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Abstract

This paper develops and analyzes a dynamic model of leverage, tak-

ing account of tax deductibility of interest payments and the endogenous

expected cost of default. The interest rate on debt includes a premium to

compensate lenders for expected losses in default. Lenders are unwilling

to lend an amount that would trigger immediate default, which places a

borrowing constraint on the firm. When the borrowing constraint is not

binding and the firm faces a positive probability of default, the tradeoff

theory of debt holds—that is, optimal debt is determined by the equality of

the marginal tax shield and the marginal cost of default associated with

an additional dollar of debt. When the tradeoff theory of debt holds, an

increase in current or expected future profitability reduces optimal lever-

age, a finding that is opposite of the conventional interpretation of the

tradeoff theory, but is consistent with empirical findings.

∗I thank Vincent Glode, Joao Gomes, Richard Kihlstrom, Adriano Rampini, Scott Richard,
Michael Roberts, and Ali Shourideh for helpful comments and discussion.



The tradeoff theory of capital structure is the longest standing theory of

capital structure1 and underlies much of the large body of empirical work that

studies capital structure. In the tradeoff theory, the optimal amount of debt

equates the marginal benefit of a dollar of debt arising from the tax deductibility

of interest payments with the marginal cost of a dollar of debt arising from

increased exposure to default. This framework implies that changes in leverage

over time, or variation in leverage across firms, can be attributed to differences

in the interest tax shield and/or differences in the (marginal) cost of default.

The tradeoff theory has been interpreted2 to imply that more profitable firms

should have higher leverage ratios—a prediction that is contrary to the empirical

fact3 that more profitable firms have lower leverage.

In this paper, I develop and analyze a model of capital structure that incor-

porates both an interest tax shield associated with debt as well as the possibility

of default. In some situations, the optimal amount of debt will be determined

by the equality of the marginal benefit of debt arising from the interest tax shield

and the marginal cost of debt associated with increased risk of default—that is,

optimal debt will be characterized by the tradeoff theory in these situations.

However, in other situations within the model, optimal debt will not be charac-

terized by the equality of marginal benefit and marginal cost that epitomizes the

tradeoff theory. Because the model allows for situations in which the tradeoff

theory holds and situations in which it does not hold, it has the potential to

guide empirical tests by including both a null hypothesis in terms of the trade-

off theory and an alternative hypothesis that offers an explanation of leverage

other than the tradeoff theory. In particular, I show that that model devel-

oped here accommodates situations in which higher profitability (either current

profitability or expected future profitability) is associated with lower leverage.

Furthermore, if the probability of default is nonzero, these situations arise when

and only when the tradeoff theory is operative. That is, the empirical finding

that more profitable firms have lower leverage, which has been viewed by others

as evidence against the tradeoff theory, is viewed as evidence in favor of the

tradeoff theory when viewed through the lens of the model presented here.

As the tradeoff theory has developed over the past half century, it has become

increasingly complex, especially in empirical structural models of the firm that

are designed to capture realistic features of a firm’s environment.4 The model I

develop here will be stripped of these complexities so that I can focus on the new

features and implications of this model and do so in a framework that admits

analytic results without relying on numerical solution. The biggest departure

from standard models of debt concerns the maturity of the debt. Many standard

models of debt5 assume that debt has infinite maturity and pays a fixed coupon

over the infinite future, or until the firm defaults. Clearly, the assumption of

infinite maturity is extreme, but it has been used productively over the years. I

1Robichek and Myers (1966), Kraus and Litzenberger (1973), and Scott (1976).
2 Scott (1976), Fama and French (1992), and Frank and Goyal (2007).
3Fama and French (1992).
4Hennessy and Whited (2007).
5Modigliani and Miller (1958) and Leland (1994).
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also make an extreme assumption about maturity, but in the opposite direction.

I assume that debt must be repaid, with interest, right after it is issued. The

standard specification with infinite maturity can be viewed as the limiting case

of long-term debt and my specification with zero maturity can be viewed as the

limiting case of short-term debt, such as commercial paper.

The specification of zero-maturity debt is motivated by two considerations.

First, this specification makes salient the recurrent nature of the financing de-

cision, in contrast to the once-and-for-all financing decision in many models of

debt.6 At each instant of time, the firm decides whether to repay its debt with

interest or to default, and if it decides to repay its debt, it chooses the amount

of debt to issue anew. Because I do not include any flotation, issuance, or ad-

justment costs, the amount of debt issued responds immediately and completely

to changes in the firm’s environment, and will not have the rich dynamics doc-

umented empirically and analyzed by Leary and Roberts (2005). The second

reason for specifying debt to have zero maturity is that zero-maturity debt is

always valued at par, which alleviates the need to calculate the value of debt

that would arise with long-term debt. Therefore, the firm’s decision about

whether to default on debt, which depends on a comparison of the total value

of the firm and the value of the firm’s debt, becomes transparent.

Because firms have the opportunity to default on their debt, rational lenders

need to take account of the probability of default, as well as their losses in the

event of default, in order to determine the appropriate interest rate on their

loans to the firm. In this paper, risk-neutral lenders require a premium above

the riskless rate in order to compensate for the expected losses in the event of

default. In addition, if the amount of debt were sufficiently large, it would

trigger immediate default. Of course, no lender would be willing to lend in

this situation. In the current framework with zero-maturity debt, lenders avoid

being subject to immediate default by refusing to lend an amount greater than

the contemporaneous value of the firm, which itself depends on the amount of

debt issued.

An important component of the firm’s financing decision is the stochas-

tic process for the firm’s pre-tax pre-interest cash flow, that is, EBIT. This

stochastic process can be cast in either discrete time or continuous time, and

the state variable at each point of time can be either continuous or discrete.

For instance, the stochastic processes in Modigliani and Miller (1958) or Kraus

and Litzenberger (1973) are discrete-time discrete-state process, the stochastic

process in Scott (1976) is a discrete-time continuous-state process, and the sto-

chastic process in Leland (1994) is a continuous-time continuous-state process,

specifically a diffusion. The model I develop here specifies a continuous-time

continuous-state process for EBIT, but instead of a diffusion process, I specify

a Markov process in which EBIT remains unchanged for a random length of

time and then a new value of EBIT arrives at dates governed by a Poission

process. For simplification, the new values of EBIT are independent across ar-

rivals. With this specification of the stochastic process for EBIT, the firm’s

6Merton (1974) and Leland (1994).
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optimal capital structure depends on whether EBIT exceeds or falls short of an

endogeneously determined critical value. For values of EBIT that exceed the

critical value, the tradeoff theory holds, provided that the firm faces a positive

probability of default, and I show that, consistent with empirical findings, the

optimal leverage ratio is a declining function of EBIT. Alternatively, when the

value of EBIT is below the critical value, the borrowing constraint that pre-

vents immediate default is binding. In this situation, the tradeoff theory is not

operative at the margin and the optimal leverage ratio is invariant to EBIT.

To summarize, the model predicts a negative relationship between the optimal

leverage ratio and contemporaneous EBIT (which is consistent with empirical

findings) when the tradeoff theory is operative but not when the constraint on

the firm’s borrowing is binding.

To examine the relationship between the optimal amount of debt and ex-

pected profitability, I analyze the impact of a rightward translation of the uncon-

ditional distribution of profitability. This favorable shift of the unconditional

distribution of profitability increases the continuation value of the firm and thus

increases the cost of default. In response to the increased cost of default, the

firm adjusts its capital structure to reduce the probability of default. Whether

this change in capital structure reduces the optimal amount of debt depends on

the unconditional distribution of profitability. In the focal case of a uniform

distribution, a rightward translation of the distribution reduces optimal debt

when the tradeoff theory is operative. In fact, this finding holds more broadly

within the class of truncated exponential distributions for density functions that

do not slope upward too steeply. Only for sufficiently steeply upward-sloping

density functions will optimal debt increase in response to a rightward transla-

tion of the distribution function when the tradeoff theory is operative. Thus,

whether one analyzes the relationship between leverage and contemporaneous

EBIT (as described above) or between leverage and long-run average EBIT,

the model predicts a negative relationship between leverage and EBIT if the

tradeoff theory is operative, but not if the firm faces a binding constraint on its

borrowing.

Section 1 presents the economic environment facing shareholders in a firm,

including the opportunity to borrow and the ability to default on outstanding

debt. The availability and terms of loans to the firm depend on the valuation

of the firm, which is presented in Section 2. Section 3 characterizes the optimal

level of debt and the associated value of shareholders’ equity, which together sum

to the total valuation of the firm. An important component of this analysis is

the critical value of current EBIT, which is the boundary between low values

of EBIT for which the borrowing constraint binds and high values of EBIT

for which the borrowing constraint does not bind. Depending on whether

this critical value of EBIT is at the minimum value of the support of EBIT,

the maximum value of the support of EBIT, or in between, the firm will find

itself in one of three regimes, which are characterized in Section 4. Although

optimal behavior in two of the three regimes can be derived very easily, optimal

behavior in one of the regimes (denoted as Regime II) entails more extensive

analysis, which is presented in Section 5. Of particular interest is Subsection
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5.2, which interprets the analytic results in terms of the tradeoff theory. Section

6 demonstrates that Regime I, II, or III will prevail depending on whether the

tax rate is low, intermediate, or high, and it provides explicit expressions for the

values of the tax rate that form the boundary between low and intermediate tax

rates on the one hand and between intermediate and high tax rates on the other

hand. Section 7 analyzes the impact on optimal debt, shareholder equity, the

critical value of EBIT, and the probability of default of a rightward translation

of the unconditional distribution of EBIT. Section 8 discusses the distinction

between secured and unsecured debt and illustrates that the firm will always

issue at least some unsecured debt. Section 9 presents closed-form solutions for

optimal debt, shareholders’ equity, total value, and the critical value of EBIT in

the case in which the unconditional distribution of EBIT is uniform and default

completely destroys the capability to produce EBIT. Concluding remarks are

presented in Section 10. To avoid disruption in the narrative flow of the paper,

the proofs of all lemmas, propositions (with the exception of Proposition 22,

which is proved in Section 6), and corollaries are in Appendix A.

1 The Firm’s Economic Environment

Let  () be EBIT, the pre-tax net cash flow from operations at time . The

realizations of  () are generated by an exogenous Markov process and thus are

independent of any actions taken by the firm. If EBIT at time 0 is  (0), then

 () remains equal to  (0) for all   0 until some random date 1  0. At

time 1, a new value of EBIT,  (1), is drawn from a distribution with c.d.f.

 (), with  (Φ) = 0,  (Φ) = 1, and density  () =  0 ()  0 everywhere
on the support [ΦΦ ], where −∞  Φ  Φ  ∞. In addition, assume

that  0 () ≥ 0 for all  in the support of  (), which will ensure that the

firm’s objective function is concave in debt. The unconditional expected value

of EBIT is assumed to be positive, that is,

 {} =
Z Φ
Φ

 ()  0 (1)

which implies Φ  0 but does not place a restriction on the sign of Φ. The

arrival date of a new value of EBIT, that is, the timing of 1, is governed by a

Poisson process with an instantaneous probability  of an arrival of a new value

of  ().

At time , the firm borrows an amount  () from risk-neutral lenders and

then pays interest of ( () + ())  over the next interval  of time, where

 is the instantaneous riskless interest rate and  () is a risk premium7 paid

to lenders to compensate for the probability that the firm will default on its

7The term "risk premium" may be a misnomer in a world of risk-neutral lenders. The

premium is actually compensation for the fact that the possibility of default reduces the

expected payoff to lenders. Having stated this qualification, I will continue to use the term

"risk premium."
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debt during the next interval  of time. If lenders receive no payment in

the event of default, that is, if the recovery rate on defaulted debt is zero,

then  () =  () (), where  () is the probability that the firm will default

during the next interval, , of time. However, to the extent that lenders are

able to recover some portion of their loans when the firm defaults, the risk

premium,  (), will be lower than  () (). I will specify the risk premium

in this case more fully after I describe the valuation of the firm. Taxes are

levied at rate   0 on pre-tax cash flow, which is EBIT less interest payments,

 () − ( () + ()). When cash flow is negative, the firm pays negative

taxes.

The maturity of the debt is vanishingly small and the firm can "rollover"

its debt by issuing new debt immediately after paying interest and repaying the

principal on its existing debt. The firm is managed on behalf of the current

shareholders who, like lenders, are risk-neutral. Shareholders discount future

expected flows at rate  and I will assume that shareholders and lenders have

equal rates of time preference, so that  = . Henceforth, I will use  for the

common value of the discount rate of shareholders and the riskless interest rate,

so the after-tax cash flow of the firm at time , denoted as  (), is

 () ≡ (1− ) [ ()− ( () + ())]  (2)

The support of the stochastic process for EBIT may include negative values

of EBIT, since Φ may be negative. If a negative realization of EBIT is suffi-

ciently negative or sufficiently persistent, current shareholders might choose to

cease operation altogether and abandon ownership of the firm if doing so would

allow them to avoid a stream of future cash flows with a negative expected

present value. Thus, the shareholders of a firm might cease operation either as

a response to unfavorable current and prospective future EBIT or as a means

to avoid repaying the firm’s debt. My focus in this paper is on leverage and

the potential default associated with it, so I will restrict the stochastic process

for EBIT to be such that in the complete absence of borrowing, the firm would

never find it optimal to cease operation.8 To formalize this restriction, define

 ( ()) to be the expected present value of current and future cash flows, if the

firm does not ever issue any debt, and continues to operate forever, regardless

of the realization of  (). Therefore,

 ( ()) ≡ 

½Z ∞


(1− ) () −(−)
¾
, (3)

where  {} denotes the expectation conditional on information available at time
. As shown in the lemma below,  ( ()) is an increasing linear function with

slope 1−
+

.

Lemma 1  ( ()) = 1−
+

h
 () + 


 {}

i
.

8Leland (1194, p. 1217) effectively makes the same assumption by specifying a stochastic

process for the "asset value," which corresponds to  ( ()) in equation (3), that is bounded

away from zero.
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Corollary 2 to Lemma 1. If Φ  −

 {}, then  ( ())  0 for all

 () ∈ [ΦΦ ].

Henceforth, I assume that

Φ  −

 {}  (4)

so Corollary 2 implies that in the complete absence of borrowing, the firm would

never find it optimal to cease operation.

2 Valuation of the Firm

Suppose that the firm arrives at time  without any outstanding debt. The

shareholders in the firm choose an amount of zero-maturity debt  () to issue

at time . This debt issuance is a discrete transfer of funds to the current

shareholders, who could, in principle, simply take the amount  () and then

default. But defaulting on the the debt would cause shareholders to give up

their claims on future cash flows from operations. To continue their ownership

of the firm, the current shareholders would have to repay the debt, with interest,

after an instant, and then they could immediately rollover the debt and continue

operation. Because of the Markovian nature of the stochastic process for  (),

an ongoing firm’s optimal choice of debt and the instantaneous probability of

default are simply functions of the contemporaneous value of  (). As long as

 () remains equal to  (), the firm will choose to set its debt equal to  ().

Let 0   be the first time after time  that  changes. Thus, for all  ∈ [ 0),
the after-tax cash flow,  (), equals (1− ) [ ()− ( () + ())]. At time

0, a new value of  is drawn from the distribution  () and a new value of the

after-tax cash flow,  (0) = (1− ) [ (0)− ( (0) + (0))], is realized.
Consider the situation of shareholders who arrive at time , without any

outstanding debt. Let  ( () ) be the expected present value of current

and prospective future funds available to these shareholders if (1) they issue

an amount  of debt at time  and maintain a constant amount of debt equal

to  until time 0  , which is the first time after  that a new value of  is

drawn; and (2) issue optimal amounts of debt and behave optimally from time

0 onward. Define b ( ()) ≡ max
≤(()) ( () ) (5)

as the maximized value of  ( () ) attained when the firm chooses  subject

to the constraint that  cannot exceed b ( ()). I will refer to this constraint
as a borrowing constraint. It reflects the fact that if  were to exceed b ( ())
the firm would have the incentive simply to issue  and then default, because

repaying the amount  would cost the firm more than the benefit of repaying

the debt and continuing operation. The Markovian structure of the firm’s
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decision problem implies that

 ( () ) =  (6)

+

(Z 0



[(1− ) [ ()− ( + ())]] −(−)

)

+

(
−(

0−)
Z
((0))≥

h b ( (0))−
i
 ( (0))

)


The first term on the right hand side of equation (6) is the lump sum of funds

that shareholders receive at time  when the firm issues debt . The second

term on the right hand side of equation (6) is the expected present value of cash

flows, net of interest and taxes, that will flow to the firm until time 0. The

third time on the right hand side of equation (6) is the expected present value

of the "continuation value" of the firm at time 0. Since the firm has the option
to default on its debt and to cease operations, this continuation value must be

non-negative, in contrast to the second term, which could be positive, negative,

or zero. At time 0, the maximized expected sum of all the cash flows from that
point onward would be b ( (0)), if the firm were to arrive at time 0 with zero
debt. However, the firm arrives at time 0 with debt equal to  and the current

shareholders will choose to repay that debt and thereby retain their ownership

of the firm if and only if b ( (0)) ≥ . Hence the integral in the third term

is limited to values of  (0) for which b ( (0)) ≥ . For these values of  (0),
the firm chooses to repay its debt at time 0, and b ( (0))− ≥ 0 is the value
of the current shareholders’ stake in the firm at time 0.
Since the arrival of a new value of  is governed by a Poisson process, the den-

sity of the arrival date 0 is −(
0−), which implies that 

nR 0

−(−)

o
=

1
+

and 

n
−(

0−)
o
= 

+
. Therefore, equation (6) can be rewritten as

 ( () ) =  +
1− 

+ 
[ ()− ( + ())] (7)

+


+ 

Z
((0))≥

h b ( (0))−
i
 ( (0)) 

Having defined the conditions that would lead the shareholders to default

on their debt, I can specify the risk premium  () more completely. A firm

that arrives at time  with outstanding debt  will optimally choose to default

on that debt if b ( ())  . I will assume that in the event of default, the

lenders take ownership of the firm. However, the event of default and the

consequent transfer of ownership imposes a deadweight loss equal to a fraction

, 0   ≤ 1, of the value of the firm. Therefore, the value of the firm to the

new owners, i.e., the former lenders, is (1− ) b ( ()). Thus, the net loss to

the lenders in the event of default is − (1− ) b ( ())  0 for any  () such
that b ( ())  . The risk premium  () is the probability-weighted sum of
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these losses over the values of  () that lead to default, and can be written as

a function of  as

 () = e () ≡ 

Z
()

h
 − (1− ) b ()i  ()  (8)

where  is the probability that a new value of  is drawn and the integration

is performed over new values of  that lead the firm to default. Note that

in the case in which  = 1, so that all firm value is destroyed and lenders

do not recover anything in the case of default,  () is simply  (), where

 () ≡ 
R()  () is the instantaneous probability of default.

Substitute the expression for  () from equation (8) into equation (7) and

rearrange to obtain

 ( () ) =


+ 

"
+ 

Z
()  ()

#
 +

1− 

+ 
 () (9)

+


+ 

"
(1− ) (1− )

Z
() b ()  () + Z()≥ b ()  ()# 

Inspection of equation (9) reveals that  ( () ) is additively separable in 

and  ().

The firm will choose the amount of debt, , to maximize  ( () ). How-

ever, in the absence of any asymmetric or private information, lenders recognize

that firms would default immediately if they were able to borrow an amount

  b ( ()). Therefore, the firm’s debt must satisfy  ≤ b ( ()). Taking

account of this constraint on the amount that the firm can borrow, the optimal

amount of debt for shareholders to issue at time  is

b ( ()) ≡ arg max
≤(()) ( () )  (10)

Therefore, the optimal value of  ( () ) is b ( ()) = 
³
 ()  b ( ())´.

Proposition 3 b ( ()) is strictly increasing in  (). Moreover, for any 2 

1 in the support [ΦΦ ],
(2)−(1)

2−1 ≥ 1−
+

 0.

The proof of Proposition 3 is in Appendix A, but the logic of the proof is

straightforward. Since  ( () ) is strictly increasing in  (), the firm would

be able to maintain the same level of debt at 2 as at 1, without running up

against the borrowing constraint. Therefore, if EBIT were to increase to 2 from

1, the value of  ( () ) would increase by
1−
+

(2 − 1), with unchanged

. Allowing for the possibility that optimal debt changes when EBIT increases

to 2 from 1 implies that
b ( ()) increases by at least 1−

+
(2 − 1).

Proposition 3 states that b ( ()) is strictly increasing, which implies thatb ( ()) is invertible. b−1 () is defined on the domain h b (Φ)  b (Φ)i and
8



is strictly increasing on this domain. If the firm has an amount  of debt

outstanding at time , it will default at time  if and only if  ()  b−1 ().9
Hence, for b (Φ) ≤  ≤ b (Φ)  equation (9) can be rewritten as

 ( () ) =


+ 

³
+ 

³ b−1 ()´´ + 1− 

+ 
 () (11)

+


+ 

"
(1− ) (1− )

R −1()
Φ

b ()  () 
+
R Φ−1() b ()  () 

#


Differentiate equation (11) with respect to  to obtain10

 ( () )


=



+ 

³
+ 

³ b−1 ()´´ (12)

− (1− )


+ 


³ b−1 ()´ b−10 () 
The two terms on the right-hand side of equation (12) illustrate the basic

tension that underlies the tradeoff theory of debt. As I will show in greater

detail in subsection 5.2, the first term, which is positive, reflects the value of

the tax shield provided by the tax-deductibility of interest payments. The tax

shield pushes shareholders to choose higher levels of debt. The second term,

which is negative, reflects the possibility that shareholders will find it optimal

to default on their debt, thereby giving up the continuation value of the firm.

This possibility pushes shareholders toward lower levels of debt.

The expression for
(())


in equation (12) contains b−10 (), which

equals 10(−1())  0. Proposition 3 implies that b0 () ≥ 1−
+

 0, sob−10 () ≤ +
1− . Therefore, equation (12) implies that

 ( () )


≥ 

+ 

³
+ 

³ b−1 ()´´− 
³ b−1 ()´  (13)

with equality if b 0 () = 1−
+

.

Since shareholders owe a liability of , the value of shareholders’ equity in

the firm,  ( ()), is

 ( ()) = b ( ())− b ( ()) ≥ 0 (14)

where the inequality follows from the restriction  ≤ b ( ()). Because share-
holders receive an amount  immediately when they borrow, they choose 

9Formally, the set of  that lead to default is

 :  ()  


=

 :   −1 () and

the set of  that does not lead to default is

 :  () ≥ 


=

 :  ≥ −1 () 

10For    (Φ), equation (9) can be rewritten as  ( ()  ) = 


+
 + 1−

+
 () +


+


 () so (())


=  

+
.
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to maximize  ( () ) =  ( ()) + rather than to maximize shareholder

equity exclusive of ,  ( ()) =  ( () )−.

Recall that I have restricted attention to situations in which, in the complete

absence of debt, shareholders would never choose to shut down the firm. That

is, I assume that Φ  −

 {}, which implies (Corollary 2) that  (Φ)  0.

Shareholders can issue any amount of debt less than or equal to (Φ) without

exposing themselving to the possibility of default. Provided that   0, the

optimal amount of debt for the shareholders to issue is at least  (Φ). This

result is formalized in Proposition 4.

Proposition 4 If 0    1, then b ( ()) ≥ b (Φ) ≥ 1
1− (Φ) =

1
+

h
Φ +



 {}

i
 0.

Corollary 5 If 0    1, then b (Φ) = b (Φ), and  (Φ) = 0.
Corollary 5 follows directly from Proposition 4, which implies that b (Φ) ≥b (Φ), and from the constraint b (Φ) ≤ b (Φ). Therefore, b (Φ) =b (Φ). Hence, when EBIT takes on its minimum value Φ, the optimal

amount of debt equals b (Φ), which implies that shareholders’ equity,  (Φ) =b (Φ)− b (Φ), is zero.
Proposition 6 If (1) 0    

1+
and (2)  ()  0 is non-decreasing for all

 ∈ [ΦΦ ], then b ( ()) is concave on the domain [ΦΦ ].
Proposition 6 is proved in Appendix A by showing that b ( ()) is the

fixed point of a contraction mapping that takes concave functions into concave

functions.

Proposition 6 provides sufficient conditions for the value function, b ( ()),
to be concave. The concavity of the value function is to be contrasted with

Proposition II in Kraus and Litzenberger (1973), hereafter KL, which provides

sufficient conditions for the value function to be convex over at least part of the

domain of  (). In contrast to the model I present in the current paper, the

model in KL is a single-period model with a finite number of states and with an

exogenous cost of being insolvent in each state. Interpretating the cost of being

insolvent in the current model as  b ( ()), the conditions for non-concavity
in KL imply essentially that  b ( ())  ( ()) is decreasing in  (). Sinceb ( ()) is strictly increasing in  (), the KL conditions require  ( ())  0 to
be decreasing over some interval of values of  (), a condition that is ruled out

by assumption in Proposition 6. Hence there is no conflict between Proposition

6 above and Proposition II in KL.11

11The model in KL has a finite number, , of states indexed by , where  is EBIT in

state ,  is the price of a claim on a dollar in state ,  is the (exogenous) cost of being

insolvent in state , and  is the tax rate in state . The states are ordered so that 

is non-decreasing in . For simplicity, consider the case in which  is strictly increasing
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One of the steps in the proof of Proposition 6 involves proving that if b ( ())
is concave, then  ( () ) is strictly concave in  for b (Φ) ≤  ≤ b (Φ),
which is Corollary 7 below.

Corollary 7 to Proposition 6. If (1) 0    
1+

and (2)  ()  0 is non-

decreasing for all  ∈ [ΦΦ ], then  ( () ) is strictly concave in  forb (Φ) ≤  ≤ b (Φ).
Corollary 7 provides sufficient conditions for  ( () ) to be strictly con-

cave in . It is straightforward to show that a necessary condition for this

strict concavity is that default imposes a deadweight cost, that is,   0.12

3 Optimal Debt, Firm Value, and Shareholder

Equity

In this section, I characterize the optimal value of debt and the resulting values

of the firm and shareholder equity. The first step is to recognize the lower

and upper bounds on the optimal level of debt. The lower bound on opti-

mal debt is provided by Proposition 4, which states that the optimal amount

of debt, b ( ()), is greater than or equal to b (Φ). The upper bound on

optimal debt is based on the constraint that prevents the firm from borrow-

ing an amount that would lead to immediate default. This constraint isb ( ()) ≤ b ( ()) ≤ b (Φ), where the second inequality follows from the fact
that b ( ()) is increasing in  (). Therefore, b ( ()) ∈ h b (Φ)  b (Φ)i.
Define ∗ as the value of debt that maximizes  ( () ) over the intervalh b (Φ)  b (Φ)i, ignoring the borrowing constraint  ≤ b ( ()). Formally,

∗ ≡ arg max(Φ)≤≤(Φ) ( () )  (15)

in . Proposition II in KL states that if (a) −1−1  ( −−1)


=  and (b)

(+1 −)


=+1   , then  (−1)   ()   (+1). Since  ≥ 0,
conditions (a) and (b) imply −1

−1
−−1 


=  ≥


=+1   


+1− .

Under risk neutrality, as in the current paper,  is simply the probability of state  and
−1

−−1 can be interpretated as the probability density of state , denoted here as  .

Therefore, assumptions (a) and (b) imply that  is decreasing in , equivalently decreasing

in  . If the cost of being insolvent in the current model is   ( ()), conditions (a) and (b)
imply that  ( ())  ( ()) is decreasing in  (), which is inconsistent with  ( ()) being
strictly increasing (Proposition 3) and the assumption that  ( ()) is non-decreasing.
12To see the necessity of this condition, set  = 0 in equation (12) and differentiate the

resulting equation with respect to  to obtain
2(())


= 

+

 −1 () −10 ()  0

because 
 −1 ()  0 and −10 ()  0. Therefore, if  = 0, then  ( ()  ) is strictly

convex in . Thus,   0 is a necessary condition for strict concavity of  ( ()  ) in .

11



The strict concavity of  ( () ) in  implies that ∗ is unique. The value
of ∗ is invariant to  () because, as noted earlier,  ( () ) is additively

separable in  () and . If ∗ ≤  ( () ∗), the constraint  ≤  ( () )

does not bind and the firm will optimally issue ∗ of debt. However, if ∗ 
 ( () ∗), the firm will not be able to issue as much as ∗ of debt. I will

prove that there is a unique critical value of  (), which I denote ∗, that is
such that b ( ()) = ∗ for  () ≥ ∗ and b ( ())  ∗ for  ()  ∗, whereb ( ()) is the optimal level of debt defined in equation (10).
The following lemma helps prove the existence and uniqueness of the critical

value ∗.

Lemma 8 ∗ ≡ argmax(Φ)≤≤(Φ)  ( () ) satisfies  (Φ
∗) ≤

∗ ≤  (Φ 
∗).

Define ∗ implicitly by the following equation

 (∗∗) = ∗. (16)

Lemma 8 helps prove the following Proposition.

Proposition 9 There exists a unique value ∗ ∈ [ΦΦ ] such that  (∗∗) =
∗.

Since  ( () ∗) is strictly increasing in  (), ∗ is the lowest value of
 () for which the firm will be able to borrow as much as ∗ at time . For

 () ≥ ∗, the borrowing constraint is not strictly binding, while for  ()  ∗,
the borrowing constraint is strictly binding. The following corollary presents

the relationship between ∗ and ∗, which will be useful in later derivations.

Corollary 10 b (∗) = ∗ and b−1 (∗) = ∗.

The following proposition characterizes optimal debt, b ( ()), shareholder
equity,  ( ()), and total firm valuation, b ( ()), first for  () ≥ ∗ and then
for  () ≤ ∗.

Proposition 11 Define ∗ so that  (∗∗) = ∗. Then

• (1) for any  () ≥ ∗,

— (a) b ( ()) = ∗,

— (b)  ( ()) = 1−
+

[ ()− ∗], and

— (c) b ( ()) = 1−
+

[ ()− ∗] +∗;

• (2) for any  () ≤ ∗,

12



— (a) b ( ()) ≡ b ( ()) is concave and strictly increasing in  (),

and

— (b)  ( ()) = 0.

For high values of  (), specifically for  () ≥ ∗, the borrowing constraint
 ≤ b ( ()) does not bind. Therefore, the optimal value of debt is ∗ for
all  () ≥ ∗. Shareholder equity is simply  ( ()) = 1−

+
[ ()− ∗]. Sinceb ( ()) is invariant to  () for these values of  (), the total value of the firm,b ( ()), is a linear function of  () with slope 1−

+
. For low values of  (),

specifically for  () ≤ ∗, the borrowing constraint  ≤ b ( ()) is binding:
shareholders borrow as much as they can, so that b ( ()) ≡ b ( ()) and
shareholder equity is driven to zero.

The following corollary, which follows immediately from Proposition 11, de-

scribes the optimal leverage ratio.

Corollary 12 Define the optimal leverage ratio as  ( ()) ≡ (())(()) . If

 () ≤ ∗, then  ( ()) ≡ 1; if  () ≥ ∗, then  ( ()) = 1
1−
+

()−∗
∗ +1

is strictly decreasing in  ().

The tradeoff theory is operative, that is, optimal debt is determined by

equating the marginal tax shield associated with interest deductibility and the

marginal default cost, only when  () ≥ ∗. Therefore, Corollary 12 implies

that when the tradeoff theory is operative, the optimal leverage ratio is a de-

creasing function of contemporaneous profitability.

For a firm that follows the optimal debt policy b ( ()), the instantaneous
probability of default when EBIT equals  () is

 ( ()) ≡ 

Z
() (())  () . (17)

Proposition 13  ( ()) = min [ ( ())   (∗)] ande³ b ( ())´ ≡ 
R() (()) h b ( ())− (1− ) b ()i  () are strictly in-

creasing in  () for  ()  ∗ and are invariant to  () for  () ≥ ∗.

Proposition 13 implies that for low values of EBIT, specifically for  ()  ∗,
a decrease in  () will reduce the probability of default. The reason that

 ( ()) falls when  () falls is that the borrowing constraint is binding for

 ()  ∗, that is, b ( ()) = b ( ()), for  ()  ∗. Therefore, by reducingb ( ()), a fall in  () reduces the amount that the firm can borrow, which

reduces the probability that the next arrival of a new value of EBIT will induce

the firm to default.

The following Proposition states that when the borrowing constraint is bind-

ing, the firm’s net cash flow is negative.

13



Proposition 14 If b ( ()) = b ( ()), then after-tax cash flow b ( ()) ≡
(1− )

h
 ()−

³
 b ( ()) + ()

´i
≤ 0, with strict inequality if  ()  Φ .

Proposition 11 implies that when  ()  ∗, the borrowing constraint is
binding and optimal debt is strictly increasing in  () so that  b ( ()) is
strictly increasing. Proposition 13 states that when  ()  ∗, the risk premium
increases. Therefore, interest payments are increasing in  () when  ()  ∗.
Nevertheless, as indicated in Corollary 15 below, optimal after-tax cash flow,b ( ()), is increasing in  () when  ()  ∗. Optimal after-tax cash flow,b ( ()), is also increasing in  () for  () ≥ ∗ because optimal debt and
interest payments are invariant to  () for  () ≥ ∗. Therefore, optimal

after-tax cash flow, b ( ()), is strictly increasing in  (), regardless of whether
the borrowing constraint is binding.

Corollary 15 b ( ()) is strictly increasing in  ().

4 Three Regimes

The value of ∗ must be greater than or equal to b (Φ) and less than or equal
to b (Φ). I will analyze three regimes that are defined by whether the lower
bound strictly binds, the upper bound strictly binds, or neither bound strictly

binds. Formally, Regime I is the set of configurations of , , ,  , and  ()

for which the lower bound strictly binds, Regime II is the set of configurations

of , , ,  , and  () for which neither bound strictly binds, and Regime III

is the set of configurations of , , ,  , and  () for which the upper bound

strictly binds. The term "regime" does not imply that the configuration is

temporary or can potentially change; the configuration of , , ,  , and  ()

remains fixed forever.

To characterize the regimes, use the definition of ∗ in equation (15), which
states that ∗ is the value of  that maximizes  ( () ) subject to b (Φ) ≤
 ≤ b (Φ). Therefore,

∗ = argmax


 () + 1

³
 − b (Φ)´+ 2

³ b (Φ)−
´
 (18)

where 1 ≥ 0 is the multiplier on the constraint b (Φ) ≤ ∗ and 2 ≥ 0 is the
multiplier on the constraint ∗ ≤ b (Φ). The first-order condition associated
with the maximization in equation (18) is

 (∗)


= 2 − 1 (19)

and the complementary slackness conditions are

1

³
∗ − b (Φ)´ = 0 (20)
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and

2

³ b (Φ)−∗
´
= 0 (21)

Three distinct regimes are defined according to whether the multipliers 1
and 2 are positive or zero:

13

• Regime I: 1  0 and 2 = 0

• Regime II: 1 = 2 = 0

• Regime III: 1 = 0 and 2  0

The following Lemma will help evaluate the partial derivative
()


in

Regimes I and II.

Lemma 16 If 2 = 0, then b0 (∗) = 1−
+

and b−10 (∗) = +
1− .

The critical value ∗ and the value of ∗ are straightforward to characterize
in Regimes I and III, as in the following Proposition.

Proposition 17 In Regime I, which prevails if and only if 1  0, 
∗ = b (Φ)

and ∗ = Φ. In Regime III, which prevails if and only if 2  0, ∗ = b (Φ)
and ∗ = Φ .

In Regime II, the critical value ∗ could potentially be any value of  in the
support [ΦΦ ]. I will analyze Regime II in more detail in Section 5. The

remainder of this section will focus on Regimes I and III.

In Regime I, 1  0 and 2 = 0, so the first-order condition in equation (19)

implies
(∗)


= −1  0. Thus, the marginal tax shield, which provides an

incentive to increase the amount of debt, is overwhelmed by the risk of losing

the continuation value of the firm as a result of default. Therefore, the optimal

value of debt is b (Φ), which is the highest value of debt that the firm can

issue without facing a positive probability of default.

Proposition 18 Define 0 ≡ 1
+

h
Φ +



 {}

i
. For all  () ∈ [ΦΦ ]

in Regime I (where 1  0 and 2 = 0),

• (1) b ( ()) = ∗ = 0

• (2)  ( ()) = 1−
+

( ()−Φ)

• (3) b ( ()) = 0 +
1−
+

( ()−Φ)
13 Since  (Φ) 6=  (Φ), 1 and 2 cannot both be positive.
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Proposition 18 states that in Regime I, the optimal value of debt equals 0,

which is invariant to the tax rate and invariant to the current value of EBIT.

The invariance of optimal debt with respect to the tax rate reflects the fact that

at the margin the tax shield is so weak that it is completely outweighed by the

cost of default. Therefore, shareholders choose not to expose the firm to the

risk of default. Nevertheless, because the tax rate  is positive, the firm takes

advantage of the tax shield on interest by choosing the maximal amount of debt

that does not risk default. In fact, the firm uses the tax shield to completely

insulate its value from taxes when  () = Φ. That is, when  () = Φ, the

ability to borrow and deduct interest payments increases the total value of the

firm to b (Φ) = 0 =
1

+

h
Φ +



 {}

i
from 1−

+

h
Φ +



 {}

i
in the ab-

sence of debt. As is evident from Lemma 1, b (Φ) = 0 =
1

+

h
Φ +



 {}

i
is the value of the firm when  () = Φ if  = 0 and the firm never borrows

nor ceases operation.

In Regime III, 1 = 0 and 2  0, so equation (19) implies that
((Φ))




0. Since  () is strictly concave in,
()


 0 for all ∈

h b (Φ)  b (Φ)i.
The marginal tax shield associated with an increase in debt overwhelms the ad-

ditional default risk associated with an increase in debt. Therefore, the firm

will issue as much debt as it can, driving shareholders’ equity to zero, so thatb ( ()) ≡ b ( ()) for all  () ∈ [ΦΦ ]. The following Lemma provides

an expression for the optimal value of debt when  () = Φ in Regime III.

Lemma 19 If b (Φ) = b (Φ), then b (Φ) =  ≡ 1
+

h
Φ + (1− )

nb ()oi.
In the case in which  = 1, so that all of the firm’s assets become worthless

in default, b (Φ) =  =
1

+
Φ , which is invariant to the tax rate.

5 Regime II

In Regime II, ∗ can be anywhere in
h b (Φ)  b (Φ)i and the critical value ∗

can be anywhere in [ΦΦ ]. In subsection 5.1, I derive the values of ∗ and
∗ and thereby complete the calculation of the optimal values of debt, equity,
and total firm value for  () ≥ ∗, as shown in Proposition 11. In subsection

5.2, I interpret the expression for ∗ in terms of the tradeoff theory, and in
subsection 5.3, I calculate b ( ()) = b ( ()) for  () ≤ ∗.

5.1 ∗ and ∗ in Regime II

In Regime II, 1 = 1 = 0, so equation (19) implies that
(∗)


= 0. Lemma

16 implies that

b−10 (∗) = + 

1− 
, in Regimes I and II. (22)
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Now evaluate
(())


in equation (12) at  = ∗, using Corollary 10 and

equation (22), and set
(()∗)


equal to zero to obtain

 ( () ∗)


=


+ 
(+  (∗))− ∗ (∗) = 0 (23)

The first-order condition in equation (23) involves both ∗ and ∗. A

second expression involving ∗ and ∗ follows from evaluating equation (11) at

 () = ∗ and  = ∗ =  (∗∗) to obtain14

∗ =
1

+ 
∗ (26)

+
1

+  (∗)

"
(1− )

Z ∗

Φ

b ()  () + 

+ 

Z Φ
∗

 () 

#


Use equation (26) to eliminate ∗ from equation (23) to obtain

 (∗∗)


=
1

+ 

1

+  (∗)
 (∗) = 0 (27)

where

 () ≡  [+  ()]
2 −  ()

⎛⎜⎝ [+  ()]

+(1− ) (+ )
R 
Φ
b ()  () 

+
R Φ


 () 

⎞⎟⎠ 

(28)

The first-order condition for the optimal value of ∗, equivalently for the optimal
value of debt, ∗ = b (∗), is  (∗) = 0. Since  (∗) is strictly concave
in  (Corollary 7), the first-order condition  (∗) = 0 has at most one root.
Depending on the parameter values and the distribution function  (), the

equation  () = 0 may or may not have a root in [ΦΦ ]. Evaluate  ()

14Evaluate equation (11) at  () = ∗ and  = ∗ using Corollary 10 to set −1 (∗) = ∗

and equation (16) to set  (∗ ∗) = ∗ to obtain

∗ = 
+  (∗)

+ 
∗ +

1− 

+ 
∗ (24)

+


+ 
(1− ) (1− )

 ∗

Φ

 ()  () + 

+ 

 Φ

∗
 ()  () 

Use Proposition 11 to substitute 1−
+

[− ∗] +∗ for  () where  ≥ ∗ in equation (24)
to obtain

[+  (∗)]∗ =
+  (∗)

+ 
∗ + (1− )

 ∗

Φ

 ()  () + 

+ 

 Φ

∗
 () 

(25)

Divide both sides of equation (25) by [+  (∗)] to obtain equation (26) in the text.
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at  = Φ and  = Φ , respectively, to obtain

 (Φ) = 2 −  (Φ) (Φ +  {}) (29)

and

 (Φ) =
h
 (+ )−  (Φ)

³
Φ + (1− )

nb ()o´i (+ )  (30)

If  (Φ) ≥ 0 ≥  (Φ), then  () = 0 has a root in [ΦΦ ]. It follows

from equations (29) and (30) that  (Φ) ≥ 0 ≥  (Φ) if and only if

 ≤  ≤   (31)

where

 ≡ 



 (Φ)

µ
Φ +




 {}

¶
 0 (32)

and

 ≡ 


+ 
 (Φ)

³
Φ + (1− )

nb ()o´  0. (33)

In order for the interval of values of  in equation (31) to be non-degenerate, 
must be less than  . The following Proposition provides sufficient conditions

for    .

Proposition 20 If  (Φ) ≡ Φ + 

 {}  0,  (Φ) = 0,  (Φ) = 1

and  0 () ≥ 0 everywhere on the support [ΦΦ ], then   
2
is a sufficient

condition for the interval [  ] to be non-degenerate.

The following Corollary presents sufficient conditions for  () = 0 to have

a root in [ΦΦ ].

Corollary 21 to Proposition 20 If  (Φ) ≡ Φ + 

 {}  0,  (Φ) = 0,

 (Φ) = 1,  0 () ≥ 0 everywhere on the support [ΦΦ ], and  ≤  ≤
  

2
, then there is a unique value ∗ ∈ [ΦΦ ] for which  (∗) = 0.

The critical value ∗ is given by the root of  (∗) = 0. For any  () ≥ ∗,
the optimal value of debt equals ∗, which is given by equation (26). The

next subsection interprets the first-order condition in equation (23) in terms of

the tradeoff theory, and the following subsection calculates the optimal value of

debt for  () ≤ ∗.

5.2 The Tradeoff Theory

The first-order condition in equation (23) embodies the tradeoff theory. To

interpret this condition, it is useful to multiply both sides by +  to obtain

 (+  (∗)) = (+ )∗ (∗)  (34)

18



It is simplest to begin with the case in which  = 1 so that default completely

destroys the productive capability of the firm. In this case, the risk premium

 () in equation (8) is simply  (∗)∗ so that total interest payments are
∗ +  (∗)∗ and the interest rate on debt is +  (∗). The left hand
side of equation (34) is the marginal tax shield, over the next interval  of

time, associated with an additional dollar of debt. To see why, suppose that

the firm issues an additional dollar of debt at time 0, pays interest at rate

 +  (∗) over the subsequent interval  of time, then repays the dollar of
debt at time 0 +  with probability − (

∗), which is the probability that

it is not optimal to default at 0 +  or earlier. Therefore, if the interest

rate were to remain unchanged at  +  (∗), the additional dollar of debt
would increase the expected present value of the firm’s after-tax cash flow by

1 − (1− ) (+  (∗))  − −− (
∗), which equals left hand side of

equation (34) for small . Thus, the left hand side of equation (34) is the

marginal tax shield associated with an additional dollar of debt.

The right hand side of equation (34) is the marginal cost, over the next

interval  of time, associated with the increased probability of default resulting

from an additional dollar of debt. By increasing the probability of default, a

one-dollar increase in debt increases the risk premium, and hence increases the

interest rate, +  (∗), paid by the firm. Specifically, since ∗ = b−1 (∗),
a one-dollar increase in ∗ will increase ∗, which is the critical value of EBIT
at which the firm defaults, by b−10 (∗) = +

1− (which follows from Lemma

16). As a result, an increase in ∗ increases the probability of default at time
0+ by  (

∗) ∗

∗ =  (∗) b−10 (∗) =  (∗) +
1− , which, in the case with

 = 1, increases the interest rate by  (∗) +
1− , and increases the total flow of

after-tax interest payments at time 0 by  (
∗) (+ )∗, which is the right

hand side of equation (34) when  = 1. Therefore, equation (34) represents the

equality of the marginal tax shield and the marginal cost associated with the

increased probability of default, which is the essence of the tradeoff theory.

In the more general case in which  ≤ 1, the interpretation of equation (34)
in terms of the tradeoff theory is more nuanced. Define  (0) as the flow

of (pre-tax) interest payments at time  if the amount of outstanding debt is 

and if the firm defaults if and only if   0. Thus,

 (0) ≡ (+  (0)) −  (1− )

Z 0

Φ

b ()  ()  (35)

which is the sum of  and the risk premium  () in equation (8), using the

fact that
n
 : b ()  ∗

o
= { :   ∗}. If the value of EBIT that triggers

default, 0, were to remain unchanged, an increase in debt would increase in-

terest payments by
(∗0)

∗ =  +  (0). Therefore, when  = ∗ and
0 = ∗, a one-dollar increase in  would increase the tax shield associated

with interest deductibility by


 (∗ ∗)

∗
=  (+  (∗))  (36)
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Therefore, the left hand side of equation (34) is the marginal tax shield.

Now consider the impact on interest payments of an increase in 0, holding

the amount of debt unchanged. Partially differentiating equation (35) with re-

spect to 0 , evaluating this derivative at 0 = ∗, and using b (∗) = ∗ (from
Corollary 10) yields

 (∗ ∗)
0

=  (∗)∗ (37)

Lemma 16 implies that ∗

∗ =
b−10 (∗) = +

1− in Regime II. Therefore, equa-
tion (37) implies that the increase in after-tax interest payments is

(1− )
 (∗ ∗)

0

∗

∗
= (+ ) (∗)∗ (38)

The left hand side of equation (38) is the marginal default cost, measured in flow

terms, that reflects the increased probability of default when ∗ increases as a
result of an increase in ∗. Specifically, a one-dollar increase in ∗ increases
the default threshhold ∗ by ∗

∗ , thereby increasing total interest costs by
(∗∗)

0

∗

∗ and after-tax interest costs by (1− )
(∗∗)

0

∗

∗ , which is the

left hand side of equation (38). The right hand side of equation (38) is identical

to the right hand side of equation (34), so the right hand side of equation (34)

is the marginal expected cost of default associated with a one-dollar increase

in  Thus, equation (34) is a statement of the tradeoff theory, equating the

marginal value of the tax shield associated with an additional dollar of debt,

expressed per unit of time, and the marginal cost of an increased probability of

default resulting from this increased debt, also expressed per unit of time.

5.3 Firm in Regime II with a Low Level of  ()

Suppose that the firm is in Regime II and that EBIT,  (), has a low value.

Specifically,  () ≤ ∗ so that  ( ()) = 0. In this case, the firm issues as

much debt as it can, driving the equity value to zero, so b ( ()) = b ( ()).
Evaluate equation (11) at  = b ( ()), so that the left hand side becomes


³
 ()  b ( ())´ = b ( ()) and b−1 () on the right hand side becomesb−1 ³ b ( ())´ = b−1 ³ b ( ())´ =  (). Therefore,

[(1− ) +  (1−  ( ()))] b ( ()) = (1− ) () (39)

+(1− ) (1− )

Z ()

Φ

b ()  ()
+

Z ∗

()

b ()  () + Γ
where

Γ ≡ 

Z Φ
∗

b ()  ()  (40)
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Use Proposition 11 to substitute 1−
+

[− ∗] +∗ for b () when  ≥ ∗

to obtain an alternative epxression for Γ that will be useful later.

Γ =  (1−  (∗))
∙
∗ − 1− 

+ 
∗
¸
+ 

1− 

+ 

Z Φ
∗

 ()  (41)

Equation (39) is a functional equation in b ( ()) ≡ b ( ()) for  () ≤ ∗.
A strategy for solving this functional equation is to differentiate both sides with

respect to  () and use the fact that b ( ()) ≡ b ( ()) for  () ≤ ∗ to
obtain the following first-order linear ordinary differential equation (ODE)15

[(1− ) +  (1−  ( ()))] b0 ( ()) + (1− ) ( ()) b ( ()) = 1−  

(42)

This ODE is solved in Appendix B. It is straightforward to verify that the

following equation is a solution to the ODE in equation (42) for  () ≤ ∗,
where  is a constant of integration,

b ( ()) = [(1− ) +  (1−  ( ()))]
(1−)

 (43)

×
∙
 + (1− )

Z
[(1− ) +  (1−  ( ()))]

−(1−)

−1

 ()

¸
.

The constant of integration, , is determined by the boundary condition, which

can be stated in either of two equivalent ways. One statement of the boundary

condition, which takes the form of a value-matching condition, isb (∗) = ∗ (44)

where ∗ is the optimal level of debt in equation (26) for high values of  (),
i.e.,  () ≥ ∗. An alternative statement of the boundary condition is

b (∗) = 1

(1− ) +  (1−  (∗))

"
(1− )

Ã
∗ + (1− )

Z ∗

Φ

b ()  ()!+ Γ# 
(45)

which follows from evaluating the functional equation (39) at  () = ∗. To

see that the two conditions are equivalent, substitute the expression for Γ in

equation (41) into equation (45) and rearrange to obtain

[+  (∗)]∗ =
+  (∗)

+ 
∗+(1− )

Z ∗

Φ

b ()  ()+ 

+ 

Z Φ
∗

 ()  () 

(46)

15Differentiate equation (42) with respect to  () to obtain

[(1− ) +  (1−  ( ()))] 00 ( ()) = − [− (1 + )  ] ( ()) 0 ( ()) −
(1− ) 0 ( ())  ( ()). Since (1− )  +  (1−  ( ()))  0, and for  () ≤ ∗,0 ( ())  0 and  ( ())  0, it follows that 00 ( ())  0 if (a)  ≤ 

1+
and (b)

 0 ( ()) ≥ 0. Note that if  = 0, so that there are zero deadweight costs of default, then00 ( ()) =  ( ()) 0 ( ())  0. Therefore, consistent with the discussion following

Corollary 7,  ( ()) =  ( ()) is convex when  = 0.
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Figure 1: Optimal Debt, Equity, and Total Value in Regime II

which is equivalent to b (∗) = ∗, where ∗ is given by equation (26).
To evaluate the slope of  ( ()) with respect to  () at  () = ∗, evaluate

the ODE in equation (42) at  () = ∗ and use the boundary condition b (∗) =
∗ along with the expression for  (∗)∗ implied by equation (23), and
simplify, to obtain b0 (∗) =

1− 

+ 
 (47)

Since equation (47) was derived from the ODE that holds for  ≤ ∗, the
derivative in equation (47) is actually the left-hand derivative. Since b ( ()) ≡b ( ()) for Φ ≤  () ≤ ∗, equation (47) implies that the left-hand derivative
of b ( ()) at  () = ∗ is 1−

+
. Proposition 11 implies that the slope ofb ( ()) is 1−

+
for  () ≥ ∗ so the right-hand derivative of b ( ()) at  () =

∗ is also 1−
+

. Therefore, the right-hand and left-hand derivatives of b ( ())
at  () = ∗ are equal to each other.
Figure 1 illustrates the equity value, optimal debt, and the total value of the

firm, each as a function of , for a firm in Regime II. The value of shareholders’

equity,  (), is a convex piecewise linear function of . For  ≤ ∗, share-
holders’ equity is identically zero, and for  ≥ ∗, their equity is an increasing
positive linear function of  with slope equal to 1−

+
. For  ≥ ∗, the optimal

level of debt is constant and equal to ∗, as shown by the horizontal line seg-
ment starting at point  and extending to the right. For  ≤ ∗, the optimal
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value of debt is shown by the increasing (concave) curve labelled b () connect-
ing points  and . The total value of the firm, b (), which is the sum of

shareholders’ equity and the optimal amount of debt at each , is shown by the

curve through points , , and  . The value-matching condition discussed

above is illustrated by the fact that the curve representing b () for  ≤ ∗

meets the curve representing b () for  ≥ ∗ at point . Furthermore, as al-

ready discussed, the left-hand derivative and the right-hand derivative of b ()
are equal to each other at  = ∗, so that the meeting of the curve through 

and  and the segment through  and  is smooth, that is, differentable, at

point .16

6 Threshhold Tax Rates

In this section I show that depending on whether the tax rate,  , is low, in-

termediate, or high, the firm will be in Regime I, Regime II, or Regime III. I

will show that the threshhold values of the tax rate that separate these regimes

are  and  , introduced in equations (32) and (33), respectively. For each

regime, I present the value of ∗ that satisfies the first-order condition in equa-
tion (19) and leads to satisfaction of the complementary slackness conditions

in equations (20) and (21). Because the maximand in equation (18) is strictly

concave in , a value of  that satisfies equations (19), (20), and (21) is the

unique value of ∗.
First, I will show that if   , then equations (19), (20), and (21) are

satisfied by ∗ = b (Φ), 1  0, and 2 = 0. Suppose that ∗ = b (Φ) b (Φ). Since ∗  b (Φ), complementary slackness in equation (21) implies
2 = 0. Therefore, b−10 (∗) = +

1− (Lemma 16), so that equation (12) can
be written as


³
 ()  b (Φ)´


=



+ 

³
+ 

³ b−1 ³ b (Φ)´´´− b (Φ)  ³ b−1 ³ b (Φ)´´ 
(48)

Use b−1 ³ b (Φ)´ = Φ,  (Φ) = 0, and Proposition 18 to substitute 1
+

h
Φ +



 {}

i
16This smooth meeting of the curve through  and  and the line segment through  and

 has a superficial similarity to the smooth-pasting condition that arises in optimal stopping

problems with an underlying diffusion process. In those problems, the value-matching and

smooth-pasting conditions are two separate boundary conditions that help to pin down two

parameters in the solution. However, in the current stochastic framework, the fundamental

stochastic variable has finite variation whereas in optimal stopping problems with a diffusion

process, the underlying stochastic variable has infinite variation. In the current framework,

equality of the left-hand derivative and the right-hand derivative of  ( ()) at  = ∗ arises as
a consequence of the value-matching condition. That equality does not impose any additional

structure or restriction on the solution.
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for b (Φ) to rewrite equation (48) as


³
 ()  b (Φ)´


=



+ 
− 

1

+ 

∙
Φ +




 {}

¸
 (Φ) . (49)

Use the definition of  in equation (32) to rewrite equation (49) as
17


³
 ()  b (Φ)´


=



+ 
( − )  0. (50)

Since
(∗)


 0, equation (19) implies 1  0. Therefore, 1  0 and

2 = 0, so the firm is in Regime I when   . In Regime I, b ( ()) = ∗ =b (Φ).
Now suppose that  ≤  ≤  . I have already shown in subsection 5.1

that if  ≤  ≤  , there is a unique ∗ ∈
h b (Φ)  b (Φ)i for which

(()∗)


= 0. Thus, the first-order condition in equation (19) implies that

1 = 2. Since b (Φ) 6= b (Φ), the complementary slackness conditions
in equations (20) and (21) imply that at least one of 1 and 2 must be zero.

Therefore, 1 = 2 = 0, so the firm is in Regime II.

Finally, suppose that 
1+

    and   
2
. I will show that ∗ =b (Φ), 1 = 0, and 2  0 satisfy equations (19), (20), and (21). Evaluate

(())


in equation (13) at  = b (Φ) and use b−1 ³ b (Φ)´ = Φ and


³ b−1 (Φ)´ = 1 to obtain


³
 ()  b (Φ)´


≥  −  b (Φ)  (Φ)  (51)

Use Lemma 19 to substitute 1
+

h
Φ + (1− )

nb ()oi for b (Φ) in
equation (51) to obtain


³
 ()  b (Φ)´


≥  − 



+ 

h
Φ + (1− )

nb ()oi  (Φ)  (52)

Use the definition of  in equation (33) to rewrite equation (52) as


³
 ()  b (Φ)´


≥  −   0, (53)

which satisfies
(∗)


= 2 − 1  0 when 1 = 0 and 2  0. Therefore,

the firm is in Regime III when    .

The foregoing analysis proves the following proposition.

17The partial derivative in equation (50) is the right-hand derivative with respect to  at

 =  (Φ). Inspection of footnote 2 reveals that the left-hand derivative at  (Φ) is  
+

,

which exceeds the right hand derivative because   0.
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Figure 2: Three Regimes

Proposition 22 Suppose     
2
.

• (1) If   , then the firm is in Regime I and b ( ()) = 1
+

h
Φ +



 {}

i
for all  () ∈

h b (Φ)  b (Φ)i.
• (2) If  ≤  ≤  , then the firm is in Regime II and

(a) b ( ()) = ∗ for  () ≥ ∗

(b) b ( ()) = b ( ()) for  () ≤ ∗.

• (3) If     
1+

, then the firm is in Regime III and b ( ()) =b ( ()) for all  () ∈
h b (Φ)  b (Φ)i.

Figure 2 illustrates the three regimes and displays the behavior of debt and

the leverage ratio in each regime. The tax rate  is measured along the hori-

zontal axis and EBIT, , is measured along the vertical axis. Regime I prevails

for   , Regime II prevails for  ≤  ≤  , and Regime III prevails for

    
1+

. The thick line that is horizontal at  = Φ in Regime I,

upward sloping in Regime II, and horizontal at  = Φ in Regime III shows

the value of ∗ for each value of  . Specifically, ∗ is the ordinate of each
point on this line. Everywhere above this line, that is, throughout Regime
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I and in the upper portion of Regime II, which is labelled IIA,  ()  ∗ so
the borrowing constraint is not binding and b ( ()) = ∗. Since b ( ()) is
invariant to  and b ( ()) is strictly increasing in , the optimal leverage ratio,
 ( ()) ≡ (())(()) , is strictly decreasing in  throughout Regimes I and IIA.

Everywhere below this line, that is, in the lower portion of Regime II, which

is labelled IIB, and in Regime III,  ()  ∗, so the borrowing constraint is
binding and the leverage ratio is invariant to .

7 Effect of a Rightward Translation of  ()

Consider a rightward translation of the distribution  () to a new distribution,

indexed by  ∈ R+,  () =  (−) on the support [Φ () Φ ()],

where Φ () = Φ (0) + , Φ () = Φ (0) +  and [Φ (0) Φ (0)] is

the support of the original distribution  (). For a given value of , letb ( () ;) be the maximized firm value when  =  (), let b ( () ;) be
the optimal value of debt when  =  (), let  ( () ;) be the instantaneous

probability of default when  =  (), and let ∗ () and ∗ () be the values
of ∗ and ∗, respectively. The following proposition states that a rightward
translation of the distribution  () increases the value of the firm, b ( () ;),
for any given  () in the intersection of the supports of the original distribution

and the new distribution.

Proposition 23 For any  () ∈ [Φ +Φ ] and   0, b ( () ;) b ( () ; 0).
7.1 Effect of a Rightward Translation of  () in Regime I

In Regime I, the firm issues the amount of debt shown in Proposition 18, which

is the highest amount of debt that it can issue without exposing itself to the

risk of default. Use Proposition 18 along with
Φ()


=

{}


= 1 to obtain

 b ( ())


=
1


 0, in Regime I. (54)

Proposition 18 implies that in Regime I, b ( ()) = b (Φ), which is the ex-
pected present value of EBIT over the infinite future, conditional on  () = Φ.

A rightward translation of the distribution  () by one unit effectively increases

EBIT by one unit in every state, which increases the expected present value of

EBIT by 1

, since the firm will never default and hence will receive a stream of

EBIT forever. Therefore, as shown in equation (54), the optimal amount of

debt increases by 1

units.

Differentiating the expression for  ( ()) in Proposition 18 with respect to
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 and using
Φ()


= 1 yields

 ( ())


= −1− 

+ 
 0, in Regime I. (55)

Thus, a rightward translation of  (), which improves the prospects of the

firm, reduces the value of equity, for any given  (). The value of equity

falls because the increase in the firm’s debt outweighs the increase in total firm

value resulting from improved future prospects of the firm. However, the entire

distribution shifts to the right so the unconditional expected value of  ( ()),

which is 1−
+

( {}−Φ) in Regime I, is unchanged since Φ()


=

{}


= 1.

To examine the impact on the total value of the firm for any given value of

 (), simply add equations (54) and (55) to obtain

 b ( ())


=
 b ( ())


+

 ( ())


=

+ 

 (+ )
 0, in Regime I. (56)

Thus, consistent with Proposition 23, a rightward translation of  () increases

the total value of the firm for any given  ().

To calculate the effect on the optimal leverage ratio, differentiate  ( ()) ≡(())(()) with respect to , and use equations (54) and (56) to obtain
 ( ())


=

1b ( ()) 1
∙
1−  ( ())

+ 

+ 

¸
 0, in Regime I, (57)

where the inequality follows from  ( ()) ≤ 1 and   1. Thus, in Regime I,

a rightward translation of  () increases the leverage ratio.

7.2 Effect of a Rightward Translation of  () in Regime

II

In Regime II, 1 = 2 = 0 so that
(()∗();)


= 0. Corollary 10 impliesb (∗ () ;) = ∗ () so that for a given value of , the first-order condition

in equation (23) can be written as


³
 ()  b (∗ () ) ;´


(58)

=


+ 
(+  (∗ ()−))−  b (∗ () )  (∗ ()−) = 0

Differentiate equation (58) with respect to  and rearrange to obtain∙ 
+

 (∗ ()−)

− b (∗ () ;)  0 (∗ ()−)

¸ £
∗0 ()− 1¤ =  (∗ ()−)

 b (∗ () ;)




(59)
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where
(∗();)


=

 (∗();)


∗0 ()+  (∗();)


is the effect on b (∗) of
a small increase in .18 Use equation (58) to substitute 

+

+ (∗()−)
(∗()−) for

 b (∗ () ) in equation (59) to obtain


+ 

£
∗0 ()− 1¤ (∗ ()−) =  (∗ ()−)

 b (∗ () ;)


 (60)

where

 () ≡  ()− (+  ())
 0 ()
 ()

. (61)

I will use equation (60) to examine the impacts on ∗, ∗, and  (∗) of a
rightward translation of the distribution  (). As a preliminary step, I present

the following lemma.

Lemma 24 If (1) 0    
1+

and (2)  ()  0 is non-decreasing for all ,

then ∗0 ()  1.

Since an increase in  does not increase ∗ () by an amount greater than
or equal to the increase in , it reduces the probability of default if the firm

optimally issues debt equal to ∗ (). Alternatively, if  ()  ∗ () so thatb ( () ;)  ∗ (), an increase in  also reduces the probability of default,

which is  ( ()−). More formally, we have the following proposition.

Proposition 25 If (1) 0    
1+

and (2)  ()  0 is non-decreasing for

all , then
 (();)


 0.

A rightward translation of the distribution  () can increase, decrease, or

leave unchanged the value of ∗. The following proposition shows that the

direction of the impact on ∗ depends on the sign of  (∗), which is defined in
equation (61).

Proposition 26 If (1) 0    
1+

and (2)  ()  0 is non-decreasing for

all , then 
³
(∗();)



´
= 

³
∗

0
()

´
= − ( (∗ ()−)).

Lemma 24 states that ∗0 () is less than one. The following proposition

provides a sufficient condition for ∗0 () to be negative.

Proposition 27 If (1) 0    
1+

, (2)  ()  0 is non-decreasing for all ,

and (3)  (∗ ()−) ≥ 0, then ∗0 ()  0.

18Proposition 23 implies that
 (∗();)


 0, but does not imply that

 (∗();)


is

negative. Indeed,
 (∗();)


will be negative when  (∗), defined in equation (61), is

positive.
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Figure 3: Effect of Rightward Translation of  () in Regime II

If the distribution  () is uniform, so that  0 () ≡ 0, it satisfies the condi-
tion in Propositions 26 and 27 that  () is non-decreasing. With  () being

uniform,  () =  () = 
Φ−Φ  0. Therefore, Propositions 26 and 27

imply that with a uniform distribution, a rightward translation reduces ∗ and
reduces ∗.

Figure 3 illustrates the impact of a rightward translation of  () for the

case in which  (∗ ()−) ≥ 0, which includes the uniform distribution.

In response to a rightward translation of  (), the value of ∗ changes from
its initial value of ∗ (0) to its new value of ∗ (). In addition, the curves

representing equity value, optimal debt, and the total value of the firm move

from the solid curves to the dashed curves. As shown, the rightward translation

of  () has no effect on equity for  ≤ ∗ () and increases the equity value by
a constant amount, 1−

+
(∗ (0)− ∗ ())  0 for   ∗ (). The total value

of the firm increases for all  () (Proposition 23), as shown by the shift from the

solid curve through , , and  , to the dashed curve that lies above it. The

response of optimal debt to a rightward translation of  () is more nuanced.

For  () ≥ ∗ (0), the optimal value of debt, which is invariant to  () in this
range, falls in response to a rightward translation of  (). As discussed earlier,

the continuation value of the firm increases, which increases the cost of losing

this future value by defaulting on debt. In response to this increased cost of

default, the firm reduces its exposure to default by reducing the amount of debt
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it issues and reduces the critical value ∗. For  () ≤ ∗ (), the optimal
amount of debt increases in response to a rightward translation of  (). The

reason for this increase in the optimal amount of debt is that the borrowing

constraint is binding for low values of  () and a rightward translation of  ()

increases the total value of the firm, which allows the firm to borrow an increased

amount. Finally, there is some e ∈ (∗ ()  ∗ (0)), not labelled in Figure 3,
such that a rightward translation of  () increases optimal debt for  ()  e
and decreases optimal debt for  ()  e.19
To understand the role of  () in determining the impact of a rightward

translation of  (), it is helpful to recall that
(()(∗());)


in the

first-order condition in equation (58) equals the marginal tax shield minus the

marginal default cost. Holding ∗ () fixed, an increase in  reduces the

marginal tax shield (by reducing  (∗ ())) and, if  () is uniform so that

 (∗ ()) is invariant to , increases the marginal cost of default (by increas-

ing b (∗ () )), thereby making (()(∗());)


negative. Because

 () is strictly concave in , a reduction in  is needed to restore the first-

order condition. In order to obtain the opposite effect, that is, in order for

an increase in  to increase the optimal value of ∗, an increase in  must

reduce the marginal default cost—and must do so by more than the reduction in

the marginal tax shield. Such a reduction in the marginal default cost requires

that an increase in  reduces  (∗ ()−), for given ∗ (), by a sufficiently
large amount, which will occur if  0 (∗) is large enough to make  (∗)  0.
To distinguish situations in which ∗ falls in response to a rightward trans-

lation of  () from situations in which ∗ increases in response to a right-
ward translation of  (), consider a 3-parameter distribution that includes

the uniform distribution as a special case. Specifically, consider the trun-

cated exponential distribution  () = 1−−(−Φ)
1−−(Φ−Φ) on the support [ΦΦ ].

The associated density function is  () = −(−Φ)

1−−(Φ−Φ)  0, which implies

 0 () = − (). To ensure that b (;) is concave in  and that  (;)
is strictly concave in , I restrict attention to  ≤ 0 so that  () is non-

decreasing. (The uniform distribution is the case with  = 0.20) It is con-

venient to re-parameterize the distribution in terms of ,  ≡ Φ − Φ  0,

and  ≡ 
1−−  0, so that  () = 



¡
1− −(−Φ)

¢
,  () = −(−Φ),

 (Φ) =  and  (Φ) =  −   0. Substitute 1

( −  ()) for  () and

 0 () = − () into the definition of  () in equation (61) to obtain

 () =  +  (62)

19The text has shown that ∗ ()  ∗ (0) =  (∗ (0) ; 0). Note that ∗ () = (∗ () ;) =  (∗ () ;)   (∗ () ; 0) =  (∗ () ; 0), where the final equality
follows from the fact that the borrowing constraint binds for  () = ∗ () under the original
distribution  (). Therefore,  (∗ () ; 0)  ∗ ()   (∗ (0) ; 0). Since  (;) is
increasing in , there is a unique  ∈ (∗ ()  ∗ (0)) for which  ; 0 = ∗ () 
20 lim→0  () =

1
Φ−Φ .
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which is independent of . The following corollary provides a condition on 

that determines the sign of  () and hence determines the sign of ∗0 ().

Corollary 28 If (1) 0    
1+

and (2) the unconditional distribution of 

is the truncated exponential distribution  () = 1−−(−Φ)
1−− for  ∈ [ΦΦ ]

where  ≡ Φ − Φ  0 and  ≤ 0, then ∗
0
() Q 0 as  R −

³
1 + 



´


Since −
³
1 + 



´
 0, Corollary 28 indicates that a rightward translation

of the truncated exponential distribution will reduce ∗ for negative values
of  that are sufficiently small in absolute value, as well as for the uniform

distribution ( = 0). In order to get the opposite result, that is, to get ∗ to
increase in response to a rightward translation of  (),  must be sufficiently

negative, that is, the density function must have a sufficiently steep upward

slope.

The tradeoff theory of capital structure is operative only in Regime II and,

indeed, only for  () ≥ ∗ in Regime II. When the tradeoff theory is operative,
i.e., when  () ≥ ∗, the optimal value of debt equals ∗. Thus Proposition

26 and Corollary 28 describe conditions under which optimal debt increases or

decreases in response to a rightward translation of the distribution  () when

the tradeoff theory is operative. When  ()  ∗, the tradeoff theory is not
operative and b ( ()) = b ( ()). Therefore, Proposition 23 implies that the
optimal value of debt increases in response to a rightward translation of  ()

in Regime II when  ()  ∗. Of course, the optimal leverage ratio equals one
whenever  () ≤ ∗ and is invariant to a translation of  ().

7.3 Effect of a Rightward Translation of  () in Regime

III

In Regime III, the borrowing constraint binds for all  (), that is, b ( ()) =b ( ()) for all  (). Therefore, Proposition 23 implies that a rightward trans-
lation of  () increases b ( ()) and hence increases b ( ()) for all  () in
Regime III. Of course, with b ( ()) = b ( ()) for all  (), the optimal lever-
age ratio equals one for all  () in Regime III.

7.4 Summary of Relationship between Profitability and

Optimal Debt

Table 1 summarizes the findings about the impact of increased profitability on

optimal debt when  ()  0, which includes the focal case in which  ()

is uniform. The top third of the table summarizes the characteristics of the

different regimes. The tradeoff theory will be operative if and only if (1) the

borrowing constraint (B.C., in the table) is not binding and (2) the firm faces a

positive probability of default. Only Regime IIA meets these two criteria, so the
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Characteristics of Regimes

Regime I Regime IIA Regime IIB Regime III

B.C.* not binding B.C.* not binding B.C.* binds B.C.* binds

Pr{default}=0 Pr{default}0 Pr{default}0 Pr{default}0

Not Tradeoff Tradeoff Operative Not Tradeoff Not Tradeoff

Increase in  ()

Regime I Regime IIA Regime IIB Regime IIIb unchanged b unchanged b ↑ b ↑
 ↑  ↑  ≡ 0  ≡ 0b ↑ b ↑ b ↑ b ↑
 ↓  ↓  ≡ 1  ≡ 1

Increase in  {} = R Φ
Φ

 ()

Regime I Regime IIA Regime IIB Regime IIIb ↑ b ↓ if   0 b ↑ b ↑
 ↓  ↑  ≡ 0  ≡ 0b ↑ b ↑ b ↑ b ↑
 ↑  ↓ if   0  ≡ 1  ≡ 1
*B.C. refers to the borrowing constraint  () ≤ b ()

Table 1: Effects of Increased Profitability

tradeoff theory is operative in Regime IIA, but not in the other regimes. Among

the regimes in which the firm faces a positive probability of default (Regimes

IIA, IIB, and III), an increase in profitability—either current profitability,  (),

or unconditional expected profitability,  {} = R Φ
Φ

 ()—can reduce the

optimal leverage ratio only in Regime IIA, that is, only when the tradeoff theory

is operative. Thus, in the context of the model presented here, in which the

tradeoff theory can be operative or not, the empirical finding of a negative

relationship between profitability and leverage is consistent only with tradeoff

theory being operative.

8 Secured and Unsecured Debt

In Regime I, the optimal amount of debt is b ( ()) = b (Φ). When the firm’s
outstanding debt is b (Φ), this debt is secure, even though it is not secured.
The debt is secure in the sense that there is no possibility that b ( ()) will fall
short of b (Φ), and hence there is no possibility that shareholders will default
on the debt. However, the debt is not secured by collateral that has a value that

is at least as large as the debt. Since lenders receive a faction 1− of the firm’s
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value in the event of default, one could think of lenders as essentially holding

collateral with a value of (1− ) b ( ()), where  is the time at which the
firm defaults. The value of this collateral will fall short of the value of debt,b (Φ), for any  () in hΦ b−1 ³ 1

1−
b (Φ)´´.

The model can be easily extended to include secured debt by introduc-

ing two classes of debt as in Scott (1976): secured debt,  ( ()), and

unsecured debt,  ( ()). The firm can issue secured debt in any amount

up to (1− ) b (Φ), so  ( ()) ≤ (1− ) b (Φ). This debt can be se-

cured by giving the holders of the debt the senior claim on the future value of

cash flows accruing to the (re-organized) firm in the event of default, which is

(1− ) b ( ()) ≥ (1− ) b (Φ). This debt is riskless to the bondholders

and thus the interest rate on this secured debt will be .

In Regime I, there is no possibility of default and the optimal total amount of

debt, b ( ()) = c ( ()) + c ( ()), equals b (Φ). Therefore, the optimal
amount of unsecured debt in this regime is c ( ()) ≥ b (Φ)−(1− ) b (Φ)
=  b (Φ) 0, where the first inequality follows from c ( ()) ≤ (1− ) b (Φ)
and the final inequality follows from Proposition 4. Thus, in Regime I, the firm

will issue a positive amount of unsecured debt. In Regime I, there is no possi-

bility that the firm will default, so the interest rate on unsecured debt, as well

as on secured debt, is .

In Regimes II and III, the optimal total amount of debt, b ( ()) = c ( ())+c ( ()), is greater than or equal to b (Φ). In these regimes, as well

as in Regime I, the firm can issue secured debt in the amount  ( ()) ≤
(1− ) b (Φ) at the riskless interest rate . The firm will issue unsecured debt
in the amount c ( ()) = b ( ())− c ( ()) ≥ b (Φ)− (1− ) b (Φ) =
 b (Φ)  0. However, in these regimes (except in the borderline case in which
 = ), the unsecured debt is risky and will have to pay unsecured lenders a

total amount of interest that exceeds c ( ()).

In all three regimes, the firm will issue unsecured debt in the amount c ( ())

= b ( ())−c ( ())  0. The fact that c ( ())  0, regardless of whetherc ( ()) is less than (1− ) b (Φ) or is equal to (1− ) b (Φ), is consistent
with Scott’s (1976, p. 42) result that "it is optimal for a firm that has exhausted

its secured debt capacity to issue at least some amount of unsecured debt." In

Scott’s model, secured debt is riskless to bondholders and unsecured debt is

always exposed to a risk of default. That is, in his model secured debt is equiv-

alent to riskless debt and unsecured debt is equivalent to risky debt. Therefore,

his finding that it is always optimal to issue a positive amount of unsecured debt

can be equivalently described by stating that it is always optimal to issue at

least a positive amount of risky debt. However, in the current paper, unsecured

debt is not equivalent to risky debt. Recall that in Regime I, the firm will issue

unsecured debt, but that debt is riskless. As shown above, c ( ())  0 in all

three regimes, so it is always optimal to issue some positive amount of unsecured

debt, as in Scott. However, in Regime I (and in the borderline case in which

 = ), it is optimal to issue zero risky debt; the unsecured debt that is issued
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in this case is riskless.

Why are unsecured debt and risky debt not equivalent in the current model

while they are equivalent in Scott’s model? In each model, secured debt is

backed by an asset, call it collateral, that has a value that will be large enough

to fully pay secured bondholders in the event of default. In Scott’s model, the

collateral is provided by the liquidation value of the physical assets, which is

treated as a known deterministic value. In the current model, the collateral

is provided by the claim on the future cash flows of the (re-organized) firm

immediately after default, which is (1− ) b ( ()) ≥ (1− ) b (Φ). Because
the value of this collateral could be as low as (1− ) b (Φ) in the event of
default, but will never be lower than (1− ) b (Φ), the firm is able to issue

secured debt in the amount of (1− ) b (Φ). But in addition, the firm can

issue unsecured, yet riskless, debt in the amount  b (Φ)  0. This debt is

riskless because the total debt is sufficiently small that the firm would never

find it optimal to default, even in the event of the lowest realization of  ().

There is no real asset to collateralize or secure this debt, which is made riskless

by the fact that self-interested shareholders will never default unless the value

of the firm falls below b (Φ), which cannot happen. So this debt is unsecured
but riskless.

The maximal amount of secured debt that the firm can issue is (1− ) b (Φ),
but the firm may choose to issue a smaller amount of secured debt. Proposi-

tion 4 implies that the optimal amount of total (secured plus unsecured) debt,b ( ()), is greater than or equal to b (Φ). However, the value of the firm is

invariant to the allocation of b ( ()) = c ( ()) + c ( ()) to secured debtc ( ()) ≤ (1− ) b (Φ) and unsecured debt c ( ()) ≥  b (Φ). This

invariance is a straightforward application of the Modigliani-Miller theorem. 21

9 Closed-Form Solutions:  = 1 and  () is

Uniform on [ΦΦ ]

In this section, I derive closed-form solutions for optimal debt and shareholders’

equity in the special case in which  = 1 and the unconditional distribution

 () is uniform. The assumption that  = 1 simplifies the solution of the

shareholders’ problem in Regime II by permitting the calculation of ∗, b ( ()),
and b ( ()) for  () ≥ ∗ without having to simultaneously calculate b ( ())
for values of  ()  ∗.22

It will be convenient to represent the uniform distribution on [ΦΦ ] by

the mean  ≡ 1
2
(Φ +Φ) and by  ≡ Φ−Φ. Therefore,  () = 1


,  () =

21Myers and Robichek (1966) point out this invariance, stating "the manner in which debt

is divided among various debt instruments will not affect the over-all cost of the debt to the

firm" (p. 29)
22 In the more general case with  6= 0,  ( ()) for  ≥ ∗ depends on   ( ()) for

 ()  ∗.
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−+ 1
2



, and hence  = − 1

2
 +  .

9.1 Closed-Form Solutions for Regime I

Propositions 17 and 18 imply that in Regime I, ∗ = b (Φ) = 1
+

h
Φ +




i

and hence ∗ = Φ . Therefore, Proposition 11 implies that closed-form solu-

tions for optimal debt, equity, and total firm value, respectively, are

b ( ()) = 1

+ 

∙
Φ +






¸
, in Regime I (63)

 ( ()) =
1− 

+ 
[ ()−Φ] , in Regime I (64)

and b ( ()) = 1

+ 

∙
(1− ) () + Φ +






¸
, in Regime I. (65)

The expressions for b ( ()),  ( ()), and b ( ()) in equations (63), (64),
and (65), respectively, hold also for 0    1 and for distributions other than

the uniform distribution, provided that  ( ()) is non-decreasing.

9.2 Closed-Form Solutions for Regime II

Consider Regime II. It is straighforward to show that for  ∈ [ΦΦ ]Z Φ


 () = (1−  ())

µ
+

1

2
 ()

¶
= −

µ
− 1

2


¶
 ()−1

2
 [ ()]

2


(66)

Therefore,  () in equation (28), with  = 1, can be written as

 () =  [+  ()]
2 − 



µ
(+  ())

¡
− 1

2
 +  ()

¢
+ (1−  ())

¡
+ 1

2
 ()

¢ ¶
 (67)

Notice that  enters the right hand side of equation (67) only through  ().

Moreover, equation (67) is quadratic in  () so it is convenient to write this

equation as e ( ) = µ 1
2
(2 − 1)2 2 + (2 − 1) 
+2 − 



£
(+ )− 1

2

¤ ¶

 (68)

where  =  ().

Under the uniform distribution and with  = 1, , which is defined in

equation (32), is

 =




1



µµ
1 +





¶
− 1

2


¶
 (69)

35



Evaluate e ( ) at  = 0, which corresponds to evaluating  () at  = Φ,

and use equation (69) to obtain

e (0) = ( − ) 
2 (70)

Under the uniform distribution and with  = 1,  , which is defined in

equation (33), is

 =


+ 

1


Φ =



+ 

1



µ
+

1

2


¶
 (71)

Evaluate e ( ) at  = 1, which corresponds to evaluating  () at  = Φ ,

and use equation (71) to obtain

e (1) = ( − ) (+ )
2
 (72)

Therefore, if  ≤  ≤  , then e (0) ≥ 0 ≥ e (1) and there is a unique root
of e ( ) = 0 in the interval [0 1]; that root corresponds to the unique root of
 () = 0 in the interval [ΦΦ ].

Use the expression for  in equation (69) to rewrite e ( ) in equation (68)
as e ( ) = [1− 2 ] 2 "−1

2

µ




¶2
 2 − 


 +

 − 

1− 2

#
 (73)

which is a quadratic function in 

 so that e ( ) = 0 has a positive root




 ∗ = −1 +

r
1− 2
1− 2  (74)

Note that the root depends on  and  only through their ratio.

Use the fact that ∗ =  (∗) + − 1
2
 to obtain

∗ = − 1
2
 − 




+ 





r
1− 2
1− 2 . (75)

To calculate the optimal level of debt, ∗, substitute  (∗) = 1

,  (∗) =

1


¡
∗ − + 1

2

¢
and  = 1 into equation (23) to obtain

∗ = 




+  (∗)
+ 

= 
1

+ 

µ




+ ∗ − +

1

2


¶
 (76)

Next calculate the optimal amount of debt when  () ≤ ∗ by solving the
functional equation in (39). For  () ≤ ∗, the borrowing constraint is binding
so b ( ()) ≡ b ( ()). Therefore, set b ( ()) = b ( ()),  () = 1


, and

 = 1 in the functional equation (39) to obtain

(− ()) b ( ()) = (1− ) () +




Z ∗

()

b () + Γ (77)
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where

 ≡ (1− ) + +




µ
− 1

2


¶
 0 (78)

and

 ≡ 


 0, (79)

so that

− () = (1− ) +  [1−  ( ())]  0 (80)

In Appendix C, I show that the functional equation in equation (77) is

satisfied by b ( ()) = (− ())
1−
  + 

1


, (81)

where  is a constant of integration that is determined by the boundary condi-

tion in equation (44) (or equivalently by equation (45)), so that

b ( ()) = 



"
1−

µ
−∗

+ 

¶µ
− ()

−∗

¶ 1−


#
, for  () ≤ ∗ (82)

Differentiating equation (82) with respect to  () yields

b0 ( ()) =
1− 

+ 

µ
− ()

−∗

¶ 1

−2
≥ 1− 

+ 
, for  () ≤ ∗, (83)

where the inequality follows from   
1+
≤ 1

2
and the inequality is strict for

 ()  ∗. Since 1−
+

 0, b0 ( ())  0 for  ()  ∗. Therefore, consistent
with Proposition 11, for low values of  (), that is, for  () ≤ ∗, the optimal
amount of debt is strictly increasing in  (). Evaluating the derivative in

equation (83) at  = ∗ yields b0 (∗) = 1−
+

, which is consistent with equation

(47).23

23As a check, note that when  = , so that 
∗ = Φ and  (∗) = 0, equation (82)

implies, using 

= 


from equation (79), that

 (Φ) = 




1−


−Φ

+ 


 (84)

Equation (80) implies that − Φ = (1− ) +  when  =  so equation (84) can be

rewritten as  (Φ) = 





+ 
. (85)

Substitute  from equation (69) into equation (85) recognizing that − 1
2
 = Φ to obtain

 (Φ) = 1

+ 





+Φ


, (86)

which is identical to the optimal value of debt in Regime I shown in equation (63).
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9.3 Closed-Form Solutions for Regime III

In Regime III, the borrowing constraint binds for all values of EBIT so thatb ( ()) = b ( ()) for all  () ∈ [ΦΦ ]. As in subsection 9.2, set b () =b () in equation (39), so that optimal debt is given by equation (81). However,
the constant of integration, , is determined by a different boundary condition

than in Regime II. In Regime III, the boundary condition, when  = 1, is

b (Φ) = 1

+ 
Φ  (87)

which is obtained from Lemma 19. As shown in Appendix C, the boundary

condition in equation (87), along with equation (81), implies that24

b ( ()) = 



"
1− (1− )

µ
− ()

−Φ

¶ 1−


#
 (88)

10 Concluding Remarks

This paper develops and analyzes a simple model of debt choice that is rich

enough to include situations in which the tradeoff theory is operative as well as

situations in which it is not operative. There are two payoffs to analyzing a

model in which the tradeoff theory may or may not be operative. First, analysis

of this model points to factors that determine whether or not the tradeoff theory

is operative in particular situations. Second, the model allows us to compare

the optimal behavior in situations in which the tradeoff theory is operative with

optimal behavior in situations in which it is not operative. To the extent that

optimal behavior differs depending on whether or not the tradeoff theory is

operative, one could potentially use such differences in behavior as a basis for

empirically testing the tradeoff theory.

The equality of the marginal tax shield resulting from interest deductibility

and the marginal cost of increased default risk associated with increased debt is

the defining feature of the tradeoff theory of debt. The mere presence of interest

deductiblity and deadweight costs of default is not sufficient to ensure that the

tradeoff theory is operative. I have demonstrated three situations in which

the tradeoff theory is not operative despite the presence of interest deductibility

and deadweight default costs. First, if the tax rate is very low (Regime I), the

marginal benefit of the tax shield associated with an additional dollar of debt is

completely overwhelmed by the marginal cost associated with increased default

risk resulting from an additional dollar of debt. In this case, the firm will

take advantage of the tax shield offered by interest deductibility, but will only

borrow as much as it can without exposing itself to any possibility of default.

Thus, the tradeoff theory is not operative for tax rates that are sufficiently low.

24As a check, note that when  =  , so that 
∗ = Φ and  (∗) = 1, equation (88)

and the expression for  in equation (71) imply that  (Φ) = 

 = 1

+
Φ , which is

identical to equation (87).
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Second, if the tax rate is sufficiently high (but not so high as to violate conditions

for concavity of the value of the firm), the marginal benefit of the tax shield

associated with an additional dollar of debt completely overwhelms the marginal

cost associated with increased default risk resulting from an additional dollar

of debt. In this case, the firm borrows as much as lenders are willing to lend.

The tradeoff theory is not operative because the borrowing constraint is strictly

binding so the marginal benefit of the tax shield fails to equal the marginal cost

of increased default risk. Third, even if the tax rate is neither too low nor too

high, the tradeoff theory will fail to be operative if the current value of EBIT is

lower than the critical value, denoted by ∗ in the model. In this situation, the
low value of EBIT implies that the current value of firm is low, which implies

that the constraint on how much the firm can borrow is strictly binding. In

this situation, the marginal benefit of the tax shield exceeds the marginal cost

of increased default risk, so, again, the tradeoff theory is not operative. The

only situation in the model in which the tradeoff theory is operative is when the

tax rate is neither too low nor too high and the current value of EBIT is higher

than the critical value ∗. In this case, the optimal value of debt is the value

that equates the marginal benefit of the tax shield and the marginal cost of

increased default risk. In the particular stochastic environment analyzed here,

the optimal value of debt is invariant to the contemporaneous value of EBIT

provided that the tradeoff theory is operative.

The relationship between profitability and optimal borrowing depends on

whether the tradeoff theory is operative. Table 1 summarizes the impact on

optimal borrowing of an increase in profitability. In this table are two measures

of leverage—the amount of debt issued and the leverage ratio—and two measures

of profitability—current EBIT or the unconditional distribution from which new

values of EBIT are drawn. Two major lessons emerge from this table. First,

when the tradeoff theory is operative, the leverage ratio is a decreasing function

of current EBIT; and provided that the unconditional density function of EBIT

does not slope upward too steeping, an increase in the unconditional mean of

EBIT reduces both the level of optimal debt and the optimal leverage ratio.

This finding that an increase in profitability leads to a reduction in debt is con-

trary to standard interpretations of the tradeoff theory, but it is consistent with

empirical analyses of this relationship. The second lesson is that provided the

firm faces a positive probability of default, optimal the optimal leverage ratio is

negatively related to profitability only if the tradeoff theory is operative. So the

empirical finding of negative relationship between borrowing and profitability is

not consistent with the alternatives to the tradeoff theory in this model.
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A Appendix: Selected Proofs

Proof. of Lemma 1. For any  ≥ , the probability that at least one new

value of  has been drawn by time  is 1 − −(−). Therefore,  { ()} =
−(−) () +

¡
1− −(−)

¢
 {}, so

 ( ()) = (1− )
©R∞



£
−(−) () +

¡
1− −(−)

¢
 {}¤ −(−)ª =

(1− )
h

1
+

 () +
³
1

− 1

+

´
 {}

i
= (1− ) 1

+

h
 () + 


 {}

i
.

Proof. of Corollary 2. Lemma 1 implies that ( ()) ≥ 1−
+

h
Φ +



 {}

i


0 for all  () ∈ [ΦΦ ].
Proof. of Proposition 3. For any 2  1, equation (7) implies  (2) 

 (1). Therefore, 
³
2

b (1)´  
³
1

b (1)´ and since b (1) ≤

³
1

b (1)´, it follows that b (1) ≤ 
³
2

b (1)´ so that b (1) is a
feasible level of debt when  () = 2. Since  () is additively separa-

ble in  and , and linear in  with slope 1−
+

, it follows that  (2) =

 (1)+
1−
+

(2 − 1). Hence,
b (2) = 

³
2

b (2)´ ≥ 
³
2

b (1)´ =

³
1

b (1)´+ 1−
+

(2 − 1) =
b (1) + 1−

+
(2 − 1)  Therefore,

b (2)−b (2) ≥ 1−
+

(2 − 1)  0 and hence
(2)−(2)

2−1 ≥ 1−
+
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Proof. of Proposition 4. The first step is to prove that b () ≥ min b ().
Suppose the contrary, so that b ()  min b (). Then regardless of the

new value of  that is realized when the value of  changes, the shareholders

will choose not to default on the debt. In this case, equation (9) becomes


³
 ()  b ()´ = 

+
 b () + 1−

+
 () + 

+

R b ()  (), which implies
that

(() ())


= 
+

  0. Since the constraint  ()   () is

not binding and
(() ())


 0, b () cannot be the optimal value of debt.

Therefore, b () ≥ min b (). Since b ( ()) is strictly increasing (Proposi-
tion 3), min b () = b (Φ) ≥  (Φ 0). Recall that  (Φ) is the expected

present value of the flow of net cash flow for a firm that sets  = 0 and never

ceases operation. Therefore,  (Φ 0) ≥ (Φ) =
1−
+

h
Φ +



 {}

i
, where

the equality follows from Lemma 1 and the final inequality follows from equation

(4)

Proof. of Corollary 5. b (Φ) ≥ b () ≥ b (Φ), where the first inequality is
the constraint that prevents the firm from borrowing an amount that leads to

immediate default and the second inequality follows from Proposition 4. Since

 ( ()) = b ( ())− b ( ()),  (Φ) = 0.
Proof. of Proposition 6

Define the operator  by³
 b´ ( ()) = max

0≤≤(()) ( () )

= max
0≤≤(())

⎡⎢⎢⎣


+

³
+ 

³ b−1 ()´´ + 1−
+

 ()

+ 
+

(1− ) (1− )
R −1()
Φ

b ()  () 
+ 

+

R Φ−1() b ()  () 
⎤⎥⎥⎦ 

where the second equality follows from equation (11). The proof will proceed by

showing that the operator  takes concave functions of  into concave functions

of  and that  is a contraction, so that it has a unique fixed point, which is a

concave function of .

Differentiate
(())


in equation (12) with respect to  to obtain

2 ( () )

()
2

= [(2− (1− ))  − ]


+ 

³ b−1 ()´ b−10 () (89)

− (1− )


+ 


⎡⎣  0
³ b−1 ()´ h b−10 ()i2
+

³ b−1 ()´ b−100 ()
⎤⎦

Proposition 3 implies that b−1 () is increasing so that b−10 ()  0.

Therefore, since 
³ b−1 ()´  0, the assumption 0 ≤   

1+
implies that
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the first of the two terms in the expression for
2(())

()2
in equation (89), that

is, [(1 + )  − ] 
+


³ b−1 ()´ b−10 (), is negative.

Suppose that b ( ()) is concave, which implies that b−1 () is convex,
so that b−100 () ≥ 0. Therefore, the assumption that  () is non-decreasing
implies that the second of the two terms in the expression for

2(())

()2
in equa-

tion (89), that is− (1− ) 
+



∙
 0
³ b−1 ()´ h b−10 ()i2 + 

³ b−1 ()´ b−100 ()¸,
is non-positive. Therefore,

2(())

()2
 0 so  ( () ) is strictly concave in

.

The next step is to prove that if  ( () ) is strictly concave in , thenb ( ()) = max
0≤≤(())  ( () ) is concave. Since  ( () ) is ad-

ditively separable in  () and , linear in  () with slope 1−
+

, and strictly

concave in , b ( ()) can be written as b ( ()) = max
0≤≤(()) 1−+

 ()+

 () where  () is strictly concave. Consider 1 and 2 and the respective

corresponding optimal values of debt b (1) and b (2). Therefore, b () =
1−
+

 + 
³ b ()´ and b () ≤ b (),  = 1 2. Now consider  () = 1 +

(1− )2 and  () =  b (1) + (1− ) b (2) for 0 ≤  ≤ 1. Observe that

 () =  b (1)+(1− ) b (2) ≤  b (1)+(1− ) b (2) = 
h
1−
+

1 + 
³ b (1)´i+

(1− )
h
1−
+

2 + 
³ b (2)´i = 1−

+
 ()+

³ b (1)´+(1− ) 
³ b (2)´ ≤

1−
+

 () + 
³ b ()´ =  b ( ()), where the final inequality follows from the

strict concavity of  () but allows for the possibility that b (1) = b (2) so
the inequality is a weak inequality. Therefore, since b ( ()) ≥ 1−

+
 () +


³ b ()´, we have that b ( ()) ≥  b (1) + (1− ) b (2) and  () ≤b ( ()) so  () is a feasible level of debt when  =  (). Therefore,

 b ( ()) is concave if  ( () ) is strictly concave in .

We have shown that if b () is concave, then  ( () ) is strictly concave

in , and that if  ( () ) is strictly concave in , then  b () is concave.
Therefore, the operator  takes concave functions into concave functions. It

remains to show that  is a contraction so that there is a unique concave function

that is a fixed point of  .

Monotonicity : I will show that if b2 ( ()) ≥ b1 ( ()), then ³ b2´ ( ()) ≥³
 b1´ ( ()). Suppose that b2 ( ()) ≥ b1 ( ()).
³
 b´ ( ()) = max

0≤≤(())

⎡⎢⎢⎣


+
 + 1−

+
 ()

+ 
+

R −1 ()

Φ

h
(1− ) (1− ) b () + 

i
 ()

+ 
+

R Φ−1 ()
b ()  ()

⎤⎥⎥⎦
(90)
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Let b ( ()) = argmax0≤≤(())
⎡⎢⎢⎣


+

 + 1−
+

 ()

+ 
+

⎡⎣ R −1 ()

Φ

h
(1− ) (1− ) b () + 

i
 ()

+
R Φ−1 ()

b ()  ()
⎤⎦
⎤⎥⎥⎦

and note thatb−12 ³ b1 ()
´
≤ b−11 ³ b1 ()

´
. Therefore, rewrite the expression for

³
 b1´ ( ())

as ³
 b1´ ( ()) = 

+
 b1 ( ()) +

1−
+

 ()

+ 
+

⎡⎢⎢⎢⎢⎣
R −12 ( 1(()))
Φ

h
(1− ) (1− ) b1 () +  b1 ( ())

i
 ()

+
R −11 ( 1(()))−12 ( 1(()))

h
(1− ) (1− ) b1 () +  b1 ( ())

i
 ()R Φ−11 ( 1(()))

b1 ()  ()

⎤⎥⎥⎥⎥⎦
Now use the fact that for b−12 ³ b1 ( ())

´
≤  ≤ b−11 ³ b1 ( ())

´
, b1 () ≤b1 ( ()) so (1− ) (1− ) b1 () +  b1 ( ()) ≤ (1− ) (1− ) b1 ( ()) +

 b1 ( ()) ≤ 1 () to obtain³
 b1´ ( ()) ≤ 

+
 b1 ( ()) +

1−
+

 ()

+ 
+

⎡⎢⎢⎢⎢⎣
R −12 ( 1(()))
Φ

h
(1− ) (1− ) b1 () +  b1 ( ())

i
 ()

+
R −11 ( 1(()))−12 ( 1(()))

b1 ( ())  ()R Φ−11 ( 1(()))
b1 ()  ()

⎤⎥⎥⎥⎥⎦
Since b1 ( ()) ≤ b1 ( ())  b2 ( ()) is a feasible choice of debt underb2 ( ()), equation (90) implies³
 b2´ ( ()) ≥ 

+
 b1 ( ()) +

1−
+

 ()

+ 
+

⎡⎢⎢⎢⎢⎣
R −12 ( 1(()))
Φ

h
(1− ) (1− ) b2 () +  b1 ( ())

i
 ()

+
R −11 ( 1(()))−12 ( 1(()))

b2 ()  ()R Φ−11 ( 1(()))
b2 ()  ()

⎤⎥⎥⎥⎥⎦
³
 b2´ ( ())−³ b1´ ( ()) ≥ 

+

⎡⎢⎢⎢⎢⎣
(1− ) (1− )

R −12 ( 1(()))
Φ

h b2 ()− b1 ()i  ()
+
R −11 ( 1(()))−12 ( 1(()))

h b2 ()−1 ()
i
 ()R Φ−11 ( 1(()))

h b2 ()− b1 ()i  ()

⎤⎥⎥⎥⎥⎦ ≥
0

Therefore, the operator  satisfies the monotonicity property of the Black-

well conditions.

Discounting : Now suppose that b2 ( ()) = b1 ( ())+ , where   0 and

note that minΦ≤()≤Φ b2 ( ()) ≥ . Observe that b−12 ( + ) = b−11 ()

so that
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2 ( ()  + ) =

⎡⎢⎢⎣


+

³
+ 

³ b−12 ( + )
´´
( + ) + 1−

+
 ()

+ 
+

(1− ) (1− )
R −12 (+)

Φ
b2 ()  ()

+ 
+

R Φ−12 (+)
b2 ()  ()

⎤⎥⎥⎦,
which implies that

2 ( ()  + ) =

⎡⎢⎢⎢⎣


+

³
+ 

³ b−11 ()
´´
( + ) + 1−

+
 ()

+ 
+

(1− ) (1− )
R −11 ()

Φ

h b1 () + 
i
 ()

+ 
+

R Φ−11 ()

h b1 () + 
i
 ()

⎤⎥⎥⎥⎦ .
Therefore,

2 ( ()  + ) =

⎡⎢⎢⎣
1 ( () ) +


+

³
+ 

³ b−11 ()
´´



+ 
+

(1− ) (1− )
R −11 ()

Φ
 ()

+ 
+

R Φ−11 ()
 ()

⎤⎥⎥⎦

2 ( ()  + ) =

⎡⎢⎢⎣
1 ( () )

+ 
+

h
+ 

³ b−11 ()
´i

+ 
+

h
(1− ) (1− )

³ b−11 ()
´
+ − 

³ b−11 ()
´i

⎤⎥⎥⎦

2 ( ()  + ) =

⎡⎢⎢⎣
1 ( () )


+

⎡⎣ + + 
³ b−11 ()

´
− 

³ b−11 ()
´

+(1− ) (1− )
³ b−11 ()

´ ⎤⎦
⎤⎥⎥⎦

2 ( ()  + ) =

"
1 ( () )


+

h
+ −  (1− )

³ b−11 ()
´i #

Hence

2 ( ()  + ) ≤ 1 ( () ) +
+ 

+ 


2 ( ()  + ) ≤ 1 ( () ) + 

where  ≡ +
+

 1.

Define b2 ( ())≡ argmax0≤≤2(()) 2 ( () ). Therefore,max0≤≤2(()) 2 ( () )
= 2

³
 ()  b2 ( ())

´
and b2 ( ()) ≤ 2

³
 b2 ( ())

´
. Note that 2

³
 b2 ( ())

´
≤

1

³
 b2 ( ())− 

´
+, (where 1

³
 b2 ( ())− 

´
is well-defined because

minΦ≤()≤Φ b2 ( ()) ≥  , so Proposition 4 implies that b2 ( ()) ≥ ,

which implies that b2 ( ()) −  ≥ 0) which implies 1
³
 b2 ( ())− 

´
≥
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2

³
 ()  b2 ( ())

´
−  ≥ b2 ( ()) −  = b2 ( ()) −  + (1− )  b2 ( ())−, so that b2 ( ())− is a feasible level of debt under 1 ( () ).

Therefore, max
0≤≤1(()) 1 ( () ) ≥ max0≤≤2(()) 2 ( () )− ,

so that
³

³ b1 + 

´´
( ()) ≤

³
 b1´ ( ()) + . Hence, the operator 

satisfies the discounting policy of the Blackwell conditions.

Therefore, the operator  takes concave functions on the domain [ΦΦ ]

into concave functions on the domain [ΦΦ ], and it has a unique fixed pointb ( ()). Therefore, b ( ()) is concave on the domain [ΦΦ ].
Proof. of Corollary 7. The proof of Proposition 4 proves that if (1) 0   

1+

; (2) the positive-valued function  () is non-decreasing for all  ∈ [ΦΦ ];
and b ( ()) is concave, then  ( () ) is strictly concave in .

Proof. of Lemma 8. Since ∗ ≤ b (Φ) by definition, ∗ is a feasible choice
of debt when  = Φ . Since 

∗ maximizes  (), it is the optimal value
of debt when  = Φ . That is, b (Φ) = ∗ so b (Φ) =  (Φ 

∗).
Therefore, ∗ ≤ b (Φ) =  (Φ 

∗). To prove that  (Φ
∗) ≤ ∗,

suppose, contrary to what is to be proved, that  (Φ
∗)  ∗. Therefore, ∗

is a feasible choice of debt when  = Φ and it maximizes  (), so b (Φ) =
∗. Therefore, b (Φ) =  (Φ

∗)  ∗ = b (Φ), which contradicts
Corollary 5. Therefore,  (Φ

∗) ≤ ∗.
Proof. of Proposition 9. Since  (Φ

∗) ≤ ∗ ≤  (Φ 
∗) and  ( () ∗)

is strictly increasing in  (), there is a unique value of  ∈ [ΦΦ ] for

which  (∗) = ∗. In fact, since  ( () ) is linear in , we have
Φ−Φ

(Φ ∗)−(Φ∗) =
∗−Φ

(∗∗)−(Φ∗) . Use  (∗∗) = ∗ and rearrange

this equation to get the unique value of ∗, which is ∗ = Φ+
∗−(Φ∗)

(Φ ∗)−(Φ∗) [Φ −Φ].

Proof. of Corollary 10. By definition, ∗ maximizes  ( () ) so b ( ()) =
∗ if ∗ is a feasible choice of debt, i.e., if  ( () ∗) ≥ ∗. Since

 (∗∗) = ∗, ∗ is a feasible and hence the optimal level of debt when

 () = ∗. Therefore, b (∗) = ∗, b (∗) = 
³
∗ b (∗)´ =  (∗∗) =

∗. Since b () is strictly increasing it is invertible. Therefore, b (∗) = ∗

implies that b−1 (∗) = ∗.
Proof. of Proposition 11. If  () ≥ ∗,  ( () ∗) ≥  (∗∗) = ∗ so
the constraint  ≤  ( () ) will not bind and hence the optimal value of

debt is b ( ()) = ∗. Therefore, for any  () ≥ ∗, the maximized value

of  ( () ) defined in equation (5) is b ( ()) = 
³
 ()  b ( ())´ =

 ( () ∗) and equation (9) implies

b (2)− b (1) = 1− 

+ 
(2 − 1) for 1 ≥ ∗ and 2 ≥ ∗. (91)
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Setting 1 in equation (91) equal to 
∗, and using Corollary 10 implies

b ( ()) = 1− 

+ 
[ ()− ∗] +∗, for  () ≥ ∗. (92)

Since b ( ()) = ∗ when  () ≥ ∗, equations (92) and (14) imply

 ( ()) =
1− 

+ 
[ ()− ∗] , for  () ≥ ∗. (93)

For values of  ()  ∗, setting  = ∗ would violate the constraint
 ( () ) ≥ , so the optimal value of , b ( ()), will be less than ∗.
Since (Corollary 7)  ( () ) is strictly concave in, the constraint  ( () ) ≥
 will strictly bind for any  ()  ∗ so that

b () ≡ b () , for  () ≤ ∗

and

 ( ()) = 0, for  () ≤ ∗ (94)

Proof. of Corollary 12. For  () ≥ ∗, use Proposition 11 to substitute
∗ for b ( ()) and 1−

+
[ ()− ∗] +∗ for b ( ()) in the definition of the

leverage ratio,  ( ()) ≡ (())(()) , and divide numerator and denominator by
∗ to obtain  ( ()) = 1

1−
+

()−∗
∗ +1

. For  () ≤ ∗, Proposition 11 impliesb ( ()) = b ( ()) so the leverage ratio equals one.
Proof. of Proposition 13. If  ()  ∗, then b ( ()) = b ( ()) so b () b ( ()) if and only if b ()  b ( ()), i.e., if and only if    (), sinceb () is strictly increasing. Therefore,  ( ()) =  ( ())   (∗) and
is strictly increasing in  () for  ()  ∗. Also, when  ()  ∗,  ()

= 
R ()
Φ

h b ( ())− (1− ) b ()i  (), so ()

()
=  ( ()) b ( ()) +

 b0 ( ()) ( ())  0, where the inequality follows from Proposition 11,

(2)(a), which states that b0 ( ())  0 when  ()  ∗. If  () ≥ ∗,
then b ( ()) = ∗, so b ()  b ( ()) = ∗ = b (∗) if and only ifb ()  b ( ()), i.e., if and only if   ∗, since b () is strictly increas-
ing. Therefore,  ( ()) =  (∗) ≤  ( ()) for  () ≥ ∗ and is invariant
to  (). Therefore,  ( ()) = min [ ( ())   (∗)]. When  () ≥ ∗,

 () = 
R ∗
Φ

h
∗ − (1− ) b ()i  () is invariant to  ().

Proof. of Proposition 14. Suppose that b ( ()) = b ( ()). Since b ()
is strictly increasing, b () ≥ b ( ()) = b ( ()) for  ≥  (), with strict

inequality if    (). Therefore,Z
()≥ (())

h b ()− b ( ())i  () ≥ 0, (95)
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with strict inequalty if  ()  Φ . Evaluate equation (7) at  = b ( ()) =b ( ()) = 
³
 ()  b ( ())´ and use b−1 () = b−1 ³ b ( ())´ =  () to

obtain b ( ()) = b ( ()) + 1− 

+ 

h
 ()−

³
 b ( ()) + ()

´i
(96)

+


+ 

Z
()≥ (())

h b ()− b ( ())i  () 
Set b ( ()) = b ( ()) and rearrange to obtainb ( ()) ≡ (1− )

h
 ()−

³
 b ( ()) + ()

´i
(97)

= −
Z
()≥ (())

h b ()− b ( ())i  () ≤ 0,
where the inequality is implied by equation (95) and the inequality is strict if

 ()  Φ .

Proof. of Corollary 15. If  ()  ∗, then b ( ()) = b ( ()), and the proof
of Proposition 14 implies that b ( ()) = − R Φ

()

h b ()− b ( ())i  ().
Differentiating b ( ()) with respect to  () and using b ( ()) = b ( ())
yields b 0 ( ()) = 

R Φ
()

b0 ( ())  ()  0, where the inequality follows

from part (2)(a) of Proposition 11. For  () ≥ ∗, b ( ()) = ∗ and the
risk premium  () = e (∗) are invariant to  (). Therefore, b ( ()) =
(1− )

h
 ()−

³
∗ + e (∗)´i so b 0 ( ()) = 1−   0.

Proof. of Lemma 16. Since b (∗) = 
³
∗ b (∗)´, b0 (∗) = (∗ (∗))


+

(∗ (∗))


b0 (∗). Equation (19) and 2 = 0 imply
(∗∗)


= −1 ≤ 0 and

Proposition 11 implies that b0 (∗) ≥ 0. Therefore, b0 (∗) ≤ (∗ (∗))


=

1−
+

. But Proposition 3 implies that b0 (∗) ≥ 1−
+

. Therefore, 1−
+

≤b 0 (∗) ≤ 1−
+

, which implies b 0 (∗) = 1−
+

. Finally, the identity b−1 ³ b ()´ =
 implies b−10 ³ b (∗)´ b0 (∗) = 1, so b−10 ³ b (∗)´ = 10(∗)

= +
1− . Finally,

Corollary 10 states that b (∗) = ∗, so that b−10 (∗) = +
1− .

Proof. of Proposition 17. If 1  0, the complementary slackness condition in

equation (20) implies ∗ = b (Φ) and then Corollary 10 implies ∗ = Φ. If
2  0, the complementary slackness condition in equation (21) implies ∗ =b (Φ) and then Corollary 10 implies ∗ = Φ .
Proof. of Proposition 18. Assume that Regime I prevails so that 1  0.

Proposition 17 states that ∗ = b (Φ) and ∗ = Φ. Evaluate equation (9)

at  () = ∗ = Φ and substitute b (Φ) for  () on the left hand side of
equation (9) and for  on the right hand side of equation (9) to obtain

b (Φ) = 

+ 
 b (Φ) + 1− 

+ 
Φ +



+ 

nb ()o in Regime I. (98)
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Since b (Φ) = ∗ = b (Φ) so ∗ = Φ, Proposition 11 implies
b ( ()) = 1− 

+ 
[ ()−Φ] + b (Φ) in Regime I. (99)

Taking the unconditional expectation of both sides of equation (99) yields


nb ()o = 1− 

+ 
[ {}−Φ] + b (Φ) in Regime I. (100)

Substitute equation (100) into equation (98) to obtain b (Φ) = 
+

 b (Φ)+
1−
+
Φ +


+

h
1−
+

[ {}−Φ] + b (Φ)i. Multiply both sides of this equa-
tion by +  to obtain  b (Φ) =  b (Φ) + (1− )Φ+  1−

+
[ {}−Φ],

which can be rewritten as  b (Φ) = Φ +  1
+

[ {}−Φ] = 
+
Φ +


+

 {}. Therefore, b (Φ) = 1
+

h
Φ +



 {}

i
, so b ( ()) = ∗ =b (Φ) = 1

+

h
Φ +



 {}

i
. Proposition 11 implies that  ( ()) = 1−

+
[ ()−Φ]

and b ( ()) = ∗ +  ( ()).

Proof. of Lemma 19. Since b (Φ) = b (Φ) = 
³
Φ  b (Φ)´, equation

(9) implies b (Φ) =  b (Φ)+ 1−
+
Φ+


+

(1− ) (1− )
nb ()o, which

implies b (Φ) = 1
+

h
Φ +  (1− )

nb ()oi 
Lemma 29 below is not stated in the text. It is stated (and proved) here,

immediately preceding the proof of Proposition 20, because its only role is to

help prove that proposition.

Lemma 29 . If  (Φ) = 0,  (Φ) = 1 and  0 () ≥ 0 everywhere on the
support [ΦΦ ], then Φ ≤ Φ − 1

(Φ)
and  {} ≤ Φ − 1

2(Φ)
.

Proof. of Lemma 29. Let  () be the uniform distribution on [Φ0,Φ ], where

Φ0 ≡ Φ − 1
(Φ)

and  () ≡ 0 () =  (Φ) for all  ∈ [Φ0,Φ ]. Since

0 () ≡ 0,  0 () ≥  (), which, along with  (Φ) =  (Φ), implies that

 () ≤  () for all  in [Φ0Φ ]. Hence,  () = 1 − R Φ


 ()  ≥ 1 −R Φ


 ()  =  () for all  in [Φ0Φ ] and  (Φ0) ≥  (Φ0) = 0 so that

 () first-order stochastically dominates  (). To prove that Φ ≤ Φ0,
suppose not, i.e., suppose that Φ  Φ0. Then  (Φ) ≥  (Φ)  0, which

contradicts  (Φ) = 0. Hence Φ ≤ Φ0. Let  {} be the expected value of
 under the distribution  () and let  {} be the expected value of  under
the distribution  (). Then  {} ≤  {} is an immediate consequence of
the result that  () first-order stochastically dominates  (). Since  {} =
1
2
(Φ0 +Φ) =

1
2

³
2Φ − 1

(Φ)

´
= Φ − 1

2
1

(Φ)
,  {} ≤ Φ − 1

2
1

(Φ)
.

Proof. of Proposition 20. Define  ≡ 

and use the definition of  in

equation (32) along with  (Φ) ≤  (Φ), Lemma 29 (which is stated and
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proved immediately before this proof), and the assumption that Φ+


 {} 

0 to obtain

 ≤ 


1 + 
 (Φ)

µ
(1 + )

2
Φ − 1 + 

 (Φ)

³
1 +



2

´¶
. (101)

Use the definition of  in equation (33), the definition  ≡ 

, and the fact

that  
+

 (Φ) (1− )
nb ()o ≥ 0 to obtain

 ≥ 


1 + 
 (Φ)Φ  (102)

Subtract  in equation (101) from  in equation (102) to obtain

 −  ≥ 
2 + 

1 + 

∙
−Φ (Φ) + 1

2
(1 + )

¸
 (103)

Multiply both sides of equation (102) by −1+

to obtain

− (Φ)Φ ≥ −1 + 


  (104)

Equations (103) and (104) imply

 −  ≥  (2 + )
³
2
− 

´
 (105)

Therefore, if   
2
, then  −   0 and the interval ( ) is not

degenerate.

Proof. Proof of Corollary 21. From Proposition 20,   
2
implies that

[  ] is not degenerate, so that there exists a  ∈ [  ]. Equations (29)
and (32) imply that  (Φ) = 2 ( − ), so  ≥  implies  (Φ) ≥ 0.

Equations (30) and (33) imply that  (Φ) = (+ )
2
( − ), so  ≤ 

implies  (Φ) ≤ 0. Therefore,  () = 0 has at least one root in [ΦΦ ].

To show that the root is unique differentiate () with respect to  and evaluate

 0 () at  () = 0 to obtain  0 (∗) |(∗)=0 =³
(2 − ) [+  (∗)] −  (1− ) (+ ) b (∗)  (∗)´ (∗)−  [+  (∗)]2  0(∗)

(∗) 

0 where the inequality follows from the assumptions that   
2
 

1+
and

 0 (∗) ≥ 0.
Proof. of Proposition 23. Denote the current time as 0 and the arrival times

of new values of  consecutively as 1  2  3 , where 1 is the first arrival

time after 0. Consider the following feasible financing plan under  (): (1)

if  () ∈ [Φ () Φ (0)], set  ( () ;) = b ( () ; 0) and pay the same
risk premium that would be paid under  (), so that the firm’s cash flow, saye ( ()), is the same as under  () when the firm follows the optimal policy, say
 ( ()); (2) if  () ∈ [Φ (0) Φ ()], set  ( () ;) = b (Φ (0) ; 0) and
pay the same risk premium that would be paid under  () when  () = Φ (0),
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so that the firm’s cash flow under this policy exceeds the cash flow when  () =

Φ (0); (3) at time  ,  = 1 2 3  (a) if  () ∈ [Φ () Φ (0)], default if
any only if  ()  min [ (−1)  

∗ (0)], that is, if and only if the firm would op-
timally default under  () when  =  () and (b) if  () ∈ [Φ (0) Φ ()],
do not default. For  (0) ∈ [Φ () Φ (0)], the firm will have the same cash

flow during the interval [0 1) as it would under the optimal policy under

 (). For subsequent time intervals [  +1), the expected present value

of the cash flow over the interval is e = 1
+

R Φ()
Φ()

e ()  (−)  un-

der  () and is  ≡ 1
+

R Φ(0)
Φ(0)

 ()  ()  under  (). For  ∈
[Φ () Φ (0)], e () =  ()   (−) since  () is strictly in-

creasing and for  ∈ (Φ (0) Φ ()], e () ≥ e (Φ (0)) =  (Φ (0)) 

 (−) since  −  ≤ Φ (0) and  () is strictly increasing. There-

fore, e  1
+

R Φ()
Φ()

 (−)  (−)  = 1
+

R Φ(0)
Φ(0)

 ()  ()  =

 . Therefore, it suffices to prove that there is a positive probability that the

firm following the policy above under  () does not default at time 1. The

firm will default at time 1 if and only if  (1) ∈ [Φ () Φ (0)] and  (1)

 min [ (0)  
∗ (0)]. Therefore, the firm will not default if  (1) ≥ Φ (0) ≥

∗ (0). Therefore, the probability that the firm does not at time 1 is at least

1− (Φ (0))  0 since  (Φ (0)) =  (Φ (0)−)  1.

Proof. of Lemma 24. Consider an arbitrary   0 and suppose that,

contrary to what is to be shown, that ∗ (+ ) = ∗ () + , for   0.

Then b (∗ (+ ) + )  b (∗ () + )  b (∗ () ) where the
first inequality follows from Proposition 3 and the second inequality follows

from Proposition 23. Evaluate the partial derivative in equation (58) at + 

to obtain
(()(∗(+)+);+)


= 

+
(+  (∗ (+ )− (+ )))−

 b (∗ (+ ) + )  (∗ (+ )− (+ )) and then substitute ∗ ()+

 for ∗ (+ ) in this expression to obtain
(()(∗()++);+)


=


+

(+  (∗ () + − (+ )))− b (∗ () + + )  (∗ () + − (+ )),

which can be rewritten as
(()(∗()++);+)


= 

+
(+  (∗ ()−))−

 b (∗ () + + )  (∗ ()−). Since b (∗ (+ ) + ) b (∗ () )
and  (∗ ()−)  0, it follows that

(()(∗()++);+)


 
+

(+  (∗ ()−))−
 b (∗ () )  (∗ ()−) = 0, where the final equality is the first-order

condition in equation (58). Since
(()(∗()++);+)


 0 and (from

Corollary 7)  ( () ;) is strictly concave in , the value of ∗ is less thanb (∗ () + + ) so ∗ (+ )  ∗ () + . Therefore, for any   0,
∗(+)−∗()


 1, so ∗0 ()  1.

Proof. of Proposition 25. Proposition 13 implies that  ( () ;) = min [ ( ()−)   (∗ ()−)].
 (∗()−)


=  (∗ ()−)

¡
∗0 ()− 1¢  0, where the strict inequal-

ity follows from  (∗ ()−)  0 and Lemma 24. Also,
 (()−)


=

− ( ()−)  0. Therefore,
 (();)


 0.
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Proof. of Proposition 26. Corollary 10 implies that 
³
∗

0
()

´
= 

³
(∗();)



´
.

Since 
+

 0,  (∗ (0))  0, and ∗0 ()  1 (Lemma 24), equation (60) im-

plies 
³
(∗();)



´
= − ( (∗ ()−)). Therefore, 

³
(∗();)



´
= 

³
∗

0
()

´
= − ( (∗ ()−)).

Proof. of Corollary 27. The proof of Proposition 26 implies that if  (∗ ()−) ≥
0, then

(∗();)


≤ 0. Since (∗();)


=
 (∗();)


∗0 ()+  (∗();)


,

it follows that if  (∗ ()−) ≥ 0, then  (∗();)


∗0 () = (∗();)


−
 (∗();)


≤ − (∗();)


 0. Finally, since

 (∗();)


 0, ∗0 () ≤
−

 (∗();)


 (∗();)



 0.

Proof. of Corollary 28. Substitute  ≡ 
1−− into equation (62) and rearrange

to obtain25  () =
³
1 + 


− −

´


1−− . Since 
1−−  0 for any  6= 0,

 () R 0 as  R −
³
1 + 



´
. This inequality, together with Proposition 26,

implies that ∗
0
() Q 0 as  R −

³
1 + 



´
.

B Appendix: Solution to ODE in equation (42)

The ODE in equation (42) holds for  () ≤ ∗. To solve this ODE, rewrite this

equation in canonical form as

0
( ()) +

 (1− ) ( ())

(1− ) +  (1−  ( ()))
 ( ()) = 1− 

(1− ) +  (1−  ( ()))


(B.1)

Next multiply both sides of equation (B.1) by the integrating factor exp


(1−)(())
(1−)+− (()) ()


= [(1− ) + −  ( ())]

−(1−)
 to obtain [(1− ) +  (1−  ( ()))]

−(1−)
 0 ( ())+

[(1− ) +  (1−  ( ()))]
−(1−)


−1

× (1− ) ( ()) ( ())

 = (1− ) [(1− ) +  (1−  ( ()))]
−(1−)


−1



(B.2)

Integrating both sides of equation (B.2) yields
[(1− ) +  (1−  ( ()))]

−(1−)


× ( ())


=




+(1− )

[(1− ) +  (1−  ( ()))]

−(1−)


−1
 ()


(B.3)

25For  = 0, use L’Hopital’s Rule to obtain lim→0  () = lim→0


1+


−−




1−− =

lim→0


1+


−−


+

−




− = 

. Equivalently, lim→0  = lim→0

1

− = 1

, so

lim→0  () = lim→0 ( + ) = 

 0 Therefore, if  = 0, then  ()  0 and Proposition

26 implies ∗0 ()  0.
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where  is a constant of integration. Divide both sides of equation (B.3) by [(1− ) +  (1−  ( ()))]
−(1−)



to obtain

 ( ()) = [(1− ) +  (1−  ( ()))]
(1−)




 + (1− )


[(1− ) +  (1−  ( ()))]

−(1−)


−1
 ()


(B.4)

C Appendix: Solving the Functional Equation

in (77)

The functional equation in equation (77) holds for  () ≤ ∗. To solve the functional

equation in equation (77), differentiate this equation with respect to  () and write

the resulting differential equation in canonical form as

0
( ()) +

1− 





− ()
 ( ()) = 1− 

− ()
 (C.5)

Multiply both sides of equation (C.5) by the integrating factor (− ())
− 1−

 to

obtain

(− ())
− 1−

 0
( ())+

1− 


 (− ())

− 1
  ( ()) = (1− ) (− ())

− 1
 

(C.6)

Integrate both sides of equation (C.6) and then divide both sides of the resulting

equation by the integrating factor (− ())
− 1−

 to obtain

 ( ()) = (− ())
1−
  + 

1


 (C.7)

where  is a constant of integration. To determine the value of , substitute the

solution for  ( ()) from equation (C.7) into the functional equation (77) and use

 = 

to obtain

(− ())


(− ())

1−
  + 

1




= (1− ) ()+





 ∗

()


(−)

1−
  + 

1




+Γ

(C.8)

Evaluating equation (C.8) at  () = ∗ and simplifying yields

 =



∗
+ Γ− 






(−

∗
)
− 1
  (C.9)

Finally, substitute equation (C.9) into equation (C.7) to get an expression for the

optimal amount of debt

 ( ()) = 
1


+ 


− ()

−∗

 1−


 (C.10)

where

 ≡ (1− )∗ + Γ

−∗
− 

1


 (C.11)
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To calculate  in Regime II, evaluate equation (C.10) at  = ∗ and use the

value-matching condition in equation (44) to obtain


∗
= 

1


+  , in Regime II. (C.12)

Use the expression for ∗ in equation (76) and the definition  ≡ 

=  (∗) to

obtain


∗
= 

+  (∗)
+ 




, in Regime II. (C.13)

Equating the right hand sides of equations (C.12) and (C.13) yields

 =



+  (∗)

+ 
− 1




 0, in Regime II, (C.14)

where the inequality follows from   0, 0    1, and   0. Use equation (80) to

obtain


+  (∗)

+ 
− 1 = −−∗

+ 
, in Regime II. (C.15)

Substitute equation (C.15) into equation (C.14) to obtain

 = −−∗

+ 




, in Regime II. (C.16)

Substituting equation (C.16) into equation (C.10) yields

 ( ()) = 




1−


−∗

+ 


− ()

−∗

 1−



, in Regime II. (C.17)

which is the same as equation (82) in the text.

To calculate  in Regime III, use ∗ = Φ , so that equation (40) implies Γ = 0

and equation (80) implies −∗ = (1− ) (+ ), to rewrite equation (C.11) as

 =
Φ

+ 
− 


, in Regime III. (C.18)

Substituting equation (C.18) into equation (C.10) and using 

= 


yields

 ( ()) = 




1−


1− 

+ 

1


Φ


− ()

−Φ

 1−



, in Regime III. (C.19)

Now use the expression for  in equation (71) to obtain

 ( ()) = 




1− (1− )


− ()

−Φ

 1−



, in Regime III, (C.20)

which is identical to equation (88) in the text.
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D Appendix: Verification that Equation (C.10)

Satisfies Functional Equation (77)

Use equation (C.10) to express the right hand side of equation (77) as

(1− ) ()+




 ∗

()

 () +Γ = (1− ) ()+




 ∗

()





+ 


−

−∗

 1−



+Γ

(D.21)

Perform the integration on the right hand side of equation (D.21) to obtain

(1− ) () +




 ∗

()

 () + Γ =

 (1− ) () + 



(∗ −  ())

+



−−∗




−
−∗

 1
 |∗

()
+ Γ

 
(D.22)

which can be written as

(1− ) () +




 ∗

()

 () + Γ =

 (1− ) () + 



(∗ −  ())

+



−−∗




1−


−()
−∗

 1



+ Γ

 
(D.23)

Use the definition  ≡ 

to obtain

(1− ) ()+




 ∗

()

 () +Γ = − ()+∗− (−
∗
)


1−


− ()

−∗

 1



+Γ

(D.24)

Use the definition  ≡ (1−)∗+Γ
−∗ − 


in equation (C.11), which implies (−∗) =

∗ + Γ−  

, to obtain

(1− ) () +




 ∗

()

 () + Γ = − () + 


 +  (−

∗
)


− ()

−∗

 1




(D.25)

Multiply and divide the final term on the right hand side of equation (D.25) by −
 () and simplify to obtain

(1− ) () +




 ∗

()

 () + Γ = (− ())





+ 


− ()

−∗

 1

−1



(D.26)

Use the solution for the level of debt in equation (C.10) on the right hand side of

equation (D.26) to obtain

(1− ) () +




 ∗

()

 () + Γ = (− ())  ( ())  (D.27)

which is the same as equation (77). In Regime II, the solution for the optimal level

of debt in equation (C.10) becomes equation (82) as demonstrated in the derivation

of equation (C.17) and in Regime III, the solution for the optimal level of debt in

equation (C.10) becomes equation (88) as demonstrated in the derivation of equation

(C.20).
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