TIME-VARYING RISK PREMIUM IN LARGE CROSS-SECTIONAL EQUITY DATASETS

Patrick Gagliardini ${ }^{a}$, Elisa Ossola ${ }^{b}$ and Olivier Scaillet ${ }^{c *}$

First draft: December 2010
This version: November 2011

Abstract

We develop an econometric methodology to infer the path of risk premia from large unbalanced panel of individual stock returns. We estimate the time-varying risk premia implied by conditional linear asset pricing models where the conditioning includes instruments common to all assets and asset specific instruments. The estimator uses simple weighted two-pass cross-sectional regressions, and we show its consistency and asymptotic normality under increasing cross-sectional and time series dimensions. We address consistent estimation of the asymptotic variance, and testing for asset pricing restrictions induced by the no-arbitrage assumption in large economies. The empirical illustration on returns for about ten thousands US stocks from July 1964 to December 2009 shows that conditional risk premia are large and volatile in crisis periods. They exhibit large positive and negative strays from standard unconditional estimates and follow the macroeconomic cycles. The asset pricing restrictions are rejected for the usual unconditional four-factor model capturing market, size, value and momentum effects.

JEL Classification: C12, C13, C23, C51, C52, G12.
Keywords: large panel, factor model, risk premium, asset pricing.
${ }^{a}$ University of Lugano and Swiss Finance Institute, ${ }^{b}$ University of Lugano, ${ }^{c}$ University of Genèva and Swiss Finance Institute.
*Acknowledgements: We gratefully acknowledge the financial support of the Swiss National Science Foundation (Prodoc project PDFM11-114533 and NCCR FINRISK). We thank Y. Amihud, A. Buraschi, V. Chernozhukov, R. Engle, J. Fan, E. Ghysels, C. Gouriéroux, S. Heston, participants at the Cass conference 2010, CIRPEE conference 2011, ECARES conference 2011, CORE conference 2011, Montreal panel data conference 2011, ESEM 2011, and participants at seminars at Columbia, NYU, Georgetown, Maryland, McGill, GWU, ULB, UCL, Humboldt, Orléans, Imperial College, CREST, Athens, CORE, Bernheim center, for helpful comments.

1 Introduction

Risk premia measure financial compensation asked by investors for bearing risk. Risk is influenced by financial and macroeconomic variables. Conditional linear factor models aim at capturing their time-varying influence in a simple setting (see e.g. Shanken (1990), Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005)). Time variation in risk is known to bias unconditional estimates of alphas and betas, and therefore asset pricing test conclusions (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and Simutin (2010)). Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass crosssectional regression method developed by Black, Jensen and Scholes (1972) and Fama and MacBeth (1973). Its large and finite sample properties for unconditional linear factor models have been addressed in a series of papers, see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan, Robotti and Shanken (2009), and the review paper of Jagannathan, Skoulakis and Wang (2009). Statistical inference for equity risk premia in conditional linear factor model has not yet been formally addressed in the literature despite its empirical relevance.

In this paper we study how we can infer the time-varying behaviour of equity risk premia from large stock return databases by using conditional linear factor models. Our approach is inspired by the recent trend in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series information simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng (2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng (2007, 2009) show that it is a promising route to follow to study bond risk premia. Connor, Hagmann, and Linton (2011) show that large cross-section helps to exploit data more efficiently in a semiparametric characteristic-based factor model of stock returns. It is also inspired by the framework underlying the Arbitrage Pricing Theory (APT). Approximate factor structures with nondiagonal error covariance matrices (Chamberlain and Rothschild (1983, CR)) address the potential empirical mismatch of exact factor structures with diagonal error covariance matrices underlying the original APT of Ross (1976). Under weak crosssectional dependence among error terms, they generate no-arbitrage restrictions in large economies where the number of assets grows to infinity. Our paper develops an econometric methodology tailored to the APT
framework. We let the number of assets grow to infinity mimicking the large economies of financial theory.
Our approach is further motivated by the potential loss of information and bias induced by grouping stocks to build portfolios in asset pricing tests (Litzenberger and Ramaswamy (1979), Lo and MacKinlay (1990), Berk (2000), Conrad, Cooper and Kaul (2003), Phalippou (2007)). Avramov and Chordia (2006) have already shown that empirical findings given by conditional factor models about anomalies differ a lot when considering single securities instead of portfolios. Ang, Liu and Schwarz (2008) argue that a lot of efficiency may be lost when only considering portfolios as base assets, instead of individual stocks, to estimate equity risk premia in unconditional models. In our approach the large cross-section of stock returns also helps to get accurate estimation of the equity risk premia even if we get noisy time-series estimates of the factor loadings (the betas). Besides, when running asset-pricing tests, Lewellen, Nagel and Shanken (2010) advocate working with a large number of assets instead of working with a small number of portfolios exhibiting a tight factor structure. The former gives us a higher hurdle to meet in judging model explanation based on cross-sectional R^{2}.

Our theoretical contributions are threefold. First we derive no-arbitrage restrictions in a multi-period economy (Hansen and Richard (1987)) with a continuum of assets and an approximate factor structure (Chamberlain and Rothschild (1983)). We explicitly show the relationship between the ruling out of asymptotic arbitrage opportunities and a testable restriction for large economies in a conditional setting. We also formalize the sampling scheme when observed assets are random draws from an underlying population (Andrews (2005)). Second we derive a new weighted two-pass cross-sectional estimator of the path over time of the risk premia from large unbalanced panels of excess returns. We study its large sample properties in conditional linear factor models where the conditioning includes instruments common to all assets and asset specific instruments. The factor modeling permits conditional heteroskedasticity and cross-sectional dependence in the error terms (see Petersen (2008) for stressing the importance of residual dependence when computing standard errors in finance panel data). We derive consistency and asymptotic normality of our estimates by letting the time dimension T and the cross-section dimension n grow to infinity simultaneously, and not sequentially. We relate the results to bias-corrected estimation (Hahn and Kuersteiner (2002), Hahn and Newey (2004)) accounting for the well-known incidental parameter problem of the panel literature (Neyman and Scott (1948)). We derive all properties for unbalanced panels to avoid the survivorship bias
inherent to studies restricted to balanced subsets of available stock return databases (Brown, Goetzmann, Ross (1995)). The two-pass regression approach is simple and particularly easy to implement in an unbalanced setting. This explains our choice over more efficient, but numerically intractable, one-pass ML/GMM estimators or generalized least-squares estimators. When n is of the order of a couple of thousands assets, numerical optimization on a large parameter set or numerical inversion of a large weighting matrix is too challenging and unstable to benefit in practice from the theoretical efficiency gains, unless imposing strong ad hoc structural restrictions. Third we provide a goodness-of-fit test for the conditional factor model underlying the estimation. The test exploits the asymptotic distribution of a weighted sum of squared residuals of the second-pass cross-sectional regression (see Lewellen, Nagel and Shanken (2010), Kan, Robotti and Shanken (2009) for a related approach in unconditional models and asymptotics with fixed n). The construction of the test statistic relies on consistent estimation of large-dimensional sparse covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008), Fan, Liao, and Mincheva (2011)). As a byproduct, our approach permits inference for the cost of equity on individual stocks, in a time-varying setting (Fama and French (1997)). As known from standard textbooks in corporate finance, the cost of equity is such that cost of equity $=$ risk free rate + factor loadings \times factor risk premia. It is part of the cost of capital and is a central piece for evaluating investment projects by company managers. For pedagogical purposes the three theoretical contributions are first presented in an unconditional setting before being extended to a conditional setting.

For our empirical contributions, we consider the Center for Research in Security Prices (CRSP) database and take the Compustat database to match firm characteristics. The merged dataset comprises about ten thousands stocks with monthly returns from July 1964 to December 2009. We look at factor models popular in the empirical finance literature to explain monthly equity returns. They differ by the choice of the factors. The first model is the CAPM (Sharpe (1964), Lintner (1965)) using market return as the single factor. Then, we consider the three-factor model of Fama and French (1993) based on two additional factors capturing the book-to-market and size effects, and a four-factor extension including a momentum factor (Jegadeesh and Titman (1993), Carhart (1997)). We study both unconditional and conditional factor models (Ferson and Schadt (1996), and Ferson and Harvey (1999)). For the conditional versions we use both macrovariables and firm characteristics as instruments. The estimated path shows that the risk premia are large and volatile
in crisis periods, e.g., the oil crisis in 1973-1974, the market crash in October 1987, and the crisis of the recent years. Furthermore, the conditional estimates exhibit large positive and negative strays from standard unconditional estimates and follow the macroeconomic cycles. The asset pricing restrictions are rejected for the usual unconditional four-factor model capturing market, size, value and momentum effects.

The outline of the paper is as follows. In Section 2 we present our approach in an unconditional linear factor setting. In Section 3 we extend all results to cover a conditional linear factor model where the instruments inducing time varying coefficients can be common to all stocks or stock specific. Section 4 contains the empirical results. Section 5 contains the simulation results. Finally, Section 6 concludes. In the Appendix, we gather the technical assumptions and some proofs. We place all omitted proofs in the online supplementary materials. We use high-level assumptions to get our results and show in Appendix 4 that they are all met under a block cross-sectional dependence structure on the error terms in a serially i.i.d. framework.

2 Unconditional factor model

In this section we consider an unconditional linear factor model in order to illustrate the main contributions of the article in a simple setting. This covers the CAPM where the single factor is the excess market return.

2.1 Excess return generation and asset pricing restrictions

We start by describing how excess returns are generated before examining the implications of absence of arbitrage opportunities in terms of restrictions on the return generating process. We combine the constructions of Hansen and Richard (1987) and Andrews (2005) to define a multi-period economy with a continuum of assets having strictly stationary and ergodic return processes. We use such a formal construction to guarantee that (i) the economy is invariant to time shifts, so that we can establish all properties by working at $t=1$, (ii) time series averages converge almost surely to population expectations, (iii) under a sampling mechanism (see the next section) cross-sectional limits exist and are invariant to reordering of the assets, and (iv) the derived no-arbitrage restriction is empirically testable.

Let (Ω, \mathcal{F}, P) be a probability space. The random vector f admitting values in \mathbb{R}^{K}, and the collection
of random variables $\varepsilon(\gamma), \gamma \in[0,1]$, are defined on this probability space. Moreover, let $\beta=\left(a, b^{\prime}\right)^{\prime}$ be a vector function defined on $[0,1]$ with values in $\mathbb{R} \times \mathbb{R}^{K}$. The dynamics is described by the measurable time-shift transformation S mapping Ω into itself. If $\omega \in \Omega$ is the state of the world at time 0 , then $S^{t}(\omega)$ is the state at time t, where S^{t} denotes the transformation S applied t times successively. Transformation S is assumed to be measure-preserving and ergodic (i.e., any set in \mathcal{F} invariant under S has measure either 1, or $0)$.

Assumption APR. 1 The excess returns $R_{t}(\gamma)$ of asset $\gamma \in[0,1]$ at date $t=1,2, \ldots$ satisfy the unconditional linear factor model:

$$
\begin{equation*}
R_{t}(\gamma)=a(\gamma)+b(\gamma)^{\prime} f_{t}+\varepsilon_{t}(\gamma) \tag{1}
\end{equation*}
$$

where the random variables $\varepsilon_{t}(\gamma)$ and f_{t} are defined by $\varepsilon_{t}(\gamma, \omega)=\varepsilon\left[\gamma, S^{t}(\omega)\right]$ and $f_{t}(\omega)=f\left[S^{t}(\omega)\right]$.

Assumption APR. 1 defines the excess return processes for an economy with a continuum of assets. The index set is the interval $[0,1]$ without loss of generality. Vector f_{t} gathers the values of the K observable factors at date t, while the intercept $a(\gamma)$ and factor sensitivities $b(\gamma)$ of asset $\gamma \in[0,1]$ are time invariant. Since transformation S is measure-preserving and ergodic, all processes are strictly stationary and ergodic (Doob (1953)). Let further define $x_{t}=\left(1, f_{t}^{\prime}\right)^{\prime}$ which yields the compact formulation:

$$
\begin{equation*}
R_{t}(\gamma)=\beta(\gamma)^{\prime} x_{t}+\varepsilon_{t}(\gamma) . \tag{2}
\end{equation*}
$$

In order to define the information sets, let $\mathcal{F}_{0} \subset \mathcal{F}$ be a sub sigma-field. Random vector f is assumed measurable w.r.t. \mathcal{F}_{0}. Define $\mathcal{F}_{t}=\left\{S^{-t}(A), A \in \mathcal{F}_{0}\right\}, t=1,2, \ldots$, and assume that \mathcal{F}_{1} contains \mathcal{F}_{0}. Then, the filtration $\mathcal{F}_{t}, t=1,2, \ldots$, characterizes the information available to investors.

Let us now introduce supplementary assumptions on factors, factor loadings and error terms.
Assumption APR. 2 The matrix $\int b(\gamma) b(\gamma)^{\prime} d \gamma$ is positive definite.
Assumption APR. 2 implies non-degeneracy in the factor loadings across assets.
Assumption APR. 3 For any $\gamma \in[0,1]: E\left[\varepsilon_{t}(\gamma) \mid \mathcal{F}_{t-1}\right]=0$ and $\operatorname{Cov}\left[\varepsilon_{t}(\gamma), f_{t} \mid \mathcal{F}_{t-1}\right]=0$.

Hence, the error terms have mean zero and are uncorrelated with the factors conditionally on information \mathcal{F}_{t-1}. In Assumption APR. 4 (i) below, we impose an approximate factor structure for the conditional distribution of the error terms given \mathcal{F}_{t-1} in almost any countable collection of assets. More precisely, for any sequence $\left(\gamma_{i}\right)$ in $[0,1]$, let $\Sigma_{\varepsilon, t, n}$ denote the $n \times n$ conditional variance-covariance matrix of the error vector $\left[\varepsilon_{t}\left(\gamma_{1}\right), \ldots, \varepsilon_{t}\left(\gamma_{n}\right)\right]^{\prime}$ given \mathcal{F}_{t-1}, for $n \in \mathbb{N}$. Let μ_{Γ} be the probability measure on the set $\Gamma=[0,1]^{\mathbb{N}}$ of sequences $\left(\gamma_{i}\right)$ in $[0,1]$ induced by i.i.d. random sampling from a continuous distribution G with support $[0,1]$.

Assumption APR. 4 For any sequence $\left(\gamma_{i}\right)$ in set \mathcal{J} : (i) ei $_{\max }\left(\Sigma_{\varepsilon, t, n}\right)=o(n)$, as $n \rightarrow \infty$, P-a.s., (ii) $\inf _{n \geq 1}$ eig $g_{\min }\left(\Sigma_{\varepsilon, t, n}\right)>0$, P-a.s., where $\mathcal{J} \subset \Gamma$ is such that $\mu_{\Gamma}(\mathcal{J})=1$, and eig $g_{\min }\left(\Sigma_{\varepsilon, t, n}\right)$ and ei $g_{\max }\left(\Sigma_{\varepsilon, t, n}\right)$ denote the smallest and the largest eigenvalues of matrix $\Sigma_{\varepsilon, t, n}$, (iii) eig $\min _{\min }\left(V\left[f_{t} \mid \mathcal{F}_{t-1}\right]\right)>$ $0, P$-a.s.

Assumption APR. 4 (i) is weaker than boundedness of the largest eigenvalue, i.e., $\sup _{n \geq 1} e i g_{\max }\left(\Sigma_{\varepsilon, t, n}\right)<\infty$, P-a.s., as in CR. This is useful for the checks of Appendix 4 under a block cross-sectional dependence structure. Assumptions APR. 4 (ii)-(iii) are mild regularity conditions used in the proof of Proposition 1.

Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies (Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios p_{n}, $n \in \mathbb{N}$. Portfolio p_{n} is defined by the share $\alpha_{0, n}$ invested in the riskfree asset and the shares $\alpha_{i, n}$ invested in the selected risky assets γ_{i}, for $i=1, \ldots, n$. The shares are measurable w.r.t. \mathcal{F}_{0}. Then $C\left(p_{n}\right)=\sum_{i=0}^{n} \alpha_{i, n}$ is the portfolio cost at $t=0$, and $p_{n}=C\left(p_{n}\right) R_{0}+\sum_{i=1}^{n} \alpha_{i, n} R_{1}\left(\gamma_{i}\right)$ is the portfolio payoff at $t=1$, where R_{0} denotes the riskfree gross return measurable w.r.t. \mathcal{F}_{0}. We can work with $t=1$ because of stationarity.

Assumption APR. 5 There are no asymptotic arbitrage opportunities in the economy, that is, there exists no portfolio sequence $\left(p_{n}\right)$ such that $\lim _{n \rightarrow \infty} P\left[p_{n} \geq 0\right]=1$ and $\lim _{n \rightarrow \infty} P\left[C\left(p_{n}\right) \leq 0, p_{n}>0\right]>0$.

Assumption APR. 5 excludes portfolios that approximate arbitrage opportunities when the number of included assets increases. Arbitrage opportunities are investments with non-positive cost and non-negative payoff in each state of the world, and positive payoff in some states of the world (Hansen and Richard (1987), Definition 2.4). Then, the asset pricing restriction is given in the next Proposition 1.

Proposition 1 Under Assumptions APR.1-APR.5, there exists a unique vector $\nu \in \mathbb{R}^{K}$ such that:

$$
\begin{equation*}
a(\gamma)=b(\gamma)^{\prime} \nu \tag{3}
\end{equation*}
$$

for almost all $\gamma \in[0,1]$.

The asset pricing restriction in Proposition 1 can be rewritten as

$$
\begin{equation*}
E\left[R_{t}(\gamma)\right]=b(\gamma)^{\prime} \lambda, \tag{4}
\end{equation*}
$$

for almost all $\gamma \in[0,1]$, where $\lambda=\nu+E\left[f_{t}\right]$ is the vector of the risk premia. In the CAPM, we have $K=1$ and $\nu=0$. When a factor $f_{k, t}$ is a portfolio excess return, we also have $\nu_{k}=0, k=1, \ldots, K$.

Proposition 1 differs from CR Theorem 3 in terms of the returns generating framework, the definition of asymptotic arbitrage opportunities, and the derived asset pricing restriction. Specifically, we consider a multi-period economy with conditional information as opposed to a single period unconditional economy as in CR. Such a setting can be easily extended to time varying risk premia in Section 3. We prefer the definition underlying Assumption APR. 5 since it corresponds to the definition of arbitrage that is standard in dynamic asset pricing theory (e.g., Duffie (2001)). As pointed out by Hansen and Richard (1987), Ross (1978) has already chosen that type of definition. It also eases the proof. However, in Appendix 2, we derive the link between the no-arbitrage conditions in Assumptions A. 1 i) and ii) of CR , written P-a.s. w.r.t. the conditional information \mathcal{F}_{0} and for almost every countable collection of assets, and the asset pricing restriction (3) valid for the continuum of assets. Hence, we are able to characterize the functions $\beta=\left(a, b^{\prime}\right)^{\prime}$ defined on $[0,1]$ that are compatible with absence of asymptotic arbitrage opportunities under both definitions of arbitrage in the continuum economy. CR derive the pricing restriction $\sum_{i=1}^{\infty}\left(a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right)^{2}<\infty$, for some $\nu \in \mathbb{R}^{K}$ and for a given sequence $\left(\gamma_{i}\right)$, while we derive the restriction (3), for almost all $\gamma \in[0,1]$. In Appendix 2, we show that the set of sequences $\left(\gamma_{i}\right)$ such that $\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left(a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right)^{2}<\infty$ has measure 1 under μ_{Γ}, when the asset pricing restriction (3) holds, and measure 0 , otherwise. This result is a consequence of the Kolmogorov zero-one law (see e.g. Billingsley (1995)). In other words, validity of the summability condition in CR for a countable collection of assets without validity of the asset pricing restriction (3) is an impossible event. From the proofs in Appendix 2, we can also see that, when the asset pricing restriction
(3) does not hold, asymptotic arbitrage in the sense of Assumption APR.5, or of Assumptions A. 1 i) and ii) of CR, exists for μ_{Γ}-almost any countable collection of assets. The restriction in Proposition 1 is testable with large equity datasets and large sample sizes (Section 2.5), and therefore is not affected by the Shanken (1982) critique. The next section describes how we get the data from sampling the continuum of assets.

2.2 The sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for n assets and T dates. In available databases, asset returns are not observed for all firms at all dates. We account for the unbalanced nature of the panel through a collection of indicator variables $I(\gamma), \gamma \in[0,1]$, and define $I_{t}(\gamma, \omega)=$ $I\left[\gamma, S^{t}(\omega)\right]$. Then $I_{t}(\gamma)=1$ if the return of asset γ is observable by the econometrician at date t, and 0 otherwise (Connor and Korajczyk (1987)). To ease exposition and to keep the factor structure linear, we assume a missing-at-random design (Rubin (1976), Heckman (1979)), that is, independence between unobservability and returns generation.

Assumption SC. 1 The random variables $I_{t}(\gamma), \gamma \in[0,1]$, are independent of $\varepsilon_{t}(\gamma), \gamma \in[0,1]$, and f_{t}.

Another design would require an explicit modeling of the link between the unobservability mechanism and the continuum of assets; this would yield a nonlinear factor structure.

Assets are randomly drawn from the population according to a probability distribution G on $[0,1]$. We use a single distribution G in order to avoid the notational burden when working with different distributions on different subintervals of $[0,1]$.

Assumption SC. 2 The random variables $\gamma_{i}, i=1, \ldots, n$, are i.i.d. indices, independent of $\varepsilon_{t}(\gamma), I_{t}(\gamma)$, $\gamma \in[0,1]$ and f_{t}, each with continuous distribution G with support $[0,1]$.

For any $n, T \in \mathbb{N}$, the excess returns are $R_{i, t}=R_{t}\left(\gamma_{i}\right)$ and the observability indicators are $I_{i, t}=I_{t}\left(\gamma_{i}\right)$, for $i=1, \ldots, n$, and $t=1, \ldots, T$. The excess return $R_{i, t}$ is observed if and only if $I_{i, t}=1$. Similarly, let $\beta_{i}=\beta\left(\gamma_{i}\right)=\left(a_{i}, b_{i}^{\prime}\right)^{\prime}$ be the characteristics, $\varepsilon_{i, t}=\varepsilon_{t}\left(\gamma_{i}\right)$ the error terms and $\sigma_{i j, t}=E\left[\varepsilon_{i, t} \varepsilon_{j, t} \mid x_{\underline{t}}, \gamma_{i}, \gamma_{j}\right]$ the conditional variances and covariances of the assets in the sample, where $x_{t}=\left\{x_{t}, x_{t-1}, \ldots\right\}$. By random sampling, we get a random coefficient panel model (e.g. Wooldridge (2002)). The characteristic β_{i} of asset
i is random, and potentially correlated with the error terms $\varepsilon_{i, t}$ and the observability indicators $I_{i, t}$, as well as the conditional variances $\sigma_{i i, t}$, through the index γ_{i}. If the $a_{i} \mathrm{~s}$ and $b_{i} \mathrm{~s}$ were treated as deterministic, and not as realizations of random variables, invoking cross-sectional LLNs and CLTs as in some assumptions and parts of the proofs would have no sense. Moreover, cross-sectional limits would be dependent on the selected ordering of the assets. Instead, our assumptions and results do not rely on a specific ordering of assets. Random elements $\left(\beta_{i}^{\prime}, \sigma_{i i, t}, \varepsilon_{i, t}, I_{i, t}\right)^{\prime}, i=1, \ldots, n$, are exchangeable (Andrews (2005)). Hence, assets randomly drawn from the population have ex-ante the same features. However, given a specific realization of the indices in the sample, assets have ex-post heterogeneous features.

2.3 Asymptotic properties of risk premium estimation

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen and Scholes (1972)) building on Equations (1) and (3).

First Pass: The first pass consists in computing time-series OLS estimators $\hat{\beta}_{i}=\left(\hat{a}_{i}, \hat{b}_{i}^{\prime}\right)^{\prime}=\hat{Q}_{x, i}^{-1} \frac{1}{T_{i}} \sum_{t} I_{i, t} x_{t} R_{i, t}$, for $i=1, \ldots, n$, where $\hat{Q}_{x, i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} x_{t} x_{t}^{\prime}$ and $T_{i}=\sum_{t} I_{i, t}$. In available panels the random sample size T_{i} for asset i can be small, and the inversion of matrix $\hat{Q}_{x, i}$ can be numerically unstable. This can yield unreliable estimates of β_{i}. To address this, we introduce a trimming device: $\mathbf{1}_{i}^{\chi}=\mathbf{1}\left\{C N\left(\hat{Q}_{x, i}\right) \leq \chi_{1, T}, \tau_{i, T} \leq \chi_{2, T}\right\}$, where $C N\left(\hat{Q}_{x, i}\right)=\sqrt{\operatorname{eig}_{\max }\left(\hat{Q}_{x, i}\right) / e i g_{\min }\left(\hat{Q}_{x, i}\right)}$ denotes the condition number of matrix $\hat{Q}_{x, i}, \tau_{i, T}=T / T_{i}$, and the two sequences $\chi_{1, T}>0$ and $\chi_{2, T}>0$ diverge asymptotically. The first trimming condition $\left\{C N\left(\hat{Q}_{x, i}\right) \leq \chi_{1, T}\right\}$ keeps in the cross-section only assets for which the time series regression is not too badly conditioned. A too large value of $C N\left(\hat{Q}_{x, i}\right)=$ $1 / C N\left(\hat{Q}_{x, i}^{-1}\right)$ indicates multicollinearity problems and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)). The second trimming condition $\left\{\tau_{i, T} \leq \chi_{2, T}\right\}$ keeps in the cross-section only assets for which the time series is not too short.

Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the \hat{a}_{i} 's on the \hat{b}_{i} 's keeping the non-trimmed assets only. We use a WLS approach. The weights are estimates of $w_{i}=v_{i}^{-1}$, where the v_{i} are the asymptotic variances of the standardized errors $\sqrt{T}\left(\hat{a}_{i}-\hat{b}_{i}^{\prime} \nu\right)$ in the cross-sectional regression for large T. We have $v_{i}=\tau_{i} c_{\nu}^{\prime} Q_{x}^{-1} S_{i i} Q_{x}^{-1} c_{\nu}$, where $Q_{x}=E\left[x_{t} x_{t}^{\prime}\right]$, $S_{i i}=\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t} \sigma_{i i, t} x_{t} x_{t}^{\prime}=E\left[\varepsilon_{i, t}^{2} x_{t} x_{t}^{\prime} \mid \gamma_{i}\right], \tau_{i}=\operatorname{plim}_{T \rightarrow \infty} \tau_{i, T}=E\left[I_{i, t} \mid \gamma_{i}\right]^{-1}$, and $c_{\nu}=\left(1,-\nu^{\prime}\right)^{\prime}$. We use
the estimates $\hat{v}_{i}=\tau_{i, T} c_{\hat{\nu}_{1}}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}_{1}}$, where $\hat{S}_{i i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} \hat{\varepsilon}_{i, t}^{2} x_{t} x_{t}^{\prime}, \hat{\varepsilon}_{i, t}=R_{i, t}-\hat{\beta}_{i}^{\prime} x_{t}$ and $c_{\hat{\nu}_{1}}=$ $\left(1,-\hat{\nu}_{1}^{\prime}\right)^{\prime}$. To estimate c_{ν}, we use the OLS estimator $\hat{\nu}_{1}=\left(\sum_{i} \mathbf{1}_{i}^{\chi} \hat{b}_{i} \hat{b}_{i}^{\prime}\right)^{-1} \sum_{i} \mathbf{1}_{i}^{\chi} \hat{b}_{i} \hat{a}_{i}$, i.e., a first-step estimator with unit weights. The WLS estimator is:

$$
\begin{equation*}
\hat{\nu}=\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} \hat{a}_{i}, \tag{5}
\end{equation*}
$$

where $\hat{Q}_{b}=\frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} \hat{b}_{i}^{\prime}$ and $\hat{w}_{i}=\mathbf{1}_{i}^{\chi} \hat{v}_{i}^{-1}$. Weighting accounts for the statistical precision of the firstpass estimates. Under conditional homoskedasticity $\sigma_{i i, t}=\sigma_{i i}$ and a balanced panel $\tau_{i, T}=1$, we have $v_{i}=c_{\nu}^{\prime} Q_{x}^{-1} c_{\nu} \sigma_{i i}$. There, v_{i} is directly proportional to $\sigma_{i i}$, and we can simply pick the weights as $\hat{w}_{i}=\hat{\sigma}_{i i}^{-1}$, where $\hat{\sigma}_{i i}=\frac{1}{T} \sum_{t} \hat{\varepsilon}_{i, t}^{2}($ Shanken (1992)). The final estimator of the risk premia is

$$
\begin{equation*}
\hat{\lambda}=\hat{\nu}+\frac{1}{T} \sum_{t} f_{t} \tag{6}
\end{equation*}
$$

Starting from the asset pricing restriction (4), another estimator of λ is $\bar{\lambda}=\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} \bar{R}_{i}$, where $\bar{R}_{i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} R_{i, t}$. This estimator is numerically equivalent to $\hat{\lambda}$ in the balanced case, where $I_{i, t}=1$ for all i and t. In the general unbalanced case, it is equal to $\bar{\lambda}=\hat{\nu}+\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} \hat{b}_{i}^{\prime} \bar{f}_{i}$, where $\bar{f}_{i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} f_{t}$. Estimator $\bar{\lambda}$ is often studied by the literature (see, e.g., Shanken (1992), Kandel and Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating $E\left[f_{t}\right]$ with a simple average of the observed factor instead of a weighted average based on estimated betas simplifies the form of the asymptotic distribution in the unbalanced case (see below and Section 2.4). This explains our preference for $\hat{\lambda}$ over $\bar{\lambda}$.

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.

Assumption A. 1 There exists a positive constant M such that for all n :

a) $E\left[\varepsilon_{i, t} \mid\left\{\varepsilon_{j, \underline{t-1}}, \gamma_{j}, j=1, \ldots, n\right\}, x_{\underline{t}}\right]=0$, with $\varepsilon_{i, \underline{t-1}}=\left\{\varepsilon_{i, t-1}, \varepsilon_{i, t-2}, \cdots\right\}$ and $x_{\underline{t}}=\left\{x_{t}, x_{t-1}, \cdots\right\}$; b) $\sigma_{i i, t} \leq M, \quad i=1, \ldots, n ; \quad$ c) $E\left[\frac{1}{n} \sum_{i, j}\left|\sigma_{i j, t}\right|\right] \leq M$, where $\sigma_{i j, t}=E\left[\varepsilon_{i, t} \varepsilon_{j, t} \mid x_{\underline{t}}, \gamma_{i}, \gamma_{j}\right]$.

Assumption A. 1 allows for a martingale difference sequence for the error terms (part a)) including potential conditional heteroskedasticity (part b)) as well as weak cross-sectional dependence (part c)). In particular,

Assumption A. 1 c) is the same as Assumption C. 3 in Bai and Ng (2002)), except that we have an expectation w.r.t. the random draws of assets. More general error structures are possible but complicate consistent estimation of the asymptotic variances of the estimators (see Section 2.4).

Proposition 2 summarizes consistency of estimators $\hat{\nu}$ and $\hat{\lambda}$ under the double asymptotics $n, T \rightarrow \infty$. For sequences x_{n} and y_{n}, we denote $x_{n} \asymp y_{n}$ when x_{n} / y_{n} is bounded and bounded away from zero from below as $n \rightarrow \infty$.

Proposition 2 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1 and C.1a), C.2-C.5, we get a) $\|\hat{\nu}-\nu\|=$ $o_{p}(1)$ and $\left.b\right)\|\hat{\lambda}-\lambda\|=o_{p}(1)$, when $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma}>0$.

The conditions in Proposition 2 allow for n large w.r.t. T (short panel asymptotics) when $\bar{\gamma}>1$. Shanken (1992) shows consistency of $\hat{\nu}$ and $\hat{\lambda}$ for a fixed n and $T \rightarrow \infty$. This consistency does not imply Proposition 2. Shanken (1992) (see also Litzenberger and Ramaswamy (1979)) further shows that we can estimate ν consistently in the second pass with a modified cross-sectional estimator for a fixed T and $n \rightarrow \infty$. Since $\lambda=\nu+E\left[f_{t}\right]$, consistent estimation of the risk premia themselves is impossible for a fixed T (see Shanken (1992) for the same point).

Proposition 3 below gives the large-sample distributions under the double asymptotics $n, T \rightarrow \infty$. Let us define $\tau_{i j, T}=T / T_{i j}$, where $T_{i j}=\sum_{t} I_{i j, t}$ and $I_{i j, t}=I_{i, t} I_{j, t}$ for $i, j=1, \ldots, n$. Let us further define $\tau_{i j}=\operatorname{plim}_{T \rightarrow \infty} \tau_{i j, T}=E\left[I_{i j, t} \mid \gamma_{i}, \gamma_{j}\right]^{-1}, S_{i j}=\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t} \sigma_{i j, t} x_{t} x_{t}^{\prime}=E\left[\varepsilon_{i, t} \varepsilon_{j, t} x_{t} x_{t}^{\prime} \mid \gamma_{i}, \gamma_{j}\right]$ and $Q_{b}=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i} w_{i} b_{i} b_{i}^{\prime}=E\left[w_{i} b_{i} b_{i}^{\prime}\right]$. The following assumption describes the CLTs underlying the proof of the distributional properties. These CLTs hold under weak serial and cross-sectional dependencies such as temporal mixing and block dependence (see Appendix 4).

Assumption A. 2 As $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{1} \subset \mathbb{R}^{+}$, a) $\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}\left(Y_{i, T} \otimes b_{i}\right) \Rightarrow$
$N\left(0, S_{b}\right), \quad$ where $\quad Y_{i, T}=\frac{1}{\sqrt{T}} \sum_{t} I_{i, t} x_{t} \varepsilon_{i, t} \quad$ and $\quad S_{b}=\lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}} S_{i j} \otimes b_{i} b_{j}^{\prime}\right]$
$=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}} S_{i j} \otimes b_{i} b_{j}^{\prime} ;$ b) $\frac{1}{\sqrt{T}} \sum_{t}\left(f_{t}-E\left[f_{t}\right]\right) \Rightarrow N\left(0, \Sigma_{f}\right)$, where $\Sigma_{f}=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t, s} \operatorname{Cov}\left(f_{t}, f_{s}\right)$.

Proposition 3 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.2, and C.1a), C.2-C.5, we get: a) $\sqrt{n T}\left(\hat{\nu}-\nu-\frac{1}{T} \hat{B}_{\nu}\right) \Rightarrow N\left(0, \Sigma_{\nu}\right)$, where $\Sigma_{\nu}=Q_{b}^{-1} \lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}}\left(c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu}\right) b_{i} b_{j}^{\prime}\right] Q_{b}^{-1}$ and the bias term is $\hat{B}_{\nu}=\hat{Q}_{b}^{-1}\left(\frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}}\right)$, with $E_{2}=\left(0: I d_{K}\right)^{\prime}$ and $c_{\hat{\nu}}=\left(1,-\hat{\nu}^{\prime}\right)^{\prime}$; b) $\sqrt{T}(\hat{\lambda}-\lambda) \Rightarrow N\left(0, \Sigma_{f}\right)$, when $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{1} \cap(0,3)$.

The asymptotic variance matrix in Proposition 3 can be rewritten as:

$$
\Sigma_{\nu}=\operatorname{plim}_{n \rightarrow \infty}\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1} \frac{1}{n} B_{n}^{\prime} W_{n} V_{n} W_{n} B_{n}\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1}
$$

where $B_{n}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}, W_{n}=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)$ and $V_{n}=\left[v_{i j}\right]_{i, j=1, \ldots, n}$ with $v_{i j}=\frac{\tau_{i} \tau_{j}}{\tau_{i j}} c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu}$, which gives $v_{i i}=v_{i}$. In the homoskedastic and balanced case, we have $c_{\nu}^{\prime} Q_{x}^{-1} c_{\nu}=1+\lambda^{\prime} V\left[f_{t}\right]^{-1} \lambda$ and $V_{n}=\left(1+\lambda^{\prime} V\left[f_{t}\right]^{-1} \lambda\right) \Sigma_{\varepsilon, n}$, where $\Sigma_{\varepsilon, n}=\left[\sigma_{i j}\right]_{i, j=1, \ldots, n}$. Then, the asymptotic variance of $\hat{\nu}$ reduces to $\operatorname{plim}_{n \rightarrow \infty}\left(1+\lambda^{\prime} V\left[f_{t}\right]^{-1} \lambda\right)\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1} \frac{1}{n} B_{n}^{\prime} W_{n} \Sigma_{\varepsilon, n} W_{n} B_{n}\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1}$. In particular, in the CAPM we have $K=1$ and $\nu=0$, which implies that $\sqrt{\frac{\lambda^{2}}{V\left[f_{t}\right]}}$ is equal to the slope of the Capital Market Line $\sqrt{\frac{E\left[f_{t}\right]^{2}}{V\left[f_{t}\right]}}$, i.e., the Sharpe Ratio of the market portfolio.

Proposition 3 shows that the estimator $\hat{\nu}$ has a fast convergence rate $\sqrt{n T}$ and features an asymptotic bias term. Both \hat{a}_{i} and \hat{b}_{i} in the definition of $\hat{\nu}$ contain an estimation error; for \hat{b}_{i}, this is well-known Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let T grow to infinity. However, it induces the bias term \hat{B}_{ν} / T which centers the asymptotic distribution of $\hat{\nu}$. We have $\Gamma_{1}=\mathbb{R}^{+}$in Assumption A.2, when $\left(\varepsilon_{i, t}\right)$ and $\left(x_{t}\right)$ are i.i.d. across time and errors $\left(\varepsilon_{i, t}\right)$ feature a crosssectional block dependence structure (see Appendix 4). Then, the upper bound on the relative expansion rates of n and T is $n=o\left(T^{3}\right)$. The control of first-pass estimation errors uniformly across assets requires that the cross-section dimension n should not be too large w.r.t. the time series dimension T.

If we knew the true factor mean, for example $E\left[f_{t}\right]=0$, and did not need to estimate it, the estimator $\hat{\nu}+E\left[f_{t}\right]$ of the risk premia would have the same fast rate $\sqrt{n T}$ as the estimator of ν, and would inherit its asymptotic distribution. Since we do not know the true factor mean, the asymptotic distribution of $\hat{\lambda}$ is driven only by the variability of the factor since the convergence rate \sqrt{T} of the sample average $\frac{1}{T} \sum_{t} f_{t}$
dominates the convergence rate $\sqrt{n T}$ of $\hat{\nu}$. This result is an oracle property for $\hat{\lambda}$, namely that its asymptotic distribution is the same irrespective of the knowledge of ν. This property is in sharp difference with the single asymptotics with a fixed n and $T \rightarrow \infty$. In the balanced case and with homoskedastic errors, Theorem 1 of Shanken (1992) shows that the rate of convergence of $\hat{\lambda}$ is \sqrt{T} and that its asymptotic variance is $\Sigma_{\lambda, n}=\Sigma_{f}+\left(1+\lambda^{\prime} V\left[f_{t}\right]^{-1} \lambda\right)\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1} \frac{1}{n^{2}} B_{n}^{\prime} W_{n} \Sigma_{\varepsilon, n} W_{n} B_{n}\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1}$, for fixed n and $T \rightarrow \infty$. The two components in $\Sigma_{\lambda, n}$ come from estimation of $E\left[f_{t}\right]$ and ν, respectively. In the heteroskedastic setting with fixed n, a slight extension of Theorem 1 in Jagannathan and Wang (1998), or Theorem 3.2 in Jagannathan, ${ }_{-1}$ Skoulakis, and Wang (2009), to the unbalanced case yields $\Sigma_{\lambda, n}=\Sigma_{f}+\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1} \frac{1}{n^{2}} B_{n}^{\prime} W_{n} V_{n} W_{n} B_{n}\left(\frac{1}{n} B_{n}^{\prime} W_{n} B_{n}\right)^{-1}$. Letting $n \rightarrow \infty$ gives Σ_{f} under weak cross-sectional dependence. Thus, exploiting the full cross-section of assets improves efficiency asymptotically, and the positive definite matrix $\Sigma_{\lambda, n}-\Sigma_{f}$ corresponds to the efficiency gain. Using a large number of assets instead of a small number of portfolios does help to eliminate the EIV contribution.

Proposition 3 suggests exploiting the analytical bias correction \hat{B}_{ν} / T and using $\hat{\nu}_{B}=\hat{\nu}-\frac{1}{T} \hat{B}_{\nu}$ instead of $\hat{\nu}$. Furthermore, $\hat{\lambda}_{B}=\hat{\nu}_{B}+\frac{1}{T} \sum_{t} f_{t}$ delivers a bias-free estimator of λ at order $1 / T$, which shares the same root- T asymptotic distribution as $\hat{\lambda}$.

Finally, we can relate the results of Proposition 3 to bias-corrected estimation accounting for the wellknown incidental parameter problem of the panel literature (Neyman and Scott (1948), see Lancaster (2000) for a review). Model (1) under restriction (3) can be written as $R_{i, t}=b_{i}^{\prime}\left(f_{t}+\nu\right)+\varepsilon_{i, t}$. In the likelihood setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the b_{i} correspond to the individual effects and ν to the common parameter of interest. Available results tell us: (i) the estimator of ν is inconsistent if n goes to infinity while T is held fixed; (ii) the estimator of ν is asymptotically biased even if T grows at the same rate as n; (iii) an analytical bias correction may yield an estimator of ν that is root$(n T)$ asymptotically normal and centered at the truth if T grows faster than $n^{1 / 3}$. The two-pass estimators $\hat{\nu}$ and $\hat{\nu}_{B}$ exhibits the properties (i)-(iii) as expected by analogy with unbiased estimation in large panels. This clear link with the incidental parameter literature highlights another advantage of working with ν in the second pass regression.

2.4 Confidence intervals

We can use Proposition 3 to build confidence intervals by means of consistent estimation of the asymptotic variances. We can check with these intervals whether the risk of a given factor $f_{k, t}$ is not remunerated, i.e., $\lambda_{k}=0$, or the restriction $\nu_{k}=0$ holds when the factor is traded. We estimate Σ_{f} by a standard HAC estimator $\hat{\Sigma}_{f}$ such as in Newey and West (1994) or Andrews and Monahan (1992). Hence, the construction of confidence intervals with valid asymptotic coverage for components of $\hat{\lambda}$ is straightforward. On the contrary, getting a HAC estimator for $\bar{\Sigma}_{f}$ appearing in the asymptotic distribution of $\bar{\lambda}$ is not obvious in the unbalanced case.

The construction of confidence intervals for the components of $\hat{\nu}$ is more difficult. Indeed, Σ_{ν} involves a limiting double sum over $S_{i j}$ scaled by n and not n^{2}. A naive approach consists in replacing $S_{i j}$ by any consistent estimator such as $\hat{S}_{i j}=\frac{1}{T_{i j}} \sum_{t} I_{i j, t} \hat{\varepsilon}_{i, t} \hat{\varepsilon}_{j, t} x_{t} x_{t}^{\prime}$, but this does not work here. To handle this, we rely on recent proposals in the statistical literature on consistent estimation of large-dimensional sparse covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva (2011) have recently focused on the estimation of $E\left[\epsilon_{t}^{\prime} \epsilon_{t}\right]$ in large balanced panel with nonrandom coefficients.

The idea is to assume sparse contributions of the $S_{i j}$'s to the double sum. Then we only have to account for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing asymptotically. Thresholding permits an estimation invariant to asset permutations; this choice of estimator is motivated by the absence of any natural cross-sectional ordering among the matrices $S_{i j}$. In the following assumption we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework with random coefficients.

Assumption A. 3 There exist constants $q, \delta \in[0,1)$ such that $\max _{i} \sum_{j}\left\|S_{i j}\right\|^{q}=O_{p}\left(n^{\delta}\right)$.
Assumption A. 3 tells us that most cross-asset contributions $\left\|S_{i j}\right\|$ can be neglected. As sparsity increases, we can choose coefficients q and δ closer to zero. Assumption A. 3 does not impose sparsity of the covariance matrix of the returns themselves. Assumption A. 1 c) is also a sparsity condition, which ensures that the limit matrix Σ_{ν} is well-defined when combined with Assumption C.3. Both sparsity assumptions, as well as the approximate factor structure Assumption APR. 4 (i), are satisfied under weak cross-sectional dependence
between the error terms, for instance, under a block dependence structure (see Appendix 4).
As in Bickel and Levina (2008), let us introduce the thresholded estimator $\tilde{S}_{i j}=\hat{S}_{i j} \mathbf{1}\left\{\left\|\hat{S}_{i j}\right\| \geq \kappa\right\}$ of $S_{i j}$, which we refer to as $\hat{S}_{i j}$ thresholded at $\kappa=\kappa_{n, T}$. We can derive an asymptotically valid confidence interval for the components of $\hat{\nu}$ from the next proposition giving a feasible asymptotic normality result.

Proposition 4 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.3, C.1-C.5, we have $\tilde{\Sigma}_{\nu}^{-1 / 2} \sqrt{n T}\left(\hat{\nu}-\frac{1}{T} \hat{B}_{\nu}-\nu\right) \Rightarrow N\left(0\right.$, Id $\left.d_{K}\right)$ where $\tilde{\Sigma}_{\nu}=\hat{Q}_{b}^{-1}\left[\frac{1}{n} \sum_{i, j} \hat{w}_{i} \hat{w}_{j} \frac{\tau_{i, T} \tau_{j, T}}{\tau_{i j, T}}\left(c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1} \tilde{S}_{i j} \hat{Q}_{x}^{-1} c_{\hat{\nu}}\right) \hat{b}_{i} \hat{b}_{j}^{\prime}\right] \hat{Q}_{b}^{-1}$, when $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{1} \cap\left(0, \min \left\{1+\eta, \eta \frac{1-q}{2 \delta}\right\}\right)$, and $\kappa=M \sqrt{\frac{\log n}{T^{\eta}}}$ for a constant M and $\eta \in(0,1]$ as in Assumption C.1.

Constant $\eta \in(0,1]$ is defined in Assumption C. 1 and is related to the time series dependence of processes $\left(\varepsilon_{i, t}\right)$ and $\left(x_{t}\right)$. We have $\eta=1$, when $\left(\varepsilon_{i, t}\right)$ and $\left(x_{t}\right)$ are serially i.i.d. as in Appendix 4 and Bickel and Levina (2008). The matrix made of thresholded blocks $\tilde{S}_{i j}$ is not guaranteed to be semi definite positive (sdp). However we expect that the double summation on i and j makes $\tilde{\Sigma}_{\nu}$ sdp in empirical applications. In case it is not, El Karoui (2008) discusses a few solutions based on shrinkage.

2.5 Tests of asset pricing restrictions

The null hypothesis underlying the asset pricing restriction (3) is

$$
\mathcal{H}_{0}: \text { there exists } \nu \in \mathbb{R}^{K} \text { such that } a(\gamma)=b(\gamma)^{\prime} \nu, \quad \text { for almost all } \gamma \in[0,1]
$$

Under \mathcal{H}_{0}, we have $E_{G}\left[\left(a_{i}-b_{i}^{\prime} \nu\right)^{2}\right]=0$. Since ν is estimated via the WLS cross-sectional regression of the estimates \hat{a}_{i} on the estimates \hat{b}_{i}, we suggest a test based on the weighted sum of squared residuals SSR of the cross-sectional regression. The weigthed SSR is $\hat{Q}_{e}=\frac{1}{n} \sum_{i} \hat{w}_{i} \hat{e}_{i}^{2}$, with $\hat{e}_{i}=c_{\hat{\nu}}^{\prime} \hat{\beta}_{i}$, which is an empirical counterpart of $E_{G}\left[w_{i}\left(a_{i}-b_{i}^{\prime} \nu\right)^{2}\right]$.

Let us define $S_{i i, T}=\frac{1}{T} \sum_{t} I_{i, t} \sigma_{i i, t} x_{t} x_{t}^{\prime}$, and introduce the commutation matrix $W_{m, n}$ of order $m n \times m n$ such that $W_{m, n} \operatorname{vec}[A]=\operatorname{vec}\left[A^{\prime}\right]$ for any matrix $A \in \mathbb{R}^{m \times n}$, where the vector operator vec $[\cdot]$ stacks the elements of an $m \times n$ matrix as a $m n \times 1$ vector. If $m=n$, we write W_{n} instead $W_{n, n}$. For two $(K+1) \times$
$(K+1)$ matrices A and B, equality $W_{(K+1)}(A \otimes B)=(B \otimes A) W_{(K+1)}$ also holds (see Chapter 3 of Magnus and Neudecker (2007) for other properties).

Assumption A. 4 For $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{2} \subset \Gamma_{1}$, we have $\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2}\left(Y_{i, T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right) \Rightarrow N(0, \Omega)$, where the asymptotic variance matrix is:

$$
\begin{aligned}
\Omega & =\lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}}\left[S_{i j} \otimes S_{i j}+\left(S_{i j} \otimes S_{i j}\right) W_{(K+1)}\right]\right] \\
& =\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}}\left[S_{i j} \otimes S_{i j}+\left(S_{i j} \otimes S_{i j}\right) W_{(K+1)}\right]
\end{aligned}
$$

Assumption A. 4 is a high-level CLT condition. This assumption can be proved under primitive conditions on the time series and cross-sectional dependence. For instance, we prove in Appendix 4 that Assumption A. 4 holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of the variance-covariance matrix Ω is related to the result that, for random $(K+1) \times 1$ vectors Y_{1} and Y_{2} which are jointly normal with covariance matrix S, we have $\operatorname{Cov}\left(Y_{1} \otimes Y_{1}, Y_{2} \otimes Y_{2}\right)=S \otimes S+(S \otimes S) W_{(K+1)}$. Let us now introduce the following statistic $\hat{\xi}_{n T}=T \sqrt{n}\left(\hat{Q}_{e}-\frac{1}{T} \hat{B}_{\xi}\right)$, where the recentering term simplifies to $\hat{B}_{\xi}=1$ thanks to the weighting scheme. Under the null hypothesis \mathcal{H}_{0}, we prove that $\hat{\xi}_{n T}=\left(\operatorname{vec}\left[\hat{Q}_{x}^{-1} c_{\hat{\nu}} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\right]\right)^{\prime} \frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2}\left(Y_{i T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right)+o_{p}(1), \quad$ which \quad implies $\hat{\xi}_{n T} \Rightarrow N\left(0, \Sigma_{\xi}\right)$, where $\Sigma_{\xi}=2 \lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} w_{i} w_{j} v_{i j}^{2}\right]=2 \operatorname{pim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} w_{i} w_{j} v_{i j}^{2}$ as $n, T \rightarrow \infty$ (see Appendix A.2.5). Then a feasible testing procedure exploits the consistent estimator $\tilde{\Sigma}_{\xi}=2 \frac{1}{n} \sum_{i, j} \hat{w}_{i} \hat{w}_{j} \tilde{v}_{i j}^{2}$ of the asymptotic variance Σ_{ξ}, where $\tilde{v}_{i j}=\frac{\tau_{i, T} \tau_{j, T}}{\tau_{i j, T}} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1} \tilde{S}_{i j} \hat{Q}_{x}^{-1} c_{\hat{\nu}}$.

Proposition 5 Under \mathcal{H}_{0}, and Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.4 and C.1-C.5, we have $\tilde{\Sigma}_{\xi}^{-1 / 2} \hat{\xi}_{n T} \Rightarrow N(0,1)$, as $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{2} \cap\left(0, \min \left\{2 \eta, \eta \frac{1-q}{2 \delta}\right\}\right)$.

In the homoskedastic case, the asymptotic variance of $\hat{\xi}_{n T}$ reduces to $\Sigma_{\xi}=2 \operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}^{2}} \frac{\sigma_{i j}^{2}}{\sigma_{i i} \sigma_{j j}}$. For fixed n, we can rely on the test statistic $T \hat{Q}_{e}$, which is asymptotically distributed as $\frac{1}{n} \sum_{j} e i g_{j} \chi_{j}^{2}$
for $j=1, \ldots,(n-K)$, where the χ_{j}^{2} are i.i.d. chi-square variables with 1 degree of freedom, and the coefficients eig_{j} are the non-zero eigenvalues of matrix $V_{n}^{1 / 2}\left(W_{n}-W_{n} B_{n}\left(B_{n}^{\prime} W_{n} B_{n}\right)^{-1} B_{n}^{\prime} W_{n}\right) V_{n}^{1 / 2}$ (see Kan et al. (2009)). By letting n grow, the sum of chi-square variables converges to a Gaussian variable after recentering and rescaling, which yields heuristically the result of Proposition 5.

The alternative hypothesis is

$$
\mathcal{H}_{1}: \inf _{\nu \in \mathbb{R}^{K}} E_{G}\left[\left(a_{i}-b_{i}^{\prime} \nu\right)^{2}\right]>0 .
$$

Let us define the pseudo-true value $\nu_{\infty}=\arg \inf _{\nu \in \mathbb{R}^{K}} Q_{\infty}^{w}(\nu)$, where $Q_{\infty}^{w}(\nu)=E_{G}\left[w_{i}\left(a_{i}-b_{i}^{\prime} \nu\right)^{2}\right]$ (White (1982), Gourieroux et al. (1984)) and population errors $e_{i}=a_{i}-b_{i}^{\prime} \nu_{\infty}=c_{\nu_{\infty}}^{\prime} \beta_{i}, i=1, \ldots, n$, for all n. In the next proposition, we prove consistency of the test, namely that the statistic $\hat{\xi}_{n T}$ diverges to $+\infty$ under the alternative hypothesis \mathcal{H}_{1} for large n and T. We also give the asymptotic distribution of estimators $\hat{\nu}$ and $\hat{\lambda}$ under \mathcal{H}_{1}.

Proposition 6 Under \mathcal{H}_{1} and Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A. 4 and C.1-C.5, we have $\hat{\xi}_{n T} \xrightarrow{p}+\infty$, and $\sqrt{n}\left(\hat{\nu}-\nu_{\infty}\right) \Rightarrow N\left(0, \Sigma_{\nu_{\infty}}\right)$, where $\Sigma_{\nu_{\infty}}=Q_{b}^{-1} E_{G}\left[w_{i}^{2} e_{i}^{2} b_{i} b_{i}^{\prime}\right] Q_{b}^{-1} \quad$ and $\sqrt{T}\left(\hat{\lambda}-\lambda_{\infty}\right) \Rightarrow N\left(0, \Sigma_{f}\right)$, and $\lambda_{\infty}=\nu_{\infty}+E\left[f_{t}\right]$, as $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{2} \cap\left(1, \min \left\{2 \eta, \eta \frac{1-q}{2 \delta}\right\}\right)$.

Under the alternative hypothesis \mathcal{H}_{1}, the rate of convergence of $\hat{\nu}$ is slower than under \mathcal{H}_{0}, while the rate of convergence of $\hat{\lambda}$ remains the same. The asymptotic distribution of $\hat{\nu}$ is the same as the one got from a cross-sectional regression of a_{i} on b_{i}. Pre-estimation of b_{i} has no impact on the asymptotic distribution of $\hat{\nu}$ since the bias induced by the EIV problem is of the order $O(1 / T)$, and $\sqrt{n} / T=o(1)$. The lower bound 1 on rate $\bar{\gamma}$ in Proposition 6 ensures that cross-sectional estimation of ν has asymptotically no impact on the estimation of λ.

To study the local asymptotic power, we can adopt the following local alternative: $\mathcal{H}_{1, n T}: \quad \inf _{\nu \in \mathbb{R}^{K}} Q_{\infty}^{w}(\nu)=\frac{\psi}{\sqrt{n} T}>0$, for a constant $\psi>0$. Then we can show (see the supplementary materials) that $\hat{\xi}_{n T} \Rightarrow N\left(\psi, \Sigma_{\xi}\right)$, and the test is locally asymptotically powerful. Pesaran and Yamagata (2008) consider a similar local analysis for a test of slope homogeneity in large panels.

Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are portfolio excess returns:

$$
\mathcal{H}_{0}: a(\gamma)=0 \text { for almost all } \gamma \in[0,1] \quad \Leftrightarrow \quad E_{G}\left[a_{i}^{2}\right]=0,
$$

against the alternative hypothesis

$$
\mathcal{H}_{1}: E_{G}\left[a_{i}^{2}\right]>0 .
$$

We only have to substitute \hat{a}_{i} for \hat{e}_{i}, and $E_{1}=\left(1,0^{\prime}\right)^{\prime}$ for $c_{\hat{\nu}}$ in Proposition 5.

3 Conditional factor model

In this section we extend the setting of Section 2 to conditional specifications in order to model possibly time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive equilibrium version of the APT yielding time-varying risk premia and Ludvigson (2011) for a discussion within scaled consumption-based models). We do not follow rolling short-window regression approaches to account for time-variation (Fama and French (1997), Lewellen and Nagel (2006)) since we favor a structural econometric framework to conduct formal inference in large cross-sectional equity datasets. A five-year window of monthly data yields a very short time-series panel for which asymptotics with fixed (small) T and large n are better suited, but keeping T fixed impedes consistent estimation of the risk premia as already mentioned in the previous section.

3.1 Excess return generation and asset pricing restrictions

The following assumptions are the analogues of Assumptions APR. 1 and APR.2, and Proposition 7 is the analogue of Proposition 1.

Assumption APR. 6 The excess returns $R_{t}(\gamma)$ of asset $\gamma \in[0,1]$ at date $t=1,2, \ldots$ satisfy the conditional linear factor model:

$$
\begin{equation*}
R_{t}(\gamma)=a_{t}(\gamma)+b_{t}(\gamma)^{\prime} f_{t}+\varepsilon_{t}(\gamma) \tag{7}
\end{equation*}
$$

where $a_{t}(\gamma, \omega)=a\left[\gamma, S^{t-1}(\omega)\right]$ and $b_{t}(\gamma, \omega)=b\left[\gamma, S^{t-1}(\omega)\right]$, for any $\omega \in \Omega$ and $\gamma \in[0,1]$, and random variable $a(\gamma)$ and random vector $b(\gamma)$, for $\gamma \in[0,1]$, are \mathcal{F}_{0}-measurable.

The intercept $a_{t}(\gamma)$ and factor sensitivity $b_{t}(\gamma)$ of asset $\gamma \in[0,1]$ at time t are \mathcal{F}_{t-1}-measurable.

Assumption APR. 7 The matrix $\int b_{t}(\gamma) b_{t}(\gamma)^{\prime} d \gamma$ is positive definite, P-a.s., for any date $t=1,2, \ldots$.
Proposition 7 Under Assumptions APR.3-APR.7, for any date $t=1,2, \ldots$ there exists a unique random vector $\nu_{t} \in \mathbb{R}^{K}$ such that ν_{t} is $\mathcal{F}_{t-1 \text {-measurable and: }}$

$$
\begin{equation*}
a_{t}(\gamma)=b_{t}(\gamma)^{\prime} \nu_{t} \tag{8}
\end{equation*}
$$

P-a.s. and for almost all $\gamma \in[0,1]$.

The asset pricing restriction in Proposition 7 can be rewritten as

$$
\begin{equation*}
E\left[R_{t}(\gamma) \mid \mathcal{F}_{t-1}\right]=b_{t}(\gamma)^{\prime} \lambda_{t} \tag{9}
\end{equation*}
$$

for almost all $\gamma \in[0,1]$, where $\lambda_{t}=\nu_{t}+E\left[f_{t} \mid \mathcal{F}_{t-1}\right]$ is the vector of the conditional risk premia.
To have a workable version of equations (7) and (9), we further specify the conditioning information and how coefficients depend on it. The conditioning information is such that $\mathcal{F}_{t}=\left\{S^{-t}(A), A \in \mathcal{F}_{0}\right\}, t=$ $1,2, \ldots$, and instruments $Z \in \mathbb{R}^{p}$ and $Z(\gamma) \in \mathbb{R}^{q}$, for $\gamma \in[0,1]$, are \mathcal{F}_{0}-measurable. Then, the information \mathcal{F}_{t-1} contain $Z_{\underline{t-1}}$ and $Z_{\underline{t-1}}(\gamma)$, for $\gamma \in[0,1]$, where we define $Z_{t}(\omega)=Z\left[S^{t}(\omega)\right]$ and $Z_{t}(\gamma, \omega)=$ $Z\left[\gamma, S^{t}(\omega)\right]$. The lagged instruments Z_{t-1} are common to all stocks. They may include the constant and past observations of the factors and some additional variables such as macroeconomic variables. The lagged instruments $Z_{t-1}(\gamma)$ are specific to stock γ. They may include past observations of firm characteristics and stock returns. To end up with a linear regression model we specify that the vector of factor sensitivities $b_{t}(\gamma)$ is a linear function of lagged instruments Z_{t-1} (Shanken (1990), Ferson and Harvey (1991)) and $Z_{t-1}(\gamma)$ (Avramov and Chordia (2006)): $b_{t}(\gamma)=B(\gamma) Z_{t-1}+C(\gamma) Z_{t-1}(\gamma)$, where $B(\gamma) \in \mathbb{R}^{K \times p}$ and $C(\gamma) \in$ $\mathbb{R}^{K \times q}$, for any $\gamma \in[0,1]$ and $t=1,2, \ldots$ We can account for nonlinearities by including powers of some explanatory variables among the lagged instruments. We also specify that the vector of risk premia is a linear function of lagged instruments Z_{t-1} (Cochrane (1996), Jagannathan and Wang (1996)): $\lambda_{t}=\Lambda Z_{t-1}$, where $\Lambda \in \mathbb{R}^{K \times p}$, for any t. Furthermore, we assume that the conditional expectation of Z_{t} given the information
\mathcal{F}_{t-1} depends on Z_{t-1} only and is linear, as, for instance, in an exogeneous Vector Autoregressive (VAR) model of order 1. Since f_{t} is a subvector of Z_{t}, then $E\left[f_{t} \mid \mathcal{F}_{t-1}\right]=F Z_{t-1}$, where $F \in \mathbb{R}^{K \times p}$, for any t. Under these functional specifications the asset pricing restriction (9) implies that the intercept $a_{t}(\gamma)$ is a quadratic form in lagged instruments Z_{t-1} and $Z_{t-1}(\gamma)$, namely:

$$
\begin{equation*}
a_{t}(\gamma)=Z_{t-1}^{\prime} B(\gamma)^{\prime}(\Lambda-F) Z_{t-1}+Z_{t-1}(\gamma)^{\prime} C(\gamma)^{\prime}(\Lambda-F) Z_{t-1} \tag{10}
\end{equation*}
$$

This shows that assuming a priori linearity of $a_{t}(\gamma)$ in the lagged instruments Z_{t-1} and $Z_{t-1}(\gamma)$ is in general not compatible with linearity of $b_{t}(\gamma)$ and $E\left[f_{t} \mid Z_{t-1}\right]$.

The sampling scheme is the same as in Section 2.2, and we use the same type of notation, for example $b_{i, t}=b_{t}\left(\gamma_{i}\right), B_{i}=B\left(\gamma_{i}\right), C_{i}=C\left(\gamma_{i}\right)$ and $Z_{i, t-1}=Z_{t-1}\left(\gamma_{i}\right)$. Then, the conditional factor model (7) with asset pricing restriction (10) written for the sample observations becomes

$$
\begin{equation*}
R_{i, t}=Z_{t-1}^{\prime} B_{i}^{\prime}(\Lambda-F) Z_{t-1}+Z_{i, t-1}^{\prime} C_{i}^{\prime}(\Lambda-F) Z_{t-1}+Z_{t-1}^{\prime} B_{i}^{\prime} f_{t}+Z_{i, t-1}^{\prime} C_{i}^{\prime} f_{t}+\varepsilon_{i, t}, \tag{11}
\end{equation*}
$$

which is nonlinear in the parameters Λ, F, B_{i}, and C_{i}. In order to implement the two-pass methodology in a conditional context it is useful to rewrite model (11) as a model that is linear in transformed parameters and new regressors. The regressors include $x_{2, i, t}=\left(f_{t}^{\prime} \otimes Z_{t-1}^{\prime}, f_{t}^{\prime} \otimes Z_{i, t-1}^{\prime}\right)^{\prime} \in \mathbb{R}^{d_{2}}$ with $d_{2}=K(p+q)$. The first components with common instruments take the interpretation of scaled factors, while the second components do not since they depend on i. The regressors also include the predetermined variables $x_{1, i, t}=$ $\left(\text { vech }\left[X_{t}\right]^{\prime}, \operatorname{vec}\left[X_{i, t}\right]^{\prime}\right)^{\prime} \in \mathbb{R}^{d_{1}}$ with $d_{1}=p(p+1) / 2+p q$, where the symmetric matrix $X_{t}=\left[X_{t, k, l}\right] \in$ $\mathbb{R}^{p \times p}$ is such that $X_{t, k, l}=Z_{t-1, k}^{2}$, if $k=l$, and $X_{t, k, l}=2 Z_{t-1, k} Z_{t-1, l}$, otherwise, $k, l=1, \ldots, p$, and the matrix $X_{i, t}=Z_{t-1} Z_{i, t-1}^{\prime} \in \mathbb{R}^{p \times q}$. The vector-half operator vech [•] stacks the lower elements of a $p \times p$ matrix as a $p(p+1) / 2 \times 1$ vector (see Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). To parallel the analysis of the unconditional case, we can express model (11) as in (2) through appropriate redefinitions of the regressors and loadings (see Appendix 3):

$$
\begin{equation*}
R_{i, t}=\beta_{i}^{\prime} x_{i, t}+\varepsilon_{i, t}, \tag{12}
\end{equation*}
$$

where $x_{i, t}=\left(x_{1, i, t}^{\prime}, x_{2, i, t}^{\prime}\right)^{\prime}$ has dimension $d=d_{1}+d_{2}$, and $\beta_{i}=\left(\beta_{1, i}^{\prime}, \beta_{2, i}^{\prime}\right)^{\prime}$ is such that

$$
\begin{array}{cc}
\beta_{1, i}=\Psi \beta_{2, i}, & \beta_{2, i}=\left(\operatorname{vec}\left[B_{i}^{\prime}\right]^{\prime}, \operatorname{vec}\left[C_{i}^{\prime}\right]^{\prime}\right)^{\prime} \tag{13}\\
\Psi=\left(\begin{array}{cc}
\frac{1}{2} D_{p}^{+}\left[(\Lambda-F)^{\prime} \otimes I_{p}+I_{p} \otimes(\Lambda-F)^{\prime} W_{p, K}\right] & 0 \\
0 & (\Lambda-F)^{\prime} \otimes I_{q}
\end{array}\right)
\end{array}
$$

The matrix D_{p}^{+}is the $p(p+1) / 2 \times p^{2}$ Moore-Penrose inverse of the duplication matrix D_{p}, such that $\operatorname{vech}[A]=D_{p}^{+} \operatorname{vec}[A]$ for any $A \in \mathbb{R}^{p \times p}$ (see Chapter 3 in Magnus and Neudecker (2007)). When $Z_{t}=1$ and $Z_{i, t}=0$, we have $p=p(p+1) / 2=1$ and $q=0$, and model (12) reduces to model (2).

In (13), the $d_{1} \times 1$ vector $\beta_{1, i}$ is a linear transformation of the $d_{2} \times 1$ vector $\beta_{2, i}$. This clarifies that the asset pricing restriction (10) implies a constraint on the distribution of random vector β_{i} via its support. The coefficients of the linear transformation depend on matrix $\Lambda-F$. For the purpose of estimating the loading coefficients of the risk premia in matrix Λ, the parameter restrictions can be written as (see Appendix 3):

$$
\begin{equation*}
\beta_{1, i}=\beta_{3, i} \nu, \quad \nu=\operatorname{vec}\left[\Lambda^{\prime}-F^{\prime}\right], \quad \beta_{3, i}=\left(\left[D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)\right]^{\prime},\left[W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right)\right]^{\prime}\right)^{\prime} \tag{14}
\end{equation*}
$$

Furthermore, we can relate the $d_{1} \times K p$ matrix $\beta_{3, i}$ to the vector $\beta_{2, i}$ (see Appendix 3):

$$
\begin{equation*}
\operatorname{vec}\left[\beta_{3, i}^{\prime}\right]=J_{a} \beta_{2, i} \tag{15}
\end{equation*}
$$

where the $d_{1} p K \times d_{2}$ block-diagonal matrix of constants J_{a} is given by $J_{a}=\left(\begin{array}{cc}J_{11} & 0 \\ 0 & J_{22}\end{array}\right)$ with diagonal blocks $J_{11}=W_{p(p+1) / 2, p K}\left(I_{K} \otimes\left[\left(I_{p} \otimes D_{p}^{+}\right)\left(W_{p} \otimes I_{p}\right)\left(I_{p} \otimes v e c\left[I_{p}\right]\right)\right]\right)$ and $J_{22}=W_{p q, p K}\left(I_{K} \otimes\left[\left(I_{p} \otimes W_{p, q}\right)\left(W_{p, q} \otimes I_{p}\right)\left(I_{q} \otimes v e c\left[I_{p}\right]\right)\right]\right)$. The link (15) is instrumental in deriving the asymptotic results. The parameters $\beta_{1, i}$ and $\beta_{2, i}$ correspond to the parameters a_{i} and b_{i} of the unconditional case, where the matrix J_{a} is equal to I_{K}. Equations (14) and (15) in the conditional setting are the counterparts of restriction (3) in the static setting.

3.2 Asymptotic properties of time-varying risk premium estimation

We consider a two-pass approach building on Equations (12) and (14).
First Pass: The first pass consists in computing time-series OLS estimators $\hat{\beta}_{i}=\left(\hat{\beta}_{1, i}^{\prime}, \hat{\beta}_{2, i}^{\prime}\right)^{\prime}=\hat{Q}_{x, i}^{-1} \frac{1}{T_{i}} \sum_{t} I_{i, t} x_{i, t} R_{i, t}$, for $i=1, \ldots, n$, where $\hat{Q}_{x, i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} x_{i, t} x_{i, t}^{\prime}$. We use the same trimming device as in Section 2.

Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the $\hat{\beta}_{1, i}$ on the $\hat{\beta}_{3, i}$ keeping non-trimmed assets only. We use a WLS approach. The weights are estimates of $w_{i}=\left(\operatorname{diag}\left[v_{i}\right]\right)^{-1}$, where the v_{i} are the asymptotic variances of the standardized errors $\sqrt{T}\left(\hat{\beta}_{1, i}-\hat{\beta}_{3, i} \nu\right)$ in the cross-sectional regression for large T. We have $v_{i}=\tau_{i} C_{\nu}^{\prime} Q_{x, i}^{-1} S_{i i} Q_{x, i}^{-1} C_{\nu}$, where $Q_{x, i}=E\left[x_{i, t} x_{i, t}^{\prime} \mid \gamma_{i}\right]$, $S_{i i}=\operatorname{pim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t} \sigma_{i i, t} x_{i, t} x_{i, t}^{\prime}=E\left[\varepsilon_{i, t}^{2} x_{i, t} x_{i, t}^{\prime} \mid \gamma_{i}\right], \sigma_{i i, t}=E\left[\varepsilon_{i, t}^{2} \mid x_{i, \underline{t}}, \gamma_{i}\right]$, and $C_{\nu}=\left(E_{1}^{\prime}-\left(I_{d_{1}} \otimes \nu^{\prime}\right) J_{a} E_{2}^{\prime}\right)^{\prime}$, with $E_{1}=\left(I_{d_{1}}, 0_{d_{1} \times d_{2}}\right)^{\prime}, E_{2}=\left(0_{d_{2} \times d_{1}}, I_{d_{2}}\right)^{\prime}$. We use the estimates $\hat{v}_{i}=\tau_{i, T} C_{\hat{\nu}_{1}}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} C_{\hat{\nu}_{1}}$, where $\hat{S}_{i i}=\frac{1}{T_{i}} \sum_{t} I_{i, t} \hat{\varepsilon}_{i, t}^{2} x_{i, t} x_{i, t}^{\prime}, \hat{\varepsilon}_{i, t}=R_{i, t}-\hat{\beta}_{i}^{\prime} x_{i, t}$ and $C_{\hat{\nu}_{1}}=\left(E_{1}^{\prime}-\left(I_{d_{1}} \otimes \hat{\nu}_{1}^{\prime}\right) J_{a} E_{2}^{\prime}\right)^{\prime}$. To estimate C_{ν}, we use the OLS estimator $\hat{\nu}_{1}=\left(\sum_{i} \mathbf{1}_{i}^{\chi} \hat{\beta}_{3, i}^{\prime} \hat{\beta}_{3, i}\right)^{-1} \sum_{i} \mathbf{1}_{i}^{\chi} \hat{\beta}_{3, i}^{\prime} \hat{\beta}_{1, i}$, i.e., a first-step estimator with unit weights. The WLS estimator is:

$$
\begin{equation*}
\hat{\nu}=\hat{Q}_{\beta_{3}}^{-1} \frac{1}{n} \sum_{i} \hat{\beta}_{3, i}^{\prime} \hat{w}_{i} \hat{\beta}_{1, i} \tag{16}
\end{equation*}
$$

where $\hat{Q}_{\beta_{3}}=\frac{1}{n} \sum_{i} \hat{\beta}_{3, i}^{\prime} \hat{w}_{i} \hat{\beta}_{3, i}$ and $\hat{w}_{i}=\mathbf{1}_{i}^{\chi}\left(\operatorname{diag}\left[\hat{v}_{i}\right]\right)^{-1}$. The final estimator of the risk premia is $\hat{\lambda}_{t}=$ $\hat{\Lambda} Z_{t-1}$ where we deduce $\hat{\Lambda}$ from the relationship vec $\left[\hat{\Lambda}^{\prime}\right]=\hat{\nu}+\operatorname{vec}\left[\hat{F}^{\prime}\right]$ with the estimator \hat{F} obtained by a SUR regression of factors f_{t} on lagged instruments $Z_{t-1}: \hat{F}=\sum_{t} f_{t} Z_{t-1}^{\prime}\left(\sum_{t} Z_{t-1} Z_{t-1}^{\prime}\right)^{-1}$.

The next assumption is similar to Assumption A.1.

Assumption B. 1 There exists a positive constant M such that for all n, T :
a) $E\left[\varepsilon_{i, t} \mid\left\{\varepsilon_{j, \underline{t-1}}, Z_{j, \underline{t-1}}, j=1, \ldots, n\right\}, Z_{\underline{t}}\right]=0$, with $Z_{\underline{t}}=\left\{Z_{t}, Z_{t-1}, \cdots\right\}$ and $Z_{j, \underline{t}}=\left\{Z_{j, t}, Z_{j, t-1}, \cdots\right\}$ b) $\left.\sigma_{i i, t} \leq M, i=1, \ldots, n ; c\right) E\left[\frac{1}{n} \sum_{i, j} E\left[\left|\sigma_{i j, t}\right|^{2} \mid \gamma_{i}, \gamma_{j}\right]^{1 / 2}\right] \leq M$, where $\sigma_{i j, t}=E\left[\varepsilon_{i, t} \varepsilon_{j, t} \mid x_{i, \underline{t}}, x_{j, \underline{t}}, \gamma_{i}, \gamma_{j}\right]$.

Proposition 8 summarizes consistency of estimators $\hat{\nu}$ and $\hat{\Lambda}$ under the double asymptotics $n, T \rightarrow \infty$. It extends Proposition 2 to the conditional case.

Proposition 8 Under Assumptions APR.3-APR.7, SC.1-SC.2, B.1 and C.1a), C.2-C.6, we get a) $\|\hat{\nu}-\nu\|=o_{p}(1)$, b) $\|\hat{\Lambda}-\Lambda\|=o_{p}(1)$, when $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma}>0$.

Part b) implies $\sup _{t}\left\|\hat{\lambda}_{t}-\lambda_{t}\right\|=o_{p}(1)$ under for instance a boundeness assumption on process Z_{t}.

Proposition 9 below gives the large-sample distributions under the double asymptotics $n, T \rightarrow \infty$. It extends Proposition 3 to the conditional case through adequate use of selection matrices. The following assumption is similar to Assumption A.2. We make use of $Q_{\beta_{3}}=E_{G}\left[\beta_{3, i}^{\prime} w_{i} \beta_{3, i}\right]$, $Q_{z}=E\left[Z_{t} Z_{t}^{\prime}\right], S_{i j}=\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t} \sigma_{i j, t} x_{i, t} x_{j, t}^{\prime}=E\left[\varepsilon_{i, t} \varepsilon_{j, t} x_{i, t} x_{j, t}^{\prime} \mid \gamma_{i}, \gamma_{j}\right]$ and $S_{Q, i j}=Q_{x, i}^{-1} S_{i j} Q_{x, j}^{-1}$, otherwise, we keep the same notations as in Section 2.

Assumption B. 2 As $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\left.\bar{\gamma} \in \Gamma_{1} \subset \mathbb{R}^{+}, a\right) \frac{1}{\sqrt{n}} \sum_{i} \tau_{i}\left[\left(Q_{x, i}^{-1} Y_{i, T}\right) \otimes v_{3, i}\right] \Rightarrow$ $N\left(0, S_{v_{3}}\right)$, with $Y_{i, T}=\frac{1}{\sqrt{T}} \sum_{t} I_{i, t} x_{i, t} \varepsilon_{i, t}, v_{3, i}=\operatorname{vec}\left[\beta_{3, i}^{\prime} w_{i}\right]$ and $S_{v_{3}}=\lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}} S_{Q, i j} \otimes v_{3, i} v_{3, j}^{\prime}\right]$
$=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}}\left[S_{Q, i j} \otimes v_{3, i} v_{3, j}^{\prime}\right] ;$ b) $\frac{1}{\sqrt{T}} \sum_{t} u_{t} \otimes Z_{t-1} \Rightarrow N\left(0, \Sigma_{u}\right)$, where $\Sigma_{u}=E\left[u_{t} u_{t}^{\prime} \otimes Z_{t-1} Z_{t-1}^{\prime}\right]$ and $u_{t}=f_{t}-F Z_{t-1}$.

Proposition 9 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1-B.2 and C.1a), C.2-C.6, we have a) $\sqrt{n T}\left(\hat{\nu}-\nu-\frac{1}{T} \hat{B}_{\nu}\right) \Rightarrow N\left(0, \Sigma_{\nu}\right)$ where $\hat{B}_{\nu}=\hat{Q}_{\beta_{3}}^{-1} J_{b} \frac{1}{n} \sum_{i} \tau_{i, T} v e c\left[E_{2}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} C_{\hat{\nu}} \hat{w}_{i}\right]$ and $\Sigma_{\nu}=\left(\operatorname{vec}\left[C_{\nu}^{\prime}\right] \otimes Q_{\beta_{3}}^{-1}\right)^{\prime} S_{v_{3}}\left(\operatorname{vec}\left[C_{\nu}^{\prime}\right] \otimes Q_{\beta_{3}}^{-1}\right), \quad$ with $\quad J_{b}=\left(\operatorname{vec}\left[I_{d_{1}}\right]^{\prime} \otimes I_{K p}\right)\left(I_{d_{1}} \otimes J_{a}\right)$ and $C_{\hat{\nu}}=\left(E_{1}^{\prime}-\left(I_{d_{1}} \otimes \hat{\nu}^{\prime}\right) J_{a} E_{2}^{\prime}\right)^{\prime} ;$ b) $\sqrt{T} v e c\left[\hat{\Lambda}^{\prime}-\Lambda^{\prime}\right] \Rightarrow N\left(0, \Sigma_{\Lambda}\right)$ where $\Sigma_{\Lambda}=\left(I_{K} \otimes Q_{z}^{-1}\right) \Sigma_{u}\left(I_{K} \otimes Q_{z}^{-1}\right)$, when $n, T \rightarrow \infty$ such that $n \asymp T^{\gamma}$ for $\gamma \in \Gamma_{1} \cap(0,3)$.

Since $\quad \lambda_{t}=\Lambda Z_{t-1}=\left(Z_{t-1}^{\prime} \otimes I_{K}\right) W_{p, K} v e c\left[\Lambda^{\prime}\right], \quad$ part \quad b) implies conditionally on $\quad Z_{t-1}$ that $\sqrt{T}\left(\hat{\lambda}_{t}-\lambda_{t}\right) \Rightarrow N\left(0,\left(Z_{t-1}^{\prime} \otimes I_{K}\right) W_{p, K} \Sigma_{\Lambda} W_{K, p}\left(Z_{t-1} \otimes I_{K}\right)\right)$.

We can use Proposition 9 to build confidence intervals. It suffices to replace the unknown quantities Q_{x}, $Q_{z}, Q_{\beta_{3}}, \Sigma_{u}$ and ν by their empirical counterparts. For matrix $S_{v_{3}}$ we use the thresholded estimator $\tilde{S}_{i j}$ as in Section 2.4. Then we can extend Proposition 4 to the conditional case under Assumptions B.1-B.2, A.3, A. 4 and C.1-C. 6.

Since Equation (14) corresponds to the asset pricing restriction (3), the null hypothesis of correct specification of the conditional model is

$$
\begin{aligned}
& \mathcal{H}_{0}: \text { there exists } \nu \in \mathbb{R}^{p K} \text { such that } \beta_{1}(\gamma)=\beta_{3}(\gamma) \nu, \text { with } \operatorname{vec}\left[\beta_{3}(\gamma)^{\prime}\right]=J_{a} \beta_{2}(\gamma) \\
& \text { for almost all } \gamma \in[0,1]
\end{aligned}
$$

Under \mathcal{H}_{0}, we have $E_{G}\left[\left(\beta_{1, i}-\beta_{3, i} \nu\right)^{\prime}\left(\beta_{1, i}-\beta_{3, i} \nu\right)\right]=0$. The alternative hypothesis is

$$
\mathcal{H}_{1}: \inf _{\nu \in \mathbb{R}^{d K}} E_{G}\left[\left(\beta_{1, i}-\beta_{3, i} \nu\right)^{\prime}\left(\beta_{1, i}-\beta_{3, i} \nu\right)\right]>0 .
$$

As in Section 2.5, we build the $\operatorname{SSR} \hat{Q}_{e}=\frac{1}{n} \sum_{i} \hat{e}_{i}^{\prime} \hat{w}_{i} \hat{e}_{i}$, with $\hat{e}_{i}=\hat{\beta}_{1, i}-\hat{\beta}_{3, i} \hat{\nu}=C_{\hat{\nu}}^{\prime} \hat{\beta}_{i}$ and the statistic $\hat{\xi}_{n T}=T \sqrt{n}\left(\hat{Q}_{e}-\frac{1}{T} \hat{B}_{\xi}\right)$, where $\hat{B}_{\xi}=d_{1}$.
Assumption B. 3 For $n, T \rightarrow \infty$ such that $n \asymp T^{\bar{\gamma}}$ for $\bar{\gamma} \in \Gamma_{2} \subset \Gamma_{1}$, we have $\frac{1}{\sqrt{n}} \sum_{i} \tau_{i}^{2}\left[\left(Q_{x, i}^{-1} \otimes Q_{x, i}^{-1}\right)\left(Y_{i, T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right)\right] \otimes v e c\left[w_{i}\right] \Rightarrow N(0, \Omega)$, where the asymptotic variance matrix is:

$$
\begin{aligned}
\Omega & =\lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}}\left[S_{Q, i j} \otimes S_{Q, i j}+\left(S_{Q, i j} \otimes S_{Q, i j}\right) W_{d}\right] \otimes\left(\operatorname{vec}\left[w_{i}\right] \operatorname{vec}\left[w_{j}\right]^{\prime}\right)\right] \\
& =\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}}\left[S_{Q, i j} \otimes S_{Q, i j}+\left(S_{Q, i j} \otimes S_{Q, i j}\right) W_{d}\right] \otimes\left(v e c\left[w_{i}\right] v e c\left[w_{j}\right]^{\prime}\right) .
\end{aligned}
$$

Proposition 10 Under \mathcal{H}_{0} and Assumptions APR.3-APR.7, SC.1-SC.2, B.1-B.2, A.3, A.4 and C.1-C.6, we have $\tilde{\Sigma}_{\xi}^{-1 / 2} \hat{\xi}_{n T} \Rightarrow N(0,1)$, where $\tilde{\Sigma}_{\xi}=2 \frac{1}{n} \sum_{i, j} \frac{\tau_{i, T}^{2} \tau_{j, T}^{2}}{\tau_{i j, T}^{2}} \operatorname{tr}\left[\hat{w}_{i}\left(C_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1} \tilde{S}_{i j} \hat{Q}_{x, j}^{-1} C_{\hat{\nu}}\right) \hat{w}_{j}\left(C_{\hat{\nu}}^{\prime} \hat{Q}_{x, j}^{-1} \tilde{S}_{j i} \hat{Q}_{x, i}^{-1} C_{\hat{\nu}}\right)\right]$ as $n, T \rightarrow \infty$ such that $n \asymp T^{\gamma}$ for $\gamma \in \Gamma_{2} \cap\left(0, \min \left\{2 \eta, \eta \frac{1-q}{2 \delta}\right\}\right)$.

Under \mathcal{H}_{1}, we have $\hat{\xi} \xrightarrow{p}+\infty$, as in Proposition 6.
As in Section 2.5, the null hypothesis when the factors are tradable assets becomes:

$$
\mathcal{H}_{0}: \quad \beta_{1}(\gamma)=0 \text { for almost all } \gamma \in[0,1],
$$

against the alternative hypothesis

$$
\mathcal{H}_{1}: \quad E_{G}\left[\beta_{1, i}^{\prime} \beta_{1, i}\right]>0 .
$$

We only have to substitute $\hat{Q}_{a}=\frac{1}{n} \sum_{i} \hat{\beta}_{1, i}^{\prime} \hat{w}_{i} \hat{\beta}_{1, i}$ for \hat{Q}_{e}, and $E_{1}=\left(I_{d_{1}}: 0\right)^{\prime}$ for $C_{\hat{\nu}}$. This gives an extension of Gibbons, Ross and Shanken (1989) to the conditional case and with double asymptotics. Implementing the original Gibbons, Ross and Shanken (1989) test, which uses a weighting matrix corresponding to an inverted estimated covariance matrix, becomes quickly problematic; each $\beta_{1, i}$ is of dimension $d_{1} \times 1$, and
the inverted matrix is of dimension $n d_{1} \times n d_{1}$. We expect to compensate the potential loss of power induced by a diagonal weighting thanks to the large number $n d_{1}$ of restrictions. Our preliminary unreported Monte Carlo simulations show that the test exhibits good power properties for a couple of hundreds of assets.

4 Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with $f_{t}=\left(r_{m, t}, r_{s m b, t}, r_{h m l, t}, r_{m o m, t}\right)^{\prime}$ where $r_{m, t}$ is the month t excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free rate (proxied by the monthly 30-day T-bill beginning-of-month yield), and $r_{s m b, t}, r_{h m l, t}$ and $r_{m o m, t}$ are the month t returns on zero-investment factor-mimicking portfolios for size, book-to-market, and momentum (see Fama and French (1993), Jegadeesh and Titman (1993), Carhart (1997)). To account for time-varying alphas, betas and risk premia, we use a specification based on two common variables and two firm-level variables. We take the instruments $Z_{t}=\left(1, Z_{t}^{* \prime}\right)^{\prime}$, where bivariate vector Z_{t}^{*} includes the term spread, proxied by the difference between yields on 10-year Treasury and three-month T-bill, and the default spread, proxied by the yield difference between Moody's Baa-rated and Aaa-rated corporate bonds. We take $Z_{i, t}$ as a bivariate vector made of the market capitalization and the book-to-market equity of firm i. We refer to Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the chosen conditional specification. The vector $x_{i, t}$ is of dimension $d=32$. The firm characteristics are computed as in the appendix of Fama and French (2008) from Compustat. We use monthly stock returns data provided by CRSP and we exclude financial firms (Standard Industrial Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching CRSP and Compustat contents comprises $n=9,936$ stocks and covers the period from July 1964 to December 2009 with $T=546$. For comparison purposes with a standard methodology for small n, we consider the 25 and 100 Fama-French (FF) portfolios as base assets. We have downloaded the time series of factors, portfolios and portfolio characteristics from the website of Kenneth French.

4.2 Estimation results

We first present unconditional estimates before looking at the path of the time-varying estimates. We use $\chi_{1, T}=15$ and $\chi_{2, T}=546 / 12$ for the unconditional estimation and $\chi_{1, T}=15$ and $\chi_{2, T}=546 / 36$ for the conditional estimation. In the reported results for the four-factors model, we denote by n^{χ} the dimension of the cross-section after trimming. We use a data-driven threshold selected by cross-validation as in Bickel and Levina (2008). Table 1 gathers the estimated annual risk premia for the following unconditional models: the four-factor model, the Fama-French model, and the CAPM. In Table 2, we display the estimates of the components of ν. When n is large, we use bias-corrected estimates for λ and ν. When n is small, we use asymptotics for fixed n and $T \rightarrow \infty$. The estimated risk premia for the market factor are of the same magnitude and all positive across the three universes of assets and the three models. The 95% confidence intervals are larger by construction for fixed n, and they often contain the interval for large n. For the four-factor model and the individual stocks the size factor is positively remunerated (2.91%) and it is not significantly different from zero. The value factor commands a significant negative reward (-4.55%). Phalippou (2007) obtained a similar result, indeed he got a growth premium when portofolios are built on stocks with a high institutional ownership. The momentum factor is largely remunerated (7.34\%) and significantly different from zero. For the 25 and 100 FF portfolios we observe that the size factor is not significantly positively remunerated while the value factor is significantly positively remunerated (4.81% and 5.11%). The momentum factor bears a significant positive reward (34.03% and 17.29%). The large, but imprecise, estimate for the momentum premium when $n=25$ and $n=100$ comes from the estimate for $\nu_{m o m}(25.40 \%$ and $8.66 \%)$ that is much larger and less accurate than the estimates for $\nu_{m}, \nu_{s m b}$ and $\nu_{h m l}$ $(0.85 \%,-0.26 \%, 0.03 \%$, and $0.55 \%, 0.01 \%, 0.33 \%)$. Moreover, while for portfolios the estimates of ν_{m}, $\nu_{s m b}$ and $\nu_{h m l}$ are statistically not significant, for individual stocks these estimates are statistically different from zero. In particular, the estimate of $\nu_{h m l}$ is large and negative, which explains the negative estimate on the value premium displayed in Table 1.

As showed in Figure 1, a potential explanation of the discrepancies revealed in Tables 1 and 2 between individual stocks and portfolios is the much larger heterogeneity of the factor loadings for the former. The portfolio betas are all concentrated in the middle of the cross-sectional distribution obtained from the individual stocks. Creating portfolios distorts information by shrinking the dispersion of betas. The estimation
results for the momentum factor exemplify the problems related to a small number of portfolios exhibiting a tight factor structure (Lewellen, Nagel and Shanken (2010)). For $\lambda_{m}, \lambda_{s m b}$, and $\lambda_{h m l}$, we obtain similar inferential results when we consider the Fama-French model. Our point estimates for $\lambda_{m}, \lambda_{s m b}$ and $\lambda_{h m l}$, for large n agree with Ang, Liu and Schwarz (2008). Our point estimates and confidence intervals for λ_{m}, $\lambda_{s m b}$ and $\lambda_{h m l}$, agree with the results reported by Shanken and Zhou (2007) for the 25 portfolios.

Figure 2 plots the estimated time-varying path of the four risk premia from the individual stocks. We also plot the unconditional estimates and the average lambda over time. The discrepancy between the unconditional estimate and the average over time is explained by a well-known bias coming from market-timing and volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and Simutin (2010)). The risk premia for the market, size and value factors feature a counter-cyclical pattern. Indeed, these risk premia increase during economic contractions and decrease during economic booms. Gomes, Kogan and Zhang (2003) and Zhang (2005) construct equilibrium models exhibiting a countercyclical behavior in size and book-to-market effects. On the contrary, the risk premium for momentum factor is pro-cyclical. Furthermore, conditional estimates of the value premium take stable and positive values. They are not significantly different from zero during economic booms. The conditional estimates of the size premium are most of the time slightly positive, and not significantly different from zero.

Figure 3 plots the estimated time-varying path of the four risk premia from the 25 portfolios. We also plot the unconditional estimates and the average lambda over time. The discrepancy between the unconditional estimate and the averages over time is also observed for $n=25$. The conditional point estimates for $\lambda_{\text {mom }, t}$ are larger and more imprecise than the unconditional estimate in Table 1. Indeed, the pointwise confidence intervals contain the confidence interval of the unconditional estimate for $\lambda_{\text {mom }}$. Finally, by comparing Figures 2 and 3, we observe that the patterns of risk premia look similar except for the book-tomarket factor. Indeed, the risk premium for the value effect estimated from the 25 portfolios is pro-cyclical, contradicting the counter-cyclical behavior predicted by finance theory. By comparing Figures 3 and 4, we observe that increasing the number of portfolios to 100 does not help in reconciling the discrepancy.

4.3 Specification test results

As already mentioned Figure 1 shows that the 25 FF portfolios all have four-factor market and momentum betas close to one and zero, respectively, so the model can be thought as a two-factor model consisting of $s m b$ and $h m l$ for the purposes of explaining cross-sectional variation in expected returns. For the 100 FF portfolios the dispersion around one and zero is slightly larger. As depicted in Figure 1 by Lewellen, Nagel and Shanken (2010), this empirical concentration implies that it is easy to get artificially large estimates $\hat{\rho}^{2}$ of the cross-sectional R^{2} for three- and four-factor models. On the contrary, the observed heterogeneity in the betas coming from the individual stocks impedes this. This suggests that it is much less easy to find factors that explain the cross-sectional variation of expected returns on individual stocks than on portfolios. Reporting large $\hat{\rho}^{2}$, or small $\operatorname{SSR} \hat{Q}_{e}$, when n is large, is much more impressive than when n is small.

Table 2 gathers specification test results for unconditional factor models. As already mentioned, when n is large, we prefer working with test statistics based on the $\operatorname{SSR} \hat{Q}_{e}$ instead of $\hat{\rho}^{2}$ since the population R^{2} is not well-defined with tradable factors under the null hypothesis of well-specification (its denominator is zero). For the individual stocks, we compute the test statistic $\tilde{\Sigma}_{\xi}^{-1 / 2} \hat{\xi}_{n T}$ as well as its associated p-value. For the 25 and 100 FF portfolios, we compute weighted test statistics (Gibbons, Ross and Shanken (1989)) as well as their associated p-value. We do similarly for the test statistics relying on the alphas a. As expected the rejection of the well specification is strong on the individual stocks. This suggests that the unconditional models do not describe the behavior of individual stocks. For the 25 portfolios, the Gibbons-Ross-Shanken test statistic rejects the well specification for the CAPM and the three-factor model. The four-factor model is not rejected at 1% level, but it is rejected at 5% level.

4.4 Cost of equity

The results in Section 3 can be used for estimation and inference on the cost of equity in conditional factor models. We can estimate the time varying cost of equity $C E_{i, t}=r_{f, t}+b_{i, t}^{\prime} \lambda_{t}$ of firm i with $\widehat{C E}{ }_{i, t}=$ $r_{f, t}+\hat{b}_{i, t}^{\prime} \hat{\lambda}_{t}$, where $r_{f, t}$ is the risk-free rate. We have (see Appendix 3)

$$
\begin{align*}
\sqrt{T}\left(\widehat{C E}_{i, t}-C E_{i, t}\right)= & \psi_{i, t}^{\prime} E_{2}^{\prime} \sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right) \\
& +\left(Z_{t-1}^{\prime} \otimes b_{i, t}^{\prime}\right) W_{p, K} \sqrt{T} \operatorname{vec}\left[\hat{\Lambda}^{\prime}-\Lambda^{\prime}\right]+o_{p}(1) \tag{17}
\end{align*}
$$

where $\psi_{i, t}=\left(\lambda_{t}^{\prime} \otimes Z_{t-1}^{\prime}, \lambda_{t}^{\prime} \otimes Z_{i, t-1}^{\prime}\right)^{\prime}$. Standard results on OLS imply that estimator $\hat{\beta}_{i}$ is asymptotically normal, $\sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right) \Rightarrow N\left(0, \tau_{i}^{2} Q_{x, i}^{-1} S_{i i} Q_{x, i}^{-1}\right)$, and independent of estimator $\hat{\Lambda}$. Then, from Proposition 7 we deduce that $\sqrt{T}\left(\widehat{C E}_{i, t}-C E_{i, t}\right) \Rightarrow N\left(0, \Sigma_{C E_{i, t}}\right)$, conditionally on Z_{t-1}, where

$$
\Sigma_{C E_{i, t}}=\tau_{i}^{2} \psi_{i, t}^{\prime} E_{2}^{\prime} Q_{x, i}^{-1} S_{i i} Q_{x, i}^{-1} E_{2} \psi_{i, t}+\left(Z_{t-1}^{\prime} \otimes b_{i, t}^{\prime}\right) W_{p, K} \Sigma_{\Lambda} W_{K, p}\left(Z_{t-1} \otimes b_{i, t}\right)
$$

Figure 5 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and Sony. The cost of equity has risen tremendously during the recent subprime crisis.

References

D. W. K. Andrews. Cross-section regression with common shocks. Econometrica, 73(5):1551-1585, 2005.
D. W. K. Andrews and J. C. Monahan. An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60(4):953-966, 1992.
A. Ang, J. Liu, and K. Schwarz. Using individual stocks or portfolios in tests of factor models. Working Paper, 2008.
D. Avramov and T. Chordia. Asset pricing models and financial market anomalies. The Review of Financial Studies, 19(3):1000-1040, 2006.
J. Bai. Inferential theory for factor models of large dimensions. Econometrica, 71(1):135-171, 2003.
J. Bai. Panel data models with interactive fixed effects. Econometrica, 77(4):1229-1279, 2009.
J. Bai and S. Ng. Determining the number of factors in approximate factor models. Econometrica, 70(1): 191-221, 2002.
J. Bai and S. Ng. Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica, 74(4):1133-1150, 2006.
D.A. Belsley, E. Kuh, and R.E. Welsch. Regression diagnostics - Identifying influential data and sources of collinearity. John Wiley \& Sons, 2004.
J. B. Berk. Sorting out sorts. Journal of Finance, 55(1):407-427, 2000.
P. J. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of Statistics, 36(6): 2577-2604, 2008.
P. Billingsley. Probability and measure, 3rd Edition. John Wiley and Sons, New York, 1995.
F. Black, M. Jensen, and M. Scholes. The Capital Asset Pricing Model: Some Empirical Findings In Jensen, M.C. (Ed.), Studies in the Theory of Capital Markets. Praeger, New York. Praeger, New York, 1972.
O. Boguth, M. Carlson, A. Fisher, and M. Simutin. Conditional risk and performance evaluation: volatility timing, overconditioning, and new estimates of momentum alphas. Journal of Financial Economics, forthcoming, 2010.
D. Bosq. Nonparametric Statistics for Stochastic Processes. Springer-Verlag New York, 1998.
S. J. Brown, W. N. Goetzmann, and S. A. Ross. Survival. The Journal of Finance, 50(3):853-873, 1995.
M. Carhart. On persistence of mutual fund performance. Journal of Finance, 52(1):57-82, 1997.
G. Chamberlain. Funds, factors, and diversification in arbitrage pricing models. Econometrica, 51(5): 1305-1323, 1983.
G. Chamberlain and M. Rothschild. Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica, 51(5):1281-1304, 1983.
J. H. Cochrane. A cross-sectional test of an investment-based asset pricing model. Journal of Political Economy, 104(3):572-621, 1996.
G. Connor and R. A. Korajczyk. Estimating pervasive economic factors with missing observations. Working Paper No. 34, Department of Finance, Northwestern University, 1987.
G. Connor and R. A. Korajczyk. An intertemporal equilibrium beta pricing model. The Review of Financial Studies, 2(3):373-392, 1989.
G. Connor, M. Hagmann, and O. Linton. Efficient estimation of a semiparametric characteristic-based factor model of security returns. Econometrica, forthcoming, 2011.
J. Conrad, M. Cooper, and G. Kaul. Value versus glamour. The Journal of Finance, 58(5):1969-1995, 2003.
J. Doob. Stochastic processes. John Wiley and sons, New York, 1953.
D. Duffie. Dynamic asset pricing theory, 3rd Edition. Princeton University Press, Princeton, 2001.
N. El Karoui. Operator norm consistent estimation of large dimensional sparce covariance matrices. Annals of Statistics, 36(6):2717-2756, 2008.
E. F. Fama and K. R. French. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1):3-56, 1993.
E. F. Fama and K. R. French. Industry costs of equity. Journal of Financial Economics, 43(2):153-193, 1997.
E. F. Fama and K. R. French. Dissecting anomalies. The Jounal of Finance, 63(4):1653-1678, 2008.
E. F. Fama and J. D. MacBeth. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy, 81(3):607-36, 1973.
J. Fan, Y. Liao, and M. Mincheva. High dimensional covariance matrix estimation in approximate factor structure. Princeton University Working Paper, 2011.
W. E. Ferson and C. R. Harvey. The variation of economic risk premiums. Journal of Political Economy, 99(2):385-415, 1991.
W. E. Ferson and C. R. Harvey. Conditioning variables and the cross section of stock returns. Journal of Finance, 54(4):1325-1360, 1999.
W. E. Ferson and R. W. Schadt. Measuring fund strategy and performance in changing economic conditions. Journal of Finance, 51(2):425-61, 1996.
M. Forni, M. Hallin, M. Lippi, and L. Reichlin. The generalized dynamic factor model: identification and estimation. The Review of Economics and Statistics, 82(4):540-54, 2000.
M. Forni, M. Hallin, M. Lippi, and L. Reichlin. The generalized dynamic factor model: consistency and rates. Journal of Econometrics, 119(2):231-55, 2004.
M. Forni, M. Hallin, M. Lippi, and L. Reichlin. The generalized dynamic factor model one-sided estimation and forecasting. Journal of the American Statistical Association, 100(4):830-40, 2005.
E. Ghysels. On stable factor structures in the pricing of risk: do time-varying betas help or hurt? Jounal of Finance, 53(2):549-573, 1998.
R. Gibbons, S. A. Ross, and J. Shanken. A test of the efficiency of a given portfolio. Econometrica, 57(5): 1121-1152, 1989.
J. Gomes, L. Kogan, and L. Zhang. Equilibrium cross section of returns. Journal of Political Economy, 111 (4):693-732, 2003.
C. Gourieroux, A. Monfort, and Trognon A. Pseudo maximum likelihood methods: theory. Econometrica, 52(3):681-700, 1984.
W. Greene. Econometric Analysis, 6th ed. Prentice Hall, 2008.
J. Hahn and G. Kuersteiner. Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and t are large. Econometrica., 70(4):1639-1657, 2002.
J. Hahn and W. Newey. Jackknife and analytical bias reduction for nonlinear panel models. Econometrica, 72(4):1295-1319, 2004.
L. P. Hansen and S. F. Richard. The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models. Econometrica, 55(3):587-613, 1987.
J. Heckman. Sample selection bias as a specification error. Econometrica, 47(1):153-161, 1979.
R. Jagannathan and Z. Wang. The conditional capm and the cross-section of expected returns. Journal of Finance, 51(1):3-53, 1996.
R. Jagannathan and Z. Wang. An asymptotic theory for estimating beta-pricing models using cross-sectional regression. Journal of Finance, 53(4):1285-1309, 1998.

R Jagannathan, G. Skoulakis, and Z. Wang. The analysis of the cross section of security returns. Handbook of Financial Econometrics, 2:73-134, North-Holland, 2009.
N. Jegadeesh and S. Titman. Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance, 48(1):65-91, 1993.
R. Kan, C. Robotti, and J. Shanken. Pricing model performance and the two-pass cross-sectional regression methodology. Working Paper, 2009.
S. Kandel and S. Stambaugh. Portfolio inefficiency and the cross-section of expected returns. The Journal of Finance, 50(1):157-184, 1995.
T. Lancaster. The incidental parameter problem since 1948. Journal of Econometrics, 95(2):391-413, 2000.
M. Lettau and S. Ludvigson. Consumption, aggregate wealth, and expected stock returns. Journal of Finance, 56(3):815-849, 2001.
J. Lewellen and S. Nagel. The conditional capm does not explain asset-pricing anomalies. Journal of Financial Economics, 82(2):289-314, 2006.
J. Lewellen, S. Nagel, and J. Shanken. A skeptical appraisal of asset-pricing tests. Journal of Financial Economics, 96(2):175-194, 2010.
J. Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1):13-37, 1965.
R. H. Litzenberger and K. Ramaswamy. The effect of personal taxes and dividends on capital asset prices: Theory and empirical evidence. Journal of Financial Economics, 7(2):163-195, 1979.
A. W. Lo and A. C. MacKinlay. Data-snooping biases in tests of financial asset pricing models. The Review of Financial Studies, 3(3):431-67, 1990.
S. Ludvigson. Advances in consumption-based asset pricing: Empirical tests. Handbook of the Economics of Finance vol. 2, edited by George Constantinides, Milton Harris and Rene Stulz, forthcoming, 2011.
S. Ludvigson and S. Ng. The empirical risk-return relation: a factor analysis approach. Journal of Financial Economics, 83:171-222, 2007.
S. Ludvigson and S. Ng. Macro factors in bond risk premia. The Review of Financial Studies, 22(12): 5027-5067, 2009.
J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley \& Sons, 2007.
W. K. Newey and K. D. West. Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61(4):631-653, 1994.
J. Neyman and E.L. Scott. Consistent estimation from partially consistent observations. Econometrica, 16 (1):1-32, 1948.
M. H. Pesaran. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4):967-1012, 2006.
M. H. Pesaran and T. Yamagata. Testing slope homogeneity in large panels. Journal of Econometrics, 142 (1):50-93, 2008.
M. Petersen. Estimating standard errors in finance panel data sets: comparing approaches. The Review of Financial Studies, 22(1):451-480, 2008.
R. Petkova and L. Zhang. Is value riskier than growth? Journal of Financial Economics, 78(1):187-202, 2005.
L. Phalippou. Can risk-based theories explain the value premium? Review of Finance, 11(2):143-166, 2007.
S. A. Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341-360, 1976.
S. A. Ross. A simple approach to the valuation of risky streams. Journal of Business, 51(3):453-476, 1978.
D. B. Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.
J. Shanken. The arbitrage pricing theory: is it testable? Journal of Finance, 37(5):1129-1140, 1982.
J. Shanken. Multivariate tests of the zero-beta capm. Journal of Financial Economics, 14(3):327-348, 1985.
J. Shanken. Intertemporal asset pricing: An empirical investigation. Journal of Econometrics, 45(1-2): 99-120, 1990.
J. Shanken. On the estimation of beta-pricing models. The Review of Financial Studies, 5(1):1-33, 1992.
J. Shanken and G. Zhou. Estimating and testing beta pricing models: Alternative methods and their performance in simulations. Journal of Financial Economics, 84(1):40-86, 2007.
W. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3):425-442, 1964.
J. H. Stock and M. W. Watson. Forecasting using principal components from a large number of predictors. Journal of American Statistical Association, 97(460):1167-1179, 2002 a.
J. H. Stock and M. W. Watson. Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20(2):147-62, 2002 b.
W. Stout. Almost sure convergence. Academic Press, New York, 1974.
H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50(1):1-25, 1982.
J.M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. MIT Press, 2002.
L. Zhang. The value premium. Jounal of Finance, 60(1):67-103, 2005.

Figure 1: Distribution of the factor loadings

The figure displays box-plots for the distribution of factor loadings $\hat{\beta}_{m}, \hat{\beta}_{s m b}, \hat{\beta}_{h m l}$ and $\hat{\beta}_{m o m}$. The factor loadings are estimated by running the time-series OLS regression in equation (2) for $n=9,936$ from 1964/07 to 2009/12. Moreover, next to each box-plot we report the estimated factor loadings for the 25 and 100 Fama-French portfolios (circles and triangles, respectively).
Figure 2: Path of estimated annualized risk premia with $n=9,936$

The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m}, \hat{\lambda}_{s m b}, \hat{\lambda}_{h m l}$ and $\hat{\lambda}_{m o m}$ and their pointwise confidence intervals at
95% probability level. We also report the unconditional estimate (dashed horizontal line) and the average conditional estimate (solid

determined by the National Bureau of Economic Research (NBER). The recessions start at the peak of a business cycle and end at
the trough.
Figure 3: Path of estimated annualized risk premia with $n=25$

The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m}, \hat{\lambda}_{s m b}, \hat{\lambda}_{h m l}$ and $\hat{\lambda}_{m o m}$ and their pointwise confidence intervals at
р!

The figure plots the path of estimated annualized risk premia $\hat{\lambda}_{m}, \hat{\lambda}_{s m b}, \hat{\lambda}_{h m l}$ and $\hat{\lambda}_{m o m}$ and their pointwise confidence intervals at
$\mathbf{9 5 \%}$ probability level. We also report the unconditional estimate (dashed horizontal line) and the average conditional estimate (solid
horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research (NBER).
Figure 5: Path of estimated annualized costs of equity

The figure plots the path of estimated annualized cost of equities for Ford Motor, Disney Walt, Motorola and Sony and their pointwise
confidence intervals at 95% probability level. We also report the unconditional estimate (dashed horizontal line) and the average
conditional estimate (solid horizontal line). The vertical shaded areas denote recessions determinated by the National Bureau of
Economic Research (NBER).
Table 1: Estimated annualized risk premia for the unconditional models

	Stocks ($n=9,936, n^{\chi}=9,902$)		Portfolios ($n=n^{\chi}=25$)		Portfolios ($n=n^{\chi}=100$)	
	bias corrected estimate (\%)	95\% conf. interval	point estimate (\%)	95\% conf. interval	point estimate (\%)	95\% conf. interval
Four-factor model						
λ_{m}	8.08	(3.20, 12.99)	5.70	(0.73, 10.67)	5.41	(0.42, 10.39)
$\lambda_{s m b}$	2.91	(-0.45, 6.26)	3.02	(-0.48, 6.51)	3.28	$(-0.27,6.83)$
$\lambda_{h m l}$	-4.55	(-8.01, -1.08)	4.81	(1.21, 8.41)	5.11	(1.52, 8.71)
$\lambda_{\text {mom }}$	7.34	$(2.74,11.94)$	34.03	$(9.98,58.07)$	17.29	(8.55, 26.03)
Fama-French model						
λ_{m}	7.60	(2.72, 12.49)	5.04	(0.11, 9.97)	4.88	$(-0.08,0.83)$
$\lambda_{s m b}$	2.73	(-0.62, 6.09)	3.00	(-0.42, 6.42)	3.35	(-0.13, 6.83)
$\lambda_{h m l}$	-4.95	(-8.42, -1.49)	5.20	(1.66, 8.74)	5.20	(1.63, 8.77)
CAPM						
λ_{m}	7.39	(2.50, 12.27)	6.98	(1.93, 12.02)	7.16	(2.06, 12.25)

The table contains the estimated annualized risk premia for the market $\left(\lambda_{m}\right)$, size $\left(\lambda_{s m b}\right)$, book-to-market $\left(\lambda_{h m l}\right)$ and momentum ($\lambda_{\text {mom }}$) factors. The bias corrected estimates λ_{B} of λ are reported for individual stocks ($n=9,936$). In order to build the confidence intervals for $n=9,936$, we use $\hat{\Sigma}_{f}$. When we consider 25 and 100 portfolios as base assets, we compute an estimate of the covariance matrix $\Sigma_{\lambda, n}$ defined in Section 2.3.
Table 2: Estimated annualized ν for the unconditional models

	Stocks ($n=9,936, n^{\chi}=9,902$)		Portfolios ($\left.n=n^{\chi}=25\right)$		Portfolios ($n=n^{\chi}=100$)	
	bias corrected estimate (\%)	95\% conf. interval	point estimate (\%)	95\% conf. interval	point estimate (\%)	95\% conf. interval
Four-factor model						
ν_{m}	3.22	(2.95, 3.50)	0.85	(-0.10, 1.79)	0.55	(-0.46, 1.57)
$\nu_{s m b}$	-0.37	(-0.67, -0.06)	-0.26	(-1.24, 0.72)	0.01	(-1.14, 1.16)
$\nu_{h m l}$	-9.33	(-9.67, -8.90)	0.03	(-0.95, 1.01)	0.33	$(-0.63,1.30)$
$\nu_{\text {mom }}$	-1.29	(-1.88, -0.70)	25.40	(1.80, 49.00)	8.66	$(1.23,16.10)$
Fama-French model						
ν_{m}	2.75	(2.48, 3.02)	0.18	(-0.51, 0.87)	0.02	(-0.84, 0.88)
$\nu_{s m b}$	-0.54	$(-0.85,-0.22)$	-0.27	(-0.93, 0.40)	0.08	$(-0.85,1.01)$
$\nu_{h m l}$	-9.74	(-10.08, -9.39)	0.41	(-0.32, 1.15)	0.42	(-0.44, 1.28)
CAPM						
ν_{m}	2.53	(2.32, 2.74)	2.12	(0.85, 3.40)	2.30	$(0.84,3.77)$

The table contains the annualized estimates of the components of vector ν for the market $\left(\nu_{m}\right)$, size $\left(\nu_{s m b}\right)$, book-to-market $\left(\nu_{h m l}\right)$
 build the confidence intervals, we compute $\hat{\Sigma}_{\nu}$ in Proposition 4 for $n=9,936$. When we consider 25 and 100 portfolios as base assets, we compute an estimate of the covariance matrix $\Sigma_{\nu, n}$ defined in Section 2.3.
Table 3: Specification test results for the unconditional models

	Test statistic based on $\hat{Q}_{e}, \mathcal{H}_{0}: a=b^{\prime} \nu$			Test statistic based on $\hat{Q}_{a}, \mathcal{H}_{0}: a=0$		
	Stocks ($n=9,936$)	Portfolios ($n=25$)	Portfolios ($n=100$)	Stocks ($n=9,936$)	Porffolios ($n=25$)	Portfolios ($n=100$)
Four-factor model						
Test statistic	22.9551	35.2231	253.2575	43.2804	74.9100	263.3395
p -value	0.0000	0.0267	0.0000	0.0000	0.0000	0.0000
Fama-French model						
Test statistic	20.8816	83.6846	253.9652	40.2845	87.3767	270.7899
p-value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CAPM						
Test statistic	22.3152	110.8368	276.3679	26.1799	111.6735	278.3949
p -value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Appendix 1: Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample properties of the estimators and test statistics. For unconditional models, we use Assumptions C.1-C. 5 below with $x_{t}=\left(1, f_{t}^{\prime}\right)^{\prime}$.

Assumption C. 1 There exists constants $\eta, \bar{\eta} \in(0,1]$ and $C_{1}, C_{2}, C_{3}, C_{4}>0$ such that for all $\delta>0$ and $T \in \mathbb{N}$ we have:
a) $\mathbb{P}\left[\left\|\frac{1}{T} \sum_{t}\left(x_{t} x_{t}^{\prime}-E\left[x_{t} x_{t}^{\prime}\right]\right)\right\| \geq \delta\right] \leq C_{1} T \exp \left\{-C_{2} \delta^{2} T^{\eta}\right\}+C_{3} \delta^{-1} \exp \left\{-C_{4} T^{\bar{\eta}}\right\}$.

Furthermore, for all $\delta>0, T \in \mathbb{N}$, and $1 \leq k, l, m \leq K+1$, the same upper bound holds for:
b) $\sup _{\gamma \in[0,1]} \mathbb{P}\left[\left\|\frac{1}{T} \sum_{t} I_{t}(\gamma)\left(x_{t} x_{t}^{\prime}-E\left[x_{t} x_{t}^{\prime}\right]\right)\right\| \geq \delta\right]$;
c) $\sup _{\gamma \in[0,1]} \mathbb{P}\left[\left\|\frac{1}{T} \sum_{t} I_{t}(\gamma) x_{t} \varepsilon_{t}(\gamma)\right\| \geq \delta\right]$;
d) $\sup _{\gamma, \gamma^{\prime} \in[0,1]} \mathbb{P}\left[\left\|\frac{1}{T} \sum_{t} I_{t}(\gamma) I_{t}\left(\gamma^{\prime}\right)\left(\varepsilon_{t}(\gamma) \varepsilon_{t}\left(\gamma^{\prime}\right) x_{t} x_{t}^{\prime}-E\left[\varepsilon_{t}(\gamma) \varepsilon_{t}\left(\gamma^{\prime}\right) x_{t} x_{t}^{\prime}\right]\right)\right\| \geq \delta\right]$;
e) $\sup _{\gamma, \gamma^{\prime} \in[0,1]} \mathbb{P}\left[\left|\frac{1}{T} \sum_{t} I_{t}(\gamma) I_{t}\left(\gamma^{\prime}\right) x_{k, t} x_{l, t} x_{m, t} \varepsilon_{t}(\gamma)\right| \geq \delta\right]$.

Assumption C. 2 There exists $c>0$ such that $\sup _{\gamma \in[0,1]} E\left[\left\|\frac{1}{T} \sum_{t} I_{t}(\gamma)\left(x_{t} x_{t}^{\prime}-E\left[x_{t} x_{t}^{\prime}\right]\right)\right\|^{4}\right]=O\left(T^{-c}\right)$.
Assumption C. 3 a) There exists a constant M such that $\left\|x_{t}\right\| \leq M$, P-a.s.. Moreover, b) $\sup _{\gamma \in[0,1]}\|\beta(\gamma)\|<\infty$ and c) $\inf _{\gamma \in[0,1]} E\left[I_{t}(\gamma)\right]>0$.

Assumption C. 4 There exists a constant M such that for all n, T :
a) $\frac{1}{n T^{2}} \sum_{i, j} \sum_{t_{1}, t_{2}, t_{3}, t_{4}}\left|E\left[\varepsilon_{i, t_{1}} \varepsilon_{i, t_{2}} \varepsilon_{j, t_{3}} \varepsilon_{j, t_{4}} \mid \gamma_{i}, \gamma_{j}\right]\right| \leq M$;
b) $\frac{1}{n T^{2}} \sum_{i, j} \sum_{t_{1}, t_{2}, t_{3}, t_{4}}\left\|E\left[\eta_{i, t_{1}} \varepsilon_{i, t_{2}} \varepsilon_{j, t_{3}} \eta_{j, t_{4}} \mid \gamma_{i}, \gamma_{j}\right]\right\| \leq M$, where $\eta_{i, t}=\varepsilon_{i, t}^{2} x_{t} x_{t}^{\prime}-E\left[\varepsilon_{i, t}^{2} x_{t} x_{t}^{\prime} \mid \gamma_{i}\right]$;
c) $\frac{1}{n T^{3}} \sum_{i, j} \sum_{t_{1}, \ldots, t_{6}}\left|E\left[\varepsilon_{i, t_{1}} \varepsilon_{i, t_{2}} \varepsilon_{i, t_{3}} \varepsilon_{j, t_{4}} \varepsilon_{j, t_{5}} \varepsilon_{j, t_{6}} \mid \gamma_{i}, \gamma_{j}\right]\right| \leq M$;

Assumption C. 5 The trimming constants satisfy $\chi_{1, T}=O\left((\log T)^{\kappa_{1}}\right), \chi_{2, T}=O\left((\log T)^{\kappa_{2}}\right)$, with $\kappa_{1}, \kappa_{2}>$ 0.

For conditional models, Assumptions C.1-C. 5 are used with x_{t} replaced by $x_{i, t}$ as defined in Section 3.1. More precisely, for Assumptions C.1a) and C.3a) we replace x_{t} by $x_{t}(\gamma)$ and require the bound to be valid uniformly w.r.t. $\gamma \in[0,1]$; for Assumptions C.1b)-e) and C. 2 we replace x_{t} by $x_{t}(\gamma)$; for Assumption C.4b) we replace x_{t} by $x_{i, t}$. Furthermore, we use:

Assumption C. 6 There exists a constant M such that $\left\|E\left[u_{t} u_{t}^{\prime} \mid Z_{t-1}\right]\right\| \leq M$ for all t, where $u_{t}=f_{t}-$ $F Z_{t-1}$.

Appendix 2: Unconditional factor model

A.2.1 Proof of Proposition 1

To ease notations, we assume w.l.o.g. that the continuous distribution G is uniform on $[0,1]$. For a given countable collection of assets $\gamma_{1}, \gamma_{2}, \ldots$ in $[0,1]$, let $\mu_{n}=A_{n}+B_{n} E\left[f_{1} \mid \mathcal{F}_{0}\right]$ and $\Sigma_{n}=B_{n} V\left[f_{1} \mid \mathcal{F}_{0}\right] B_{n}^{\prime}$ $+\Sigma_{\varepsilon, 1, n}$, for $n \in \mathbb{N}$, be the mean vector and the covariance matrix of asset excess returns $\left(R_{1}\left(\gamma_{1}\right), \ldots, R_{1}\left(\gamma_{n}\right)\right)^{\prime}$ conditional on \mathcal{F}_{0}, where $A_{n}=\left[a\left(\gamma_{1}\right), \ldots, a\left(\gamma_{n}\right)\right]^{\prime}$, and $B_{n}=\left[b\left(\gamma_{1}\right), \ldots, b\left(\gamma_{n}\right)\right]^{\prime}$. Let $e_{n}=\mu_{n}-B_{n}\left(B_{n}^{\prime} B_{n}\right)^{-1} B_{n}^{\prime} \mu_{n}=A_{n}-B_{n}\left(B_{n}^{\prime} B_{n}\right)^{-1} B_{n}^{\prime} A_{n}$ be the residual of the orthogonal projection of μ_{n} (and A_{n}) onto the columns of B_{n}. Furthermore, let \mathcal{P}_{n} denote the set of static portfolios p_{n} that invest in the risk-free asset and risky assets $\gamma_{1}, \ldots, \gamma_{n}$, for $n \in \mathbb{N}$, with portfolio shares independent of \mathcal{F}_{0}, and let \mathcal{P} denote the set of portfolio sequences $\left(p_{n}\right)$, with $p_{n} \in \mathcal{P}_{n}$. For portfolio $p_{n} \in \mathcal{P}_{n}$, the cost, the conditional expected return, and the conditional variance are given by $C\left(p_{n}\right)=\alpha_{0, n}+\alpha_{n}^{\prime} \iota_{n}$, $E\left[p_{n} \mid \mathcal{F}_{0}\right]=R_{0} C\left(p_{n}\right)+\alpha_{n}^{\prime} \mu_{n}$, and $V\left[p_{n} \mid \mathcal{F}_{0}\right]=\alpha_{n}^{\prime} \Sigma_{n} \alpha_{n}$, where $\iota_{n}=(1, \ldots, 1)^{\prime}$ and $\alpha_{n}=\left(\alpha_{1, n}, \ldots, \alpha_{n, n}\right)^{\prime}$. Moreover, let $\rho=\sup _{p} E\left[p \mid \mathcal{F}_{0}\right] / V\left[p \mid \mathcal{F}_{0}\right]^{1 / 2}$ s.t. $p \in \bigcup_{n \in \mathbb{N}} \mathcal{P}_{n}$, with $C(p)=0$ and $p \neq 0$, be the maximal Sharpe ratio of zero-cost portfolios. For expository purpose, we do not make explicit the dependence of μ_{n}, $\Sigma_{n}, e_{n}, \mathcal{P}_{n}$, and ρ on the collection of assets $\left(\gamma_{i}\right)$.

The statement of Proposition 1 is proved by contradiction. Suppose that $\inf _{\nu \in \mathbb{R}^{K}} \int\left[a(\gamma)-b(\gamma)^{\prime} \nu\right]^{2} d \gamma=$ $\int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma>0$, where $\nu_{\infty}=\left(\int b(\gamma) b(\gamma)^{\prime} d \gamma\right)^{-1} \int b(\gamma) a(\gamma) d \gamma$. By the strong LLN and Assumption APR.2, we have that:

$$
\begin{equation*}
\frac{1}{n}\left\|e_{n}\right\|^{2}=\inf _{\nu \in \mathbb{R}^{K}} \frac{1}{n} \sum_{i=1}^{n}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2} \rightarrow \int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma \tag{18}
\end{equation*}
$$

as $n \rightarrow \infty$, for any sequence $\left(\gamma_{i}\right)$ in a set $\mathcal{J}_{1} \subset \Gamma$, with measure $\mu_{\Gamma}\left(\mathcal{J}_{1}\right)=1$. Let us now show that an asymptotic arbitrage portfolio exists based on any sequence in \mathcal{J}_{1} such that $\operatorname{eig}_{\max }\left(\Sigma_{\varepsilon, 1, n}\right)=o(n)$ (Assumption APR. 4 (i)). Define the portfolio sequence $\left(q_{n}\right)$ with investments $\alpha_{n}=\frac{1}{\left\|e_{n}\right\|^{2}} e_{n}$ and $\alpha_{0, n}=-\iota_{n}^{\prime} \alpha_{n}$. This static portfolio has zero cost, i.e., $C\left(q_{n}\right)=0$, while $E\left[q_{n} \mid \mathcal{F}_{0}\right]=1$ and $V\left[q_{n} \mid \mathcal{F}_{0}\right] \leq e i g_{\max }\left(\Sigma_{\varepsilon, 1, n}\right)\left\|e_{n}\right\|^{-2}$. Moreover, we have $V\left[q_{n} \mid \mathcal{F}_{0}\right]=E\left[\left(q_{n}-E\left[q_{n} \mid \mathcal{F}_{0}\right]\right)^{2} \mid \mathcal{F}_{0}\right] \geq$ $E\left[\left(q_{n}-E\left[q_{n} \mid \mathcal{F}_{0}\right]\right)^{2} \mid \mathcal{F}_{0}, q_{n} \leq 0\right] P\left[q_{n} \leq 0 \mid \mathcal{F}_{0}\right] \geq P\left[q_{n} \leq 0 \mid \mathcal{F}_{0}\right]$. Hence, we get: $P\left[q_{n}>0 \mid \mathcal{F}_{0}\right] \geq 1-$ $V\left[q_{n} \mid \mathcal{F}_{0}\right] \geq 1-e i g_{\max }\left(\Sigma_{\varepsilon, 1, n}\right)\left\|e_{n}\right\|^{-2}$. Thus, from $\operatorname{eig}_{\max }\left(\Sigma_{\varepsilon, 1, n}\right)=o(n)$ and $\left\|e_{n}\right\|^{-2}=O(1 / n)$, we get $P\left[q_{n}>0 \mid \mathcal{F}_{0}\right] \rightarrow 1, P$-a.s.. By using the Law of Iterated Expectation and the Lebesgue dominated convergence theorem, $P\left[q_{n}>0\right] \rightarrow 1$. Hence, portfolio $\left(q_{n}\right)$ is an asymptotic arbitrage opportunity. Since asymptotic arbitrage portfolios are ruled out by Assumption APR.5, it follows that we must have $\int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma=0$, that is, $a(\gamma)=b(\gamma)^{\prime} \nu$, for $\nu=\nu_{\infty}$ and almost all $\gamma \in[0,1]$. Such vector ν is unique by Assumption APR.2.

Let us now establish the link between the no-arbitrage conditions and asset pricing restrictions in CR on the one hand, and the asset pricing restriction (3) in the other hand. Let $\mathcal{J} \subset \Gamma$ denote the set of countable collections of assets $\left(\gamma_{i}\right)$ such that the two conditions: (i) If $V\left[p_{n} \mid \mathcal{F}_{0}\right] \rightarrow 0$ and $C\left(p_{n}\right) \rightarrow 0$, then $E\left[p_{n} \mid \mathcal{F}_{0}\right] \rightarrow 0$, (ii) If $V\left[p_{n} \mid \mathcal{F}_{0}\right] \rightarrow 0, C\left(p_{n}\right) \rightarrow 1$ and $E\left[p_{n} \mid \mathcal{F}_{0}\right] \rightarrow \delta$, then $\delta \geq 0$, hold for any static portfolio sequence $\left(p_{n}\right)$ in \mathcal{P}, P-a.s.. Condition (i) means that, if the conditional variability and cost vanish, so does the conditional expected return. Condition (ii) means that, if the conditional variability vanishes and the cost is positive, the conditional expected return is non-negative. They correspond to Conditions A. 1 (i) and (ii) in CR written conditionally on \mathcal{F}_{0} and for a given countable collection of assets $\left(\gamma_{i}\right)$. Hence, the set \mathcal{J} is the set permitting no asymptotic arbitrage opportunities in the sense of CR (see also Chamberlain (1983)).

Proposition APR: Under Assumptions APR.1-APR.4, either $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)=$ $\mu_{\Gamma}(\mathcal{J})=1$, or $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)=\mu_{\Gamma}(\mathcal{J})=0$. The former case occurs if, and only if, the asset pricing restriction (3) holds.

The fact that $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)$ is either $=1$, or $=0$, is a consequence of the Kol-
mogorov zero-one law (e.g., Billingsley (1995)). Indeed, $\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty$ if, and only if, $\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=n}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty$, for any $n \in \mathbb{N}$. Thus, the law applies since the event $\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty$ belongs to the tail sigma-field $\mathcal{T}=\bigcap_{n=1}^{\infty} \sigma\left(\gamma_{i}, i=n, n+1, \ldots\right)$, and the variables γ_{i} are i.i.d. under μ_{Γ}.
Proof of Proposition APR: The proof involves four steps.
STEP 1: If $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)>0$, then the asset pricing restriction (3) holds. This step is proved by contradiction. Suppose that the asset pricing restriction (3) does not hold, and thus $\int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma>0$. Then, we get $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)=0$, by the convergence in (18).
STEP 2: If the asset pricing restriction (3) holds, then $\mu_{\Gamma}\left(\inf _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}<\infty\right)=1$. Indeed, $\mu_{\Gamma}\left(\sum_{i=1}^{\infty}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu^{*}\right]^{2}=0\right)=1$, if the asset pricing restriction (3) holds for some vector $\nu^{*} \in \mathbb{R}^{K}$. STEP 3: If $\mu_{\Gamma}(\mathcal{J})>0$, then the asset pricing restriction (3) holds. By following the same arguments as in CR on p. 1295-1296, we have $\rho^{2} \geq \mu_{n}^{\prime} \Sigma_{\varepsilon, 1, n}^{-1} \mu_{n}$ and $\Sigma_{\varepsilon, 1, n}^{-1} \geq e i g_{\max }\left(\Sigma_{\varepsilon, 1, n}\right)^{-1}\left[I_{n}-B_{n}\left(B_{n}^{\prime} B_{n}\right)^{-1} B_{n}^{\prime}\right]$, for any $\left(\gamma_{i}\right)$ in \mathcal{J}. Thus, we get: ρ^{2} eig $\max \left(\Sigma_{\varepsilon, 1, n}\right) \geq \mu_{n}^{\prime}\left(I_{n}-B_{n}\left(B_{n}^{\prime} B_{n}\right)^{-1} B_{n}^{\prime}\right) \mu_{n}=\min _{\lambda \in \mathbb{R}^{K}}\left\|\mu_{n}-B_{n} \lambda\right\|^{2}=$ $\min _{\nu \in \mathbb{R}^{K}}\left\|A_{n}-B_{n} \nu\right\|^{2}=\min _{\nu \in \mathbb{R}^{K}} \sum_{i=1}^{n}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2}$, for any $n \in \mathbb{N}, P$-a.s.. Hence, we deduce

$$
\begin{equation*}
\min _{\nu \in \mathbb{R}^{K}} \frac{1}{n} \sum_{i=1}^{n}\left[a\left(\gamma_{i}\right)-b\left(\gamma_{i}\right)^{\prime} \nu\right]^{2} \leq \rho^{2} \frac{1}{n} e i g_{\max }\left(\Sigma_{\varepsilon, 1, n}\right) \tag{19}
\end{equation*}
$$

for any n, P-a.s., and for any sequence $\left(\gamma_{i}\right)$ in \mathcal{J}. Moreover, $\rho<\infty, P$-a.s., by the same arguments as in CR, Corollary 1, and by using that the condition in CR, footnote 6 , is implied by our Assumption APR. 4 (ii). Then, by the convergence in (18), the LHS of Inequality (19) converges to $\int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma$, for μ_{Γ}-almost every sequence $\left(\gamma_{i}\right)$ in \mathcal{J}. From Assumption APR. 4 (i), the RHS is $o(1), P$-a.s., for μ_{Γ}-almost every sequence $\left(\gamma_{i}\right)$ in Γ. Thus, it follows that $\int\left[a(\gamma)-b(\gamma)^{\prime} \nu_{\infty}\right]^{2} d \gamma=0$, i.e., $a(\gamma)=b(\gamma)^{\prime} \nu$, for $\nu=\nu_{\infty}$ and almost all $\gamma \in[0,1]$.

STEP 4: If the asset pricing restriction (3) holds, then $\mu_{\Gamma}(\mathcal{J})=1$. If (3) holds, it follows that $e_{n}=0$ and
$\mu_{n}=B_{n}\left(B_{n}^{\prime} B_{n}\right)^{-1} B_{n}^{\prime} \mu_{n}$, for all n, for μ_{Γ}-almost all sequences $\left(\gamma_{i}\right)$. Then, we get $E\left[p_{n} \mid \mathcal{F}_{0}\right]=R_{0} C\left(p_{n}\right)$ $+\alpha_{n}^{\prime} B_{n}\left(B_{n}^{\prime} B_{n} / n\right)^{-1} B_{n}^{\prime} \mu_{n} / n$. Moreover, we have: $V\left[p_{n} \mid \mathcal{F}_{0}\right]=\left(B_{n}^{\prime} \alpha_{n}\right)^{\prime} V\left[f_{1} \mid \mathcal{F}_{0}\right]\left(B_{n}^{\prime} \alpha_{n}\right)+\alpha_{n}^{\prime} \Sigma_{\varepsilon, 1, n} \alpha_{n} \geq$ $e i g_{\min }\left(V\left[f_{1} \mid \mathcal{F}_{0}\right]\right)\left\|B_{n}^{\prime} \alpha_{n}\right\|^{2}$, where $e i g_{\min }\left(V\left[f_{1} \mid \mathcal{F}_{0}\right]\right)>0, P$-a.s. (Assumption APR. 4 (iii)). Since $B_{n}^{\prime} B_{n} / n$ converges to a positive definite matrix and $B_{n}^{\prime} \mu_{n} / n$ is bounded, for μ_{Γ}-almost any sequence $\left(\gamma_{i}\right)$, Conditions (i) and (ii) in the definition of set \mathcal{J} follow, for μ_{Γ}-almost any sequence $\left(\gamma_{i}\right)$, that is, $\mu_{\Gamma}(\mathcal{J})=1$.

A.2.2 Proof of Proposition 2

a) Consistency of $\hat{\nu}$. From Equation (5) and the asset pricing restriction (3), we have:

$$
\begin{align*}
\hat{\nu}-\nu= & \hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} c_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right) \tag{20}\\
= & Q_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} b_{i} c_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)+\left(\hat{Q}_{b}^{-1}-Q_{b}^{-1}\right) \frac{1}{n} \sum_{i} \hat{w}_{i} b_{i} c_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right) \\
& +\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i}\left(\hat{b}_{i}-b_{i}\right) c_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right) .
\end{align*}
$$

By using $\hat{\beta}_{i}-\beta_{i}=\frac{\tau_{i, T}}{\sqrt{T}} \hat{Q}_{x, i}^{-1} Y_{i, T}$ and $\hat{Q}_{b}^{-1}-Q_{b}^{-1}=-\hat{Q}_{b}^{-1}\left(\hat{Q}_{b}-Q_{b}\right) Q_{b}^{-1}$, we get:

$$
\begin{align*}
\hat{\nu}-\nu= & \frac{1}{\sqrt{n T}} Q_{b}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} c_{\nu}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}-\frac{1}{\sqrt{n T}} \hat{Q}_{b}^{-1}\left(\hat{Q}_{b}-Q_{b}\right) Q_{b}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} c_{\nu}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} \\
& +\frac{1}{T} \hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} c_{\nu} \\
=: & \frac{1}{\sqrt{n T}} Q_{b}^{-1} I_{1}-\frac{1}{\sqrt{n T}} \hat{Q}_{b}^{-1}\left(\hat{Q}_{b}-Q_{b}\right) Q_{b}^{-1} I_{1}+\frac{1}{T} \hat{Q}_{b}^{-1} I_{2} . \tag{21}
\end{align*}
$$

To control I_{1}, we use the decomposition:

$$
I_{1}=\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} c_{\nu}^{\prime} \hat{Q}_{x}^{-1} Y_{i, T}+\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} c_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} \quad=: I_{11}+I_{12}
$$

Write $I_{11}=I_{111} \hat{Q}_{x}^{-1} c_{\nu}$ and decompose $I_{111}:=\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} Y_{i, T}^{\prime}$ as:

$$
\begin{aligned}
I_{111}= & \frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i} b_{i} Y_{i, T}^{\prime}+\frac{1}{\sqrt{n}} \sum_{i}\left(\mathbf{1}_{i}^{\chi}-1\right) w_{i} \tau_{i} b_{i} Y_{i, T}^{\prime}+\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} w_{i}\left(\tau_{i, T}-\tau_{i}\right) b_{i} Y_{i, T}^{\prime} \\
& +\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi}\left(\hat{v}_{i}^{-1}-v_{i}^{-1}\right) \tau_{i, T} b_{i} Y_{i, T}^{\prime} \quad=: I_{1111}+I_{1112}+I_{1113}+I_{1114} .
\end{aligned}
$$

We have $E\left[\left\|I_{1111}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right]=\frac{1}{n T} \sum_{i, j} \sum_{t} w_{i} w_{j} \tau_{i} \tau_{j} I_{i, t} I_{j, t} \sigma_{i j, t}\left\|x_{t}\right\|^{2} b_{j}^{\prime} b_{i}$ by Assumption A. 1 a). Then, by using $\left\|x_{t}\right\| \leq M,\left\|b_{i}\right\| \leq M, \tau_{i} \leq M, w_{i} \leq M$ from Assumption C.3, and Assumption A. 1 c), we get $E\left[\left\|I_{1111}\right\|^{2} \mid\left\{\gamma_{i}\right\}\right] \leq C$. Then $I_{1111}=O_{p}(1)$. To control I_{1112}, we use the next Lemma.

Lemma 1 Under Assumption C.2: $\sup _{i} \mathbb{P}\left[\mathbf{1}_{i}^{\chi}=0\right]=O\left(T^{-\bar{b}}\right)$, for any $\bar{b}>0$.
By using $\left\|I_{1112}\right\| \leq \frac{C}{\sqrt{n}} \sum_{i}\left(1-\mathbf{1}_{i}^{\chi}\right)\left\|Y_{i, T}\right\|, \sup _{i} E\left[\left\|Y_{i, T}\right\| \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq C$ from Assumption A.1, and Lemma 1, it follows $I_{1112}=O_{p}\left(\sqrt{n} T^{-\bar{b}}\right)$, for any $\bar{b}>0$. Since $n \asymp T^{\bar{\gamma}}$, we get $I_{1112}=o_{p}(1)$. We have $E\left[\left\|I_{1113}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq \frac{C}{n T} \sum_{i, j} \sum_{t} \mathbf{1}_{i}^{\chi} \mathbf{1}_{j}^{\chi}\left|\tau_{i, T}-\tau_{i}\right|\left|\tau_{j, T}-\tau_{j}\right| \sigma_{i j, t}$. Then, by the Cauchy-Schwartz inequality and Assumption A.1 c), we get $E\left[\left\|I_{1113}\right\|^{2} \mid\left\{\gamma_{i}\right\}\right] \leq C M \sup _{\gamma \in[0,1]} E\left[\mathbf{1}_{i}^{\chi}\left|\tau_{i, T}-\tau_{i}\right|^{4} \mid \gamma_{i}=\gamma\right]^{1 / 2}$. By using $\quad \tau_{i, T}-\tau_{i}=-\tau_{i, T} \tau_{i} \frac{1}{T} \sum_{t}\left(I_{i, t}-E\left[I_{i, t} \mid \gamma_{i}\right]\right) \quad$ we \quad get $\sup _{\gamma \in[0,1]} E\left[\mathbf{1}_{i}^{\chi}\left|\tau_{i, T}-\tau_{i}\right|^{4} \mid \gamma_{i}=\gamma\right]$ $\leq C \chi_{2, T}^{4} \sup _{\gamma \in[0,1]} E\left[\left|\frac{1}{T} \sum_{t}\left(I_{t}(\gamma)-E\left[I_{t}(\gamma)\right]\right)\right|^{4}\right]=o(1)$ from Assumptions C. 2 and C.5. Then $I_{1113}=$ $o_{p}(1)$. From $\hat{v}_{i}^{-1}-v_{i}^{-1}=-v_{i}^{-2}\left(\hat{v}_{i}-v_{i}\right)+\hat{v}_{i}^{-1} v_{i}^{-2}\left(\hat{v}_{i}-v_{i}\right)^{2}$, we get:

$$
\begin{aligned}
I_{1114}= & -\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2}\left(\hat{v}_{i}-v_{i}\right) \tau_{i, T} b_{i} Y_{i, T}^{\prime}+\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} \hat{v}_{i}^{-1} v_{i}^{-2}\left(\hat{v}_{i}-v_{i}\right)^{2} \tau_{i, T} b_{i} Y_{i, T}^{\prime} \\
= & =I_{11141}+I_{11142} .
\end{aligned}
$$

Let us first consider I_{11141}. We have:

$$
\begin{aligned}
\hat{v}_{i}-v_{i}= & \tau_{i, T} c_{\hat{\nu}_{1}}^{\prime} \hat{Q}_{x, i}^{-1}\left(\hat{S}_{i i}-S_{i i}\right) \hat{Q}_{x, i}^{-1} c_{\hat{\nu}_{1}}+2 \tau_{i, T}\left(c_{\hat{\nu}_{1}}-c_{\nu}\right)^{\prime} \hat{Q}_{x, i}^{-1} S_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}_{1}} \\
& +\tau_{i, T}\left(c_{\hat{\nu}_{1}}-c_{\nu}\right)^{\prime} \hat{Q}_{x, i}^{-1} S_{i i} \hat{Q}_{x, i}^{-1}\left(c_{\hat{\nu}_{1}}-c_{\nu}\right)+2 \tau_{i, T} c_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-Q_{x}^{-1}\right) S_{i i} \hat{Q}_{x, i}^{-1} c_{\nu} \\
& +\tau_{i, T} c_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-Q_{x}^{-1}\right) S_{i i}\left(\hat{Q}_{x, i}^{-1}-Q_{x}^{-1}\right) c_{\nu}+\left(\tau_{i, T}-\tau_{i}\right) c_{\nu}^{\prime} Q_{x}^{-1} S_{i i} Q_{x}^{-1} c_{\nu},
\end{aligned}
$$

and we get for the first two terms:

$$
\begin{aligned}
& I_{111411}=-\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{2} c_{\hat{\nu}_{1}}^{\prime} \hat{Q}_{x, i}^{-1}\left(\hat{S}_{i i}-S_{i i}\right) \hat{Q}_{x, i}^{-1} c_{\hat{\nu}_{1}} b_{i} Y_{i, T}^{\prime}, \\
& I_{111412}=-\frac{2}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{2}\left(c_{\hat{\nu}_{1}}-c_{\nu}\right)^{\prime} \hat{Q}_{x, i}^{-1} S_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}_{1}} b_{i} Y_{i, T}^{\prime} .
\end{aligned}
$$

We first show $I_{111412}=o_{p}(1)$. For this purpose, it is enough to show that $c_{\hat{\nu}_{1}}-c_{\nu}=O_{p}\left(T^{-c}\right)$, for some $c>0$, and $\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{2}\left(\hat{Q}_{x, i}^{-1} S_{i i} \hat{Q}_{x, i}^{-1}\right)_{k l} b_{i} Y_{i, T}^{\prime}=O_{p}\left(\chi_{1, T}^{2} \chi_{2, T}^{2}\right)$, for any k, l. The first statement is implied by arguments showing consistency without estimated weights. The second statement follows from $\mathbf{1}_{i}^{\chi}\left\|\hat{Q}_{x, i}^{-1}\right\| \leq C \chi_{1, T}, \mathbf{1}_{i}^{\chi} \tau_{i, T} \leq \chi_{2, T}$ (see control of I_{12} below), and an argument as for I_{1111}. Let us now prove that $I_{111411}=o_{p}(1)$. For this purpose, it is enough to show that

$$
J_{1}:=\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{2}\left(\hat{Q}_{x, i}^{-1}\left(\hat{S}_{i i}-S_{i i}\right) \hat{Q}_{x, i}^{-1}\right)_{k l} b_{i} Y_{i, T}^{\prime}=o_{p}(1),
$$

for any k, l. By using $\hat{\varepsilon}_{i, t}=\varepsilon_{i, t}-x_{t}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)=\varepsilon_{i, t}-\frac{\tau_{i, T}}{\sqrt{T}} x_{t}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}$, we get:

$$
\begin{aligned}
\hat{S}_{i i}-S_{i i} & =\frac{1}{T_{i}} \sum_{t} I_{i, t}\left(\hat{\varepsilon}_{i, t}^{2}-\varepsilon_{i t}^{2}\right) x_{t} x_{t}^{\prime}+\frac{1}{T_{i}} \sum_{t} I_{i, t}\left(\varepsilon_{i t}^{2} x_{t} x_{t}^{\prime}-S_{i i}\right) \\
& =\frac{\tau_{i, T}}{\sqrt{T}} W_{1, i, T}-\frac{2 \tau_{i, T}^{2}}{T} W_{2, i, T} \hat{Q}_{x, i}^{-1} Y_{i, T}+\frac{\tau_{i, T}^{3}}{T} \hat{Q}_{x, i}^{(4)} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1},
\end{aligned}
$$

where $W_{1, i, T}:=\frac{1}{\sqrt{T}} \sum_{t} I_{i, t} \eta_{i, t}, \quad \eta_{i, t}=\varepsilon_{i t}^{2} x_{t} x_{t}^{\prime}-E\left[\varepsilon_{i t}^{2} x_{t} x_{t}^{\prime} \mid \gamma_{i}\right], \quad W_{2, i, T}:=\frac{1}{\sqrt{T}} \sum_{t} I_{i, t} \varepsilon_{i, t} x_{t}^{3}$, $\hat{Q}_{x, i}^{(4)}:=\frac{1}{\sqrt{T}} \sum_{t} I_{i, t} x_{t}^{4}$ and x_{t} has been treated as a scalar to ease notation. Then:

$$
\begin{aligned}
J_{1}= & \frac{1}{\sqrt{n T}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{3} \hat{Q}_{x, i}^{-1} W_{1, i, T} \hat{Q}_{x, i}^{-1} b_{i} Y_{i, T}^{\prime}-\frac{2}{\sqrt{n} T} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{4} \hat{Q}_{x, i}^{-1} W_{2, i, T} \hat{Q}_{x, i}^{-1} Y_{i, T} \hat{Q}_{x, i}^{-1} b_{i} Y_{i, T}^{\prime} \\
& +\frac{1}{\sqrt{n} T} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-2} \tau_{i, T}^{5} \hat{Q}_{x, i}^{-1} \hat{Q}_{x, i}^{(4)} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-2} b_{i} Y_{i, T}^{\prime} \quad=: J_{11}+J_{12}+J_{13} .
\end{aligned}
$$

Let us consider J_{11}. We have:
$E\left[\left\|J_{11}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq \frac{C}{n T^{3}} \sum_{i, j} \sum_{t_{1}, t_{2}, t_{3}, t_{4}} \mathbf{1}_{i}^{\chi} \mathbf{1}_{j}^{\chi} \tau_{i, T}^{3} \tau_{j, T}^{3}\left\|\hat{Q}_{x, i}^{-1}\right\|^{2}\left\|\hat{Q}_{x, j}^{-1}\right\|^{2}\left\|E\left[\eta_{i, t_{1}} \varepsilon_{i, t_{2}} \varepsilon_{j, t_{3}} \eta_{j, t_{4}} \mid x_{\underline{T}}, \gamma_{i}, \gamma_{j}\right]\right\|$.
By using $\mathbf{1}_{i}^{\chi}\left\|\hat{Q}_{x, i}^{-1}\right\| \leq C \chi_{1, T}, \mathbf{1}_{i}^{\chi} \tau_{i, T} \leq \chi_{2, T}$, the Law of Iterated Expectations and Assumptions C. 4 b) and C.5, we get $E\left[\left\|J_{11}\right\|^{2} \mid\right]=o(1)$. Thus $J_{11}=o_{p}(1)$. By similar argument and using Assumptions C. 4 a), c), we get $J_{12}=o_{p}(1)$ and $J_{13}=o_{p}(1)$. Hence $J_{1}=o_{p}(1)$. Paralleling the detailed arguments provided above, we can show that all other remaining terms making I_{1114} are also $o_{p}(1)$. Hence $I_{11}=O_{p}(1)$.

To control I_{12}, we have:

$$
\begin{aligned}
I_{12}= & \frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-1} \tau_{i, T} b_{i} c_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} \\
& +\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi}\left(\hat{v}_{i}^{-1}-v_{i}^{-1}\right) \tau_{i, T} b_{i} c_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} \quad=: I_{121}+I_{122} .
\end{aligned}
$$

From $\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}=-\hat{Q}_{x}^{-1}\left(\frac{1}{T_{i}} \sum_{t} I_{i, t} x_{t} x_{t}^{\prime}-\hat{Q}_{x}\right) \hat{Q}_{x, i}^{-1}=-\tau_{i, T} \hat{Q}_{x}^{-1} W_{i, T} \hat{Q}_{x, i}^{-1}+\hat{Q}_{x}^{-1} W_{T} \hat{Q}_{x, i}^{-1}$, where $W_{i, T}=\frac{1}{T} \sum_{t} I_{i, t}\left(x_{t} x_{t}^{\prime}-Q_{x}\right)$ and $W_{T}=\frac{1}{T} \sum_{t}\left(x_{t} x_{t}^{\prime}-Q_{x}\right)$, we can write:

$$
\begin{aligned}
I_{121}= & -\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-1} \tau_{i, T}^{2} b_{i} c_{\nu}^{\prime} \hat{Q}_{x}^{-1} W_{i, T} \hat{Q}_{x, i}^{-1} Y_{i, T}+\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-1} \tau_{i, T} b_{i} c_{\nu}^{\prime} \hat{Q}_{x}^{-1} W_{T} \hat{Q}_{x, i}^{-1} Y_{i, T} \\
= & \left(-\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-1} \tau_{i, T}^{2} b_{i} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} W_{i, T}+\frac{1}{\sqrt{n}} \sum_{i} \mathbf{1}_{i}^{\chi} v_{i}^{-1} \tau_{i, T} b_{i} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} W_{T}\right) \hat{Q}_{x}^{-1} c_{\nu} \\
& =:\left(I_{1211}+I_{1212}\right) \hat{Q}_{x}^{-1} c_{\nu} .
\end{aligned}
$$

Let us consider term I_{1211}. From Assumption C. 3 we have:

$$
E\left[\left\|I_{1211}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq \frac{C \chi_{2, T}^{4}}{n T} \sum_{i, j} \sum_{t} \mathbf{1}_{i}^{\chi} \mathbf{1}_{j}^{\chi}\left|\sigma_{i j, t}\right|\left\|\hat{Q}_{x, i}^{-1}\right\|\left\|\hat{Q}_{x, j}^{-1}\right\|\left\|W_{i, T}\right\|\left\|W_{j, T}\right\|
$$

Now, by using that $\left\|\hat{Q}_{x, i}^{-1}\right\|^{2}=\operatorname{Tr}\left(\hat{Q}_{x, i}^{-2}\right)=\sum_{k=1}^{K+1} \lambda_{k}^{-2} \leq \frac{K+1}{\operatorname{eig}_{\text {min }}\left(\hat{Q}_{x, i}\right)^{2}}=\frac{K+1}{\operatorname{eig}_{\max }\left(\hat{Q}_{x, i}\right)^{2}} C N\left(\hat{Q}_{x, i}\right)^{2}$, where the λ_{k} are the eigenvalues of matrix $\hat{Q}_{x, i}$, and $\operatorname{eig}_{\max }\left(\hat{Q}_{x, i}\right) \geq 1$, we get $\mathbf{1}_{i}^{\chi}\left\|\hat{Q}_{x, i}^{-1}\right\| \leq C \chi_{1, T}$ and:

$$
E\left[\left\|I_{1211}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq \frac{C \chi_{1, T}^{2} \chi_{2, T}^{4}}{n T} \sum_{i, j} \sum_{t}\left|\sigma_{i j, t}\right|\left\|W_{i, T}\right\|\left\|W_{j, T}\right\| .
$$

Then, from Cauchy-Schwartz inequality and Assumption A. 1 c), we get $E\left[\left\|I_{1211}\right\|^{2} \mid\left\{\gamma_{i}\right\}\right]$ $\leq C M \chi_{1, T}^{2} \chi_{2, T}^{4} \sup _{i} E\left[\left\|W_{i, T}\right\|^{4} \mid \gamma_{i}\right]^{1 / 2}$. From Assumption C. 2 we have $\sup _{i} E\left[\left\|W_{i, T}\right\|^{4} \mid \gamma_{i}\right]$ $\leq \sup _{\gamma \in[0,1]} E\left[\left\|\frac{1}{T} \sum_{t} I_{t}(\gamma)\left(x_{t} x_{t}^{\prime}-Q_{x}\right)\right\|^{4}\right]=O\left(T^{-c}\right)$. It follows $I_{1211}=o_{p}(1)$. Similarly $I_{1212}=o_{p}(1)$, and then $I_{121}=o_{p}(1)$. We can also show that $I_{122}=o_{p}(1)$, which yields $I_{12}=o_{p}(1)$. Hence, $I_{1}=O_{p}(1)$.

Consider now I_{2}. We have:

$$
\begin{aligned}
\frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1}= & \frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} \hat{Q}_{x}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x}^{-1}+\frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x}^{-1} \\
& +\frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} \hat{Q}_{x}^{-1} Y_{i, T} Y_{i, T}^{\prime}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) \\
& +\frac{1}{n} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} Y_{i, T}^{\prime}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) \\
& =: I_{21}+I_{22}+I_{23}+I_{24} .
\end{aligned}
$$

Let us control the four terms. We get $I_{21}=O_{p}(1)$ by using a decomposition similar to I_{111} and for the leading term $\left\|\frac{1}{n} \sum_{i} w_{i} \tau_{i}^{2} \hat{Q}_{x}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x}^{-1}\right\| \leq C\left\|\hat{Q}_{x}^{-1}\right\|^{2} \frac{1}{n} \sum_{i}\left\|Y_{i, T}\right\|^{2}$ and $E\left[\left\|Y_{i, T}\right\|^{2} \mid x_{\underline{T}}, I_{\underline{T}},\left\{\gamma_{i}\right\}\right] \leq C$. Moreover, we get $I_{22}=o_{p}(1)$ by using a decomposition similar to I_{111} and for the leading term $\left\|\frac{1}{n} \sum_{i} w_{i} \tau_{i}^{2}\left(\hat{Q}_{x, i}^{-1}-\hat{Q}_{x}^{-1}\right) Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x}^{-1}\right\| \leq C\left\|\hat{Q}_{x}^{-1}\right\| \chi_{1, T} \frac{1}{n} \sum_{i}\left\|Y_{i, T}\right\|^{2}$ (see control of term I_{121}). Similarly, we get that $I_{23}=o_{p}(1)$ and $I_{24}=o_{p}(1)$. Hence, $I_{2}=O_{p}(1)$.

Finally, we have:

$$
\begin{align*}
\hat{Q}_{b}-Q_{b}= & \left(\frac{1}{n} \sum_{i} w_{i} b_{i} b_{i}^{\prime}-Q_{b}\right)+\frac{1}{n} \sum_{i}\left(\hat{w}_{i}-w_{i}\right) b_{i} b_{i}^{\prime} \\
& +\frac{1}{n} \sum_{i} \hat{w}_{i}\left(\hat{b}_{i}-b_{i}\right) b_{i}^{\prime}+\frac{1}{n} \sum_{i} \hat{w}_{i} b_{i}\left(\hat{b}_{i}-b_{i}\right)^{\prime}+\frac{1}{n} \sum_{i} \hat{w}_{i}\left(\hat{b}_{i}-b_{i}\right)\left(\hat{b}_{i}-b_{i}\right)^{\prime} \\
= & \left(\frac{1}{n} \sum_{i} w_{i} b_{i} b_{i}^{\prime}-Q_{b}\right)+\frac{1}{n} \sum_{i}\left(\hat{w}_{i}-w_{i}\right) b_{i} b_{i}^{\prime}+\frac{1}{n \sqrt{T}} \sum_{i} \hat{w}_{i} \tau_{i, T} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} b_{i}^{\prime} \\
& +\frac{1}{n \sqrt{T}} \sum_{i} \hat{w}_{i} \tau_{i, T} b_{i} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} E_{2}+\frac{1}{n T} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} E_{2} \\
= & I_{3}+I_{4}+I_{5}+I_{5}^{\prime}+I_{6} . \tag{22}
\end{align*}
$$

From Assumption SC.2, we have $I_{3}=o_{p}(1)$, and $I_{4}=o_{p}(1)$ follows from Lemma 1. Moreover, by similar arguments as for terms I_{1} and I_{2}, we can show that I_{5} and I_{6} are $o_{p}(1)$. Then, from Equation (22), we get $\hat{Q}_{b}-Q_{b}=o_{p}(1)$. Thus, from (21) we deduce that $\|\hat{\nu}-\nu\|=O_{p}\left(\frac{1}{\sqrt{n T}}+\frac{1}{T}\right)=o_{p}(1)$.
b) Consistency of $\hat{\lambda}$. By Assumption C.1a), we have $\frac{1}{T} \sum_{t} f_{t}-E\left[f_{t}\right]=o_{p}(1)$, and thus $\|\hat{\lambda}-\lambda\| \leq\|\hat{\nu}-\nu\|+\left\|\frac{1}{T} \sum_{t} f_{t}-E\left[f_{t}\right]\right\|=o_{p}(1)$.

A.2.3 Proof of Proposition 3

a) Asymptotic normality of $\hat{\nu}$. From Equation (21), we have:

$$
\begin{align*}
\sqrt{n T}\left(\hat{\nu}-\frac{1}{T} \hat{B}_{\nu}-\nu\right)= & Q_{b}^{-1} I_{1}+\hat{Q}_{b}^{-1} \frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2}\left(E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} c_{\nu}-\tau_{i, T}^{-1} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}}\right) \\
& +o_{p}(1) \quad=: Q_{b}^{-1} I_{1}+\hat{Q}_{b}^{-1} I_{7}+o_{p}(1) . \tag{23}
\end{align*}
$$

Let us first show that $Q_{b}^{-1} I_{1}$ is asymptotically normal. From the proof of Proposition 2 and the properties of the vec operator and Kronecker product, we have:

$$
\begin{aligned}
Q_{b}^{-1} I_{1} & =Q_{b}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i} b_{i} Y_{i, T}^{\prime}\right) \hat{Q}_{x}^{-1} c_{\nu}+o_{p}(1)=\left(c_{\nu}^{\prime} \hat{Q}_{x}^{-1} \otimes Q_{b}^{-1}\right) \frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i} \text { vec }\left[b_{i} Y_{i, T}^{\prime}\right]+o_{p}(1) \\
& =\left(c_{\nu}^{\prime} \hat{Q}_{x}^{-1} \otimes Q_{b}^{-1}\right) \frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}\left(Y_{i, T} \otimes b_{i}\right)+o_{p}(1)
\end{aligned}
$$

Then we deduce $Q_{b}^{-1} I_{1} \Rightarrow N\left(0, \Sigma_{\nu}\right)$, by Assumptions A.2a) and C.1a).
Let us now show that $I_{7}=o_{p}(1)$. We have:

$$
\begin{aligned}
I_{7}= & \frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} E_{2}^{\prime} \hat{Q}_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) \hat{Q}_{x, i}^{-1} c_{\nu}-\frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} E_{2}^{\prime} \hat{Q}_{x, i}^{-1}\left(\tau_{i, T}^{-1} \hat{S}_{i i}^{0}-S_{i i, T}\right) \hat{Q}_{x, i}^{-1} c_{\nu} \\
& -\frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T} E_{2}^{\prime} \hat{Q}_{x, i}^{-1}\left(\hat{S}_{i i}-\hat{S}_{i i}^{0}\right) \hat{Q}_{x, i}^{-1} c_{\nu}-\frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1}\left(c_{\hat{\nu}}-c_{\nu}\right) \\
= & I_{71}-I_{72}-I_{73}-I_{74},
\end{aligned}
$$

where $\hat{S}_{i i}^{0}=\frac{1}{T_{i}} \sum_{t} I_{i, t} \varepsilon_{i, t}^{2} x_{t} x_{t}^{\prime}$ and $S_{i i, T}=\frac{1}{T} \sum_{t} I_{i, t} \sigma_{i i, t} x_{t} x_{t}^{\prime}$. The four terms are bounded in the next Lemma.

Lemma 2 Under Assumptions C.1a),b), C.3-C.5, $I_{71}=O_{p}\left(\frac{1}{\sqrt{T}}\right)$, $I_{72}=O_{p}\left(\frac{1}{T}\right)$, $I_{73}=O_{p}\left(\frac{\sqrt{n}}{T \sqrt{T}}\right)$ and $I_{74}=O_{p}\left(\frac{1}{T}+\frac{\sqrt{n}}{T \sqrt{T}}\right)$.

Then, from $n=o\left(T^{3}\right)$, we get $I_{7}=o_{p}(1)$ and the conclusion follows.
b) Asymptotic normality of $\hat{\lambda}$. We have $\sqrt{T}(\hat{\lambda}-\lambda)=\frac{1}{\sqrt{T}} \sum_{t}\left(f_{t}-E\left[f_{t}\right]\right)+\sqrt{T}(\hat{\nu}-\nu)$. By using $\sqrt{T}(\hat{\nu}-\nu)=O_{p}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{T}}\right)=o_{p}(1)$, the conclusion follows from Assumption A.2b).

A.2.4 Proof of Proposition 4

From Proposition 3, we have to show that $\tilde{\Sigma}_{\nu}-\Sigma_{\nu}=o_{p}(1)$. By $\Sigma_{\nu}=\left(c_{\nu}^{\prime} Q_{x}^{-1} \otimes Q_{b}^{-1}\right) S_{b}\left(Q_{x}^{-1} c_{\nu} \otimes Q_{b}^{-1}\right)$ and $\tilde{\Sigma}_{\nu}=\left(c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1} \otimes \hat{Q}_{b}^{-1}\right) \tilde{S}_{b}\left(\hat{Q}_{x}^{-1} c_{\hat{\nu}} \otimes \hat{Q}_{b}^{-1}\right)$, where $\tilde{S}_{b}=\frac{1}{n} \sum_{i, j} \hat{w}_{i} \hat{w}_{j} \frac{\tau_{i, T} \tau_{j, T}}{\tau_{i j, T}} \tilde{S}_{i j} \otimes \hat{b}_{i} \hat{b}_{j}^{\prime}$, the statement follows if $\tilde{S}_{b}-S_{b}=o_{p}(1)$. The leading term in $\tilde{S}_{b}-S_{b}$ is given by $I_{8}=\frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i} \tau_{j}}{\tau_{i j}}\left(\tilde{S}_{i j}-S_{i j}\right) \otimes b_{i} b_{j}^{\prime}$, while the other ones can be shown to be $o_{p}(1)$ by arguments similar to the proofs of Propositions 2 and 3. By using that $\tau_{i} \leq M, \tau_{i j} \geq 1, w_{i} \leq M$ and $\left\|b_{i}\right\| \leq M, I_{8}=o_{p}(1)$ follows if we show: $\frac{1}{n} \sum_{i, j}\left\|\tilde{S}_{i j}-S_{i j}\right\|=o_{p}(1)$. For this purpose, we introduce the following Lemmas 3 and 4 that extend results in Bickel and Levina (2008) from the i.i.d. case to the time series case.

Lemma 3 Let $\psi_{n T}=\max _{i, j}\left\|\hat{S}_{i j}-S_{i j}\right\|$, and $\Psi_{n T}(\delta)=\max _{i, j} \mathbb{P}\left[\left\|\hat{S}_{i j}-S_{i j}\right\| \geq \delta\right]$. Under Assumption A.3, $\frac{1}{n} \sum_{i, j}\left\|\tilde{S}_{i j}-S_{i j}\right\|=O_{p}\left(\psi_{n T} n^{\delta} \kappa^{-q}+n^{\delta} \kappa^{1-q}+\psi_{n T} n^{2} \Psi_{n T}((1-v) \kappa)\right)$, for any $v \in(0,1)$.

Lemma 4 Under Assumptions C. 1 and C.3, if $\kappa=M \sqrt{\frac{\log n}{T^{\eta}}}$ with M large, then $n^{2} \Psi_{n T}((1-v) \kappa)=$ $O(1)$, for any $v \in(0,1)$, and $\psi_{n T}=O_{p}\left(\sqrt{\frac{\log n}{T^{\eta}}}\right)$.

From Lemmas 3 and 4, it follows $\frac{1}{n} \sum_{i, j}\left\|\tilde{S}_{i j}-S_{i j}\right\|=O_{p}\left(\left(\frac{\log n}{T^{\eta}}\right)^{(1-q) / 2} n^{\delta}\right)=o_{p}(1)$.

A.2.5 Proof of Proposition 5

By definition of \hat{Q}_{e}, we get the following result:
Lemma 5 Under \mathcal{H}_{0} and Assumption A.2a), we have $\hat{Q}_{e}=\frac{1}{n} \sum_{i} \hat{w}_{i}\left[c_{\hat{\nu}}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)\right]^{2}+O_{p}\left(\frac{1}{n T}+\frac{1}{T^{2}}\right)$.

From Lemmas 1 and 5, it follows: $\hat{\xi}_{n T}=\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i}\left\{\left[c_{\hat{\nu}}^{\prime} \sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right)\right]^{2}-\tau_{i, T} c_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} c_{\hat{\nu}}\right\}+o_{p}(1)$. By using $\sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right)=\tau_{i, T} \hat{Q}_{x, i}^{-1} Y_{i, T}$, we get

$$
\begin{aligned}
\hat{\xi}_{n T}= & \frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} c^{\prime} \hat{Q}_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-\tau_{i, T}^{-1} \hat{S}_{i i}\right) \hat{Q}_{x, i}^{-1} c_{\hat{\nu}}+o_{p}(1) \\
= & \frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} c_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) \hat{Q}_{x, i}^{-1} c_{\hat{\nu}}-\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T}^{2} c_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1}\left(\tau_{i, T}^{-1} \hat{S}_{i i}-S_{i i, T}\right) \hat{Q}_{x, i}^{-1} c_{\hat{\nu}} \\
& +o_{p}(1)=: I_{91}+I_{92}+o_{p}(1) .
\end{aligned}
$$

We have $I_{91}=\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) \hat{Q}_{x}^{-1} c_{\hat{\nu}}+o_{p}(1)$ by arguments similar to the proof of Proposition 2 (see control of I_{111}). By using $\tau_{i, T}^{-1} \hat{S}_{i i}-S_{i i, T}=\frac{1}{T} \sum_{t} I_{i, t}\left(\hat{\varepsilon}_{i, t}^{2}-\varepsilon_{i, t}^{2}\right) x_{t} x_{t}^{\prime}+$ $\frac{1}{T} \sum_{t} I_{i, t}\left(\varepsilon_{i, t}^{2}-\sigma_{i i, t}\right) x_{t} x_{t}^{\prime}$ and an argument similar to the proof of Proposition 2 (see control of J_{1}), we can show that $I_{92}=O_{p}(\sqrt{n} / T+1 / \sqrt{T})$. By using $n=o\left(T^{2}\right)$, it follows $I_{92}=o_{p}(1)$. Then, $\hat{\xi}_{n T}=\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) \hat{Q}_{x}^{-1} c_{\hat{\nu}}+o_{p}(1)$. By using that $\operatorname{tr}\left[A^{\prime} B\right]=\operatorname{vec}[A]^{\prime} \operatorname{vec}[B]$, and vec $\left[Y Y^{\prime}\right]=(Y \otimes Y)$ for a vector Y, we get

$$
\begin{aligned}
\hat{\xi}_{n T} & =\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2} \operatorname{tr}\left[\hat{Q}_{x}^{-1} c_{\hat{\nu}} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right)\right]+o_{p}(1) \\
& =\left(\operatorname{vec}\left[\hat{Q}_{x}^{-1} c_{\hat{\nu}} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\right]\right)^{\prime} \frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2}\left(Y_{i, T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right)+o_{p}(1) .
\end{aligned}
$$

By using Assumption A.4, and by consistency of $\hat{\nu}$ and \hat{Q}_{x}, we get $\hat{\xi}_{n T} \Rightarrow N\left(0, \Sigma_{\xi}\right)$, where $\Sigma_{\xi}=\left(\operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right]\right)^{\prime} \Omega\left(\operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right]\right)$. By using MN Theorem 3 Chapter 2, we have

$$
\begin{align*}
\operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right]^{\prime}\left(S_{i j} \otimes S_{i j}\right) \operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right] & =\operatorname{tr}\left[S_{i j} Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right] \\
& =\left(c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu}\right)^{2}, \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right]^{\prime}\left(S_{i j} \otimes S_{i j}\right) W_{(K+1)} \operatorname{vec}\left[Q_{x}^{-1} c_{\nu} c_{\nu}^{\prime} Q_{x}^{-1}\right]=\left(c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu}\right)^{2} \tag{25}
\end{equation*}
$$

Then, from the definition of Ω and Equations (24) and (25), we deduce $\Sigma_{\xi}=2 \operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i, j} w_{i} w_{j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}}\left(c_{\nu}^{\prime} Q_{x}^{-1} S_{i j} Q_{x}^{-1} c_{\nu}\right)^{2}$. Finally, $\tilde{\Sigma}_{\xi}=\Sigma_{\xi}+o_{p}(1)$ follows from

$$
\frac{1}{n} \sum_{i, j}\left\|\tilde{S}_{i j}-S_{i j}\right\|=o_{p}(1) \text { and } \frac{1}{n} \sum_{i, j}\left\|\tilde{S}_{i j}-S_{i j}\right\|^{2}=o_{p}(1)
$$

A.2.6 Proof of Proposition 6

a) Asymptotic normality of $\hat{\nu}$. By definition of $\hat{\nu}$ and under \mathcal{H}_{1}, we have

$$
\begin{aligned}
\hat{\nu}-\nu_{\infty} & =\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} c_{\nu_{\infty}}^{\prime} \hat{\beta}_{i}=\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} c_{\nu_{\infty}}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)+\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} e_{i} \\
& =\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} \hat{b}_{i} c_{\nu_{\infty}}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)+\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i} b_{i} e_{i}+\hat{Q}_{b}^{-1} \frac{1}{n} \sum_{i} \hat{w}_{i}\left(\hat{b}_{i}-b_{i}\right) e_{i} .
\end{aligned}
$$

Thus we get:

$$
\begin{aligned}
\sqrt{n}\left(\hat{\nu}-\nu_{\infty}\right)= & \hat{Q}_{b}^{-1} \frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T} \hat{b}_{i} c_{\nu_{\infty}}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}+\hat{Q}_{b}^{-1} \frac{1}{\sqrt{n}} \sum_{i} w_{i} b_{i} e_{i} \\
& +\hat{Q}_{b}^{-1} \frac{1}{\sqrt{n}} \sum_{i}\left(\hat{w}_{i}-w_{i}\right) b_{i} e_{i}+\hat{Q}_{b}^{-1} \frac{1}{\sqrt{n T}} \sum_{i} \hat{w}_{i} \tau_{i, T} e_{i} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} \\
& =: I_{101}+I_{102}+I_{103}+I_{104}
\end{aligned}
$$

From Assumption SC. 2 and $E_{G}\left[w_{i} b_{i} e_{i}\right]=0$, we get $\frac{1}{\sqrt{n}} \sum_{i} w_{i} b_{i} e_{i} \Rightarrow N\left(0, E_{G}\left[b_{i} b_{i}^{\prime} w_{i}^{2} e_{i}^{2}\right]\right)$ by the CLT. Thus $I_{102} \Rightarrow N\left(0, Q_{b}^{-1} E_{G}\left[w_{i}^{2} e_{i}^{2} b_{i} b_{i}^{\prime}\right] Q_{b}^{-1}\right)$. Then the asymptotic distribution of $\hat{\nu}$ follows if terms I_{101}, I_{103} and I_{104} are $o_{p}(1)$. From similar arguments as in the proof of Proposition 2 (control of term I_{1}), we have $\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} \hat{b}_{i} c_{\nu_{\infty}}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}=O_{p}(1)$ and $\frac{1}{\sqrt{n}} \sum_{i} \hat{w}_{i} \tau_{i, T} e_{i} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}=O_{p}(1)$. Thus $I_{101}=o_{p}(1)$ and $I_{104}=o_{p}(1)$. Moreover, term I_{103} is $o_{p}(1)$ from Lemma 1.
b) Asymptotic normality of $\hat{\lambda}$. We have $\sqrt{T}\left(\hat{\lambda}-\lambda_{\infty}\right)=\sqrt{T}\left(\hat{\nu}-\nu_{\infty}\right)+\frac{1}{\sqrt{T}} \sum_{t}\left(f_{t}-E\left[f_{t}\right]\right)$. By using $\sqrt{T}\left(\hat{\nu}-\nu_{\infty}\right)=O_{p}\left(\sqrt{\frac{T}{n}}\right)=o_{p}(1)$, the conclusion follows.
c) Consistency of the test. By definition of \hat{Q}_{e}, we get the following result:

Lemma 6 Under \mathcal{H}_{1} and Assumption A.2a), we have $\hat{Q}_{e}=\frac{1}{n} \sum_{i} \hat{w}_{i}\left[c_{\hat{\nu}}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)\right]^{2}+\frac{1}{n} \sum_{i} \hat{w}_{i} e_{i}^{2}+$ $O_{p}\left(\frac{1}{\sqrt{n T}}\right)$.

By similar arguments as in the proof of Proposition 4, we get:

$$
\begin{aligned}
\hat{\xi}_{n T} & =\frac{1}{\sqrt{n}} \sum_{i} w_{i} \tau_{i}^{2} c_{\hat{\nu}}^{\prime} \hat{Q}_{x}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) \hat{Q}_{x}^{-1} c_{\hat{\nu}}+T \frac{1}{\sqrt{n}} \sum_{i} w_{i} e_{i}^{2}+O_{p}(\sqrt{T}) \\
& =O_{p}(1)+O\left(T \sqrt{n} E_{G}\left[w_{i}\left(a_{i}-b_{i} \nu_{\infty}\right)^{2}\right]\right)+O_{p}(T) .
\end{aligned}
$$

Under \mathcal{H}_{1} we have $E_{G}\left[w_{i}\left(a_{i}-b_{i} \nu_{\infty}\right)^{2}\right]>0$, since $w_{i}>0$ and $\left(a_{i}-b_{i} \nu_{\infty}\right)^{2}>0, P$-a.s.

Appendix 3: Conditional factor model

A.3.1 Proof of Proposition 7

Proposition 7 is proved along similar lines as Proposition 1. Hence we only highlight the slight differences. We can work at $t=1$ because of stationarity, and use that $a_{1}(\gamma), b_{1}(\gamma)$, for $\gamma \in[0,1]$, are \mathcal{F}_{0}-measurable. Then, the proof by contradiction uses again the strong LLN applied conditionally on \mathcal{F}_{0} and Assumption APR. 7 as in the proof of Proposition 1. A result similar to Proposition APR also holds true with straightforward modifications to accommodate the conditional case .

A.3.2 Derivation of Equations (12) and (13)

From Equation (11) and by using $\operatorname{vec}[A B C]=\left[C^{\prime} \otimes A\right] \operatorname{vec}[B]$ (MN Theorem 2, p. 35), we get $Z_{t-1}^{\prime} B_{i}^{\prime} f_{t}=\operatorname{vec}\left[Z_{t-1}^{\prime} B_{i}^{\prime} f_{t}\right]=\left[f_{t}^{\prime} \otimes Z_{t-1}^{\prime}\right] \operatorname{vec}\left[B_{i}^{\prime}\right]$, and $Z_{i, t-1}^{\prime} C_{i}^{\prime} f_{t}=\left[f_{t}^{\prime} \otimes Z_{i, t-1}^{\prime}\right]$ vec $\left[C_{i}^{\prime}\right]$, which gives $Z_{t-1}^{\prime} B_{i}^{\prime} f_{t}+Z_{i, t-1}^{\prime} C_{i}^{\prime} f_{t}=x_{2, i, t}^{\prime} \beta_{2, i}$.
a) By definition of matrix X_{t} in Section 3.1, we have

$$
\begin{aligned}
Z_{t-1}^{\prime} B_{i}^{\prime}(\Lambda-F) Z_{t-1} & =\frac{1}{2} Z_{t-1}^{\prime}\left[B_{i}^{\prime}(\Lambda-F)+(\Lambda-F)^{\prime} B_{i}\right] Z_{t-1} \\
& =\frac{1}{2} \text { vech }\left[X_{t}\right]^{\prime} \text { vech }\left[B_{i}^{\prime}(\Lambda-F)+(\Lambda-F)^{\prime} B_{i}\right] .
\end{aligned}
$$

By using the Moore-Penrose inverse of the duplication matrix D_{p}, we get

$$
\operatorname{vech}\left[B_{i}^{\prime}(\Lambda-F)+(\Lambda-F)^{\prime} B_{i}\right]=D_{p}^{+}\left[\operatorname{vec}\left[B_{i}^{\prime}(\Lambda-F)\right]+\operatorname{vec}\left[(\Lambda-F)^{\prime} B_{i}\right]\right] .
$$

Finally, by the properties of the vec operator and the commutation matrix $W_{p, K}$, we obtain
$\frac{1}{2} D_{p}^{+}\left[\operatorname{vec}\left[B_{i}^{\prime}(\Lambda-F)\right]+\operatorname{vec}\left[(\Lambda-F)^{\prime} B_{i}\right]\right]=\frac{1}{2} D_{p}^{+}\left[(\Lambda-F)^{\prime} \otimes I_{p}+I_{p} \otimes(\Lambda-F)^{\prime} W_{p, K}\right] \operatorname{vec}\left[B_{i}^{\prime}\right]$.
b) By definition of matrix $X_{i, t}$ in Section 3.1, we have
$Z_{i, t-1}^{\prime} C_{i}^{\prime}(\Lambda-F) Z_{t-1}=\operatorname{vec}\left[Z_{t-1} Z_{i, t-1}^{\prime}\right]^{\prime} \operatorname{vec}\left[C_{i}^{\prime}(\Lambda-F)\right]=\operatorname{vec}\left[X_{i, t}\right]^{\prime}\left[(\Lambda-F)^{\prime} \otimes I_{q}\right] \operatorname{vec}\left[C_{i}^{\prime}\right]$.

By combining a) and b), we deduce $Z_{t-1}^{\prime} B_{i}^{\prime}(\Lambda-F) Z_{t-1}+Z_{i, t-1}^{\prime} C_{i}^{\prime}(\Lambda-F) Z_{t-1}=x_{1, i, t}^{\prime} \beta_{1, i}$ and $\beta_{1, i}=\Psi \beta_{2, i}$.

A.3.3 Derivation of Equation (14)

a) From the properties of the vec operator, we get

$$
\operatorname{vec}\left[B_{i}^{\prime}(\Lambda-F)\right]+\operatorname{vec}\left[(\Lambda-F)^{\prime} B_{i}\right]=\left(I_{p} \otimes B_{i}^{\prime}\right) \operatorname{vec}[\Lambda-F]+\left(B_{i}^{\prime} \otimes I_{p}\right) \operatorname{vec}\left[\Lambda^{\prime}-F^{\prime}\right] .
$$

Since $\operatorname{vec}[\Lambda-F]=W_{p, K}$ vec $\left[\Lambda^{\prime}-F^{\prime}\right]$, we can factorize $\nu=\operatorname{vec}\left[\Lambda^{\prime}-F^{\prime}\right]$ to obtain

$$
\frac{1}{2} D_{p}^{+}\left[\operatorname{vec}\left[B_{i}^{\prime}(\Lambda-F)\right]+\operatorname{vec}\left[(\Lambda-F)^{\prime} B_{i}\right]\right]=\frac{1}{2} D_{p}^{+}\left[\left(I_{p} \otimes B_{i}^{\prime}\right) W_{p, K}+B_{i}^{\prime} \otimes I_{p}\right] \nu .
$$

By properties of commutation and duplication matrices (MN p. 54-58), we have $\left(I_{p} \otimes B_{i}^{\prime}\right) W_{p, K}=$ $W_{p}\left(B_{i}^{\prime} \otimes I_{p}\right)$ and $D_{p}^{+} W_{p}=D_{p}^{+}$, then $\frac{1}{2} D_{p}^{+}\left[\left(I_{p} \otimes B_{i}^{\prime}\right) W_{p, K}+B_{i}^{\prime} \otimes I_{p}\right]=D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)$.
b) From the properties of the vec operator, we get

$$
\operatorname{vec}\left[C_{i}^{\prime}(\Lambda-F)\right]=\left(I_{p} \otimes C_{i}^{\prime}\right) \operatorname{vec}[\Lambda-F]=\left(I_{p} \otimes C_{i}^{\prime}\right) W_{p, K} \operatorname{vec}\left[\Lambda^{\prime}-F^{\prime}\right]=W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right) \nu
$$

A.3.4 Derivation of Equation (15)

a) By MN Theorem 2 p. 35 and Exercise 1 p. 56 , and by writing $I_{p K}=I_{K} \otimes I_{p}$, we obtain

$$
\begin{aligned}
\operatorname{vec}\left[D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)\right] & =\left(I_{p K} \otimes D_{p}^{+}\right) \operatorname{vec}\left[B_{i}^{\prime} \otimes I_{p}\right] \\
& =\left(I_{p K} \otimes D_{p}^{+}\right)\left\{I_{K} \otimes\left[\left(W_{p} \otimes I_{p}\right)\left(I_{p} \otimes \operatorname{vec}\left[I_{p}\right]\right)\right]\right\} \operatorname{vec}\left[B_{i}^{\prime}\right] \\
& =\left\{I_{K} \otimes\left[\left(I_{p} \otimes D_{p}^{+}\right)\left(W_{p} \otimes I_{p}\right)\left(I_{p} \otimes \operatorname{vec}\left[I_{p}\right]\right)\right]\right\} \operatorname{vec}\left[B_{i}^{\prime}\right] .
\end{aligned}
$$

Moreover, vec $\left[\left\{D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)\right\}^{\prime}\right]=W_{p(p+1) / 2, p K} \operatorname{vec}\left[D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)\right]$.
b) Similarly, vec $\left[W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right)\right]=\left\{I_{K} \otimes\left[\left(I_{p} \otimes W_{p, q}\right)\left(W_{p, q} \otimes I_{p}\right)\left(I_{q} \otimes v e c\left[I_{p}\right]\right)\right]\right\} \operatorname{vec}\left[C_{i}^{\prime}\right]$ and $\operatorname{vec}\left[\left\{W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right)\right\}^{\prime}\right]=W_{p q, p K} \operatorname{vec}\left[W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right)\right]$.
By combining a) and b) and using vec $\left[\beta_{3, i}^{\prime}\right]=\left(\operatorname{vec}\left[\left\{D_{p}^{+}\left(B_{i}^{\prime} \otimes I_{p}\right)\right\}^{\prime}\right]^{\prime}, \operatorname{vec}\left[\left\{W_{p, q}\left(C_{i}^{\prime} \otimes I_{p}\right)\right\}^{\prime}\right]^{\prime}\right)^{\prime}$ the conclusion follows.

A.3.5 Proof of Proposition 8

a) Consistency of $\hat{\nu}$. By definition of $\hat{\nu}$ we have: $\hat{\nu}-\nu=\hat{Q}_{\beta_{3}}^{-1} \frac{1}{n} \sum_{i} \hat{\beta}_{3, i}^{\prime} \hat{w}_{i}\left(\hat{\beta}_{1, i}-\hat{\beta}_{3, i} \nu\right)$. From Equation (15) and MN Theorem 2 p .35 , we get $\hat{\beta}_{3, i} \nu=\operatorname{vec}\left[\nu^{\prime} \hat{\beta}_{3, i}^{\prime}\right]=\left(I_{d_{1}} \otimes \nu^{\prime}\right) \operatorname{vec}\left[\hat{\beta}_{3, i}^{\prime}\right]=\left(I_{d_{1}} \otimes \nu^{\prime}\right) J_{a} \hat{\beta}_{2, i}$.

Moreover, by using matrices E_{1} and E_{2}, we obtain $\left(\hat{\beta}_{1, i}-\hat{\beta}_{3, i} \nu\right)=\left[E_{1}^{\prime}-\left(I_{d_{1}} \otimes \nu^{\prime}\right) J_{a} E_{2}^{\prime}\right] \hat{\beta}_{i}=C_{\nu}^{\prime} \hat{\beta}_{i}=$ $C_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)$, from Equation (14). It follows that

$$
\begin{equation*}
\hat{\nu}-\nu=\hat{Q}_{\beta_{3}}^{-1} \frac{1}{n} \sum_{i} \hat{\beta}_{3, i}^{\prime} \hat{w}_{i} C_{\nu}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right) . \tag{26}
\end{equation*}
$$

By comparing with Equation (20) and using the same arguments as in the proof of Proposition 1 applied to β_{3}^{\prime} instead of b, the result follows.
b) Consistency of Λ^{\prime}. By definition of ν, we deduce $\left\|v e c\left[\hat{\Lambda}^{\prime}-\Lambda^{\prime}\right]\right\| \leq\|\hat{\nu}-\nu\|+\left\|v e c\left[\hat{F}^{\prime}-F^{\prime}\right]\right\|$. By part a), $\|\hat{\nu}-\nu\|=o_{p}(1)$. By LLN and Assumptions C.1a),b) and C.6, we have $\frac{1}{T} \sum_{t} Z_{t-1} Z_{t-1}^{\prime}=O_{p}(1)$ and $\frac{1}{T} \sum_{t} u_{t} Z_{t-1}^{\prime}=o_{p}(1)$. Then, by Slustky theorem, we conclude that $\left\|v e c\left[\hat{F}^{\prime}-F^{\prime}\right]\right\|=o_{p}(1)$. The result follows.

A.3.6 Proof of Proposition 9

a) Asymptotic normality of $\hat{\nu}$. From Equation (26) and by using $\sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right)=\tau_{i, T} \hat{Q}_{x, i}^{-1} Y_{i, T}$, we get

$$
\begin{aligned}
\sqrt{n T}(\hat{\nu}-\nu)= & \hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T} \hat{\beta}_{3, i}^{\prime} \hat{w}_{i} C_{\nu}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} \\
= & \hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T} \beta_{3, i}^{\prime} \hat{w}_{i} C_{\nu}^{\prime} Q_{x, i}^{-1} Y_{i, T}+\hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T} \beta_{3, i}^{\prime} \hat{w}_{i} C_{\nu}^{\prime}\left(\hat{Q}_{x, i}^{-1}-Q_{x, i}^{-1}\right) Y_{i, T} \\
& \quad+\hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T}\left(\hat{\beta}_{3, i}-\beta_{3, i}\right)^{\prime} \hat{w}_{i} C_{\nu}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} \quad=: I_{71}+I_{72}+I_{73} .
\end{aligned}
$$

By MN Theorem 2 p. 35, we have $I_{71}=\hat{Q}_{\beta_{3}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T}\left[\left(Y_{i, T}^{\prime} Q_{x, i}^{-1}\right) \otimes\left(\beta_{3, i}^{\prime} \hat{w}_{i}\right)\right]\right)$ vec $\left[C_{\nu}^{\prime}\right]$. As in the proof of Propositions 2 and 3, we have $I_{71}=\hat{Q}_{\beta_{3}}^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i} \tau_{i}\left[\left(Y_{i, T}^{\prime} Q_{x, i}^{-1}\right) \otimes\left(\beta_{3, i}^{\prime} w_{i}\right)\right]\right) \operatorname{vec}\left[C_{\nu}^{\prime}\right]$ $+o_{p}(1)=: I_{711}+o_{p}(1)$. We can rewrite $I_{711}=\left(\operatorname{vec}\left[C_{\nu}^{\prime}\right]^{\prime} \otimes \hat{Q}_{\beta_{3}}^{-1}\right) \frac{1}{\sqrt{n}} \sum_{i} \tau_{i} v e c\left[\left(Y_{i, T}^{\prime} Q_{x, i}^{-1}\right) \otimes\left(\beta_{3, i}^{\prime} w_{i}\right)\right]$.

Moreover, by using vec $\left[\left(Y_{i, T}^{\prime} Q_{x, i}^{-1}\right) \otimes\left(\beta_{3, i}^{\prime} w_{i}\right)\right]=\left(Q_{x, i}^{-1} Y_{i, T}\right) \otimes \operatorname{vec}\left[\beta_{3, i}^{\prime} w_{i}\right]$ (see MN Theorem 10 p .55), we get $I_{711}=\left(\operatorname{vec}\left[C_{\nu}^{\prime}\right]^{\prime} \otimes \hat{Q}_{\beta_{3}}^{-1}\right) \frac{1}{\sqrt{n}} \sum_{i} \tau_{i}\left[\left(Q_{x, i}^{-1} Y_{i, T}\right) \otimes v_{3}\right]$. Then $I_{711} \Rightarrow N\left(0, \Sigma_{\nu}\right)$ follows from Assumption B. 2 a).

Let us consider I_{72}. By similar arguments as in the proof of Proposition 3, $I_{72}=o_{p}(1)$.
Let us consider I_{73}. We introduce the following lemma:
Lemma 7 Let A be a $m \times n$ matrix and b be a $n \times 1$ vector. Then, $A b=\left(\operatorname{vec}\left[I_{n}\right]^{\prime} \otimes I_{m}\right) \operatorname{vec}\left[\operatorname{vec}[A] b^{\prime}\right]$. By Lemma 7, Equation (15) and $\sqrt{T} v e c\left[\left(\hat{\beta}_{3, i}-\beta_{3, i}\right)^{\prime}\right]=\tau_{i, T} J_{a} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T}$, we have

$$
\begin{aligned}
I_{73} & =\hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n T}} \sum_{i} \tau_{i, T}^{2}\left(\operatorname{vec}\left[I_{d_{1}}\right]^{\prime} \otimes I_{K p}\right) \operatorname{vec}\left[J_{a} E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} C_{\nu} \hat{w}_{i}\right] \\
& =\hat{Q}_{\beta_{3}}^{-1} \frac{1}{\sqrt{n T}} \sum_{i} \tau_{i, T}^{2} J_{b} v e c\left[E_{2}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} C_{\nu} \hat{w}_{i}\right] \quad=: \sqrt{\frac{n}{T}} \hat{B}_{\nu}+I_{74},
\end{aligned}
$$

where $I_{74}=o_{p}(1)$ by similar arguments as in the proof of Proposition 3 .
b) Asymptotic normality of $\operatorname{vec}\left(\hat{\Lambda}^{\prime}\right)$. We have $\sqrt{T} v e c\left[\hat{\Lambda}^{\prime}-\Lambda^{\prime}\right]=\sqrt{T} v e c\left[\hat{F}^{\prime}-F^{\prime}\right]+\sqrt{T}(\hat{\nu}-\nu)$. By using $\quad \sqrt{T}$ vec $\left[\hat{F}^{\prime}-F^{\prime}\right]=\left[I_{K} \otimes\left(\frac{1}{T} \sum_{t} Z_{t-1} Z_{t-1}^{\prime}\right)^{-1}\right] \frac{1}{\sqrt{T}} \sum_{t} u_{t} \otimes Z_{t-1} \quad$ and $\quad \sqrt{T}(\hat{\nu}-\nu)=$ $O_{p}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{T}}\right)=o_{p}(1)$, the conclusion follows from Assumption B.2b).

A.3.7 Proof of Proposition 10

By similar arguments as in the proof of Proposition 5, we have:

$$
\begin{aligned}
\hat{Q}_{e} & =\frac{1}{n} \sum_{i}\left(\hat{\beta}_{i}-\beta_{i}\right)^{\prime} C_{\hat{\nu}} \hat{w}_{i} C_{\hat{\nu}}^{\prime}\left(\hat{\beta}_{i}-\beta_{i}\right)+O_{p}\left(\frac{1}{n T}+\frac{1}{T^{2}}\right) \\
& =\frac{1}{n T} \sum_{i} \tau_{i, T}^{2} \operatorname{tr}\left[C_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1} Y_{i, T} Y_{i, T}^{\prime} \hat{Q}_{x, i}^{-1} C_{\hat{\nu}} \hat{w}_{i}\right]+O_{p}\left(\frac{1}{n T}+\frac{1}{T^{2}}\right) .
\end{aligned}
$$

By using that $\tau_{i, T} \operatorname{tr}\left[C_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1} \hat{S}_{i i} \hat{Q}_{x, i}^{-1} C_{\hat{\nu}} \hat{w}_{i}\right]=\mathbf{1}_{i}^{\chi} d_{1}$ and Lemma 1 in the conditional case, we get:

$$
\begin{aligned}
\hat{\xi}_{n T} & =\frac{1}{\sqrt{n}} \sum_{i} \tau_{i, T}^{2} \operatorname{tr}\left[C_{\hat{\nu}}^{\prime} \hat{Q}_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-\tau_{i, T}^{-1} \hat{S}_{i i}\right) \hat{Q}_{x, i}^{-1} C_{\hat{\nu}} \hat{w}_{i}\right]+o_{p}(1) \\
& =\frac{1}{\sqrt{n}} \sum_{i} \tau_{i}^{2} \operatorname{tr}\left[C_{\hat{\nu}}^{\prime} Q_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) Q_{x, i}^{-1} C_{\hat{\nu}} w_{i}\right]+o_{p}(1) .
\end{aligned}
$$

Now, by using $\operatorname{tr}(A B C D)=\operatorname{vec}\left(D^{\prime}\right)^{\prime}\left(C^{\prime} \otimes A\right) \operatorname{vec}(B)$ (MN Theorem 3, p. 31) and $\operatorname{vec}(A B C)=\left(C^{\prime} \otimes\right.$ $A) v e c(B)$ for conformable matrices, we have:

$$
\begin{aligned}
& \operatorname{tr}\left[C_{\hat{\nu}}^{\prime} Q_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) Q_{x, i}^{-1} C_{\hat{\nu}} w_{i}\right] \\
= & \operatorname{vec}\left[w_{i}\right]^{\prime}\left(C_{\hat{\nu}}^{\prime} \otimes C_{\hat{\nu}}^{\prime}\right) \operatorname{vec}\left[Q_{x, i}^{-1}\left(Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right) Q_{x, i}^{-1}\right] \\
= & \operatorname{vec}\left[w_{i}\right]^{\prime}\left(C_{\hat{\nu}}^{\prime} \otimes C_{\hat{\nu}}^{\prime}\right)\left(Q_{x, i}^{-1} \otimes Q_{x, i}^{-1}\right) \operatorname{vec}\left[Y_{i, T} Y_{i, T}^{\prime}-S_{i i, T}\right] \\
= & \operatorname{vec}\left[w_{i}\right]^{\prime}\left(C_{\hat{\nu}}^{\prime} \otimes C_{\hat{\nu}}^{\prime}\right)\left(Q_{x, i}^{-1} \otimes Q_{x, i}^{-1}\right)\left(Y_{i, T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right) \\
= & \operatorname{vec}\left[C_{\hat{\nu}}^{\prime} \otimes C_{\hat{\nu}}^{\prime}\right]^{\prime}\left\{\left[\left(Q_{x, i}^{-1} \otimes Q_{x, i}^{-1}\right)\left(Y_{i, T} \otimes Y_{i, T}-\operatorname{vec}\left[S_{i i, T}\right]\right)\right] \otimes \operatorname{vec}\left[w_{i}\right]\right\} .
\end{aligned}
$$

Thus, we get $\xi_{n T}=\operatorname{vec}\left[C_{\hat{\nu}}^{\prime} \otimes C_{\hat{\nu}}^{\prime}\right]^{\prime} \frac{1}{\sqrt{n}} \sum_{i} \tau_{i}^{2}\left[\left(Q_{x, i}^{-1} \otimes Q_{x, i}^{-1}\right)\left(Y_{i, T} \otimes Y_{i, T}-v e c\left[S_{i i, T}\right]\right)\right] \otimes v e c\left[w_{i}\right]$. From Assumption B.3, we get $\hat{\xi}_{n T} \Rightarrow N\left(0, \Sigma_{\xi}\right)$, where $\Sigma_{\xi}=\operatorname{vec}\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right]^{\prime} \Omega v e c\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right]$. Now, by using that $\operatorname{tr}(A B C D)=\operatorname{vec}(D)^{\prime}\left(A \otimes C^{\prime}\right) \operatorname{vec}\left(B^{\prime}\right)$ (see Theorem 3, p. 31, in MN) we have:

$$
\begin{aligned}
& \operatorname{vec}\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right]^{\prime}\left[\left(S_{Q, i j} \otimes S_{Q, i j}\right) \otimes \operatorname{vec}\left[w_{i}\right] \operatorname{vec}\left[w_{j}\right]^{\prime}\right] \operatorname{vec}\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right] \\
= & \operatorname{tr}\left[\left(S_{Q, i j} \otimes S_{Q, i j}\right)\left(C_{\nu} \otimes C_{\nu}\right) \operatorname{vec}\left[w_{j}\right] \operatorname{vec}\left[w_{i}\right]^{\prime}\left(C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right)\right] \\
= & \operatorname{vec}\left[w_{i}\right]^{\prime}\left[\left(C_{\nu}^{\prime} S_{Q, i j} C_{\nu}\right) \otimes\left(C_{\nu}^{\prime} S_{Q, i j} C_{\nu}\right)\right] \operatorname{vec}\left[w_{j}\right] \\
= & \operatorname{tr}\left[\left(C_{\nu}^{\prime} S_{Q, i j} C_{\nu}\right) w_{j}\left(C_{\nu}^{\prime} S_{Q, j i} C_{\nu}\right) w_{i}\right] \\
= & \operatorname{tr}\left[\left(C_{\nu}^{\prime} Q_{x, i}^{-1} S_{i j} Q_{x, j}^{-1} C_{\nu}\right) w_{j}\left(C_{\nu}^{\prime} Q_{x, j}^{-1} S_{j i} Q_{x, i}^{-1} C_{\nu}\right) w_{i}\right],
\end{aligned}
$$

and similarly $\operatorname{vec}\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right]^{\prime}\left[\left(S_{Q, i j} \otimes S_{Q, i j}\right) W_{d} \otimes \operatorname{vec}\left[w_{i}\right] v e c\left[w_{j}\right]^{\prime}\right] \operatorname{vec}\left[C_{\nu}^{\prime} \otimes C_{\nu}^{\prime}\right]$ $=\operatorname{tr}\left[\left(C_{\nu}^{\prime} Q_{x, i}^{-1} S_{i j} Q_{x, j}^{-1} C_{\nu}\right) w_{j}\left(C_{\nu}^{\prime} Q_{x, j}^{-1} S_{j i} Q_{x, i}^{-1} C_{\nu}\right) w_{i}\right]$. Thus, we get the asymptotic variance matrix $\Sigma_{\xi}=2 \lim _{n \rightarrow \infty} E\left[\frac{1}{n} \sum_{i, j} \frac{\tau_{i}^{2} \tau_{j}^{2}}{\tau_{i j}^{2}} \operatorname{tr}\left[\left(C_{\nu}^{\prime} Q_{x, i}^{-1} S_{i j} Q_{x, j}^{-1} C_{\nu}\right) w_{j}\left(C_{\nu}^{\prime} Q_{x, j}^{-1} S_{j i} Q_{x, i}^{-1} C_{\nu}\right) w_{i}\right]\right]$. From $\tilde{\Sigma}_{\xi}=\Sigma_{\xi}+$ $o_{p}(1)$, the conclusion follows.

A.3.8 Proof of Equation (17)

We have:
$\hat{b}_{i, t}^{\prime} \hat{\lambda}_{t}=\operatorname{tr}\left[Z_{t-1} Z_{t-1}^{\prime} \hat{B}_{i}^{\prime} \hat{\Lambda}\right]+\operatorname{tr}\left[Z_{t-1} Z_{i, t-1}^{\prime} \hat{C}_{i}^{\prime} \hat{\Lambda}\right]=\left(Z_{t-1}^{\prime} \otimes Z_{t-1}^{\prime}\right) \operatorname{vec}\left[\hat{B}_{i}^{\prime} \hat{\Lambda}\right]+\left(Z_{t-1}^{\prime} \otimes Z_{i, t-1}^{\prime}\right) \operatorname{vec}\left[\hat{C}_{i}^{\prime} \hat{\Lambda}\right]$.

Thus, we get:

$$
\begin{aligned}
& \sqrt{T}\left(\widehat{C E}_{i, t}-C E_{i, t}\right) \\
= & \left(Z_{t-1}^{\prime} \otimes Z_{t-1}^{\prime}\right) \sqrt{T}\left(\operatorname{vec}\left[\hat{B}_{i}^{\prime} \hat{\Lambda}\right]-\operatorname{vec}\left[B_{i}^{\prime} \Lambda\right]\right)+\left(Z_{t-1}^{\prime} \otimes Z_{i, t-1}^{\prime}\right) \sqrt{T}\left(\operatorname{vec}\left[\hat{C}_{i}^{\prime} \hat{\Lambda}\right]-\operatorname{vec}\left[C_{i}^{\prime} \Lambda\right]\right) \\
= & \left(Z_{t-1}^{\prime} \otimes Z_{t-1}^{\prime}\right)\left[\left(\hat{\Lambda}^{\prime} \otimes I_{p}\right) \sqrt{T} v e c\left[\hat{B}_{i}^{\prime}-B_{i}^{\prime}\right]+\left(I_{p} \otimes B_{i}^{\prime}\right) \sqrt{T} v e c[\hat{\Lambda}-\Lambda]\right] \\
& +\left(Z_{t-1}^{\prime} \otimes Z_{i, t-1}^{\prime}\right)\left[\left(\hat{\Lambda}^{\prime} \otimes I_{q}\right) \sqrt{T} v e c\left[\hat{C}_{i}^{\prime}-C_{i}^{\prime}\right]+\left(I_{p} \otimes C_{i}^{\prime}\right) \sqrt{T} v e c[\hat{\Lambda}-\Lambda]\right] .
\end{aligned}
$$

By using that $\hat{\Lambda}=\Lambda+o_{p}(1)$ and $\operatorname{vec}[\hat{\Lambda}-\Lambda]=W_{p, K} \operatorname{vec}\left[\hat{\Lambda}^{\prime}-\Lambda^{\prime}\right]$, Equation (17) follows.

Appendix 4: Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in APR. 4 (i) and the cross-sectional dependence and asymptotic normality conditions in Assumptions A.1-A. 4 are satisfied under a block-dependence structure in a serially i.i.d. framework. Let us assume that:

BD. 1 The errors $\varepsilon_{t}(\gamma)$ are i.i.d. over time with $E\left[\varepsilon_{t}(\gamma)\right]=0$, for all $\gamma \in[0,1]$. For any n, there exists a partition of the interval $[0,1]$ into $J_{n} \leq n$ subintervals $I_{1}, \ldots, I_{J_{n}}$, such that $\varepsilon_{t}(\gamma)$ and $\varepsilon_{t}\left(\gamma^{\prime}\right)$ are independent if γ and γ^{\prime} belong to different subintervals, and $J_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

BD. 2 The blocks are such that $n \sum_{m=1}^{J_{n}}\left|B_{m}\right|^{2}=O(1), n^{3 / 2} \sum_{m=1}^{J_{n}}\left|B_{m}\right|^{3}=o(1)$, where $B_{m}=\int_{I_{m}} d G(\gamma)$.
BD. 3 The factors $\left(f_{t}\right)$ are i.i.d. over time and independent of the errors $\left(\varepsilon_{t}(\gamma)\right), \gamma \in[0,1]$.
BD. 4 There exists a constant M such that $\left\|f_{t}\right\| \leq M, P$-a.s.. Moreover, $\sup _{\gamma \in[0,1]} E\left[\left|\varepsilon_{t}(\gamma)\right|^{6}\right]<\infty$, $\sup _{\gamma \in[0,1]}\|\beta(\gamma)\|<\infty$ and $\inf _{\gamma \in[0,1]} E\left[I_{t}(\gamma)\right]>0$.

The block-dependence structure as in Assumption BD. 1 is satisfied for instance when there are unobserved industry-specific factors independent among industries and over time, as in Ang, Liu, Schwartz (2010). In empirical applications, blocks can match industrial sectors. Then, the number J_{n} of blocks amounts to a couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately $n B_{m}$ assets in block m, when n is large. In the asymptotic analysis, Assumption BD. 2 on block sizes and block number requires that the largest block size shrinks with n and that there are not too many large
blocks, i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks, covariances do not need to vanish asymptotically.

Lemma 8 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC. 2 on random sampling hold. Then, Assumption APR. 4 (i) is satisfied, and Assumptions A.1, A. 2 (with $\Gamma_{1}=\mathbb{R}^{+}$), A. 3 (with any $q \in(0,1)$ and $\delta=1 / 2)$ and 4.4 (with $\Gamma_{2}=\mathbb{R}^{+}$) are satisfied.

In Lemma 8, we have $\Gamma_{1}=\Gamma_{2}=\mathbb{R}^{+}$, which means that there is no condition on the relative expansion rates of n and T. The proof of Lemma 8 uses results in Stout (1974) and Bosq (1998).

Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal elements vanishing asymptotically. In that setting, we can carry out similar checks.

