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Optimal sample sizes and statistical decision rules
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A statistical decision rule is a mapping from data to actions induced by statisti-
cal inference on the data. We characterize these rules for data that are chosen
strategically in persuasion environments. A designer wishes to persuade a de-
cision maker (DM) to take a particular action and decides how many Bernoulli
experiments about a parameter of interest the DM can obtain. After obtaining
these data and estimating the parameter value, the DM chooses to take the action
if the estimated value exceeds some threshold. We establish that as the threshold
changes, the resulting statistical decision rules in many environments are either
simple majority or reverse unanimity.
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1. Introduction

Interested parties often give decision makers (DMs) access to data to persuade them to
take a particular action. For example, sellers may allow buyers to experiment with prod-
ucts prior to making a purchase. Similarly, lobbyists and think tanks often commission
public-opinion surveys to convince politicians to support certain policy proposals. In
both cases, the interested party decides how much data about a parameter of interest—
product quality or public support—the DM can obtain, and the parameter value governs
the distribution from which the data are generated. This paper studies persuasion with
these features.

An interested party (henceforth a designer) wishes to convince a DM to take a par-
ticular action. The value of the action to the DM is governed by a parameter with an
unknown value. The designer has a prior belief on the parameter value and decides how
large a sample about it to provide to the DM. Each data point in the sample is an inde-
pendent Bernoulli experiment governed by the parameter value. For example, in public-
opinion surveys, the parameter may be the underlying public support for a policy, and
each experiment may correspond to the opinion of a single survey respondent.
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By choosing a sample size, the designer chooses an information structure, that is,
a collection of signal distributions corresponding to different parameter values. This
information structure satisfies what we call responsiveness: for any two parameter val-
ues, the signal distribution for the DM-preferred parameter value first-order stochasti-
cally dominates the distribution for the second parameter value, but not the other way
around. This property differs from the standard assumption in Bayesian persuasion (Ka-
menica (2019)) whereby the designer can assign the same signal distribution to any two
parameter values.

Responsiveness naturally arises in real-life settings. Public-opinion surveys aim to
be responsive to changes in the opinion of the public. Product experimentation is sensi-
tive to product quality. And in clinical trials, outcomes are governed by the effectiveness
of the drug being tested. Surveys and clinical trials are used precisely because they are
responsive to the parameter of interest.

Unlike the designer, the DM in our model wishes to take the action only if its value,
which is governed by the payoff-relevant parameter, exceeds the value of the status quo.
The DM obtains the sample, estimates the parameter value using statistical inference,
and takes the action if the estimated value is sufficiently high.

We consider two approaches to statistical inference: the frequentist approach that
relies only on the sample, and the Bayesian approach that starts with a prior belief on
the parameter value and Bayes-update it based on the sample. An advantage of the
frequentist approach is that it does not require prior knowledge and uses only objective
data. It thus fits environments in which the DM is less experienced, less knowledgeable
about fundamentals, or does not want prior beliefs to influence decision making.1 An
important subclass of frequentist inference, which we focus on, is the class of unbiased
inference procedures whereby the expected value of an estimate (which is a distribution
over parameter values) is identical to the sample mean. Leading examples are maximum
likelihood estimation and Beta estimation.

Our analysis focuses on choice regularities that emerge as the status quo changes,
either across time for a single individual or across individuals in a population. To sum-
marize these regularities, we follow Wald (1949) and use the notion of a statistical deci-
sion rule: A direct mapping from samples (n, k), where n is a sample size chosen by the
designer for some status quo value and k is the number of successful experiments, to
binary choices between taking the action and keeping the status quo.

We identify two statistical decision rules that arise endogenously for unbiased sta-
tistical inference. The first is the reverse-unanimity rule, whereby the DM takes the ac-
tion unless all the experiments fail. This rule summarizes choice behavior when the
designer’s prior on the parameter value is decreasing. To be sure, the DM is a statistician
who decides whether to take the action based on the estimated parameter value. But
the designer’s sample-size selection results in a rule that exhibits what may seem like a
“bias” in favor of taking the action. The second rule is simple majority, whereby the DM
takes the action if and only if a simple majority of experiments are successful. This rule

1The statistics literature has debated the merits of the two approaches for over a century. Efron (2005) is
a nice recent discussion.
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summarizes choice behavior when the designer’s prior is either increasing and concave
or symmetric, and the status quo value exceeds 1/2.

The majority rule also summarizes the choice behavior of Bayesian DMs who share
the designer’s symmetric prior, although for a “compressed” interval of status quo values
relative to unbiased inference. Figure 4 provides a graphical illustration. The compres-
sion of the interval is perhaps expected because, for Bayesian DMs, estimation gravitates
toward the mean parameter value according to the prior. As the strength of the prior de-
creases, Bayesian DMs rely increasingly on the data, and, thus, their behavior converges
to that of frequentist DMs.

We proceed as follows. Section 2 presents the model. Sections 3 and 4 analyze un-
biased and Bayesian inference, respectively. Section 5 discusses the related literature.
Section 6 concludes with a discussion of costly data provision. The Appendix contains
proofs that do not appear in the main text.

2. Model

A decision maker (DM) has to decide whether to take an action or keep the status quo.
The value t ∈ (0, 1] of keeping the status quo is known to the DM and the value q ∈
[0, 1] of taking the action is not. To make a decision, the DM estimates q using data
and statistical inference, and takes the action if the estimated value of q is weakly larger
than t.

The data are independent Bernoulli experiments with success probability q. That is,
the data are governed by the value of taking the action. A successful experimental real-
ization, or simply a success, is interpreted as a data point in favor of taking the action.
An unsuccessful realization is called a failure.

The size of the data n ∈ N is decided by a designer who obtains a payoff of 1 if the DM
takes the action and 0 otherwise. The designer thus wishes to persuade the DM to take
the action regardless of the values of t and q. The designer knows t and believes that q
is drawn from an absolutely continuous distribution with density f . The prior belief f is
decreasing (increasing ) if it (i) weakly decreases (increases) in q on [0, 1] and (ii) differs
from the uniform prior on a nonzero measure. A prior f is symmetric if f (1/2 − q) =
f (1/2 + q) for q ∈ [0, 1/2]. Data provision is costless.2

After the designer decides the data size, the Bernoulli experiments are carried out by
the DM or a third party, and the DM obtains their realizations. The DM’s sample is the
pair (n, k), where n is the number of experiments and k is the number of successes. We
will refer to n as the sample size and to k/n as the sample mean.

2.1 Statistical inference

An inference procedure describes how the DM makes inferences from samples.

Definition 1 (Salant and Cherry (2020)). An inference procedure G = {Gn,k} assigns a
cumulative distribution function (CDF) Gn,k, called an estimate, to every sample (n, k)
such that the following statements hold:

2Section 6 discusses costly data provision.
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(i) The estimate Gn,k′ weakly first-order stochastically dominates the estimate Gn,k

when k′ >k.

(ii) The estimate Gn,n first-order stochastically dominates the estimate Gn,0.3

An inference procedure is the analogue of an estimator in the statistics literature. It
can be used to describe many forms of statistical inference. A focal example is Bayesian
inference.

Example 1 (Bayesian Inference). The DM has a nondegenerate prior belief on q and
uses Bayes rule to update it based on the sample. ♦

In addition to Bayesian inference, an inference procedure can also be used to model
frequentist inference procedures that do not rely on prior beliefs. Here are three exam-
ples.

Example 2 (Maximum Likelihood Estimation (MLE)). The DM calculates the most
likely parameter q to have generated the sample. It is easy to verify that this parameter
is the sample mean. Thus, the resulting estimate is Gn,k(q) = 1{q≥k/n}. ♦

Example 3 (Beta Estimation). The DM wishes to conduct Bayesian updating relying as
little as possible on prior beliefs. The DM starts with Haldane’s “prior” (Haldane (1932)),
which is the limit of the Beta(ε, ε) distribution as ε → 0. The DM’s posterior belief af-
ter obtaining the sample (n, k) is the limit of the corresponding Bayesian posteriors
Beta(ε+k, ε+ (n−k)), i.e., it is the Beta(k, n−k) distribution. Thus, the DM’s estimates
rely only on the sample.4 ♦

Example 4 (Dogmatic Views). The DM believes q is distributed either according to the
CDF F0 or the CDF F1 that first-order stochastically dominates F0. The DM decides
which distribution to use in decision making based on the sample. If k(n) or more real-
izations are successes, the DM uses F1. Otherwise, the DM uses F0. ♦

Frequentist inference procedures can be classified according to whether they are
unbiased.

Definition 2. An inference procedure G is unbiased if the expected value
∫ 1

0 qdGn,k of
any estimate Gn,k is equal to the sample mean k/n.

The MLE and Beta estimation procedures are unbiased. The dogmatic views proce-
dure is not. Bayesian inference is also not unbiased because the expected value of an
estimate depends on both the prior and sample mean.

Following the estimation of q, the DM uses the estimate to calculate the expected
value of q and takes the action if this value is weakly larger than t. For completeness, we
assume that a frequentist DM does not take the action if no data are provided.

3This definition is weaker than in Salant and Cherry (2020) as we require dominance in the strict sense
only for Gn,n and Gn,0.

4When the sample contains only failures or successes, the DM concentrates the estimate on 0 or 1, re-
spectively.
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2.2 The persuasion probability

The designer’s payoff is equal to the expected probability that the DM takes the action.
To calculate this probability, we first denote by b(n, j, q) = (n

j

)
qj(1 − q)n−j the probabil-

ity of obtaining j successes in n Bernoulli experiments with success probability q and
denote by

P(n, k, q) =
n∑

j=k

b(n, j, q)

the probability of obtaining k or more successes. We denote by

P(n, k) =
∫ 1

0
P(n, k, q)f (q)dq

the expected value of the probability P(n, k, q) according to the designer’s prior f .
By the first-order stochastic dominance property of an inference procedure, if the

DM takes the action after obtaining the sample (n, k), then the DM also takes the action
after obtaining a sample (n, j) with j > k. Thus, the probability that a DM with inference
procedure G takes the action is P(n, k(n, G, t ), q), where k(n, G, t ) denotes the smallest
number of successes after which the DM takes the action.5 We call P(n, k(n, G, t ), q) the
persuasion probability and refer to its expected value according to the designer’s prior,
P(n, k(n, G, t )), as the expected persuasion probability. When clear from the context, we
omit the dependence of k on its arguments.

For unbiased inference procedures, the focus of our analysis in Section 3, the small-
est number of successes that trigger the DM to take the action is k(n, G, t ) = �tn�. This
number does not depend on the specifics of the inference procedure, so we can write
the persuasion probability as

P
(
n, �tn�, q

) =
n∑

j=�tn�
b(n, j, q). (1)

2.3 The designer’s objective

The objective of the designer is to choose, for any value of the status quo t, a sample size
that maximizes the expected persuasion probability. That is, the designer solves for

S(t ) ≡ arg max
n∈N∪{0}

P
(
n, k(n, G, t )

)
, (2)

where S(t ) may include more than one sample size and sample size 0 corresponds to the
designer not providing any data to the DM.6

5There may be sample sizes for which the DM does not take the action regardless of the number of
successes. Such sample sizes are never optimal, so we ignore them.

6Sample size 0 is only relevant for the analysis of Bayesian inference because a frequentist DM would not
take the action without obtaining data.
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2.4 Statistical decision rules

The optimal sample size may change as the value of the status quo changes. As the
sample size and sample realizations change, so does the DM’s choice behavior. The fol-
lowing definition, based on Wald (1949), is about the mapping from samples to choices.

Definition 3. For an interval I ⊂ (0, 1] of status quo values, a statistical decision rule
CI assigns an action CI(n, k) ∈ {a, s}, where a denotes taking the action and s denotes
keeping the status quo, to any sample (n, k), where n ∈ S(t ) for some t ∈ I and 0 ≤ k≤ n.

The domain of a statistical decision rule is affected by the designer’s choice of sample
sizes. It is, therefore, a subset of the set of all possible samples. This domain may still
be quite large (often countably infinite as we show below) because a statistical decision
rule allows for variation in the status quo value.

Two ubiquitous statistical decision rules are discussed in the analysis to follow. The
first is reverse unanimity, whereby the DM takes the action unless all sample realizations
are failures. That is, C(0,1](n, k) = a if and only if k > 0. The second statistical decision
rule, for t > 1/2, is the simple-majority rule, whereby the DM takes the action if and only
if more than half of the sample realizations are successes. That is, C( 1

2 ,1](n, k) = a if and

only if k> n/2.

3. Unbiased inference

We proceed to study the designer’s optimal sample sizes and the DM’s statistical deci-
sion rules for unbiased statistical inference. The following property of the persuasion
probability (proved in the Appendix) will be useful in the analysis.

Single crossing. For any two pairs (n′, k′ ) and (n, k) such that n′ < n and 0 < k′ < k,
there exists a cutoff q∗ > 0 such that P(n′, k′, q) > P(n, k, q) for q ∈ (0, q∗ ). If n′ − k′ <
n− k, then q∗ < 1 and P(n, k, q) >P(n′, k′, q) for q ∈ (q∗, 1).

The single-crossing property can be used to rank persuasion probabilities. For a
given t, let k′ and k be the smallest number of successes after which the DM takes the
action for sample sizes n′ and n, respectively. If k′ < k and n′ − k′ < n− k, then the per-
suasion probability P(n′, k′, q) crosses P(n, k, q) exactly once and from above in (0, 1).
Consequently, sample size n′ dominates sample size n for priors that put a “large weight”
on small values of q, whereas sample size n dominates n′ for priors that put a large weight
on large values of q.

Figure 1 provides a graphical illustration. Suppose that t ∈ (1/2, 2/3]. For sample size
1, a single success suffices for taking the action; for sample size 3, at least two successes
are required. The conditions for an interior single crossing are thus met, and P(1, 1, q)
crosses P(3, 2, q) exactly once and from above in (0, 1).
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Figure 1. Persuasion probabilities P(1, 1, q) (solid) and P(3, 2, q) (dashed).

3.1 Decreasing priors and reverse unanimity

The first class of designer priors we analyze is the class of decreasing priors. Recall that a
prior is decreasing if it weakly decreases in q on [0, 1] and differs from the uniform prior
on a nonzero measure.

Theorem 1. For any decreasing prior and any value t of the status quo, the uniquely
optimal sample size is 
t−1�. Consequently, the DM’s statistical decision rule is reverse
unanimity.

Theorem 1 says that any positive integer is a sample size chosen by the designer for
some interval of status quo values. Consequently, with sufficient variation in the status
quo, choice behavior can be observed for every feasible sample. This behavior, although
generated by unbiased statistical inference, is consistent with the reverse-unanimity
rule: the DM takes the action unless all experiments fail.

Theorem 1 also says that the optimal sample size increases as the status quo value
decreases. This is perhaps expected because the status quo value reflects the intensity
of the conflict between the DM and the designer. The DM wishes to take the action only
if its value exceeds that of the status quo, whereas the designer wishes the DM to take
the action regardless of the status quo. The persuasion probability corresponding to
the optimal sample size, which is given by 1 − (1 − q)n, also increases as the status quo
decreases, implying that persuasion is more likely when there is less conflict.

Proving Theorem 1 amounts to showing that sample size n′ is uniquely optimal for
the interval In′ = ( 1

n′+1 , 1
n′ ] of status quo values. Let us fix this interval and focus on

samples of the form (n(k), k) with n(k) = k(n′ +1)−1. That is, n(k) is the largest sample
size n such that the sample (n, k) triggers taking the action for some status quo value in
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In′ .7 By definition, n(1) = n′, and the sample (n′, 1) triggers taking the action for any
status quo value in In′ .

The first step in the proof of Theorem 1 below is to establish that expected persua-
sion probabilities in the interval In′ are bounded from above by

max
k∈N

P
(
n(k), k

)
.

Therefore, it suffices to show that P(n′, 1) dominates all other P(n(k), k)s. In the sec-
ond step, we calculate the probabilities P(n(k), k) under the uniform prior and show
that they are equal. Finally, we observe that the transition from the uniform prior to
a decreasing prior is an operation that “shifts mass” from higher to lower values of q.
Thus, by the single-crossing property, mass is shifted to values in which P(n(1), 1, q)
dominates all other P(n(k), k, q)s, establishing the result.

Proof of Theorem 1. We show that sample size n′ is uniquely optimal for t ∈ In′ =
( 1
n′+1 , 1

n′ ]. We first assign to every positive integer k the sample size n(k) = k(n′ + 1) − 1.
Note that n(1) = n′.

Lemma 1. For any integer k≥ 1, P(n(k), k) >P(n, k) for n < n(k).

Lemma 1 implies that it suffices to compare P(n′, 1) to other probabilities of the form
P(n(k), k) so as to prove the optimality of n′. Indeed, consider some sample size n and
let k be the smallest number of successes triggering the DM to take the action for this
sample size. That is, (k− 1)/n < t ≤ k/n. Coupled with the inequality t > 1/(n′ + 1), we
have that n ≤ k(n′ + 1) − 1 = n(k). By Lemma 1, the expected persuasion probability
P(n, k) is bounded from above by P(n(k), k). Thus, if the expected persuasion prob-
ability P(n′, 1) exceeds P(n(k), k) for all k ≥ 2, then P(n′, 1) exceeds all the expected
persuasion probabilities of the form P(n, k) satisfying k

n ≥ t. Consequently, sample size
n′ is optimal.

For the uniform prior, the probabilities P(n(k), k) are equal. This is because the
probability P(n, k, q) is the incomplete regularized Beta function, which in turn is the
CDF of the Beta(k, n − k + 1) distribution with mean k

n+1 . Therefore, the probability
P(n, k), which, for the uniform prior, is the integral of the corresponding CDF, is equal
to 1 − k

n+1 . Thus, for the uniform prior,

P
(
n(k), k

) = 1 − k/
(
n(k) + 1

) = 1 − 1/
(
n′ + 1

) = P
(
n′, 1

)
.

For decreasing priors, P(n(1), 1) exceeds P(n(k), k) for every k ≥ 2. This is an im-
plication of the single-crossing property because a decreasing prior intuitively “shifts
mass” from high values of q to lower values relative to the uniform prior. The following
lemma formalizes this intuition and thus concludes the proof.

Lemma 2. If P(n′, 1) ≥ P(n(k), k) for the uniform prior, then P(n′, 1) >P(n(k), k) for any
decreasing prior.

7Note that the sample (n(k), k) does not necessarily trigger taking the action for all status quo values in
In′ .
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3.2 Increasing or symmetric priors and simple majority

For increasing priors, we can obtain a lower bound on the optimal sample size.

Proposition 1. For any increasing prior and any value t of the status quo, the optimal
sample size is weakly larger than n(k′ ) = k′(n′ + 1) − 1, where n′ = 
t−1� and k′ is the
unique integer satisfying k′+1

n(k′+1) < t ≤ k′
n(k′ ) .

The proof of Proposition 1 follows similar ideas to those of Theorem 1 with two mod-
ifications. First, the transition from a uniform prior to an increasing prior shifts mass
to higher values of q, which favor larger sample sizes of the form n(k). Second, for a
given status quo, the largest sample of the form (n(k), k) that triggers taking the action
is (n(k′ ), k′ ), where k′ is defined as in the statement of the proposition. Sample size n(k′ )
is, thus, a lower bound on the optimal sample size.

For t ∈ (1/2, 1] = I1, we have that n′ = 1 in the statement of Proposition 1. The small-
est candidate for optimality is, therefore, the largest odd sample size 2k − 1 satisfying
that a simple majority k of successes triggers taking the action. Theorem 2 shows that
this candidate is indeed optimal when the prior is also concave.

Theorem 2. For any increasing and concave prior and any value t > 1/2 of the sta-
tus quo, the uniquely optimal sample size is the largest odd sample size weakly below

(2t − 1)−1�. Consequently, the DM’s statistical decision rule is simple majority.

Theorem 2 says that for t > 1/2, any odd integer n is a uniquely optimal sample size
for some interval of status quo values. The optimal sample size and the corresponding
persuasion probability decrease in the status quo value, i.e., as the intensity of conflict
between the DM and the designer increases. Variation in the status quo reveals a familiar
choice pattern: behavior is consistent with the simple majority rule.

Theorem 2 can be extended to any prior that increases in q and decreases in the ratio
f (q)/q.8 Intuitively, when the ratio f (q)/q decreases in q, the prior assigns sufficiently
large mass to small values of q so that the sample sizes identified in Proposition 1 as a
lower bound for t > 1/2 are optimal. When this is not the case, large sample sizes may
dominate smaller ones and an optimal sample size may not exist. To illustrate, consider
a prior that assigns positive mass only to qs above some fixed q′ > 0. This prior may
reflect the belief of a designer who is confident that the DM’s value of taking the action
is at least q′. For such an increasing prior, if the status quo value is below q′, the de-
signer has an incentive to provide unlimited data to the DM, as providing an additional
data point further increases the persuasion probability for large sample sizes, and large
sample sizes dominate small ones.

A modified version of Theorem 2 also holds for symmetric priors.

Theorem 3. For any symmetric prior and any value t > 1/2 of the status quo, all odd
sample sizes weakly below 
(2t − 1)−1� are optimal. Consequently, the DM’s statistical
decision rule is simple majority.

8The proof is essentially identical to the proof of Theorem 2 in the Appendix.
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Figure 2. Optimal sample sizes for monotone or symmetric priors.

To prove Theorem 3, we first observe that expected persuasion probabilities in I1

are bounded from above by probabilities of the form P(2k − 1, k). The probabilities
P(2k− 1, k) are, in turn, equal for symmetric priors. This is because for any two integers
k and k′, the difference function �(q) = P(2k−1, k, q)−P(2k′ −1, k′, q) satisfies �(q) =
−�(1−q). Thus, it suffices to focus on odd sample sizes satisfying that a simple majority
of successes triggers taking the action. For a given t > 1/2, the largest sample size for
which this happens is that specified in the statement of Theorem 3.

Figure 2 summarizes the results of Section 3. Decreasing priors provide the lower
envelope of the optimal sample sizes. For t > 1/2, increasing and concave priors pro-
vide the upper envelope, and symmetric priors span the range of all odd sample sizes
between the lower and upper envelopes.9

4. Bayesian inference

When the DM is a Bayesian statistician who shares the designer’s prior f rather than a
frequentist statistician, simple majority continues to be a relevant choice regularity.

To illustrate this point, we consider Beta(α, β) priors with the density

f (α, β) = qα−1(1 − q)β−1∫ 1

0
qα−1(1 − q)β−1 dq

,

where α and β are real numbers. We may think about α as measuring the prior number
of successes, i.e., how confident the DM is—based on prior knowledge—that q is large.
Similarly, β is the prior number of failures measuring the DM’s prior confidence that q is
small.

9The lower bound on the optimal sample size for symmetric priors, and in fact any prior, follows from
Lemma 1. By the Lemma, if t ∈ In′ , then P(n′, 1) >P(n, 1) for n < n′.
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Figure 3. Symmetric Beta priors for α = 1/4, 1, 2, 4.

Symmetric Beta priors are characterized by α = β. They have a variety of shapes as α
changes. As α increases from just above 0 to 1, the Beta(α, α) distribution has a U shape
that gradually flattens until the distribution becomes uniform for α = 1. As α increases
above 1, the distribution transitions to a reverse-U shape before taking a bell shape with
an increasingly large mass around its mean. Figure 3 provides a graphical illustration.

A DM with a Beta(α, α) prior who obtains the sample (n, k) Bayes-updates the prior
belief to the Beta(α + k, α + (n − k)) distribution.10 That is, the sample successes are
added to the prior number of successes, and sample failures are added to the prior num-
ber of failures. The expected value of this Bayesian estimate is a weighted average of the
prior mean 1/2 and the sample mean k/n with weights corresponding to the prior and
sample relative strengths, 2α and n, respectively:

2α
2α+ n︸ ︷︷ ︸

prior weight

·

prior mean︷︸︸︷
1
2

+ n

2α+ n︸ ︷︷ ︸
sample weight

·

sample mean︷︸︸︷
k

n
.

Bayesian inference has two immediate implications for the analysis. First, if the sta-
tus quo value is smaller than the prior mean 1/2, data provision is irrelevant: the DM
takes the action with probability 1 without obtaining any additional data. Second, if the
status quo value is above α+1

2α+1 , which is the posterior mean after observing the sample
(1, 1), then sample size 1 cannot be optimal and the domain of relevant sample sizes is
smaller than for unbiased inference. To facilitate the comparison of Bayesian inference
to unbiased inference, we, therefore, focus on t ∈ (1/2, α+1

2α+1 ] = Iα where the domains of
the designer’s maximization problem for Bayesian and unbiased inference are identical.

Theorem 3B, where B stands for Bayesian, establishes that the DM’s choice behav-
ior is consistent with simple majority in Iα. In fact, the entire structure of the optimal

10This is because the Beta(α, β) distribution is a conjugate prior for Bernoulli experiments.
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Figure 4. Optimal sample sizes for Beta(α, α) priors.

sample sizes in Iα is identical to the structure characterized in Theorem 3 for unbiased
inference in I1.

Theorem 3B. For any Beta(α, α) prior and t ∈ (1/2, α+1
2α+1 ], all odd sample sizes weakly

below 
(2t − 1)−1 − 2α� are optimal. Consequently, the DM’s statistical decision rule is
simple majority.

Figure 4 provides a graphical illustration of how the optimal sample sizes compare to
those of unbiased inference. Sample size 2k− 1 is optimal for unbiased inference when
t ∈ (1/2, k

2k−1 ]. The upper bound of this interval decreases to α+k
2α+(2k−1) for Bayesian

inference. As α decreases, the upper bound of the interval for Bayesian inference in-
creases, and it converges to that for unbiased inference as α tends to 0. This convergence
holds because as α decreases, the strength of prior 2α decreases, and Bayesian inference
converges to the Beta estimation procedure in Example 3.

A focal example of a symmetric prior is the uniform distribution, which is the
Beta(1, 1) distribution. Because we can derive closed-form expressions of the expected
persuasion probabilities in this case, we can solve for the optimal sample size directly
and derive the DM’s statistical decision rule for the entire interval of status quo values.

Proposition 2. Let t ∈ ( n′
n′+1 , n′+1

n′+2 ] for some positive integer n′. For the uniform prior,
sample size n is optimal if and only if n = k(n′ + 1) − 1 for some positive integer k and the
sample (n, kn′ ) triggers taking the action. Consequently, the DM’s statistical decision rule
is the n′

n′+1 -supermajority rule.

Thus, for t ∈ (1/2, 2/3], the optimal sample sizes and the DM’s statistical decision
rule coincide with those of Theorem 3B: Simple majority is the required majority for
taking the action. For t ∈ (2/3, 3/4], the required supermajority is two-thirds, for t ∈
(3/4, 4/5] it is three-quarters, and so on. Figure 5 depicts the corresponding collection
of optimal sample sizes.
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Figure 5. Optimal sample sizes for Bayesian inference from a uniform prior and t ∈ (2/3, 4/5].

5. Related literature

This paper is related to the literature that incorporates sampling (Osborne and Rubin-
stein (1998, 2003)) and statistical inference (Salant and Cherry (2020)) into games. In
the S(k)-equilibrium of Osborne and Rubinstein (1998), players do not know the map-
ping from own actions to payoffs, sample the payoff of each action k times, and choose
the action with the highest sampled payoff. Osborne and Rubinstein (2003) is a subse-
quent contribution in which players sample other players’ actions instead of own pay-
offs and best respond to sample averages. Salant and Cherry (2020) enrich this frame-
work by considering players who use statistical inference to estimate other players’ ac-
tions and best respond to their estimates. Spiegler (2006a,b) studies competition be-
tween firms that face consumers who sample a payoff-relevant parameter once, and
Sethi (2000, 2021) and Mantilla, Sethi, and Cárdenas (2020) study stability properties of
S(1)-equilibria. This literature treats players’ sample size as a primitive of their deci-
sion making procedure or a component of the solution concept, and with the exception
of Salant and Cherry (2020), the literature solves models with players who obtain very
small samples. The focus of the current paper is on an orthogonal question. We treat
the sample size as a design parameter and solve for the optimal sample size.

As such, our paper contributes to the small literature on the design of experiments
in strategic environments. In Di Tillio, Ottaviani, and Sørensen (2021), the DM decides
(i) the minimal sample size the designer collects on behalf of the DM, and (ii) whether
to allow the designer to collect a larger sample at a cost and provide the DM with a non-
random selection from it. We consider a complementary setting in which the designer
decides the sample size without any constraints imposed by the DM and the DM ob-
tains the entire sample. Other contributions to this literature include Chassang, Padró i
Miquel, and Snowberg (2012) and Banerjee, Chassang, Montero, and Snowberg (2020).

A third related literature is that on Bayesian persuasion (Kamenica and Gentzkow
(2011)). We depart from this literature in two ways. First, as discussed in the Intro-
duction, feasible information structures in our setup are responsive to changes in the
value of the relevant parameter. Second, we consider frequentist inference procedures
in addition to Bayesian inference. In this respect, the current paper is also related to
contributions on persuasion with non-Bayesian DMs (Glazer and Rubinstein (2012),
Galperti (2019), Eliaz, Spiegler, and Thysen (2021), and Levy, Moreno de Barreda, and
Razin (2022)).
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6. Conclusion

We considered a designer who wishes to persuade a DM to make a particular choice and
who controls how large a sample about a parameter of interest the DM can obtain be-
fore choosing. Selecting a sample size results in an information structure that is respon-
sive to changes in the parameter value: the signal distribution increases in a first-order
stochastic dominance sense as the parameter value increases.

The DM in our model is a statistician who uses data and statistical inference to es-
timate the parameter. A large part of the analysis focused on frequentist statistical in-
ference that does not rely on prior beliefs. In addition to analytical tractability, incorpo-
rating prior-free statistical inference into the study of strategic interactions is relevant
because of the increasing use of prior-free estimation methods and machine learning
techniques in real-life strategic settings.11

After estimating the parameter, the DM makes a choice based on the estimated pa-
rameter value. A main focus of our analysis was to examine the resulting statistical de-
cision rules. We identified environments in which commonly observed decision rules—
simple majority and reverse unanimity—summarize the DM’s choice behavior when
sample sizes are chosen strategically by a designer to maximize the persuasion prob-
ability.

In real-life settings, data provision may be costly to the designer. For example, al-
lowing consumers more experimentation with a product may carry an opportunity cost
or lead to wear and tear. The designer may take such a cost into account when deciding
how much experimentation to allow. We conclude by illustrating that although the de-
signer’s optimal sample sizes may change with costly data provision, the DM’s statistical
decision rule may not.

Consider a designer who faces a small cost c < P(1, 1) = Ef (q) of providing an ad-
ditional experiment to an unbiased statistician. Theorem 1C, where C stands for costly,
establishes that a modified Theorem 1 continues to hold with costly data provision.

Theorem 1C. For any decreasing prior f and a positive cost c < Ef (q), there exists n(c) ∈
N such that for any t, the optimal sample size is min{n(c), 
t−1�}. Consequently, the DM’s
statistical decision rule is reverse unanimity.

Thus, for status quo values above 1/(n(c) + 1), the optimal sample sizes are identical
to those with costless data provision, whereas for smaller status quo values, the cost
binds and the designer chooses sample size n(c). The domain of the statistical decision
rule is, therefore, finite and it increases (in the set inclusion sense) as c decreases. While
the domain changes relative to costless experimentation, choice behavior does not: It
continues to be consistent with reverse unanimity.

An analogous result holds for increasing and concave priors.12

11Earlier contributions that incorporate the frequentist approach to economic theory include Al-Najjar
(2009) in the context of individual decision making and Salant and Cherry (2020) in the context of multi-
person decision making.

12For symmetric priors and t > 1/2, the designer always chooses sample size 1 with costly data provision.
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Theorem 2C. For any increasing and concave prior f and positive cost c < Ef (q), there
exists n(c) ∈ N such that for any t > 1/2, the designer’s optimal sample size is the largest
odd sample size weakly below min{2n(c) − 1, 
(2t − 1)−1�}. Consequently, the DM’s statis-
tical decision rule is simple majority.

Thus, similarly to decreasing priors, the domain of the statistical decision rule
changes with the cost, but the decision rule itself remains identical to that obtained with
costless data provision.

Appendix: Proofs

Proof of the Single-Crossing Property. Consider the ratio function

r(q) ≡ P ′(n, k, q)

P ′(n′, k′, q
) =

k

(
n

k

)

k′
(
n′
k′

)q(k−k′ )(1 − q)(n−k−n′+k′ ),

where P ′ is the derivative of P . The function r(q) is continuous, positive on (0, 1) and,
because k > k′, approaches 0 as q approaches 0. Thus, P(n′, k′, q) is above P(n, k, q) in
a neighborhood of 0.

To verify that P(n, k, q) crosses P(n′, k′, q) at most once in (0, 1), assume to the con-
trary that there are two or more such crossings. Then the difference function �(q) =
P(n′, k′, q) − P(n, k, q) has at least three interior extremum points with �′(q) = 0 be-
cause �(0) = �(1) = 0. Because �′(q) = 0 for q ∈ (0, 1) if and only if r(q) = 1, there are at
least three interior points at which r(q) = 1. However, r(q) has at most two such points
as we show below, implying that P(n, k, q) crosses P(n′, k′, q) at most once in (0, 1).

Observe that r(q) has at least one point at which it is equal to 1. Otherwise, r(q) <
1 and, thus, �′(q) < 0 for all q ∈ (0, 1). The latter inequality implies that �(1) < 0 in
contradiction to �(1) = 0. To establish that there are at most two such points, consider
first the case in which n′ − k′ ≥ n− k. In this case, r(q) increases in q. Therefore, there is
exactly one point at which r(q) is equal to 1 and q∗ = 1. If, however, n− k> n′ − k′, then
r(q) increases up to k−k′

n−n′ < 1 and then decreases. Thus, there are exactly two interior
points at which r(q) is equal to 1, implying that q∗ < 1.

Proof of Lemma 1. Fix an integer k ≥ 1. It suffices to show that P(n(k), k, q) >

P(n, k, q) for q ∈ (0, 1). Using the binomial identity b(m, l, q) = qb(m − 1, l − 1, q) +
(1 − q)b(m− 1, l, q) multiple times, we obtain that

P(n+ 1, k, q) = P(n, k, q) + qb(n, k− 1, q) >P(n, k, q), (A1)

which in turn implies the desired inequality because n(k) > n.

Proof of Lemma 2. By single crossing, P(n′, 1, q) crosses P(n(k), k, q) from above at
some q∗ ∈ (0, 1). If f (q∗ ) = 0, then because f is decreasing, its support is nested in [0, q∗]
and P(n′, 1, q) dominates P(n(k), k, q) on the entire support of f .
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Suppose f (q∗ ) > 0 and consider the constant function h(q) = f (q∗ ). Because f is
decreasing, the function h either reduces the mass on qs smaller than q∗ relative to f ,

i.e.,
∫ q∗

0 f (q)dq >
∫ q∗

0 h(q)dq, or h increases the mass on qs larger than q∗. Thus, by
single crossing, if P(n′, 1) ≥ P(n(k), k), where the expectation is taken with respect to
h, then a strict inequality holds with respect to f . Since h is a rescaling of the uniform
distribution, P(n′, 1) ≥ P(n(k), k) forh if and only ifP(n′, 1) ≥ P(n(k), k) for the uniform
prior. The result follows.

Proof of Proposition 1. Fix t ∈ ( k′+1
n(k′+1) , k′

n(k′ ) ]. For sample size n(k) with k ≤ k′, the
smallest number of successes that trigger taking the action is k. Therefore, the corre-
sponding expected persuasion probability is P(n(k), k). As in the proof of Theorem 1,
the probabilities P(n(k), k) are equal under the uniform prior, and an argument mirror-
ing Lemma 2 implies that P(n(k′ ), k′ ) dominates P(n(k), k) for k< k′.

As for the remaining sample sizes, fix n < n(k′ ) and let k be the smallest number
of successes that trigger taking the action for this sample size. Since k

n ≥ t > 1
n′+1 , we

have that n < n(k). Thus, by Lemma 1, sample size n(k), which is strictly dominated by
sample size n(k′ ), dominates sample size n.

Proof of Theorem 2. Fix an integer m ≥ 1 and let t ∈ ( m+1
2m+1 , m

2m−1 ]. By Proposition 1,
it suffices to show that sample size 2m−1 dominates larger sample sizes. For any sample
size n > 2m− 1, let

k[n] =
{
�nt�∣∣t ∈

(
m+ 1

2m+ 1
,

m

2m− 1

]}
(A2)

denote the set of all integers k satisfying that there exists t in the relevant interval for
which k is the smallest integer such that the DM takes the action after obtaining the
sample (n, k). Let κ(n) denote the smallest integer in k[n]. By definition, k[2m− 1] is a
singleton with κ(2m− 1) =m, and κ(2m) = m+ 1.

Figure 6 illustrates construction of the set k[n] for n= 3, � � � , 13 and m= 2. For m = 2,
the relevant interval of ts is (3/5, 2/3]. Dots in the figure (solid and striped) correspond
to k

n s and they are circled when k ∈ k[n]. For example, k[8] = {5, 6} and, therefore, the
corresponding dots are circled, while 7 /∈ k[9] and, therefore, the corresponding dot is
not circled. Circled-striped dots correspond to κ(n)

n . For example, κ(8) = 5 and, there-
fore, the corresponding dot is striped.

We need to show that P(2m−1, m) >P(n, k) for n > 2m−1 and k ∈ k[n]. We do so in
two steps. The first step establishes that it suffices to examine the expected persuasion
probabilities with respect to the linear prior h(q) = 2q.

Step 1. If P(2m− 1, m) >P(n, k) for the linear prior, then P(2m− 1, m) >P(n, k) for an
increasing and concave prior.

Proof. If m−1 ≥ n−k, then single crossing implies the desired inequality holds regard-
less of the prior because m < k. Otherwise, P(2m − 1, m, q) > P(n, k, q) for q ∈ (0, q∗ )
and a reverse inequality holds for q ∈ (q∗, 1), where q∗ ∈ (0, 1). Consider the linear
function fh(q) = f (q∗ )

q∗ q = f (q∗ )
2q∗ h(q) created by extending the secant between (0, 0) and
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Figure 6. Construction of k[n] and D in Theorem 2 for m = 2. Dots correspond to k
n s; circled

dots correspond to k
n for k ∈ k[n]; circled-striped dots correspond to κ(n)

n ; dots circumscribed by
diamonds correspond to κ(n)

n for n ∈ D. Arrows point in the direction of domination in the set D.

(q∗, f (q∗ )) until q = 1. This function either reduces the mass on q < q∗ or increases the
mass on q > q∗, implying that if P(2m − 1, m) > P(n, k) for fh (which is not necessarily
a density), then P(2m− 1, m) >P(n, k) for f . Because fh is a rescaling of h, it suffices to
prove the inequality for h.

The second step establishes the desired inequality with respect to h.

Step 2. For the linear prior, P(2m− 1, m) >P(n, k).

Proof. For any sample (n, k), we have

P(n, k) = [
P(n, k, q)q2]1

q=0 −
∫ 1

0
P ′(n, k, q)q2 dq

= 1 −
k

(
n

k

)

(k+ 2)

(
n+ 2
k+ 2

) ∫ 1

0
P ′(n+ 2, k+ 2, q)dq = 1 − k(k+ 1)

(n+ 1)(n+ 2)
,

where the first equality follows from integration by parts and the second equality follows
from P ′(n, k, q) = k

(n
k

)
q(k−1)(1 − q)(n−k).

To show that P(2m− 1, m) >P(n, k), we thus need to show that k(k+1)
(n+1)(n+2) >

(m+1)
2(2m+1) ,

which holds if (i) k+1
n+1 > m+1

2m+1 and (ii) k
n+2 ≥ 1

2 .
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Inequality (i) holds because k+1
n+1 ≥ k

n ≥ t > m+1
2m+1 . To prove inequality (ii), it suffices to

consider whether (ii) holds for κ(n), and to do that, we consider the set D of all sample
sizes n satisfying that κ(n)

n < κ(n1 )
n1

for every n1 such that 2m − 1 ≤ n1 < n. In Figure 6,
sample sizes 3, 8, and 13 belong to set D and the corresponding dots are circumscribed
by diamonds. If n ∈ D\{2m − 1}, Lemma A1 (stated and proved below) implies that n =
(2m+ 1)l − 2 for some integer l ≥ 2. By definition, κ(n) = (m+ 1)l − 1. Thus, κ(n)/(n+
2) ≥ 1/2. If n /∈ D, Lemma A2 (stated and proved below) implies that there exists n1 ∈ D
that satisfies n1 ≤ n and κ(n1 )

n1
≤ κ(n)

n . These two inequalities imply that κ(n) ≥ κ(n1 ),
which in turn implies that κ(n)/(n+ 2) ≥ κ(n1 )/(n1 + 2) ≥ 1/2.

Lemma A1. Fix an integer m≥ 1. If n ∈ D, then n = (2m+ 1)l − 2 for some l ∈ N .

Proof. Fix l ∈ N and consider sample sizes n1 = (2m+1)l−2 and n2 = (2m+1)(l+1)−
2. By definition, κ(n1 ) = (m+ 1)l − 1 and κ(n2 ) = (m+ 1)(l + 1) − 1. Thus, κ(n2 )

n2
< κ(n1 )

n1
.

To complete the proof, it suffices to show that κ(n1 )
n1

≤ κ(n)
n for any n1 < n< n2.

Any such n satisfies κ(n) = (m + 1)l + j for some integer 0 ≤ j ≤ m because κ(n) >
κ(n1 ) (this follows from κ(n1 )

n1+1 ≤ m+1
2m+1 ) and κ(n) ≤ κ(n2 ). Fix j and consider the set of all

ns with κ(n) = κ(j) = (m+ 1)l + j. Since the ratio κ(n)
n decreases in n, it suffices to verify

that κ(n1 )
n1

≤ κ(n)
n for the largest n in the set. We denote this maximal n as n(j). Then

n(j) = (2m + 1)l + 2j − 1 for 0 ≤ j ≤ m − 1 because it satisfies the inequality κ(j)
n(j)+1 ≤

m+1
2m+1 < κ(j)

n(j) , and n(m) = n2 − 1. Verifying that κ(n1 )
n1

≤ κ(j)
n(j) completes the proof.

Lemma A2. If n /∈ D, then there exists n1 ∈ D such that n1 ≤ n and κ(n1 )
n1

≤ κ(n)
n .

Proof. Fix n /∈ D and let n1 be the largest sample size in D that is smaller than n. The
proof of Lemma A1 implies that κ(n1 )

n1
≤ κ(n)

n .

Proof of Theorem 3. Fix an integer m ≥ 1. It suffices to show that sample sizes in the
set D = {1, 3, � � � , 2m− 1} are optimal for t ∈ ( m+1

2m+1 , m
2m−1 ].

For sample size n, the sample (n, k) triggers the DM to take the action for t slightly
above 1/2 if k

n > 1
2 . Thus, the DM needs to obtain at least a simple majority of successes

so as to take the action in this case.
For an even sample size n and t in the relevant interval, P(n, �nt�) is weakly smaller

than P(n, n+2
2 ) because n+2

2 ≤ �nt�. The probability P(n, n+2
2 ) is in turn smaller than

P(n + 1, n+2
2 ) by identity (A1) in the proof of Lemma 1. Thus, the expected persuasion

probability P(n, �nt�) of an even sample size n is dominated by the probability P(n +
1, n+2

2 ).
For an odd sample size n > 2m − 1 and t in the relevant interval, the expected per-

suasion probability P(n, �nt�) is smaller than P(n, n+1
2 ) because n+1

2 < �nt� by the choice
of n and t. Thus, to show that sample sizes in D are optimal, it suffices to show that
P(n, n+1

2 ) is equal for all odd integers. This holds because for any n = 2k − 1 and any
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symmetric distribution f , we have that

P(2k− 1, k) =
∫ 1/2

0
P(2k− 1, k, q)f (q)dq+

∫ 1

1/2

(
1 − P(2k− 1, k, 1 − q)

)
f (q)dq

=
∫ 1/2

0
P(2k− 1, k, q)f (q)dq+

∫ 1/2

0

(
1 − P(2k− 1, k, q)

)
f (q)dq

=
∫ 1/2

0
f (q)dq = F(1/2),

where the first equality holds because P(2k − 1, k, q) = 1 − P(2k − 1, k, 1 − q) and the
second equality holds by the symmetry of f .

Proof of Theorem 3B. Fix a positive integer m and t ∈ ( α+m+1
2α+2m+1 , α+m

2α+2m−1 ]. It suffices
to show that sample sizes in the set D = {1, 3, � � � , 2m− 1} are optimal.

For sample sizes in D, a simple majority of successes suffices for taking the action as
in unbiased inference. By the proof of Theorem 3, the corresponding expected persua-
sion probabilities are equal. The expected persuasion probability for an even sample
size n is dominated by P(n + 1, n+2

2 ) as in the proof of Theorem 3. Finally, for an odd
sample size n > 2m− 1, the smallest number of successes that triggers taking the action
is weakly larger than in the case of unbiased inference. Thus, by the proof of Theorem 3,
sample size n is dominated by sample sizes in the set D.

Proof of Proposition 2. Fix an integer n′ and t ∈ ( n′
n′+1 , n′+1

n′+2 ]. Let n(k) = k(n′ +1)−1.

The sample (n(k), kn′ ) triggers the DM to take the action if kn′+1
n(k)+1 ≥ t. The left-hand side

of this inequality decreases in k and converges to n′
n′+1 . Thus, there exists k̄(t ) such that a

sample (n(k), kn′ ) triggers the DM to take the action if and only if k≤ k̄(t ). Let D be the
corresponding set of sample sizes. We need to show that sample sizes in D are optimal.

Because t > n′
n′+1 , the expected persuasion probability for sample sizes smaller than

n′ is 0. Because the prior is uniform, the expected persuasion probability for sample
sizes in D is P(n(k), kn′ ) = 1 − n′

n′+1 > 0. The expected persuasion probability for any

sample size n(k) with k > k̄(t ) is smaller because more than kn′ successes are required
for taking the action. For the remaining sample sizes, fix some sample size n and let k′ be
the largest integer such that the DM takes the action after obtaining the sample (n, n −
k′ + 1), i.e., n−k′+2

n+2 ≥ t. Combined with the inequality t > n′
n′+1 , we obtain that n > n(k′ ).

Consequently, n−k′+1
n+1 > n(k′ )−k′+1

n(k′ )+1 = n′
n′+1 , where the first inequality holds because n >

n(k′ ). The persuasion probability P(n, n− k′ + 1) = 1 − n−k′+1
n+1 is, therefore, dominated

by the corresponding persuasion probabilities for sample sizes in the set D.

Proof of Theorem 1C. We first identify n(c). Consider the function π(n) = P(n, 1) −
cn. The first term increases in n, is smaller than 1, and is concave in n because
P(n, 1, q) − P(n − 1, 1, q) = q(1 − q)n−1 for all q ∈ (0, 1). The second term is linear and
tends to infinity as n tends to infinity. Therefore, the function π(n) obtains its global
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maximum at some finite n, which we denote by n(c).13 It is larger than 0 because
c < P(1, 1).

Fix t and let n′ = 
t−1�. Theorem 1 states that sample sizes larger than n′ are domi-
nated by sample size n′ when data provision is costless. They continue to be dominated
with costly data provision. For sample sizes weakly smaller than n′, even a single suc-
cess triggers the DM to take the action and, thus, the relevant function for optimization
is π(n). If n′ ≤ n(c), then π(n) increases until n′, which is the optimal sample size. Oth-
erwise, π(n) increases up to sample size n(c), after which it weakly decreases. Thus,
sample size n(c) is optimal.

Proof of Theorem 2C. We first identify n(c). Consider the function π(n) = P(2n −
1, n) − (2n− 1)c. The first term is smaller than 1 and, by Lemma A3 (proved below), it is
concave and increasing in n. The second term is linear and tends to infinity as n tends
to infinity. Therefore, the function π(n) obtains its global maximum at some positive n,
which we denote by n(c).

Fix t ∈ ( m+1
2m+1 , m

2m−1 ]. Then 2m − 1 is the largest odd sample size weakly smaller

than 
(2t − 1)−1�. Theorem 2 implies that sample sizes larger than 2m − 1 are sub-
optimal. Any even sample size n < 2m − 1 is dominated by sample size n − 1 be-
cause the relevant persuasion probability for sample size n, P(n, n/2 + 1, q), satisfies
P(n, n/2 + 1, q) = P(n− 1, n/2, q) − (1 − q)b(n− 1, n/2, q), where P(n− 1, n/2, q) is the
relevant probability for sample size n − 1. For the remaining sample sizes, the proof is
analogous to that of Theorem 1C.

Lemma A3. For any increasing prior, P(2n− 1, n) is concave and increasing in n.

Proof. Fix n ∈N and let δn(q) = P(2n− 1, n, q) − P(2n− 3, n− 1, q). Then

δn(q) =
(

2n− 2
n− 1

)
qn−1(1 − q)n−1

(
q− 1

2

)
.

To verify this equality, we observe that P(2n − 1, n, q) = P(2n − 2, n, q) + qb(2n− 2, n −
1, q) by identity (A1) in the proof of Lemma 1. Adding and subtracting (1 − q)b(2n −
2, n − 1, q) to the right-hand side, we obtain that P(2n − 1, n, q) = P(2n − 2, n − 1, q) −
(1−q)b(2n−2, n−1, q). Identity (A1) also implies that P(2n−3, n−2, q) = P(2n−2, n−
1, q) − qb(2n− 3, n− 2, q). Thus, δn(q) = qb(2n− 3, n− 2, q) − (1 − q)b(2n− 2, n− 1, q)
and the above equality follows.

The function δn(q) is negative on (0, 1/2) and is an odd function around 1/2. There-
fore,

∫ 1
0 δn(q)dq = 0. Because an increasing prior shifts mass, relative to the uniform

prior, from (0, 1/2) to (1/2, 1), we obtain that �n > 0, where �n denotes the expected
value of δn with respect to the designer’s increasing prior. The probability P(2n − 1, n)
therefore increases in n.

The function δn(q) crosses the function δn+1(q) once and from below at q = 1/2.
This follows from the fact that δn+1(q) = 2q(1 − q)δn(q). Since an increasing prior shifts
mass to qs in which δn dominates δn+1, �n+1 < �n and the concavity of P(2n − 1, n)
follows.

13If the maximum is obtained at two adjacent values of n, we use the smaller one.
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