specific speed chosen by

the firm, players “level up” in the game after having earned a required number of experience points.5

Additionally, the firm creates challenges that reset daily or weekly and can be repeated by users for

additional rewards. The firm’s website, containing news and game statistics, as well as frequent content

updates about the storyline emailed at regular intervals to users, constitute two of the types of cues

that the firm uses to prompt engagement. Eventually, as one progresses through the storyline, the game

becomes complex and challenging, adding another motivational dimension.

The firm charges a fixed price for buying the software that needs to be installed on each player’s

computer and an additional fee for a 24 hours/7 days a week access to the server (game is not available on

Tuesdays for about 3 hours when server maintenance is done). Most of the users pay these subscription

fees using a weekly automated payment plan, and the price ranges from about 40 cents to 50 cents per

day, depending on different payment schedules. The prices for gaming have not changed in the entire

analysis period in our dataset. Users can buy additional virtual goods to use in the game, but these

goods do not help advance in the game in any way, possessing a prestige nature.
4For more details about the game go to http://us.battle.net/wow/en/.
5There were 60 levels of the game at the time of our analysis.
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The data is collected by a special program that logs into the game server every 10 minutes and

records the ids of the gamers playing at the moment, as well as their current level, content area where

consumers are playing, and affiliation with a game community, if applicable. The data set and the

collection process are described in detail in Lee et al. (2011), a paper in computer science. We use

a random sample of 956 individuals who started gaming in March-October of 2006. Additionally, the

official game website provides detailed information about the reward system used in the game, as well

as any other virtual good offerings. We next describe some of the patterns in the data.

Table 2 shows some descriptive statistics regarding product usage. Individuals on average play for

about one hour and a half, and the idle periods between sessions last about 30 hours. We observe that

the average number of days that players stay loyal to the game, from their initial starting date to the

date when they completely abandon the game6 is about 25 days. On average, consumers reach level 10

(out of a total of 60 levels), so there is a considerable percentage of users that drop out of the game at

initial stages. Finally, across all these measures, the standard deviation shows that there is considerable

heterogeneity across the user population.

Figure 1 shows additional details of product usage across sessions. The panel on the left shows the

distribution of the duration of idle time between two game sessions, measured in hours, across all players.

Conditional on a decision to start a game session, we observe that about 50% of the sessions to follow

happen during the same day (about 8000 sessions), with less than 4 hours of idle time in between, and

about 30% of them happen in consecutive days. This result is evidence that content consumption mostly

occurs with high frequency, either daily or twice daily, on a schedule similar to a habitual activity.

The panel on the left of figure 1 shows the distribution of the length of gaming sessions, in minutes.

We observe that about 30% of the sessions last less than 20 minutes, and about 60% last less than

one hour. The remaining 40% can be considered long duration sessions, where consumers are likely to

become involved in a number of different content activities, exploring the environment and accomplishing

a number of tasks in the game. The longer sessions are also more likely to be associated with experienced

players who have advanced to higher levels, where rewards are less frequent and progression slows down,

while the game content becomes more complex.
6Defined as user not logging in for the rest of the time period.
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3.2 Product Design and Reward Systems in Online Video Games

The main characteristics of video games include graphics, background and setting, duration of game,

advancement rate, use of humor, control options, winning and losing features, character development,

brand assurance, and multi-player features (Wood et al., 2004). In more general terms, these different

aspect can be grouped into product design characteristics (e.g., sound, graphics, use of humor, brand

assurance), which directly influence the intrinsic experience and enjoyment of playing the game, and

stages and outcomes of a reward system (e.g., advancement rate, wining and losing features, character

development), which motivate players by giving them goals that provide external rewards or benefits

from long-term usage and progression in the game.

To describe player advancement and complexity requirements in more detail, Figure 2 shows the

time required, in hours, to move up a level, for each of the 60 levels in the game. We see that initial

levels are simple, easy to complete, and consequently advancement happens at a very fast pace. This

is also a stage where consumers receive a lot of encouragement from the game developer, in the form

of notices and messages in the game that provide guidance and motivation to keep consumers engaged.

As the players progress in the game, they take longer at each level. On average, the last two levels take

about 15 hours of playing time to be completed.

We note that this figure is a result of two different components. First, the firm has implemented

a schedule in the product design such that the time to reach the next level of the game gradually

increases. Second, consumers can spend time using the product, but doing activities that are not

beneficial to advancement. An interesting aspect to note is that although the firm has implemented

monotonically increasing time requirements, the figure shows some spikes and dips, a result of consumer

usage behavior. For example, the firm has designed the last level to be the most demanding in terms

of time to complete, but we see that in practice consumers are more efficient and focus on activities

that help completing that level faster. In general, levels where we see a dip in the time required by

users are also levels with large rewards from the game. For example, after completing the last level,

level 60, users gain access to a large number of content areas and virtual goods that are not available

at lower levels. These patterns illustrate forward-looking behavior about rewards and the influence of

goal-oriented expectation on product usage.

Figure 3 provides additional details about some of the rewards included in the game, as well as an

aggregate measure of the drop-outs at each level. We see that the firm has designed the product to have
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a clear schedule of rewards to encourage consumer loyalty and mastery of the game. Usually, at the

levels indexed by the numbers that are multiples of 10, consumers have a strong reward, such as access

to more content or a virtual good, but users also get additional rewards at other levels, depending on

the firm’s reward system design. A majority of players stop early in the game, mostly at the levels 2 to

15. This higher quitting rate in earlier stages happens because consumers are likely to be still trying to

understand the game and if it is a good match for their preferences. After that, any decisions are likely

to be more related to product usage.

4 Estimation

We now describe in more detail how our model is translated to the video games setting.

4.1 Implementation Details

The state of a gamer i (i = 1, ..., N) at any time t, t 2 [0, T ], is described by the following: 1) the gaming

status g; 2) the level in the game l7; 3) his habit, or involvement, level h. We now describe in more

details the meaning of each of these state variables in the video game environment.

The choice set of the gamer is A0 = {0, 1}, where a = 1 stands for “play”, a = 0 denotes “stop”, if the

player is in the idle state g = 0, and A0 = {0, 1, 2} if he is in the active state g = 1, where a = 2 means

“abandon the game”. The actions results in the gaming states g = a in a straightforward way. The

difference between g = 0 and g = 2 is that g = 2 is an absorbing state, while g = 0 is just a temporal

state of being “inactive”, where leveling up in the game is paused until the gamer decides to “play”.

There are L = 60 levels of the game that are available to a gamer to gain experience, enjoy different

content, and master the different elements of the game. Progression to the next level in the game is

exogenous to consumer decisions, since she cannot deliberately start playing at a higher level. Instead,

the consumer has to earn the progression by investing her time into playing the game. Getting to the

next level brings extrinsic rewards, both tangible and intangible. The tangible rewards can include
7In order to keep track of the inter-level progress (since some levels take long time to progress to) we also introduce

an auxiliary state m, m = 1, ..., 4. The intra-level progress state m provides measure on the number of experience points
accumulated by the gamer since the beginning of the game at level l. The number of points required to be accumulated at
level l to progress to level l + 1 is normalized to 100 for any l. Within each level, and since the number of the experience
points is not observed by the researcher, we assume that the points are earned at a constant rate across gaming time (for
a given level l). With this assumption, the time that the gamer has already spent “active” (g = 1) at level l becomes an
indication of the number of accumulated experience points. We discretize the stock of accumulated points into four groups.
Thus, if by some time t the gamer has “actively” spent at level l less than 25% of the total time he “actively” spent at level
l in total, he is assigned to be in the state m = 0 at time t. For clarity of explanation will further refer to state l only.
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gaining new abilities, privilege to explore new territories, right to own certain property. Progressing to

the next level per se, without getting any of the above mentioned tangible benefits, is defined to be an

intangible reward. Every even level of the game provides tangible rewards, and every 10th level provides

substantial tangible rewards. We mark the rewarding levels by the dummies “even level” and “10th” and

estimate the coefficients on them to measure the value of those rewards. The value of intangible rewards

provided by “empty” leveling is estimated as an intercept in the extrinsic utility function described

earlier. Thus, the extrinsic utility is specified as U
extrinsic

(s) = �1 + �2Xeven

+ �3X10th. The intrinsic

utility of gaming is specified as a linear function of a product usage level and the habit strength, i.e

U
intrinsic

(s) = ↵1 + ↵2l + ↵3h.

4.2 A Markov Chain in Continuous Time

Formally, there are three continuous-time processes evolving in the model: 1) the product usage process

G = {G(t), t � 0}, 2) the game progression process L = {L(t), t � 0}, and 3) the habit process H =

{H(t), t � 0}. These three processes constitute a multivariate continuous-time finite-state homogeneous

Markov chain S = (G,L,H) = {G(t), L(t), H(t), t � 0}. Figure 4 shows a graphical representation of

the chain. The process G has states g = 0, 1, 2; process L has state space l = 1, ..., 60; and process H

has states h = 0, ..., ¯H.

The processes evolve as follows. When the product usage process G is in the state g = active, the

game progression process L is allowed to evolve through its states; otherwise, the process L is on hold.

In other words, consumers can reach a higher level only while playing the game. In its turn, the state l of

the progression process L affects the state transition probabilities of the product usage process G. The

reason is that the forward-looking consumers might have a higher propensity to play the game when they

approach an especially rewarding level. The state transitions of the usage process G lead to the state

transitions of the habit process H. That is, the product usage choices being made by a consumer build

or break her habit. In its turn, the state h of the habit process affects the state transition probabilities

of the usage process G, since a stronger/weaker habit results in more/less active product usage.

Not all three processes are equally well observed by the researcher. The progression process L is fully

observed, since the information about the consumer’s level in the game at any point in time is available.

The product usage process G is partially observed. Finally, the habit process H is an underlying process

that is not observed.
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The reason that process H and process G are not fully observed is the existence of product usage

choices that are inherently unobservable to the researcher. Consider a consumer being in the active

state g = 1 for some period of time. Upon the end of the “flow”, the consumer makes a choice between

continuing the game session, stopping it, or abandoning the game for good. However, the researcher

does not observe when the “flow” ends, as well as how many “flow” periods the consumer experienced

during the period. If the consumer decides to continue the session, he will remain in the state g = 1.

Therefore, the researcher will not observe that choice and the timing of the resulting state self-transition.

Any other consumer choice would lead to a transition to a state g 6= 1, and thus the choice would be

observable to the researcher. The same logic applies to the decisions and self-transitions in the idle state

g = 0. Here, the consumer makes a choice upon the arrival of the cue. The cue arrival is unobservable

to the researcher, and thus the decision to remain idle will lead to the unobserved choice and a state

self-transition.

It is necessary to model the above unobservable choices for two reasons. First, having their structure

in place allows to estimate how frequently consumers make product usage decisions, instead of enforcing

the assumption about that frequency. The decision frequency has clear implications for the correct

estimation of the consumer utility. Suppose, the assumed frequency is higher than the true one, then

the consumer appears making choices against product usage (purchase) more often than he truly does,

and as a result the utility is underestimated. Second, the unobserved product usage choices that are

made during the idle period are crucial for the habit breaking process. The habit can become weaker

when a consumer, prompted by an unobserved cue, decides to further abstain from using the product.

The alternative approach to modeling the habit breaking process would be making it a function of

time spent without using the product. However, that approach would be purely descriptive and thus

unsuitable for the counterfactual analysis of habit formation.

4.2.1 Transition Rates During an Active Period

The state transition in mastery level, (g, l, h) ! (g, l0 = l + 1, h), is guided by the rate of the Poisson

process described by the rate �exp
l

, as discussed earlier. To specify the rates of the state transitions

changing the usage state g and habit level h, we use the structure of the consumer decision-making

process. While in state g = 1, a consumer engaged with the product for a duration that follows an

exponential distribution with the rate parameter �flow
h

. In other words, the end of the active state
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arrives with the rate �flow
h

and the consumer then makes a choice a 2 {0, 1, 2} with probability P (a|s).

A choice a = (1 |g = 1, l, h) of continuing to use a product results in a self-transition to prolonging state

g = 1. In most applications including ours, researchers do not observed the action a = (1 |g = 1, l, h) of

remaining in the active state. The other two choices, a = (0 |g = 1, l, h), and a = (2 |g = 1, l, h), which

are commonly observed by researchers, lead to the transitions to states g = 0 and g = 2, respectively.

Because of the unobserved action a = (1 |g = 1, l, h), the arrival rates of state transitions that we take

to the data need to account for the probability that that action occurs, P (a = 1 |g = 1, l, h). Following

Arcidiacono et. al. (2010), it can be shown that the waiting time until a transition from state g = 1 to

each of the usage states g = 0, 2 through respective actions a = 0, 2, is distributed exponentially with

the following rate parameters �
a

(s):

�0(s) = P (a = 0|g = 1, l, h) (1� P (a = 1|g = 1, l, h))�flow
h

, (10)

�2(s) = P (a = 2|g = 1, l, h) (1� P (a = 1|g = 1, l, h))�flow
h

. (11)

Finally, the overall rate of leaving state s = (g = 1, l, h), either because of a change in level l or because

of action a = 0 or a = 2 , is the negative of �(s) that is defined as:

�(s) = �exp
l

+ �0(s) + �2(s) = �exp
l

+ (1� P (a = 1|s))�flow
h

. (12)

4.2.2 Transition Rates During an Idle Period

If a consumer is not using the product and has also not chosen to abandon it completely, she is in state

s = (g = 0, l, h). In this state, she receives cues prompting her to use a product and make a choice to

continue to be idle or to resume using the product, a 2 {0, 1}.8 If following a cue the consumer chooses

a = (1 |g = 0, l, h), she goes into the active state. With a choice of a = (0 |g = 0, l, h), unobserved by

the researcher, the consumer remains idle but as a consequence, there is a decrease in the consumer’s

habit strength with probability �. Formally, the possible state transitions to other states from the idle

state with habit level h are:
8For identification purposes, we assume that the consumer cannot abandon the product from the idle stage. He can do

it from the active stage only.
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1. (g = 0, l, h) ! (g = 0, l, h0 = h� 1), if the consumer chooses to remain idle and h > 0;9

2. (g = 0, l, h) ! (g = 1, l, h), if the consumer chooses to go into the active state.

Note, that the state h is a function of unobserved decisions, and consequently the state transition in the

case (1) above is not observed by the researcher. As before, the derivation of the state transition rates

is based on the structure of the consumer decision-making process. A consumer receives cues via the

Poison process with the arrival rate �cue
h

. At that stage, he will either decide to continue to be idle and

transition to a lower habit state (h� 1) with probability � or move to the active state g = 1, with the

following respective rates µ
a

(s):

µ0(s) = �cue
h

P (a = 0|g = 0, l, h)⇥ �, with h > 0 (13)

µ1(s) = �cue
h

P (a = 1|g = 0, l, h) . (14)

The overall rate of leaving state s = (g = 0, l, h) is the negative of µ(s) that is defined as:

µ(s) = µ0(s) + µ1(s) = �cue
h

(1� P (a = 0|g = 0, l, h) (1� �I (h > 0))) . (15)

As noted above, while being inactive, a consumer may choose to continue to be idle multiple times until

eventually becoming active again (these decisions are unobserved to the researcher). The duration of time

until moving to the active state, accounting for any unobserved decisions that arrive at rate �cue
h

during

that period, follows the Coxian distribution. The Coxian distribution is a phase-type distribution that

describes the time until reaching an absorbing state in a Markov chain. In this case, the idle state g = 0

constitutes the non-absorbing state and the active state constitutes the absorbing state of the Markov

sub-chain that evolves during the idle time period. We note that although based on a Markov process,

the Coxian distribution does not possess the “memoryless” property. The absence of the “memoryless”

property is highly desirable here, since observasionally consumer propensity to start a new usage session

depends on the amount of time that passed since the last usage session. In particular, we illustarte the

dynamic effect of time and habit on the probability of consumers becoming active in the results section.
9If h = 0, and the consumer chooses to continue to be idle, then she would stay in the same state (g = 0, l, h)
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4.3 The Density of the Observed Processes

As mentioned above, the processes in the model are of the three types: observed, partially observed,

and unobserved. We address the challenge presented by the presence of the unobserved habit formation

process following the approach suggested in Mark and Ephraim (2011).

Based on the structure of the partially observed usage process we derived the transition rates of the

observed usage process in the preceding sections. We denote the observed usage process by G0. The

state space of the process G0 is exactly the same as the state space of the original usage process G, i.e.

g = {0, 1, 2}. Thus, now all the processes are either observed (the progression process L and the observed

usage process G0) or unobserved (the habit process H). Hence, the observed process is two-dimensional

and we denote it as Z(t) = (G0
(t), L(t)) with a generic state z = (g, l) and the state space ¯Z, g = 0, 1, 2

and l = 1, ..., 60. Thus, the state of the Markov chain can be written as s = (z, h). Using the notations

just introduced, the intensity matrix can be represented as a block matrix, R = {R
zz

0 , z, z0 2 ¯Z}, where

R
zz

0
= {r

zz

0
(hh0), h, h0 = 0, ..., ¯H} are ¯H ⇥ ¯H matrices. The matrix R

zz

0 contains the rates of transition

between two observed states z and z0 and all the unobserved states h. The intensity matrix R is shown

in appendix B.

The density of the observed process Z = (G0, L) can be obtained from the transition density of the

Markov chain. Following Mark and Ephraim (2011), it can be shown that the density of the observed

process for one consumer can be computed as follows:

P (Z (t) , 0  t  T ) = h0

(
K

nY

k=1

f z̃k�1z̃k
(4

k

)

)
¯fzK

(T � t
K

)1 (16)

In the expression above, the bold font denotes matrices or vectors. In particular, h0 is a row vector of

the initial habit state probabilities, z̄
k

= (g, l) represents the realization of the observed processes of G0

and L at the k-th jump of the observed Markov chain (k = 1, ...,K), 4
k

is the duration of time between

the (k� 1)-th and the k-th jumps, T is the total duration of time the processes were observed for, t
K

is

the time of the last jump of the chain, and 1 is a column vector of ones. The transition density matrix

f z̃k�1z̃k
(4

k

) of the k-th jump in the observed process is defined as follows:

f z̃k�1z̃k
(4

k

) = eRz̃

k�1z̃k�1
4

kR
z̃

k�1z̃k , (17)

where z̄
k�1 6= z̄

k

. The transition probability matrix over the last duration with no jump in the observed
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process ¯fzK
(T � t

K

) is defines as:

¯fzK
(T � t

K

) = eRz̃

k�1z̃k�1
(T�t

K

). (18)

The matrix exponentials above are computed in the closed form for our empirical application, since

the sub-intensity matrices R
zz

0 are diagnosable. We describe computation of the transition densities in

appendix C. We use forward-backward recursion in order to evaluate the above density10. The need

arises due to the unobservable paths that the habit process H is taking.

4.4 Optimization

We use the mathematical programming with equilibrium constrains approach (MPEC) to estimate the

model. In this approach, the density of the observed process is maximized subject to the constraint

formed by the consumer value function. This approach allows to significantly economize on the time

required to estimate the model since it allows to avoid the nested fixed point iterations on the value

function (Dube et al, 2001).

The integral defining intrinsic utility in Section 2.4 has a closed form solution:

U ⌧

intrinsic

(s) =

⌧(s)Z

0

e�⇢tU
intrinsic

(s)dt = �U
intrinsic

(s)

⇢

⇣
e�⇢⌧(s) � 1

⌘
(19)

The value function is approximated using Monte Carlo integration by drawing R = 250 draws of ⌧ from

the estimated exponential distribution of the length of the time intervals when consumer state does not

change.

We employ a discrete representation of unobserved consumer heterogeneity and set the number of

consumer segments to be M = 2. The segments differ in the parameters of their utility functions. Let

P
ij

(Z
i

(t) , 0  t  T
i

) be the density of the observed processes for consumer i (i = 1, ..., N), conditional

on individual i belonging to segment j, (j = 1, ...,M). We denote the probability of consumer i belonging

to segment j conditional on the observed data as p(i 2 j). Also, let ⇥ denote the parameters of the
10The forward density is defined as a row vector L(k), where L(k) = h0 and L(k) = L(k�1)f z̃k�1z̃k (4

k

). The backward
recursion is defined as R(K + 1) = ¯fzK (T � t

K

)1, R(k) = f z̃k�1z̃k (4
k

)R(k + 1). Then the density of the observed
process is P (Z (t) , 0  t  T ) = L(k)R(k + 1), as described in Mark and Ephraim (2011).
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model to be estimated. Then, we write the maximization problem as

max

NX

i=1

MX

j=1

p(i 2 j)log [P
ij

({Z
i

(t) , 0  t  T
i

};⇥)] subject to :

V

i

(s) ⇡ 1
R

RX

s=1

2

4
U

⌧

r

i,intrinsic

(s) + e

�⇢⌧

r

(s)

0

@
⇡

l

(s)
⇥
U
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(s) + V

i
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exp( s
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(s))
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A

1

A

3

5
. (20)

In the approximated value function above, the ln(·) term is the closed form solution for the integral

over the utility shocks e
a

that follow extreme value distribution.

We use the habit state space H = {0, 1} and, as mentioned above, specify the structure of the habit

formation process that assumes that at the end of each game session a consumer has his habit reinforced

through product usage, i.e. h = 1. Hence, the state of the habit process remains unobserved at any

point in time except when a consumer ends his game session11.

The EM algorithm is used to get the estimates of the sizes of consumer segments and the segment-

specific parameters of consumer utility function. We use the KNITRO solver for non-linear optimization

to estimate the model12.

5 Results

In this section, we start by analyzing the parameter estimates and their implications in terms of consumer

product usage behavior. Then we provide three counterfactual experiments that make use of our model

to provide insights for the product design decisions and reward programs.
11With this assumption, we do not need to employ the Expectation-Maximization (EM) algorithm to estimate the

transition probabilities of the unobserved process (in our case, the habit process), as described in Mark and Ephraim
(2011).

12The KNITRO does not allow for drawing random variables within the optimization routine. However, the exponential

distribution is closed under the scalar transformation, i.e. if ⌧ ⇠ Exp(b) then k⌧ ⇠ Exp

✓
b

k

◆
, where k is some positive

scalar. Thus, before the start of the optimization, ⌧ 0 are drawn from the exponential distribution with the rate parameter
of 1, and the draws used for estimation are ⌧ = (b̂)⌧ 0, whereb̂ is the estimate of the rate.
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5.1 Parameter Estimates

We discuss the parameter estimates, which are displayed in Table 3.13 We divided the parameters into

groups defined by the motivation components that explain choice: intrinsic motivation, extrinsic rewards,

cue effects, and habit formation. The model was estimated with two discrete segments to control for

unobserved heterogeneity. The choice of two segments was based on model fit, number of parameters,

and computational requirements, when compared to alternative models with one and three segments.

We start by looking at the parameters related to the intrinsic motivation that measure the level of

flow utility derived from playing the game for some duration of time. Comparing the segments, we find

that segment 1 has a lower base value of intrinsic motivation to play the game than segment 2, but has

a higher preference for later stages of content, with a value for the utility gain per level of 0.066 versus

0.018 of segment 2. Segment 2 enjoys the game more across all levels of content, and consumers in this

group are likely to develop a strong habit for the game, which we analyze later in this section.

The parameters related to extrinsic rewards show that segment 1 draws more utility from obtaining

rewards than segment 2, although segment 2 has a stronger preference for smaller and more frequent

rewards. Combining this result and the findings described in the previous paragraph, we conclude that

segment 1, with about 80% of the market, has a lower intrinsic utility but is goal-oriented and motivated

by rewards, and could be named “reward seekers”. Consumers in this segment use the product because

they want to reach the next level, with a steeper increases for utility resulting from advancement and

significantly more enjoyment from receiving the rewards. On the other hand, the remaining 20% of

users in segment 2 enjoy the content more and are prone to habit formation, playing the game for its

own sake. For gamers in segment 2, intrinsic motivations dominate over the impact of external rewards.

For a more intuitive analysis, this segment is denoted as “content enthusiasts” for the remainder of this

section.

Looking now at the parameters related to the frequency of consumer usage decisions, we see a clear

difference between the rates in the active state and the idle state .14We computed the implied decision

frequency based on these parameters, and table 4 shows the results. If the consumer is in a habit state

h = 1, she gets a cue that prompts her to play every 7 hours, while a consumer in habit state h = 0

13With this set of parameters, the fit of the model was measured in several ways and for all of them, the model performed
very well. For example, both product usage frequency in figure 1 and the drop out rates shown in figure 3 are predicted
well.

14We chose not to introduce unobserved heterogeneity in this parameters since in our setting the decision opportunity
arrival depends in part on the firm’s actions.. However, it is possible that some consumer segments pay more attention to
the usage cues originating from the firm or look for more cues than others.
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receives a cue every 65 hours. This seems to be a reasonable result. Habit leads consumers to think more

often about the game and to pay more attention to information relevant to the game, by visiting the

game website or signing up for newsletters and email subscriptions, which would lead to more frequent

occasions to make the decision to play or not to play.

Additionally, we also obtain estimates of how frequently consumers make decisions about stopping

a game session while playing. We interpret the durations between two decision points as the time spent

by players in the state of flow (Cowley, 2008). We find that consumers with a habit for gaming have

shorter “flow”, with the duration of 9 minutes, compared to 11 minutes for users with no habit. This

suggests that habituated consumers are less immersed into the game, since for them the game demands

less concentration given their frequent past experience, justifying a shorter time during which these

consumers do not think about stopping their game session.15

To better interpret the parameter estimates related to habit formation, we look at the estimated

probability of consumers maintaining the higher habit level after having finished a game session. The

decay in habit happens when consumer decides not to play the game after having received cues prompting

her to do so. The left panel of Figure 5 shows the evolution of the probability of moving to the no-

habit state over time during the idle period, for each of the two segments. We observe that “content

enthusiasts” have a significantly higher probability of staying in the high habit state for longer, by about

6 hours. On average, for the “reward seekers”, it takes about 38 hours for the habit to fully disappear, and

about 50 hours for content enthusiasts. This is an important finding for managers in related industries,

since it provides input for the frequency of communications and cue provisions to the users to keep them

engaged and with the additional motivation generated by the positive impact of habit.

The right panel in Figure 5 shows the probability of starting a new gaming session after stopping

the game. We note that there is a rapid increase in the probability of having another gaming session

in the first 8 to 24 hours after the last gaming session was ended by the gamer, especially for the

“content enthusiasts”. However, as time progresses, the probability of another session flattens out. This

pattern occurs because the longer consumers remain idle, the higher the probability that they have

moved from the higher to the lower habit state. This transition indicates that the positive impact of

habit disappears and it will not affect consumer decisions at all after 38 and 50 hours for segment 1

and segment 2, respectively. Additionally, without habit, the cue arrival interval while not playing also
15This interpretation is similar to products that generate addiction. As individuals become more addicted, the effect of

the addiction is reduced with additional usage.
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increases considerably. Hence, our results show that losing the consumer’s higher involvement created by

habit has a double jeopardy effect: lower enjoyment from the game and lower frequency of occasions for

deciding to return to play. We note that a priori assumptions about the frequency of decisions commonly

used in discrete time models would miss this relevant insight.

5.2 Managerial Implications

Our analysis continues with the use of our approach to provide insights into three important managerial

problems: (1) the frequency of cues to be implemented by the firm, (2) the level of complexity and effort

required from players to obtain access to additional features and content, and (3) the choice of rewards

programs, in terms of frequency and depth.

5.2.1 Usage Cues

One of the ways that firms can influence the engagement of consumers and increase usage of their product

is through the management of cues. The cues prompt the decision to start a gaming session and lead

to higher or more frequent engagement. In our empirical application, Blizzard Inc. can modify game

content to require daily activities,16 increase the frequency of availability of content, send emails and

newsletters with reminders, or create forums with frequently updated game and player statistics.

Using our approach, we tested the effect of the additional cues on the length of idle time between

two sessions. To do so, we created a counterfactual situation where we increased the rate of cue arrivals

by 50%17, and therefore, consumers are faced with more frequent opportunities to decide on starting a

playing session. We computed both the counterfactual and actual transition probabilities between the

idle and the active consumer states, which are shown in figure6. We can see that consumers react to

additional cues by accelerating the timing of the next gaming session, and that this effect is especially

pronounced for the “reward seekers”, who are less intrinsically motivated to play the game and are less

habit-prone. We also note that the impact of cues on the game participation is somewhat limited: even

with an increase of 50% in the frequency of cues, the probabilities of starting playing session increased

by only about 5% for segment 1 and 3% for segment 2. Even with more decision occasions, consumers

are going to make their final usage choice based on the remaining motivations for usage, namely intrinsic
16The use of daily activities is also present in a large number of gaming apps in Facebook, for example, in the popular

game FarmVille.
17In our model, the cue arrival rate is an exogenous measure to consumers and so we can test different values for the

estimate parameter in counterfactual scenarios.
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motivations and the reward valuation, which are not changed between the two scenarios.

5.2.2 Product Design: Complexity

In the second counterfactual, we explore a possibility of the firm changing the requirements necessary

to access more advanced features and content. Our model accounts for this aspect of the product

through the time needed to advance across the different levels of the game and reach higher, and more

rewarding, content. We construct a counterfactual scenario where the advancement characteristic of the

game design is modified: the time required to move from one level to the next is doubled, for all 60

levels. For example, in the actual game a consumer needs an average of 2.5 hours of gaming time to get

from level 9 to l0, while in the counterfactual scenario the time required to do the same is 5 hours. This

could be implemented by the firm by increasing the complexity of more advanced product features or

game content.

Figure 7 displays a comparison between the drop-out rates by level for the two designs. The levels

are combined in the groups of five for ease of exposition. We see an increase in the number of drop-outs

from the very early levels in the game, especially in the 1-5 levels, while most of the remaining levels

maintain very similar drop-out rates between the two scenarios. In the first five levels, the increase in the

drop-outs leads to a loss of 80 players out of a total of 350 players, about 20% loss in participation. This

result is a consequence of the fact that the new game design negatively influences the reward seekers,

who have lower intrinsic motivation and need to have frequent rewards and advancement in the game

to be motivated to stay engaged. With the new design, they are required to wait longer for each level

to advance and to obtain the rewards, and thus they drop out earlier in the game than before. The

segment of content enthusiasts who have high intrinsic motivation for gaming and habit are almost not

affected by this change in the game design.

5.2.3 Reward System

Finally, we use our approach to test the impact of reward scheduling on product usage. As an example,

we test the counterfactual situation where the reward at level 10 is removed from the game. In the game

environment, rewards included at level 10 are an opportunity to have a virtual pet and participate in

more challenging player versus player activities. Figure 1 shows the shirk rates of consumers in the actual

and counterfactual scenarios. We observe interesting changes for the levels close to level 10, especially
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levels 6, 9, and 10. The largest increases in drop-out rates occur in level 6, which is the last level to offer

a reward before level 10, and at the immediately preceding level 9. These larger increases in shirking in

the absence of the reward have a reasonable explanation. Without a goal to look for at level 10, some

reward seekers decide to abandon the game when they reach a good reward at level 6. Additionally, not

having a goal to look for at level 9 also makes consumers drop out since they do not have the incentive

that would be arriving soon, at the end of the next level. Matching the literature on intrinsic motivation

and external rewards, we find that some of the later levels have slightly lower levels of shirk. This is

because consumers that remain in the game are likely to play not just because of short-term goals but

instead derive substantial enjoyment from playing, thus leading to lower incidence of shirking.

6 Conclusion

Our paper focused on explaining product usage and investigating how managers can use product features,

cues and reward programs to increase consumption and reduce consumer shirking. We contribute to

the marketing literature in two ways. First, we propose a dynamic structural model of product usage in

continuous time that allows for the main drivers examined in the previous literature: extrinsic rewards,

intrinsic utility, cue-based habit formation, and complexity and access to advanced features and content.

Second, we present a number of substantive findings relevant to managers of products where usage is

critical to maintain revenues in the long-run: (1) we show that intrinsic and extrinsic rewards drive the

product usage, but differently across consumer segments: a large consumer segment of “reward seekers”

is motivated by specific goals and rewards in the game, while a smaller segment of “content enthusiasts”

is driven by higher intrinsic motivation and is habit-prone; (2) we are able to estimate the frequency of

cue arrivals that prompt consumers to decide whether to use a product, and find that habit plays a very

important role in reducing idle time; (3) we test a number of different scenarios regarding marketing

decisions that influence product usage, such as the use of cues to motivate participation, change in

product complexity, and alternative reward programs.
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Appendix A. Tables and Graphs

Approach and Dependent Intrinsic External Usage Habit or Decisions

Paper Data Variable Motivation Rewards Cues Involvement Innovation Scheduling

Holbrook &

Hirshman (1982)

Theory Instant,Duration Yes Yes Yes Yes No N/A

Unger & Kernan

(1983)

Survey Instant Yes Yes No Yes No N/A

Laibson (2001) Theory Instant Yes No Yes Yes No N/A

Novak et al. (2003) Survey Duration Yes Yes No No No N/A

Shih & Venkatesh

(2004)

Survey Instant Yes No Yes No Yes Discrete

Huh & Kim (2007) Survey Instant,Duration Yes No No No Yes Discrete

Lakshmanan et al.

(2010)

Experiment Instant Yes No No No No N/A

Albuquerque &

Nevskaya (2012)

Revealed Instant Yes Yes No No Yes Discrete

This Paper Revealed Instant,Duration Yes Yes Yes Yes No Continuous

Table 1: Summary of literature.

Mean Std. Deviation
Game session duration, in minutes 87.8 109.1
Duration of the idle period between the two
game sessions, in hours

31.5 130.1

Number of days spent playing the game 25.5 44.0
Level reached in the game 10.3 12.1

Table 2: Descriptive statistics for product usage patterns in the game.

Figure 1: Duration of gaming sessions (right) and idle periods between game sessions (left).
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Figure 2: Average amount of gaming time observed before progression to the next level.

Share of Calendar Time Spent Gaming, %

Droup-outs at levels 10-20 Droup-outs at levels 30-40 Droup-outs at levels 50-60

Distribution of Maximum Levels / Game Rewards Structure

larger reward

smaller reward

Figure 3: Histogram of the number of individuals reaching each of the 60 levels of the game and
occurrence of large and small reward.
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process G

process H

process L
level l

level l+1

Figure 4: The three processes of the model: usage (G), progression (L), and habit formation (H).

Segment 1 Segment 2
Intrinsic Motivation Base 2.023* 5.970*

Additional per Level 0.066* 0.018*
Habit “Bump” 0.035* 0.420*

Extrinsic Rewards Base 724.950* 251.349*
Even level (small) 30.321** 154.972**
Every 10th Level (large) 77.465* 93.172*

Cue for Decisions Not playing, no habit 0.129** 0.129*
Playing, no habit 46.696** 46.696**
Not playing, habit 1.251** 1.251**
Playing, habit 55.078** 55.078**

Habit Probability of drop in habit 0.606* 0.606*
Segment Size 0.783** 0.217**

Table 3: Parameter estimates; “**”:significant at 2.5%; “*”significant at 5%.
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Arrival Rates of Usage
Decisions Estimate

During an Idle Period with habit 1 every 7 hours

without habit 1 every 65 hours

During a Game Session with habit 1 every 11 min

without habit 1 every 9 min

Table 4: Parameter estimates - Frequency of usage decisions. “**”:significant at 2.5%; “*”significant at
5%.

segment 1 segment 2

Figure 5: Habit decay (left) and probability to start a new gaming session (right) during idle period.
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Figure 6: Probabilities of starting a new gaming session for two alternative scenarios: actual cue fre-
quency (solid lines) and an hypothetical increase of 50% of cue arrivals (dashed lines)

5-10 15-20 25-30 55-6045-5035-40

levels 

nu
m

be
r o
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er
s

Figure 7: Drop-out rates for the actual setting and a counterfactual case where the complexity in
increased.
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Figure 8: Drop-out rates of players per level with a reward (darker circles) and without a reward (lighter
circles) at level 10.
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Appendix C. Transition Density Matrices

Estimation of the model requires computation of transition density matrices, as indicated in Section 4.3.

We provide an example of computing one of the transition matrices needed for the model. Others can

be computed analogously.

Suppose, the (k � 1)-th observed event for consumer i was ending a game session at some time t

while at level 2 and the k-th event happened in 47 minutes when the consumer started another game

session. Thus, we observe a transition from observed state z̃
k�1 = z2 = (g = 0, l = 2) to observed state

z̃
k

= z4 = (g = 1, l = 2) with the transition duration being 4
k

= 47. The subscripts on the z state

correspond to the ordering of states z in the intensity matrix R (see appendix B). Note, that the habit

state h is unobserved, and a consumer can be in any state h = 0, ..., ¯H at time t, as well as it might

had been changing during those 47 minutes that the consumer was inactive with the game. We define

¯H = 1 in this application.

The probability density for the described transition is:

fz2z4
(4) = e4R

z2z2R
z2z4 ,

where the intensity sub-matrix R
z2z2 describes the transition rates of the unobserved habit state h

while the observed state z = z2, and the sub-matrix R
z2z4 describes the rates of change in both the

observed state z and the unobserved state h. The two matrices are:

R
z2z2 :

s : (z2, h1) (z2, h2)

(z2, h1) �µ1(z2, h1) 0

(z2, h2) µ
h

(z2, h1) �µ(z2, h2)

R
z2z4 :

s : (z4, h1) (z4, h2)

(z2, h1) µ1(z2, h1) 0

(z2, h2) 0 µ1(z2, h2)

The matrix exponential eX , where X is a square matrix, can easily be computed in a closed form

provided that the dimensions of X are not prohibitively high and X is diagonizable. The matrix X is

diagonizable if it can be represented as X = Y ⌃Y �1, where ⌃ is a diagonal matrix with the diagonal

elements being the distinct eigenvalues of matrix X and the off-diagonal elements being 0, and Y is a

matrix which columns are the eigenvectors corresponding to the eigenvalues at the diagonal of matrix

⌃. In this case, the matrix exponential is:

eX = Y e⌃Y �1.
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Note, that if X 0 is a d⇥ d diagonal matrix with all the off-diagonal elements being 0, then:

eX
0
=

2

66664

ex
0
1

0 0

0

. . .
0

0 0 ex
0
d

3

77775

For example of the transition above, the eigenvalues of matrix R
z2z2 are ⇠1 = �µ1(z2, h1) and

⇠2 = �µ(z2, h2). The corresponding eigenvectors are of the form:

⇠1:

0 w1

�
⇠2:


w2

�µ
h

(z1, h1) · w2

�µ(z1, h2) + µ1(z1, h1)

�
,

where w1 and w2 can be any numbers. For convenience, we let w1 = µ
h

(z2, h1) and w2 = �µ(z1, h2)+

µ1(z1, h1) and therefore specify the eigenvectors to be:

⇠1:

0 µ

h

(z2, h1)

�
⇠2:


�µ(z1, h2) + µ1(z1, h1) �µ

h

(z1, h1)

�
,

Then the matrices ⌃ and Y are:

⌃ =

2

64
e�µ1(z2,h1)

0

0 e�µ(z2,h2)

3

75 Y =

2

64
0 �µ(z1, h2) + µ1(z1, h1)

µ
h

(z2, h1) �µ
h

(z1, h1)

3

75

and the matrix exponential e4R

z2z2 becomes:

e4R

z2z2
=

�
Y e⌃Y �1

�4
=

2

64
e�µ1(z2,h1)4

0

µ
h

(z2, h1)
⇥
e�µ1(z2,h1)4 � e�µ(z2,h2)4

⇤

�µ(z1, h2) + µ1(z1, h1)
e�µ(z2,h2)4

3

75

Given the matrices Y , ⌃, and R
z2z4 above, the transition density fz2z4

(4) is computed.
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