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Abstract

This paper introduces new methods for filtering, smoothing, and likelihood evaluation for

affine stochastic volatility models. Affine stochastic volatility models are built from the

discrete-time autoregressive gamma process, whose transition density over any interval of

time is the same as the Cox-Ingersoll-Ross or Feller diffusion. The new methods are based

on the insight that it is possible to integrate out the latent variance analytically leaving

only a latent discrete variable. The likelihood function of the model can be calculated ac-

curately up to computer tolerance. This allows for the estimation of unknown parameters

by maximum likelihood and the filtering and smoothing of the latent variance.
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1 Introduction

Stochastic volatility models are common in finance and increasingly in macroeconomics for

modeling the uncertain variation of asset prices and macroeconomic time series. There exists

a large literature in econometrics dedicated to estimating both discrete and continuous-time

stochastic volatility (SV) models; see, e.g. Shephard (2005). The challenge when estimating SV

models stems from the fact that the log-likelihood function of the model is a high-dimensional

integral that does not have a closed-form solution. The contribution of this paper is a new

method that can calculate the log-likelihood function of the model exactly up to computer

tolerance for a class of SV models whose stochastic variance follows a Cox, Ingersoll, and Ross

(1985) process. The new algorithms are based on the insight that it is possible to integrate

out the latent variance analytically leaving only a latent discrete variable. The resulting model

can be approximated accurately by a finite state Markov-switching model, whose likelihood can

easily be evaluated. I also illustrate how the ideas developed here can be extended to cover

other models whose latent variables have a dependence structure like the Cox-Ingersoll-Ross

process, including stochastic intensity, stochastic duration, and stochastic transition models.

Stochastic volatility models belong to the class of nonlinear, non-Gaussian state space mod-

els. Two classes of state space models that are routinely used in economics are linear, Gaussian

models and Markov-switching models. One reason for their popularity is because the log-

likelihood function for these models can be computed in closed-form; see, e.g. Kalman (1960)

and Hamilton (1989). The Kalman filter for linear, Gaussian models recursively updates the

mean vector and covariance matrix of a normal distribution; see, e.g. Harvey (1989) and Durbin

and Koopman (2001). The filtering and smoothing algorithms introduced here do not update

a small set of sufficient statistics through time such as the Kalman filter and are therefore not

closed-form solutions. Nevertheless, the algorithms can compute the solution up to numerical

tolerance on a computer.

The results in this paper follow from the properties of the transition density of the Cox,

Ingersoll, and Ross (1985) (CIR) process, which in discrete time is known as the autoregressive

gamma (AG) process of Gouriéroux and Jasiak (2006). The transition density of the CIR/AG

process is well-known to be a non-central gamma (non-central chi-squared up to scale) distribu-

tion, which is a Poisson mixture of gamma random variables. The CIR/AG process actually has
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two state variables. One is the continuous valued variance ht which is conditionally a gamma

random variable and the other is a discrete mixing variable zt which is conditionally a Poisson

random variable.

I integrate the continuous-valued state variable ht out of the model analytically. This leaves

a state space model whose only state-variable is discrete-valued and defined over the set of

non-negative integers. I show that the Markov transition distribution of the discrete variable

zt is a Sichel distribution; e.g. Sichel (1974, 1975). Like the Poisson distribution from which

it is built, the Sichel distribution assigns increasingly small probability mass to large integers

and the probabilities eventually converge to zero. Although the support of the state variable

zt is technically infinite dimensional, it is finite dimensional for all practical purposes. The

state space model for the discrete-variable zt with the variance ht marginalized out can be

approximated by a finite dimensional Markov-switching model whose log-likelihood can be

computed from known recursions; see, e.g. Baum and Petrie (1966), Baum, Petrie, Soules, and

Weiss (1970), and Hamilton (1989).2

Additional objects of interest are the filtered and smoothed distributions of the latent vari-

ance ht. The filtering distribution characterizes the information about the state variable at time

t given information up to and including time t whereas the smoothing distribution uses all the

available data to retrospectively estimate past values of the variance. An interesting feature of

the CIR/AG process is that once one conditions on the discrete mixing variable zt and the data

yt, the variance ht is independent of the variance in all other time periods. This characteristic

of the model is critical and ultimately drives the results of this paper. The marginal filtering

and smoothing distributions of the variance ht conditional on zt and the data yt are shown to

be generalized inverse Gaussian (GIG) distributions whose moments can be computed analyt-

ically. Solving the filtering and smoothing problem for the variance ht reduces to a two step

problem. First, the marginal filtering and smoothing distributions for the discrete variable zt

are calculated using the algorithms for Markov-switching. Then, moments and quantiles of the

filtering distribution for the continuous-variable ht can be computed by averaging the moments

and quantiles of the conditional GIG distribution by the marginal probabilities of zt calculated

2Technically, the accuracy of the computations are limited to the accuracy of the modified Bessel function
of the second kind, which is typically around 10−14 or 10−15 depending on the point at which it is evaluated.
Secondly, I note that all non-linear, non-Gaussian state space models whose state variables are continuous are
ultimately approximated by finite-state Markov switching models due to the limitations of a computer.
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from the Markov switching algorithm.

A popular method in the literature for approximating the likelihood function and filtering

distributions for stochastic volatility models are sequential Monte Carlo methods also known as

particle filters. Particle filters were introduced into the economics literature by Kim, Shephard,

and Chib (1998). Creal (2012b) provides a recent review of the literature on particle filters. The

filtering and smoothing recursions developed in this paper can be related to the particle filter.

The algorithms have an interpretation as an optimal particle filter but where there are no Monte

Carlo methods involved. Specifically, the algorithms introduced here combine marginalization

techniques Chen and Liu (2000) and Klass, de Freitas, and Doucet (2005) with the optimal

resampling algorithm of Fearnhead and Clifford (2003). Using this analogy, I demonstrate how

an optimal particle filter coincides with the solution introduced here.

This paper continues as follows. In Section 2, I discuss the CIR stochastic volatility model

and demonstrate how to reformulate it with the latent variance integrated out. The model

reduces to a Markov-switching model, whose transition distribution is characterized. In Section

3, I provide the details of the filtering and smoothing algorithms and a discussion of how

to compute them efficiently. In Section 4, I compare standard particle filterings to the new

algorithms and illustrate their relative accuracy. The new methods are then applied to several

financial time series.

2 C.I.R. stochastic volatility models

I consider the class of CIR-SV models for log-prices pt given by

dpt = (µ+ βht) dt+
√
htdW1t (1)

dht = κ (θh − ht) dt+ σ
√

htdW2t, (2)

where W1t and W2t are a pair of independent standard Brownian motions, β is a variance risk

premium, and µ is a location parameter. The unconditional mean of the variance is θh and κ

controls the spead of mean reversion. The process for the variance (2) was considered by Cox,

Ingersoll, and Ross (1985) as a model for the short term interest rate and is called the CIR

process. It was originally analyzed by Feller (1951) and is also known as a Feller or square-root
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process. The model is a staple of the literature in continuous-time finance because it is a subset

of the class of affine models, which have closed form option pricing formulas; see, e.g. Heston

(1993).

In discrete time, the CIR process is known as the autoregressive gamma (AG) process of

Gouriéroux and Jasiak (2006), who developed many of its properties. The discrete time AG-SV

model for an observable time series yt is

yt = µ+ βht +
√
htεt εt ∼ N(0, 1) (3)

ht ∼ Gamma (ν + zt, c) (4)

zt ∼ Poisson

(
ϕht−1

c

)
, (5)

where I assume that the initial condition is a draw from the stationary distribution h0 ∼
Gamma

(
ν, c

1−ϕ

)
with mean E [h0] =

cν
1−ϕ

. The AG-SV model has two state variables ht and

zt, where the latter can be regarded as an “auxiliary” variable in the sense that is not of direct

interest.

Importantly, the AG(1) and the CIR process have the same transition density. Consider

changes in the continuous-time variance process (2) over an interval of time τ . By setting

ϕ = exp (−κτ) , c = σ2[1−exp(−κτ)]
2κ

, and ν = 2κθh
σ2 , the autoregressive gamma process (4) and (5)

converges to the CIR process (2) as τ → 0. Integrating zt out of (4) and (5), the transition

density of ht is

p(ht|ht−1; θ) = hν−1
t

1

cν
exp

(
−(ht + ϕht−1)

c

) ∞∑
k=0

[
hk
t

ckΓ (ν + k)

(ϕht−1/c)
k

k!

]
,

which is a non-central gamma (non-central chi-squared up to scale) distribution. The condi-

tional mean and variance of this distribution are

E [ht|ht−1] = νc+ ϕht−1

V [ht|ht−1] = νc2 + 2cϕht−1

The conditional heteroskedasticity of ht as a function ht−1 is a well-known feature of the

AG/CIR model that the log-normal SV model does not share; see, e.g. Shephard (2005).
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The parameter ϕ controls the autocorrelation of ht because the conditional mean is linear in

ht. The restriction ϕ < 1 is required for stationarity. An additional restriction that researchers

are likely to impose is the Feller condition ν > 1, which guarantees that the process ht never

reaches zero.

Further details on the limiting behavior as well as other properties of the process can be

found in Gouriéroux and Jasiak (2006). For the remainder of the paper, I primarily focus on

the discrete time model, whose parameters have domains 0 < ϕ < 1, ν > 1 and c > 0. I let

θ = (µ, β, ν, ϕ, c) denote the vector of unknown parameters of the model.3 Throughout the

paper, I use the notation xt−k:t to denote a sequence of variables (xt−k, . . . , xt), which may be

either observed or latent.

Econometric analysis of the AG-SV model is challenging because the likelihood of the model

p(y1:T ; θ) is in the form of a high-dimensional integral

p(y1:T ; θ) =

∫ ∞

0

. . .

∫ ∞

0

∞∑
z1=0

. . .
∞∑

zT=0

T∏
t=1

p(yt|ht; θ)p(ht|zt; θ)p(zt|ht−1; θ)p(h0; θ)dh0, . . . , dhT .

For linear, Gaussian state space models and Markov-switching models, this integral is solved

recursively beginning at the initial iteration using the prediction error decomposition; see, e.g.

Durbin and Koopman (2001) and Frühwirth-Schnatter (2006). It is the difficulty of computing

this integral in closed-form that has led researchers to search for approximations to the log-

likelihood function primarily by Monte Carlo methods. SV models of different types have been

estimated by simulated maximum likelihood (SML) by among others Durbin and Koopman

(1997), Durham and Gallant (2002),....ADD MORE REFERENCES. These papers use different

Monte Carlo methods including importance sampling, particle filters, and Markov chain Monte

Carlo (MCMC).

Alternatively, researchers avoid direct approximation of the likelihood function and use

either Bayesian methods or (possibly) less-efficient estimators of the model’s parameters such

3If interest centers on the continuous-time model (1) and (2), it is possible to estimate the parameters

θ =
(
µ, β, κ, θh, σ

2
)
. However, one needs to make an assumption about the integrated variance

∫ t+τ
t

h(s)ds
which does not have a closed-form solution for the CIR model. A standard assumption in the literature is
to sub-divide time intervals τ into M equal sub-intervals and approximate this integral by a Riemann sum∫ t+τ
t

h(s)ds ≈
∑M
j=1 ht+j

τ
M . The discrete time model here assumes values M = 1 and τ = 1 whereas in most

applications in continuous-time finance the parameters are reported on an annual basis such that τ = 1
256 .
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as the generalized method of moments, efficient method of moments, or indirect inference;

see, Shephard (2005) for a survey. The continuous-time CIR-SV model (possibly with jumps

and leverage) has been estimated in applications for the term-structure of interest rates and

option pricing. Versions of the continuous-time model appear in Eraker, Johannes, and Polson

(2003), and Chib, Pitt, and Shephard (2006),....ADD MORE REFERENCES. Most work in

the literature estimates the continuous-time version of the model using an Euler discretization

(conditional normal approximation) for the dynamics of the variance instead of the exact non-

central gamma distribution.

Apart from calculating the likelihood function, additional objects of interest are the posterior

distributions p(ht|y1:t; θ), p(ht+1|y1:t; θ), and p(ht|y1:T ; θ) which summarize knowledge about the

latent state variable ht based on different information sets. Filtering corresponds to an estimate

of the state variable at time t given information up to and including time t whereas smoothed

estimates use all the available data.

The key insight for developing recursions that can accurately compute the log-likelihood

function for the AG-SV model is to recognize that it is possible to integrate the variance ht out of

the model analytically. The only unobserved state variable remaining is the auxiliary variable zt,

whose Markov transition distribution can be characterized. The following proposition describes

the dynamics of the model once the variance ht has been integrated out.

Proposition 1 The conditional likelihood p(yt|zt; θ), transition distribution p(zt|zt−1, y1:t−1; θ),

and initial distribution are

p(yt|zt; θ) = Variance Gamma

(
µ,

√
2

c
+ β2, β, ν + zt

)
(6)

p(zt|zt−1, y1:t−1; θ) = Sichel

(
ν + zt−1 −

1

2
,
ϕ

c
(yt−1 − µ)2 ,

c

ϕ

[
2

c
+ β2

])
(7)

p(z1; θ) = Negative Binomial (ν, ϕ) (8)

Definitions for the distributions are available in the appendix.

Proof: See the Appendix.

Once the variance has been integrated out, the model reduces to a variance gamma (VG)

distribution with a Markov-switching state variable zt. The variance gamma (VG) distribution
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is also known as a generalized (asymmetric) Laplace distribution; see, e.g. Kotz, Kozubowski,

and Podgórski (2001). The symmetric version (β = 0) of the distribution was introduced

into the literature by Madan and Seneta (1990) and subsequently extended to the asymmetric

distribution (β ̸= 0) by Madan, Carr, and Chang (1998). The VG model for asset returns

(without the Markov-switching variable zt) is extremely popular among practitioners. Like

the CIR-SV model, it has closed-form solutions for option prices. It is often advocated as an

alternative to the CIR-SV model. This result illustrates how over discrete time intervals the

CIR-SV model generalizes the VG model. Consider the mean and variance of the conditional

distribution p(yt|zt; θ) which are

E [yt|zt] = µ+ cβ (ν + zt) (CHECK THIS)

V [yt|zt] = c (ν + zt) + c2β2 (ν + zt)

A large past value of yt−1 or zt−1 causes more probability mass to be placed on larger values of

zt in the Sichel distribution (7). This causes the variance of the conditional distribution for yt

to increase.

The state variable zt has a non-homogenous Markov transition kernel known as a Sichel

distribution; see, e.g. Sichel (1974, 1975). A Sichel distribution is a Poisson distribution whose

mean is a random draw from a generalized inverse Gaussian (GIG) distribution. The support

of a Sichel random variable is therefore over the set of non-negative integers. The state variable

zt technically has a countably infinite dimensional support but like the Poisson distribution the

probabilities converge to zero for large integer values. The stationarity of the model ensures

that there always exists an integer Zθ,yt such that the probability p(zt = Zθ,yt |y1:t, θ) is zero up

to machine tolerance on a computer. The algorithms developed below will take advantage of

this property.

Despite analytically integrating ht from the model, the filtering distributions for zt cannot

be computed recursively in closed-form using a finite set of sufficient statistics like the Kalman

filter. Given that this distribution assigns negligible probability mass to large integers, the

distribution of p(zt|y1:t; θ) can be approximated accurately using a finite dimensional (Zθ,yt +

1) × 1 vector of probabilities p̂(zt|y1:t; θ) whose points of support are the integers from 0 to

Zθ,yt . The Markov transition distribution p(zt|zt−1, y1:t−1; θ) can also be approximated by a
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(Zθ,yt + 1) × (Zθ,yt + 1) transition matrix p̂(zt|zt−1, y1:t−1; θ). Both approximations will be

equivalent to the estimates produced by a closed-form solution as Zθ,yt → ∞. Computing

the probabilities for extremely large values of zt is, however, computationally wasteful as these

values are numerically zero. The empirical applications in Section 4 illustrate how to accurately

compute the log-likelihood function with practical values of Zθ,yt . To obtain a fixed precision

across the parameter space, the integer Zθ,yt at which the distributions are truncated should be

a function of the parameters of the model θ and the data yt. A discussion on how to determine

the value of Zθ,yt is provided further below. In the following, I eliminate dependence of θ and

yt on Zθ,yt for notational convenience.

Using the finite representation for the distribution of zt, the model is now equivalent to

a Markov-switching model, which have known filtering and smoothing recursions; see, e.g.

Baum and Petrie (1966), Baum, Petrie, Soules, and Weiss (1970), and Hamilton (1989). It

follows that the log-likelihood function is available and it is straightforward to estimate the

unknown parameters θ by maximum likelihood. The marginal filtering p(zt|y1:t; θ), one-step
ahead predictive p(zt+1|y1:t; θ), and smoothing distributions p(zt|y1:T ; θ) can be also computed

from these algorithms. Further computational details for these algorithms are discussed in

Section 3.

The Markov switching algorithms provide estimates of the auxiliary variable zt but in appli-

cations interest centers on estimation of the latent variance ht through filtering and smoothing

algorithms similar to the linear, Gaussian state space model; see, e.g. Durbin and Koopman

(2001). The marginal filtering and smoothing distributions for ht are not known analytically but

moments and quantiles of the distributions can be accurately computed. Accurate computation

of these quantities is an implication of the following result.

Proposition 2 Conditional on the discrete variable and the data, the predictive p(ht+1|z1:t, y1:t; θ),
marginal filtering p(ht|z1:t, y1:t; θ), and marginal smoothing p(ht|z1:T , y1:T ; θ) distributions as well
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as the distribution of the initial condition are

p(ht+1|z1:t+1, y1:t; θ) = Gamma

(
ν − 1

2
+ zt+1, c

)
(9)

p(ht|z1:t, y1:t; θ) = GIG

(
ν + zt −

1

2
, (yt − µ)2 ,

2

c
+ β2

)
(10)

p(ht|z1:T , y1:T ; θ) = GIG

(
ν + zt + zt+1 −

1

2
, (yt − µ)2 ,

2(1 + ϕ)

c
+ β2

)
(11)

p(h0|z1:T , y1:T ; θ) = Gamma (ν + z1, c) (12)

Definitions for the generalized inverse Gaussian (GIG) distribution are available in the ap-

pendix.

Proof: See the Appendix.

Conditional on the discrete mixing variable and the data, the marginal filtering and smooth-

ing distributions for the variance ht are either generalized inverse Gaussian (GIG) or gamma

distributions. Useful properties of GIG random variables that are needed for computational

purposes are discussed in the appendix. The main point of this proposition is that the distribu-

tion of the variance ht is independent of the variance at other time periods conditional on zt and

yt. This is due to the fact that ht depends on ht−1 only through zt. This is critical for the results

of this paper. In a general state space model with Markov switching (see e.g. Shephard (1994)

and Frühwirth-Schnatter (2006)), the continuous-valued state variable remains dependent on

itself after conditioning on the discrete variable. This causes the domain of integration to grow

exponentially over time, i.e. a model with Z possible values for zt would have dimension Zt at

time t. This proposition illustrates that this is not true for models which have a dependence

structure like the AG-SV model.

A further implication of this result is that moments and quantiles of the marginal distribu-

tion p(ht|y1:t; θ) can be computed by weighting the expectations of the conditional distribution

p(ht|zt, yt; θ) by the discrete probabilities p(zt|y1:t; θ) calculated from the Markov switching

algorithm. At each iteration, the joint distribution can be decomposed as

p(ht, zt|y1:t; θ) = p(ht|y1:t, zt; θ)p(zt|y1:t; θ) ≈ p(ht|yt, zt; θ)p̂(zt|y1:t; θ)

Estimates of the moments of the marginal filtering and predictive distributions for the variance
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are

E [hα
t |y1:t; θ] =

∞∑
zt=0

E [hα
t |yt, zt; θ] p(zt|y1:t; θ) ≈

Z∑
zt=0

E [hα
t |yt, zt; θ] p̂(zt|y1:t; θ) (13)

E
[
hα
t+1|y1:t; θ

]
=

∞∑
zt=0

E
[
hα
t+1|zt+1; θ

]
p(zt+1|y1:t; θ) ≈

Z∑
zt=0

E
[
hα
t+1|zt+1; θ

]
p̂(zt+1|y1:t; θ)(14)

where the orders of integration for zt and ht have been exchanged. In these expresssions, the

conditional expectations E [hα
t |yt, zt; θ] and E

[
hα
t+1|zt+1; θ

]
are with respect to the GIG and

gamma distributions from Proposition 2. These can be calculated analytically for any value of

zt and are then weighted by their marginal probabilities p̂(zt|y1:t; θ) produced from the Markov-

switching algorithm; see Section 3.1 below. As Z → ∞, the solution converges to the truth

whereas numerically accurate estimates can be computed for finite values of Z due to the fact

that the probabilities p(zt|y1:t; θ) converge to zero for large integer values.

If interest centers on the quantiles of the marginal filtering or predictive distributions of the

variance, these can be estimated analagously as

P (ht < x|y1:t; θ) =
∞∑

zt=0

[∫ x

0

p (ht|yt, zt; θ) dht

]
p(zt|y1:t; θ)

≈
Z∑

zt=0

[∫ x

0

p (ht|yt, zt; θ) dht

]
p̂(zt|y1:t; θ) (15)

P (ht+1 < x|y1:t; θ) =
∞∑

zt=0

[∫ x

0

p (ht+1|zt+1; θ) dht

]
p(zt+1|y1:t; θ)

≈
Z∑

zt=0

[∫ x

0

p (ht+1|zt+1; θ) dht

]
p̂(zt+1|y1:t; θ) (16)

where the terms in brackets are the cumulative distribution functions of the GIG and gamma

distributions from Proposition 2. For a given quantile and with a fixed value of p̂(zt|y1:t; θ)
or p̂(zt+1|y1:t; θ), the value of x in (15) and (16) can be determined with a simple zero-finding

algorithm. Similar ideas can be applied to estimate moments and quantiles of the marginal

smoothing distributions, which are also GIG and gamma distributions as shown in Proposition

2. Further details are discussed in Section 3.2.

Another contribution of this paper is to recognize the importance of the conditional depen-
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dence structure of the CIR/AG dynamics. The ideas developed in this section can be used to

analyze other models whose dependence structure is like the CIR/AG dynamics as long as it is

possible to analytically calculate the distributions p(yt|zt; θ) and p(zt|zt−1, y1:t−1; θ). Important

models for which this is possible are when the distribution of p(yt|ht; θ) is Poisson with time-

varying mean ht, exponential with time-varying intensity ht, and gamma with time-varying

mean ht. The exponential model with time-varying intensity is an important model in the

literature on credit risk; see, e.g. Duffie and Singleton (2003) and Duffie, Eckner, Horel, and

Saita (2009). These results are developed further in Creal (2012c) who builds methods for Cox

processes with CIR intensities, marked Poisson processes with CIR intensities, and duration

models built from the AG process.

3 Filtering and smoothing recursions

In this section, I describe the filtering and smoothing algorithms in further detail including a

discussion of how to implement them efficiently. I also discuss the relationship of the filtering

algorithm with the particle filter.

3.1 Marginal prediction and filtering recursion

The recursions for the marginal filtering and one-step ahead predictive distributions proceed

forward in time from t = 1, . . . , T as follows. Assuming that the initial condition is a draw from

the stationary distribution h0 ∼ Gamma
(
ν, c

1−ϕ

)
, the distributions for the initial iteration are

computed analytically in the following proposition.

Proposition 3 The initial contribution to the likelihood p(y1; θ), the marginal filtering distri-
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butions p(z1|y1; θ), p(h1|y1; θ), and the predictive distribution p(z2|y1; θ) are

p(y1; θ) = Variance Gamma

(
µ,

√
2(1− ϕ)

c
+ β2, β, ν

)

p(h1|y1; θ) = GIG

(
ν − 1

2
, (y1 − µ)2 ,

2(1− ϕ)

c
+ β2

)
p(z1|y1; θ) = Sichel

(
ν − 1

2
,
ϕ

c
(y1 − µ)2 ,

c

ϕ

[
2(1− ϕ)

c
+ β2

])
p(z2|y1; θ) = Sichel

(
ν − 1

2
,
ϕ

c
(y1 − µ)2 ,

c

ϕ

[
2(1− ϕ)

c
+ β2

])
(17)

Proof: See Appendix.

From this point forward, the distributions cannot be solved analytically because the integrals

have an unknown solution. I proceed by approximating them by a finite-state Markov switching

model. Proposition 3 provides a way to initial the algorithm. I proceed by computing the

(Z + 1) × 1 vector of predictive probabilities p̂(z2|y1; θ) using the Sichel distribution (17).

Computing the filtering probabilities p̂(zt|y1:t; θ) and the predictive probabilities p̂(zt+1|y1:t; θ)
for t = 2, . . . , T follows by recursively applying Bayes’ rule. The filtering and prediction steps

are

p̂(zt = i|y1:t; θ) =
p(yt|zt = i; θ)p̂(zt = i|zt−1, yt−1; θ)∑Z
j=0 p(yt|zt = j; θ)p̂(zt = j|y1:t−1; θ)

(18)

p̂(zt+1 = i|y1:t; θ) =
Z∑

j=0

p̂(zt+1 = i|zt = j, yt; θ)p̂(zt = j|y1:t; θ) (19)

At each iteration of the algorithm, the distributions p̂(zt|y1:t; θ) and p̂(zt+1|y1:t; θ) are self-

normalized to ensure that they are well-defined probability distributions summing to one. The

term p̂(yt|y1:t−1; θ) =
∑Z

j=0 p(yt|zt = j)p̂(zt = j|y1:t−1; θ) is the contribution to the likelihood

function for date t. The log-likelihood function is given by

log p̂ (y1:T ; θ) =
T∑
t=2

log p̂(yt|y1:t−1; θ) + log p(y1; θ)

During the algorithm, expectations of the marginal predictive and filtering distributions for the

variance can be computed using (13) and (14). Further discussion on Markov-switching algo-
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rithms can be found in Hamilton (1994), Cappé, Moulines, and Rydén (2005), and Frühwirth-

Schnatter (2006).

At this point, it is important to note that the prediction step in (19) is a vector-matrix

multiplication which is an O(Z2) operation. Fortunately, the Markov transition distribution

p(zt|zt−1, y1:t−1; θ) is a sparse, non-symmetric band matrix. In addition, many of the entries

in the vector of filtered probabilities p(zt|y1:t; θ) are close to zero. This feature of the model

means that the O(Z2) computation in the prediction step of the algorithm can be avoided. It is

only necessary to compute those elements in the vector-matrix operation that when multiplied

together are greater than machine zero on a computer. In other words, if for any combination

of states i and j the product p(zt+1 = i|zt = j, y1:t−1; θ)p(zt = j|y1:t; θ) is numerically zero, then

it is unnecessary to compute the probability for other transitions whose probabilities are known

to be smaller. In addition, each row times column operation in the vector-matrix multiplication

of the prediction step can be computed in parallel on multi-core processors. The sparse nature

of the transition matrix and the ability to compute the operations in parallel make computing

the likelihood easily feasible for macroeconomic and financial data sets using daily, monthly, or

quarterly data.

An important practical issue is the choice of the threshold Z that determines where the

infinite sums are truncated. First, it is possible to determine the values of Zθ,yt endogenously

at each time period within the algorithm such that p̂(zt = Zθ,yt |y1:t; θ) is numerically equal

to zero or some other prespecified tolerance level. In this way, the values of Zθ,yt can be

automatically determined. The size of the vectors p̂(zt|y1:t; θ) and p̂(zt+1|y1:t; θ) as well as the
Markov transition matrix are then stochastic. Stochastic truncation of the infinite sums will

ensure a uniform approximation across the parameter space. Alternatively, a researcher can

determine a fixed value of Z a priori by carefully considering the properties of the model.

First, one can find initial values for the parameters (ϕ, c, ν) by comparing moments of the

stationary distribution of volatility and its persistence to their sample counterparts based on

squared returns. Next, note that the stationary distribution of zt is a negative binomial (ν, ϕ)

distribution whose mean and variance are E [z] = νϕ
1−ϕ

and V [z] = νϕ

(1−ϕ)2
. Plugging the values

of (ϕ, ν) into these formulas and noting that as the mean of the negative binomial distribution

gets larger it becomes approximately normally distributed, we can see that almost all of the

probability mass for zt will be within 3-4 standard deviations of the mean.
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TO BE COMPLETED. IT MAY NOT BE POSSIBLE BECAUSE THE DIS-

TRIBUTION MAY NOT EVENTUALLY LEAD TO A PROPER DENSITY. To

this point, I have assumed that the initial condition h0 is a draw from the stationary distribution

h0 ∼ Gamma
(
ν, c

1−ϕ

)
. For linear, Gaussian state space models, some components of the state

vector may be non-stationary and the Kalman filter can be initialized with a non-informative or

diffuse initial condition; see, e.g. de Jong (1991) and Koopman (1997). Even when a model is

stationary, it is often sensible to use a diffuse initialization to minimize the impact of the initial

condition on the likelihood function as well as estimates of the state variables. It is possible to

initialize the filtering algorithm for AG-SV models using a diffuse initialization. The gamma

distribution for the initial condition becomes diffuse as both ν → 0 and c
1−ϕ

→ 0. In this case,

the density is improper and is proportional to the function h−1
0 . With a diffuse initialization,

the initial contribution to the log-likelihood, the filtering distributions, and prediction distri-

bution in Proposition 3 are in the same family of distributions but with different parameters.

Importantly, the one-step ahead predictive probabilities p̂(z2|y1; θ) need to be initialized from

a different Sichel distribution; see the appendix for details.

3.1.1 Relationship to the particle filter

The filtering recursions developed in this paper can be compared to several techniques developed

in the literature on particle filters; see, e.g. Creal (2012b) for a survey. Particle filters are

Monte Carlo algorithms that approximate distributions whose support is infinite by a finite set

of points and probability masses. The algorithm from the previous section can be interpreted

as an optimal particle filter in the following way. First, the continuous-valued variance ht

is analytically integrated out of the model through an application of Rao-Blackwellisation,

e.g. Chen and Liu (2000). Next, the filtering distribution p(zt−1|y1:t−1; θ) is represented by a

collection of “particles” given by
{
w

(i)
t−1, z

(i)
t−1

}Z

i=1
. The values z

(i)
t−1 are locations on the support

of the distribution and the w
(i)
t−1 are weights representing the probability mass at that point.

In the current model, the locations on the support of the distribution are the integers z
(i)
t−1 = i

for i = 0 . . . , Z and the weights are the probabilities p̂(zt−1|y1:t−1; θ).

A particle filtering algorithm updates the particles’ locations and weights from one time

period
{
w

(i)
t−1, z

(i)
t−1

}Z

i=1
to the next time period

{
w

(i)
t , z

(i)
t

}Z

i=1
using Monte Carlo methods. In a

typical particle filter where the support of zt is continuous, the transitions for each particle from
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z
(i)
t−1 to z

(i)
t are determined randomly and the weights are updated by importance sampling.

The new set of particles
{
w

(i)
t , z

(i)
t

}Z

i=1
form a discrete distribution that approximates the

next filtering distribution p(zt|y1:t; θ). When the support of the state variable is discrete, the

transitions do not need to be random but can be deterministic in order not to allow particles

to duplicate transitions. Duplicating transitions is redundant and computationally wasteful.

Suppose for simplicity that the sparse matrix operation discussed in the previous section is

ignored when computing the prediction step. Then the filtering algorithm of Section 3.1 forces

each particle to transition deterministically through all of the future Z states creating a total

of Z2 offspring. This particle filtering algorithm is an example of a marginalized particle filter;

see, e.g. Klass, de Freitas, and Doucet (2005). In a particle filter, particles are resampled

when their weights become imbalanced. In this setting, the Z2 particles are resampled into Z

unique particles with unequal weights
{
w

(i)
t , z

(i)
t

}Z

i=1
using an optimal resampling algorithm,

e.g. Fearnhead and Clifford (2003). In the algorithm outlined in Section 3.1, the resampling

step is not explicitly carried out. It is implicitly part of the vector-matrix multiplication in the

prediction step when the row vector of filtering probabilities are multiplied by each column of

the Markov transition matrix and summed to compute the predictive probabilities.

By interpreting the algorithm as a particle filter, it is easy to see that the only way to

(recursively) compute the solution to the filtering problem more accurately is to increase the

number of “particles” Z, i.e. by truncating the infinite sums at larger integers. In addition, it

is also easy to see that the algorithm will be consistent in the sense that as Z → ∞ the solution

will converge to the true value.

3.2 Marginal smoothing recursion

An object of independent interest are smoothed or two-sided estimators of the latent variance. It

is also possible to recursively compute the marginal smoothing distributions for p(zt|y1:T ; θ) and
moments and quantiles of the marginal distribution p(ht|y1:T ; θ). The solution for smoothing

is analagous to the solution for forward filtering. First, the joint distribution can be decom-

posed as p(h0:T , z1:T |y1:T ; θ) = p(h0:T |z1:T , y1:T ; θ)p(z1:T |y1:T ; θ) and the smoothing algorithms

for discrete-state Markov switching models can be applied to calculate the marginal probabil-

ities p(zt|y1:T ; θ). Moments and quantiles of the marginal smoothing distribution p(ht|y1:T ; θ)

16



can be computed using the results from Proposition 2.

First, the filtering algorithm (18) and (19) is run forward in time and the one-step ahead

prediction probabilities and the conditional likelihoods p(yt|zt; θ) are stored for t = 1, . . . , T .

The backwards smoothing algorithm is initialized using the final iteration’s filtering probabilities

p̂(zT |y1:T ). For t = T − 1, . . . , 1, the smoothing distributions for zt are computed as

p̂ (zt = i|zt+1 = j, y1:T ; θ) =
p (yt|zt = i; θ) p̂(zt = i|zt+1 = j, y1:t+1; θ)∑Z
k=0 p(yt|zt = k; θ)p̂(zt = k|zt+1 = j, y1:t+1; θ)

(20)

p̂ (zt = i, zt+1 = j|y1:T ; θ) = p̂ (zt+1 = j|y1:T ; θ) p̂ (zt = i|zt+1 = j, y1:T ; θ) (21)

p̂ (zt = i|y1:T ; θ) =
Z∑

j=0

p̂ (zt = j|y1:T ; θ) p̂ (zt = i|zt+1 = j, y1:T ; θ) (22)

At each iteration, the distributions are self-normalized to ensure that they are well-defined prob-

ability distributions. Computation of (20) also requires an O(Z2) operation on the backwards

pass. This can be reduced substantially by taking into account the sparse matrix structure of

the transition probabilities.

This algorithm also computes the bivariate smoothing probabilities p̂ (zt = i, zt+1 = j|y1:T ; θ)
which are used to calculate the moments and quantiles of the marginal smoothing distribution

for the variance

E [hα
t |y1:T ] ≈

Z∑
zt=0

Z∑
zt+1=0

E [hα
t |yt, zt, zt+1] p̂(zt, zt+1|y1:T ; θ)

P (ht < x|y1:T ; θ) ≈
Z∑

zt=0

Z∑
zt+1=0

[∫ x

0

p (ht|yt, zt, zt+1; θ) dht

]
p̂(zt, zt+1|y1:T ; θ)

Conditional expectations and quantiles of the marginal smoothing distribution p(ht|yt, zt, zt+1; θ)

are calculated from the properties of the GIG and gamma distributions of Proposition 2.

Smoothed estimates of the variance are of independent interest but the algorithm can also

be used as part of the expectation-maximization (EM) algorithm of Dempster, Laird, and

Rubin (1977) as an alternative means of computing the maximum likelihood estimator.

Finally, we note that the unique conditional independence structure highlighted in Propo-

sition 2 makes it easy to draw samples from the joint distribution p(h0:T , z1:T |y1:T , θ) and thus

the marginal distribution of the variance. This follows by decomposing the joint distribu-
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tion into a conditional and a marginal as p(h0:T , z1:T |y1:T ; θ) = p(h0:T |y1:T , z1:T ; θ)p(z1:T |y1:T ; θ).
A draw is taken from the marginal distribution z1:T ∼ p̂(z1:T |y1:T ; θ) using standard results

on Markov-switching algorithms. Then, conditional on the draw of z1:T , a draw is taken from

h0:T ∼ p(h0:T |y1:T , z1:T ; θ) which are the distributions from Proposition 2. Algorithms that draw

samples from the joint distribution of the latent variables given the data are known as simu-

lation smoothers or alternatively as forward-filtering backward sampling (FFBS) algorithms;

see, e.g. Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong and Shephard (1995)

and Durbin and Koopman (2002) for linear, Gaussian models and Chib (1996) for Markov-

switching models. Simulations smoothers are useful for frequentist and Bayesian analysis of

more complex models. In addition, they are useful for calculating moments and quantiles of

nonlinear functions of the state variable such as the volatility
√
ht. Creal (2012a) shows how

these results can be used for Bayesian inference of the AG-SV model and its extensions.

4 Application of the new methods

4.1 Comparisons with the particle filter

In this section, I compare the log-likelihood functions calculated from the new algorithm with

a standard particle filtering algorithm to demonstrate their relative accuracy. The algorithms

are compared by running them on the S&P500 series discussed further below in Section 4.2.

All filtering algorithms were run with the parameter values fixed at the ML estimates from the

next section. I run the filtering algorithm of Section 3.1 with the truncation parameter set at

Z = 3500. For comparison purposes, I implement a particle filter with the transition density

as a proposal where the particles are resampled at random times according to the effective

sample size (ESS), see Creal (2012b). I use the residual resampling algorithm of Liu and Chen

(1998), which is known to be unbiased. This is a simple extension of the original particle filter

of Gordon, Salmond, and Smith (1993).4

To compare the methods, I compute slices of the log-likelihood function for the parameters ϕ

and ν over the regions [0.97, 0.999] and [1.0, 2.2], respectively. Cuts of the log-likelihood function

for the remaining parameters (µ, β, c) are similar and are available in an online appendix. Each

4I implemented additional particle filtering algorithms including the auxiliary particle filter of Pitt and
Shephard (1999). The results were similar and are available in an online appendix.
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Figure 1: Slices of the log-likelihood function for ϕ (left) and µ (right) for the new algorithm (blue line)

versus the particle filter (red dots). The particle sizes are N = 10000 (top row), N = 30000 (middle row), and

N = 100000 (bottom row). The vertical (green) lines are the ML estimates of the model reported in Table 1.
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of these regions are divided into 1000 equally spaced points, where the log-likelihood function

is evaluated. While the values of ϕ and ν change one at a time, the remaining parameters are

held fixed at their ML estimates. The log-likelihood functions from the particle filter are shown

for different numbers of particles N = 10000, N = 30000 and N = 100000. These values were

selected because they are representative of values of N used throughout the literature. One

limitation of the particle filter that was raised early in that literature can be seen from Figure 1.

The particle filter does not produce an estimate of the log-likelihood function that is smooth in

the parameter space. Consequently, standard derivative-based optimization routines may have

trouble converging to the maximum. The smoothness of the log-likelihood function produced

by the new algorithm is an attractive feature. It makes calculation of the ML estimates easily

feasible as shown in the next section.

Secondly, in this application, there is a sizeable downward bias in the particle filter’s esti-

mates of the log-likelihood function as well as a reasonably large amount of variability in the

estimates. It is known that the particle filter’s estimator of the likelihood function is unbiased,

as long as the resampling algorithm used within a particle filter is unbiased. The particle filter’s

estimate of the likelihood is also consistent and asymptotically normal; see, e.g. Chapter 11 of

Del Moral (2004). However, taking logarithms causes the particle filter’s estimate to be biased

downward for finite values of the particles due to Jensen’s inequality.

4.2 Applications to financial data

In this section, I apply the new methods to several daily financial time series. These include the

S&P 500 index, the MSCI-Emerging Markets Asia index, and the Euro-to-U.S. dollar exchange

rate. The first two series were downloaded from Bloomberg and the latter series was taken

from the Board of Governers of the Federal Reserve. All series are from January 3rd, 2000 to

December 16th, 2011 making for 3009, 3118, and 3008 observations for each series, respectively.

A value of Z = 3500 was used for all series. Starting values for the parameters of the variance

(ϕ, ν, c) were obtained by matching the unconditional mean, variance, and persistence of average

squared returns to the unconditional distribution. The values of (µ, β) were initialized at zero.

The Feller condition ν > 1 as well as the constraints 0 < ϕ < 1 and c > 0 were imposed

throughout the estimation.
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Table 1: Maximum likelihood estimates for the AG-SV model.

µ β ϕ c ν θh κ σ2 log-like
S&P500 0.102 -0.061 0.988 0.015 1.539 1.815 3.168 7.470 -4542.1

(0.020) (0.018) (0.004) (0.003) (0.193)

MSCI-EM-ASIA 0.250 -0.115 0.978 0.024 1.963 2.115 5.736 12.364 -5213.2
(0.031) (0.020) (0.006) (0.005) (0.229)

Euro/$ 0.073 -0.148 0.994 0.0007 3.740 0.442 1.489 0.359 -2862.2
(0.022) (0.058) (0.004) (0.0002) (1.263)

Maximum likelihood estimates of the parameters θ = (µ, β, ϕ, c, ν) of the discrete-time AG-SV model on
three data sets of daily returns. The series are the S&P500, the MSCI emerging markets Asia index, and the
EURO-$ exchange rate. The data cover January 3, 2000 to December 16, 2011. Asymptotic standard errors
are reported in parenthesis. The continuous-time parameters are reported for intervals τ = 1

256 .

Estimates of the parameters of the discrete-time model as well as standard errors are re-

ported in Table 1. The standard errors are calculated by numerically inverting the Hessian at

the ML estimates. The implied parameters of the continuous-time model are also reported in

Table 1 assuming a discretization step size of τ = 1
256

. For all series, the risk premium parame-

ters β are estimated to be negative and significant implying that the distribution of returns are

negatively skewed. Estimates of the autocorrelation parameter ϕ for the S&P500 and MSCI

series are slightly smaller than is often reported in the literature for log-normal SV models.

The dynamics of volatility for the Euro/$ series is substantially different than the other series.

The mean θh of volatility is much lower and the volatility is more persistent.

Figure 2 contains output from the estimated model for the S&P500 series. The top left

panel is a plot of the filtered and smoothed estimates of the volatility
√
ht over the sample

period. The estimates are consistent with what one would expect from looking at the raw

return series. There are large increases in volatility during the U.S. financial crisis of 2008

followed by another recent spike in volatility during the European debt crisis.

To provide some information on how the truncation parameter Z impacts the estimates,

the top right panel of Figure 2 is a plot of the marginal filtering distributions for the discrete

mixing variable p(zt|y1:t; θ) on three different days. The three distributions that are pictured are

representative of the distribution p(zt|y1:t; θ) during low (6/27/2007), medium (10/2/2008), and

high volatility (12/1/2008) periods. The distribution of zt for the final date (12/1/2008) was
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Figure 2: Estimation results for the AG-SV model on the S&P500 index from 1/3/2000 to 12/16/2011.

Top left: filtered and smoothed estimates of the volatility
√
ht. Top right: marginal probability mass functions

p(zt|y1:t; θ) on three different dates. Bottom left: forecasting distribution of the variance ht for 100 days be-

ginning on 7/29/2005. Bottom right: forecasting distribution of the variance ht for 100 days beginning on

11/28/2008.

chosen because it is the day at which the mean of zt is estimated to be the largest throughout

the sample. Consequently, it is the distribution where the truncation will have the largest

impact. This time period also corresponds to the largest estimated value of the variance ht.

The graph illustrates visually that the impact of truncating the distribution appears to be

negligible as the truncation point is far into the tails of the distribution.
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Table 2: Cumulative distribution functions P (zt|y1:t; θ) for different values of Z.

P (zt ≤ 1500|y1:t; θ) P (zt ≤ 2000|y1:t; θ) P (zt ≤ 2500|y1:t; θ) log-like
Z = 2500 0.996057165621493 0.999995671659054 1.000000000000000 -4542.062558886049
Z = 3000 0.996057162486533 0.999995668594590 0.999999998627221 -4542.062558891409
Z = 3500 0.996057162486131 0.999995668594186 0.999999998626824 -4542.062558891406
Z = 5000 0.996057162486131 0.999995668594186 0.999999998626824 -4542.062558891406

This table contains the cumulative distribution functions of the filtering distributions P (zt|y1:t; θ) and the
log-likelihood as a function of the truncation parameter for Z = 2500, 3000, 3500, 5000 on 12/1/2008. The table
also reports the log-likelihood function for the entire dataset.

In Section 3.1.1, I argued that the only way to compute the log-likelihood function more

accurately was to increase the value of Z. To quantify this further, the algorithms were run

again and the log-likelihood functions as well as the c.d.f.s for zt were calculated for a series of

different truncation values. The cumulative distribution functions for the filtering distribution

P (zt|y1:t; θ) on 12/1/2008 and the overall log-likelihoods are reported in Table 2 for values of

Z = 2500, 3000, 3500, 5000. The first row of the table contains the cumulative probabilities for

values of zt = 1500, 2000, 2500 when the algorithm was run with Z = 2500. When the value

of Z is set at 2500, there is 0.996057165621493 cumulative probability to the left of zt = 1500.

When zt = 2500 and Z = 2500, the c.d.f. reaches a value of one due to self-normalizing

the probabilities. The purpose of the table is to illustrate that the value of the log-likelihood

function converges (numerically) between the value of Z = 3000 and Z = 3500. Therefore, it

is possible to calculate the log-likelihood function of the model accurately for plausible values

of Z.

An important feature of the AG-SV model that is useful in practice is that forecasts of

the variance can be computed accurately without simulation. These H-step ahead forecasts

of the variance are produced by iterating on the vector of probabilities p̂(zt+1|y1:t; θ) from the

last iteration of the Markov-switching algorithm using the transition distribution of the latent

variable zt. When there are no observations available out of sample, the transition distribu-

tion of zt was shown by Gouriéroux and Jasiak (2006) to be a negative binomial distribution

p(zt|zt−1; θ) = Neg. Bin.
(
ν + zt−1,

ϕ
1+ϕ

)
. Iterating for H periods on this distribution produces

the distribution p̂(zt+H |y1:t; θ). This distribution can be combined with the conditional dis-

tribution of the variance at any horizon p(ht+H |zt+H ; θ) = Gamma (ν + zt+H , c) to construct
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forecasting intervals. For example, to calculate quantiles of the H-step ahead forecasting dis-

tribution, one can solve for x given a fixed value of Z and the ML estimator θ̂ in the equation

P̂ (ht+H < x|y1:t; θ) =
Z∑

zt=0

[∫ x

0

p
(
ht+H |zt+1; θ̂

)
dht

]
p̂(zt+H |y1:t; θ̂) (23)

using a simple zero-finding algorithm.

The bottom two plots in Figure 2 are forecasts of the future variance ht beginning on two

different dates 7/29/2005 and 11/28/2008. Forecasts for the mean, median, and 95% intervals

for ht are produced for H =100 days. These dates were selected to illustrate the substantial

difference in both asymmetry and uncertainty in the forecasts during low and high periods

of volatility. When volatility is low (7/29/2005), the forecasting distribution of ht is highly

asymmetric and the mean and median of the distribution differ in economically important

ways. Conversely, when volatility is high (11/28/2008), the distribution of the variance is

roughly normally distributed. The difference in width of the 95% error bands between the two

dates also illustrates how much more uncertainty exists in the financial markets during a crisis.

5 Conclusion

In this paper, I developed algorithms that can compute the log-likelihood function of affine

stochastic volatility models exactly up to computer tolerance. The new algorithms are based

on the insight that it is possible to integrate out the latent variance analytically leaving only

a discrete mixture variable. The discrete variable is defined over the set of non-negative in-

tegers but for practical purposes it is possible to approximate the distributions involved by a

finite-dimensional Markov switching model. Consequently, the log-likelihood function can be

computed using standard algorithms for Markov-switching models. Furthermore, filtered and

smoothed estimates of the latent variance can easily be computed as a by-product.
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Appendix:

Notation for the VG, GIG, and Sichel distributions

In this appendix, I define notation for the VG, GIG, and Sichel distributions that are used in the paper. The

notation for the parameters of the distributions is local to this section of the appendix. A variance gamma

random variable Y ∼ V. G. (µ, α, β, ν) is obtained by taking a normal distribution Y ∼ N(µ + βσ2, σ2) and

allowing its variance to have a gamma distribution σ2 ∼ Gamma
(
ν, 2

α2−β2

)
. The p.d.f. of a V.G. random

variable is

p(y|µ, α, β, ν) =

(
α2 − β2

2

)ν √
2 |yt − µ|(ν−

1
2 )Kν− 1

2
(α|yt − µ|)

√
πΓ (ν)α(ν− 1

2 )
exp (β|yt − µ|)
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where Kλ(x) is the modified Bessel function of the second kind; see, e.g. Abramowitz and Stegun (1964). The

mean and variance of the distribution are

E [y] = Eσ2

[
E
(
y|σ2

)]
= Eσ2

[
µ+ βσ2

]
= µ+

2βν

α2 − β2

V [y] = E
[
V
(
y|σ2

)]
+V

[
E
(
y|σ2

)]
= E

[
σ2
]
+V

[
µ+ βσ2

]
=

2ν

α2 − β2
+

4νβ2

(α2 − β2)
2

see, e.g. Kotz, Kozubowski, and Podgórski (2001). The parameter β controls the symmetry of the distribution

such that β < 0 is left-skewed, β > 0 is right skewed, and a value of β = 0 is symmetric.

A generalized inverse Gaussian random variable X ∼ GIG(λ, χ, ψ) has p.d.f.

p(x|λ, χ, ψ) =
χ−λ (√χψ)λ
2Kλ

(√
χψ
) xλ−1 exp

(
−1

2

[
χx−1 + ψx

])

The GIG distribution was first proposed by E. Halphen under the pseudonym Dugué (1941) and it was popular-

ized in statistics by Barndorff-Nielsen (1978). Moments of the GIG distribution are E
[
Xk
]
=
(
χ
ψ

) k
2 Kλ+k(

√
χψ)

Kλ(
√
χψ)

,

which are needed throughout the paper for computations of the filtering and smoothing distributions for the

latent variance. The c.d.f. of a GIG random variable needed for the calculation of the quantiles can be expressed

in terms of the incomplete Bessel function. Slevinsky and Safouhi (2010) provide a routine for its calculation

that does not use numerical integration.

A random variable Z ∼ Sichel (λ, χ, ψ) is obtained by taking a Poisson random variable Z ∼ Poisson (X)

and allowing the mean X to be a random draw from a GIG distribution X ∼ GIG(λ, χ, ψ). The mass function

for a Sichel random variable is

p(z|λ, χ, ψ) =

(√
ψ

ψ + 2

)λ(√
χ

ψ + 2

)z
1

z!

Kλ+z

(√
χ (ψ + 2)

)
Kλ

(√
χψ
)

The first two moments of a Sichel distribution are often reported incorrectly in the literature. They follow from

the law of iterated expectations as

E [z] = Ex [E (z|x)] = Ex [x] =

(
χ

ψ

) 1
2 Kλ+1

(√
χψ
)

Kλ

(√
χψ
)

E
[
z2
]

= Ex
[
E
(
z2|x

)]
= Ex

[
x+ x2

]
=

(
χ

ψ

) 1
2 Kλ+1

(√
χψ
)

Kλ

(√
χψ
) +

(
χ

ψ

)
Kλ+2

(√
χψ
)

Kλ

(√
χψ
)

The probabilities of the Sichel distribution and the density of the V.G. distribution can be computed in a

computationally stable manner using a recursive relationship for the ratio of modified Bessel functions.

Kλ+1(x)

Kλ(x)
=

Kλ−1(x)

Kλ(x)
+

2λ

x
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Proof of Proposition 1:

The conditional likelihood obtained by integrating the variance ht out of the original measurement equation is

p(yt|zt; θ) =

∫ ∞

0

p(yt|ht; θ)p(ht|zt; θ)dht

=

∫ ∞

0

1√
2π
h
−1/2
t exp

(
−1

2
[yt − µ− βht]

2
h−1
t

)
1

Γ(ν + zt)

(
1

c

)(ν+zt)

h
(ν+zt)−1
t exp

(
−ht
c

)
dht

=

(
1

c

)ν+zt √2 |yt − µ|ν+zt−
1
2 Kν+zt− 1

2

(√
2
c + β2|yt − µ|

)
√
πΓ(ν + zt)

(√
2
c + β2

)ν+zt− 1
2

exp (|yt − µ|β)

= V.G.

(
µ,

√
2

c
+ β2, β, ν + zt

)

see the appendix above for the definition of the density.

By Proposition 2 below, we know that p(ht−1|zt−1, y1:t−1; θ) = GIG
(
ν + zt − 1

2 , (yt − µ)
2
, 2c + β2

)
. The

transition distribution of the discrete mixing variable conditional on observing y1:t−1 is given by

p(zt|zt−1, y1:t−1; θ) =

∫ ∞

0

p(zt|ht−1; θ)p(ht−1|zt−1, y1:t−1; θ)dht−1

=

∫ ∞

0

(
ϕht−1

c

)zt 1

zt!
exp

(
−ϕht−1

c

) [(yt−1 − µ)
2
]−(ν+zt−1− 1

2 )
(√

(yt−1 − µ)
2 ( 2

c + β2
))ν+zt−1− 1

2

2Kν+zt−1− 1
2

(√
(yt−1 − µ)

2 ( 2
c + β2

))
h
ν− 1

2+zt−1−1
t−1 exp

(
−1

2

[
(yt−1 − µ)

2
h−1
t−1 +

(
2

c
+ β2

)
ht−1

])
dht−1

=

(
2
c + β2

2(1+ϕ)
c + β2

)(ν+zt−1− 1
2 )/2(

ϕ

c

)zt  |yt−1 − µ|√
2(1+ϕ)

c + β2

zt

1

zt!

Kν+zt−1+zt− 1
2

(√
(yt−1 − µ)

2
(

2(1+ϕ)
c + β2

))
Kν+zt−1− 1

2

(√
(yt−1 − µ)

2 ( 2
c + β2

))
= Sichel

(
ν + zt−1 −

1

2
,
ϕ

c
(yt−1 − µ)

2
,
c

ϕ

[
2

c
+ β2

])
The Markov transition distribution of zt is non-homogenous as it depends on the most recent observation yt−1.

The initial distribution of z1 was given by Gouriéroux and Jasiak (2006) but we provide it for completeness.
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Recall that h0 is a draw from the stationary distribution Ga
(
ν, c

1−ϕ

)
.

p(z1; θ) =

∫ ∞

0

p(z1|h0; θ)p(h0; θ)dh0

=

∫ ∞

0

1

z1!

(
ϕh0
c

)z1
exp

(
−ϕh0

c

)
hν−1
0

Γ(ν)
exp

(
−h0(1− ϕ)

c

)(
c

1− ϕ

)−ν

dh0

=
Γ (ν + z1)

Γ(z1 + 1)Γ(ν)
(1− ϕ)

ν
ϕz1

= Negative Binomial (ν, ϕ)

where E [z1] =
νϕ
1−ϕ . This completes the proof.

Proof of Proposition 2:

The one-step ahead predictive distribution p(ht+1|z1:t, y1:tθ) = Gamma (ν + zt, c) follows immediately from the

definition of the model. The marginal filtering distribution of the variance is

p(ht|z1:t, y1:t; θ) ∝ p(yt|ht; θ)p(ht|zt; θ)

∝ h
−1/2
t exp

(
−1

2
[yt − µ− βht]

2
h−1
t

)
1

Γ(ν + zt)
c−(ν+zt)h

(ν+zt)−1
t exp

(
−ht
c

)
∝ h

ν−1/2+zt−1
t exp

(
−1

2

[
(yt − µ)

2
h−1
t +

(
2

c
+ β2

)
ht

])
= GIG

(
ν + zt −

1

2
, (yt − µ)

2
,
2

c
+ β2

)
The conditional distribution only depends on zt and yt. The final distribution at time t = T is just a special

case of the former result

p(hT |z1:T , y1:T ; θ) = GIG

(
ν + zT − 1

2
, (yT − µ)

2
,
2

c
+ β2

)
.

The marginal smoothing distribution for the variance is

p(ht|z1:T , y1:T ; θ) ∝ p(yt|ht; θ)p(ht|zt; θ)p(zt+1|ht)

∝ h
− 1

2
t exp

(
−1

2
[yt − µ− βht]

2
h−1
t

)
1

Γ(ν + zt)
c−(ν+zt)h

(ν+zt)−1
t exp

(
−ht
c

)
(
ϕht
c

)zt+1 1

zt+1!
exp

(
−ϕht

c

)
∝ h

(ν+zt+zt+1− 1
2 )−1

t exp

(
−1

2

[
(yt − µ)

2
h−1
t +

(
2(1 + ϕ)

c
+ β2

)
ht

])
= GIG

(
ν + zt + zt+1 −

1

2
, (yt − µ)

2
,
2(1 + ϕ)

c
+ β2

)
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The marginal smoothing distribution of ht at intermediate dates only depends on zt, zt+1 and yt. The distribu-

tion for the initial condition is independent of the data conditional on z1. I find

p(h0|z1:T , y1:T θ) ∝ p(z1|h0; θ)p(h0; θ)

∝ 1

z1!

(
ϕh0
c

)z1
exp

(
−ϕh0

c

)
hν−1
0

Γ(ν)
exp

(
−h0(1− ϕ)

c

)(
c

1− ϕ

)−ν

∝ hν+z1−1
0 exp

(
−h0
c

)
= Gamma (ν + z1, c)

This completes the proof.

Proof of Proposition 3:

Recall that the stationary distribution of the variance is a gamma distribution h0 ∼ Ga
(
ν, c

1−ϕ

)
. One iter-

ation of the Markov transition kernel leaves the distribution invariant such that h1 ∼ Ga
(
ν, c

1−ϕ

)
. The first

contribution to the log-likelihood is

p(y1; θ) =

∫ ∞

0

p(y1|h1; θ)p(h1; θ)dh1

=

∫ ∞

0

1√
2π
h
− 1

2
1 exp

(
−1

2
(y1 − µ− βh1)

2
h−1
1

)
exp

(
−h1(1− ϕ)

c

)(
c

1− ϕ

)−ν
1

Γ(ν)
hν−1
1 dh1

=

(
1− ϕ

c

)ν
1

Γ(ν)

1√
2π

exp (β|y1 − µ|)
∫ ∞

0

h
ν− 1

2−1
1 exp

(
−1

2

[
(y1 − µ)

2
h−1
1 +

[
2(1− ϕ)

c
+ β2

]
h1

])
dh1

=

(
1− ϕ

c

)ν √
2 |y1 − µ|ν−

1
2 Kν− 1

2

((√
2(1−ϕ)

c + β2

)
|y1 − µ|

)
√
πΓ(ν)

(√
2(1−ϕ)

c + β2

)ν− 1
2

exp (β |y1 − µ|)

= V.G.

(
µ,

√
2(1− ϕ)

c
+ β2, β, ν

)

The filtering distribution p(h1|y1; θ) immediately follows from Bayes’ rule

p(h1|y1; θ) ∝ p(y1|h1; θ)p(h1; θ)

∝ h
−1/2
1 exp

(
−1

2

[
(y1 − µ)

2
h−1
1 + β2h1

])
exp

(
−h1(1− ϕ)

c

)
hν−1
1

∝ h
ν− 1

2−1
1 exp

(
−1

2

[
(y1 − µ)

2
h−1
1 +

(
2(1− ϕ)

c
+ β2

)
h1

])
= GIG

(
ν − 1

2
, (y1 − µ)

2
,
2(1− ϕ)

c
+ β2

)
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The conditional filtering distribution of z1 is

p(z1|y1; θ) ∝ p(y1|z1; θ)p(z1; θ)

∝ 1

Γ(ν + z1)

(
ϕ

c

)z1 Kν+z1− 1
2

(√
2
c + β2|yt − µ|

)
[
(y1 − µ)

2
]−z1 (√

2
c + β2|y1 − µ|

)z1 1

z1!
Γ (ν + z1)

∝

ϕ
c

|y1 − µ|√
2
c + β2

z1

1

z1!
Kν+z1− 1

2

(√
2

c
+ β2|yt − µ|

)

= Sichel

(
ν − 1

2
,
ϕ

c
(y1 − µ)

2
,
c

ϕ

[
2(1− ϕ)

c
+ β2

])
A Sichel distribution is typically derived as a Poisson random variable with a GIG mixing distribution. Here,

it is the posterior distribution of a variance gamma likelihood combined with a negative binomial prior. The

one-step ahead predictive distribution of z2 is

p(z2|y1; θ) =

∫ ∞

0

p(z2|h1; θ)p(h1|y1; θ)dh1

=

∫ ∞

0

1

z2!

(
ϕh1
c

)z2
exp

(
−ϕh1

c

)
[
(y1 − µ)

2
]−(ν− 1

2 )
(
|y1 − µ|

√
2(1−ϕ)

c + β2

)ν− 1
2

2Kν− 1
2

(
|y1 − µ|

√
2(1−ϕ)

c + β2

) h
(ν− 1

2 )−1
1

exp

(
−1

2

[
(y1 − µ)

2
h−1
1 +

(
2(1− ϕ)

c
+ β2

)
h1

])
dh1

=

(
2(1−ϕ)

c + β2

2
c + β2

)(ν− 1
2 )/2(

ϕ

c

)z2 
√
(y1 − µ)

2√
2
c + β2

z2

1

z2!

Kν+z2− 1
2

(
|y1 − µ|

√
2
c + β2

)
Kν− 1

2

(
|y1 − µ|

√
2(1−ϕ)

c + β2

)
= Sichel

(
ν − 1

2
,
ϕ

c
(y1 − µ)

2
,
c

ϕ

[
2(1− ϕ)

c
+ β2

])
This is the usual construction of a Sichel distribution as a GIG mixture of Poisson random variables. This

completes the proof.
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