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The Cross Nests Flexible Substitution Logit:  

Uncovering Category Expansion and Share Impacts of Marketing Instruments 

 
Abstract  

Different instruments are relevant for different marketing objectives (category demand 

expansion or market share stealing). To help brand managers make informed marketing mix 

decisions, it is essential that marketing mix models appropriately measure the different effects of 

marketing instruments. Randomly Utility Maximizing (RUM) discrete choice models that have been 

applied to this problem might not be adequate because they possess the Invariant Proportion of 

Substitution (IPS) property, which in some situations imposes counter-intuitive restrictions on 

individual choice behavior. We discuss the theoretical roots of the IPS property, namely, the weak 

complementarity assumption that underlies RUM models. With the recognition that a set of goods, 

e.g., goods in a category, can be weak complementary to some common attributes, e.g., total 

expenditure of marketing instruments in that category, we then derive an alternative choice model 

specification that relaxes the IPS property at an appropriate level– the “cross nests flexible 

substitution” logit (CNFSL) model. Our empirical application to prescription writing choices of 

physicians in the hyperlipidemia category shows that the random coefficient CNFSL model predicts 

that sales gains from Direct-to-Consumer Advertising (DTCA) and Meeting and Events (M&E) 

come primarily from the non-drug treatment (82.3% and 59.7% respectively), whereas gains from 

detailing come at the expense of competing drugs (82.1%). By contrast, the (random coefficient) 

logit and nested logit model predicts that gains from DTCA, M&E and detailing all would come 

largely from competing drugs – a counter-intuitive estimate of the sources of demand gains due to 

different marketing instruments. 



1. Introduction 

Brand managers carefully build their marketing portfolios to meet the sales and market 

share goals of the brand. Available marketing instruments differ by industry, but typically 

include pricing, advertising, trade promotions, consumer promotions such as coupons and 

sweepstakes, in-store merchandising, and sales force efforts, as well as longer-term choices 

such as product-line depth and breadth. Since different instruments affect consumer 

behavior in different ways, the brand manager has the responsibility of mixing the marketing 

instruments optimally to achieve the brand’s goals. This may require, for instance, that in 

early stages of the product life cycle, brand managers emphasize category-expanding 

investments while in later, more mature stages of the life cycle, they emphasize investments 

that steal market share from competitors.  

To illustrate using advertising as an instrument, the “Got Milk” campaign is clearly 

intended to grow primary demand for the category, milk. Similarly, a campaign that 

encourages use of a brand in a situation typically associated with a different category is 

intended to draw new category buyers to the brand (Wansink 1994). In contrast, comparative 

advertising that persuades the consumer about superiority of a brand’s features over a 

competing brand is aimed at encouraging within-category brand switching. Temporary 

reductions in the price of a brand on the retail shelf typically have a similar brand switching 

goal. (Nijs et al. 2001) reports that such price promotions rarely have persistent category 

expanding effects, while new product introductions do expand the category.  
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Given these differences, some marketing actions are more threatening to competitors 

than others. At one extreme, marketing actions that primarily grow the category by attracting 

new buyers may even benefit competitors’ sales. On the other hand, actions that primarily 

induce buyers to switch from competing brands in the category clearly hurt competing 

brands’ sales and share. Accordingly, a brand manager may expect different degrees of 

competitive retaliation to different marketing instruments; an instrument that inflicts greater 

damage on a competing brand is more likely to elicit a reaction. Leeflang and Wittink 

(Leeflang and Wittink 2001) find empirically that managers’ competitive reactions do take 

into account consumer response; the greater the cross-brand demand elasticity, the greater 

the competitive reaction elasticity. Steenkamp, Nijs et al. (Steenkamp et al. 2005) find that 

competitors’ response to price promotions is considerably stronger than competitors’ 

response to advertising. This is consistent with the conventional wisdom that sales gains 

from advertising are derived more from category expansion than are sales gains from price 

promotions. Considerations of likely competitive response naturally affect the manager’s 

choice of the optimal marketing mix. 

To help the brand manager make informed marketing mix decisions, it is essential that 

marketing mix models accurately measure the different effects of marketing instruments. 

The key argument of this paper is that extant discrete choice models are insufficient in this 

regard and can in fact misinform and misguide the manager. Classical models such as the 

logit, nested logit, and probit model make it appear that all marketing instruments are 



 3 

identical in terms of the source of share gains (Steenburgh 2008), whereas our previous 

examples have illustrated that in fact differences between instruments could be substantial.  

Discrete choice models are commonly used to analyze how consumers respond to 

marketing actions in terms of whether or not to buy (purchase incidence) and which brand 

to buy (brand choice) (Bell et al. 1999; Bucklin et al. 1998). Thus, these models allow 

measurement of the proportion of increase in a brand’s choice share due to a given 

marketing action that is attributable to market expansion versus brand switching. Recent 

work, however, shows that a large class of existing discrete choice models, including ones 

that have been used to address this problem, possess the Invariant Proportion of 

Substitution (IPS) property, which implies that the proportion of demand generated by 

substitution away from a given competing alternative is the same, no matter which marketing 

instrument is employed (Steenburgh 2008). This is troubling because it implies that the 

proportion of growth due to new consumers purchasing in the category is the same no 

matter which marketing action is taken.  

We discuss the theoretical roots of the IPS property, namely, the weak complementarity 

assumption that underlies Randomly Utility Maximizing (RUM) models, including the logit, 

nested logit and probit models. Weak complementarity, a relatively little known property of 

RUM models, holds that a consumer’s utility is unaffected by changes of an attribute, x , of a 

particular good unless she consumes that good. Whenever an individual brand’s marketing 

instrument spills-over to competing brands-either increase consumers’ utility for competing 

brands or decrease consumers’ utility for competing brands, weak complementarity 



 4 

condition is violated and the application of conventional RUM model gives counter-intuitive 

results about the sources of demand gains due to different marketing instruments.  

We propose such a model -- the Cross Nests Flexible Substitution Logit (CNFSL) 

model -- that relaxes the weak complementarity assumption and IPS property. We derive the 

CNFSL model from a direct utility function and show that it provides a better fit to the data 

than extant models. Furthermore, we show that its conclusions vary substantively as well. 

The CNFSL allows greater agreement in substitution patterns between individual and 

population-level models than extant models because it does not unnecessarily impose IPS on 

individual choice behavior. 

We demonstrate our arguments empirically in the context of the marketing of 

prescription drugs, a context in which these issues are of central concern not only for brand 

managers but also for public policy makers. We show that patient-directed marketing 

instruments such as Direct to Consumer Advertising (DTCA) often work quite differently 

than physician-directed marketing actions such as detailing in terms of sources of demand 

gains. As a result, we might expect that models that possess the IPS property will provide an 

overly restricted representation of the effects of these activities. Indeed, our empirical 

application to prescription writing choices of physicians in the hyperlipidemia category 

shows this to be the case.  

We find that three commonly used models that all suffer from the IPS restriction -- the 

homogeneous logit model, the nested logit model, and the random coefficient logit model – 

lead to counter-intuitive estimates of the sources of demand gains due to increased 
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marketing investments in DTCA, detailing, and professional Meetings and Events (M&E). 

This is not true for the CNFSL. In particular, the CNFSL model provides the important 

insight that while most of the gains from detailing investments come at the expense of 

competing brands in the category (82.1%), most of the gains from DTCA and M&E are 

realized from patients who are not prescribed any drug treatment (82.3% and 59.7% 

respectively). In other words, competitor brands should be much less threatened by DTCA 

and M&E actions than by detailing. This key distinction in how the marketing instruments 

work is disguised by extant models. 

The rest of this paper is organized as follows. In Section 2 we describe the data. In 

Section 3 we discuss the theoretical roots of the IPS property, namely, the weak 

complementarity assumption that underlies RUM models and derive the CNFSL model by 

following a direct utility approach. In Section 4 we discuss results of our empirical analysis. 

Section 5 concludes with a discussion of results and implications for managerial actions and 

future research. 

2. Data 

We have chosen to examine differences in share stealing across marketing instruments 

in the context of pharmaceutical marketing. While there are multiple constituencies that 

determine demand for a brand drug, pharmaceutical firms in the US devote most of their 

marketing resources primarily to influence two groups -- physicians and patients. 

Pharmaceutical manufacturers spent at least $20.5 billion on promotional activities in 2008, 
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excluding sampling. Of that, $12 billion went to detailing to physicians, $4.7 billion to 

DTCA, and $3.4 billion to M&E (CBO 2009). 

We expect to find different competitive impacts when firms invest in detailing, M&E 

and DTCA because these marketing instruments work in very different ways. Detailing is 

personal selling to physicians by pharmaceutical firms’ representatives. The representatives 

inform physicians about drug efficacy and safety, answer physicians’ questions, and establish 

and maintain goodwill of the brand. During the detailing visits, sales representatives also 

provide physicians with drug samples. Firms have full control on what to communicate with 

physicians as long as messages conform to FDA regulations and these communications take 

place behind closed doors.  

In contrast, pharmaceutical firms also sponsor professional meetings and events, 

including some that offer physicians credit for continuing medical education. Firms may help 

fund, organize and advertise M&E, and may also subsidize attendance of physicians. Unlike 

detailing, firms can only influence the topics that are discussed in M&E indirectly through 

M&E organizers like medical education companies or professional societies. As a 

consequence, the content of M&Es tends to be disease-oriented, different from the 

brand-oriented communications in detailing. In addition, discussion and interaction among 

attendees makes M&E attendance a different experience for physicians relative to detailing. 

Traditionally, a negligible part of the overall marketing budget was spent on influencing 

patients. However, in the last decade this component has been growing rapidly in the form 

of direct-to-consumer advertising. DTCA can expand the category via the informational and 
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educational roles of advertising. Advertising can inform potential patients of the existence of 

a health condition, possible symptoms and consequences, as well as the availability of a 

treatment. Better-informed under-diagnosed or under-treated patients, in turn, will be able to 

understand their health conditions better, and may be prompted to seek medical consultation 

by visiting a physician. This perspective suggests that an important source of sales gains due 

to DTCA is newly diagnosed patients, who expand overall category demand and this 

potentially benefits all competing firms. Another role of DTCA is to persuade patients to ask 

their physicians for specific brand name drugs. The literature suggests that patient requests 

do influence physicians’ prescription behavior. As a consequence, sales gains occur due to 

physicians’ switching from competing brands, but also due to switching from “non-drug 

prescriptions.” The latter is a source that expands the category (this is discussed further 

subsequently). 

The therapeutical class that we use in this study is statins (or HMG-CoA reductive 

inhibitors). Statins are drugs used to lower cholesterol levels in people at risk for 

cardiovascular disease because of hyperlipidemia. Statins are the most potent anti- 

hyperlipidemia agents and have dominated the anti- hyperlipidemia market. Statins sales 

surpassed $14.3 billion in 2009, making them one of the biggest selling drugs in the United 

States1. During the period spanned by our data (2002–2004), there are four major statins 

available for prescription: Lipitor produced by Pfizer, Zocor by Merk, Pravachol by 

Bristol-Myers Squibb (BMS) and Crestor by AstraZeneca. “Non-drug only treatment” is also 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Source: IMS National Prescription Audit PLUS. 
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a common prescription issued by physicians if patients’ diagnosed condition is not severe 

enough for drug treatment. Non-drug treatment methods include: eating healthy, quitting 

smoking, increasing physical activity, moderating alcohol intake and maintaining an ideal 

body weight.   

Data on patient visits, prescriptions written by physicians, and detailing and M & E to 

which the physicians are exposed, are available for a sample of 247 physicians in the U.S. 

over a 24-month period, June 2002 to May 2004. The data were made available by a 

marketing research firm, ImpactRx Inc. The firm runs a panel consisting of a representative 

sample of the universe of physicians in the US, balanced across geographic regions, 

physician specialties and prescription volumes. Data on monthly DTCA expenditures come 

from Kantar Media Intelligence. We link each patient visit to Designated Media Area (DMA) 

level DTCA expenditures through physician-level zip codes. DTCA is measured as $ 

expenditure per capita based on the population of the DMA. 

In Table 1 we present summary statistics of the data. Taking the unit of analysis to be 

physician-month for each of the four brands and for non-drug treatment, we show the 

number of prescriptions and market share of prescriptions, and levels of each of the 

marketing mix instruments. As shown in Table 1, on average, there are more detailing visits 

and M & E for Crestor than for the other three brands. However, DTCA expenditure on 

Lipitor is the largest among the four brands. The prescriptions shares show that about 

one-quarter of visits receive prescription for non-drug treatment instead of a drug treatment. 
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Among the four drugs, Lipitor is the market leader, followed by Crestor, Zocor, and 

Pravachol.  

___________Table 1 about here_______________ 

The impacts of marketing variables considered in this study are expected to carry over 

from one period to the next with deteriorating effectiveness. To capture the long term effect, 

we follow the advertising model of (Nerlove and Arrow 1962) and introduce a vector of 

stock variables for marketing instruments: 

 

 

where 𝐷𝐸𝑇!"# is the number of detailing visits by drug j  to physician p in month t;  

𝑀𝐸!"# is the number of M&E sponsored by drug j that received participation by physician p 

in month t; 𝐷𝑇𝐶!"# is drug j’s DTCA per capita $ expenditure in physician p’s DMA area in 

month t; λ is the carry-over parameter with a value between 0 to 1.  

 To fix the carryover parameters for marketing instruments, we conducted a grid search 

and used maximized log-likelihood for a standard logit model to make our final selection of 

parameter values. This led to the following values of the carryover parameter: 0.75 for 

detailing, 0.90 for M&E, and 0.75 for DTCA. These are quite close to findings reported in 

previous literature, for example Narayanan et al. (2004) reports carryover values of detailing 

and M&E at 0.86 each, and that of DTCA at 0.752. We use the first 14 months of data to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 We also fixed the carry over parameters based on nested logit and CNFSL models and conducted the other 

studies separately. We found no significant difference in results.   

1 { , , }pjt pjt pjt pjt pjtx x DET ME DTCλ −= +
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calculate the value of initial stock of each marketing instrument. All models are fitted on the 

remaining 10 months of data. 

3. Model 

In this section, we discuss the types of restrictions that standard random utility 

maximization (or RUM) models impose on individual substitution patterns. We then 

propose a model that allows for greater flexibility in substitution patterns. We also discuss 

the flexibility that taste heterogeneity adds to these models. 

3.1 RUM and IPS 

The utility theoretic framework for discrete choice demand analysis has followed two 

related but distinct approaches. The first approach involves the specification of a particular 

indirect utility function including a deterministic utility component and a random term. One 

can obtain the Marshallian demand function from this indirect utility function via Roy’s 

identity (Roy 1947). This approach is attractive because the maximization of a random 

indirect utility function yields the choice probability directly and avoids having to derive the 

choice probability from a complex nonlinear optimization problem. The second approach 

involves the specification of a direct utility function, and derives the choice probability from 

the optimality or Karush-Kuhn-Tucker (KKT) conditions associated with the maximization 

problem. This approach has drawn more attention recently because it imposes fewer 

restrictions on preferences than does the indirect utility approach.  

The most popular discrete choice models based on the indirect utility function 

approach belong to a class known as random utility maximization (RUM) models, which 
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includes the conditional multinomial logit model. McFadden (1974) developed the 

conditional multinomial logit model from Luce’s choice axiom (Luce 1959). Letting ( )BP i

denote the probability that a decision maker will choose i from a set of mutually exclusive 

and collectively exhaustive alternatives B, Luce’s axiom states that the ratio of choice 

probabilities for i and j is the same for every choice set B that includes i and j, i.e.,  

 { , }

{ , }

( )( )
( ) ( )

i jB

B i j

P iP i
P j P j

=  

Luce called this property Independence of Irrelevant Alternatives (IIA). If this property 

holds, there exists for every option j a strictly positive number, so that the probability of 

choosing j from B is 

 ( ), j

k
k B

V
P j B

V
∈

=
∑

 

 McFadden (1974) taking this strict utility for alternative j to be a parametric 

exponential function of its attributes jx , exp( )j jV x != , gave a practical empirical model. 

However, the empirical literature on random choice has documented systematic violations of 

the Luce model, best known as the red bus-blue bus problem first noticed by Debreu (1960). 

Specifically, IIA implies that demand must be drawn from competing alternatives in 

proportion to their market shares, an undesirable assumption about how decision makers 

substitute among alternatives.  

A less well known restriction invoked in RUM models is the weak complementarity 

property originally defined by Mäler (1974) in establishing the welfare basis of environmental 
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valuation3. The weak complementarity property holds that a consumer’s utility is unaffected 

by changes of an attribute, x , of a particular good unless she consumes that good.4 When 

the weak complementarity property holds, we say x is a weak complement to the good and 

the good weakly complements x as well. The concept of weak complementarity and the 

related formal mathematical condition have grown beyond application to environmental 

valuation and come to be used much more broadly in practice (Just et al. 2004). Let U 

represent the utility function of a decision maker who does not consume good j, jZ! her 

consumption of commodities other than commodity j, and jx be an attribute of good j. Then 

weak complementarity can formally be defined as a property of preferences, such that 

 
(0, , )

0j j

j

U Z x

x
!"

=
"

 

In the RUM specification, weak complementarity can be easily seen since indirect utility 

derived from any alternative depends on the attributes of that alternative alone. Weak 

complementarity is necessary for RUM-consistent choice models because it constitutes the 

basic assumption of measurement of social surplus from which McFadden (1981) derives the 

models. When the weak complementarity condition holds, the change in the area under the 

Hicksian demand function caused by a change in an attribute equals the compensating 

variation for the weak complement if the weak complement to the attribute is a non-essential 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 In Mäler (1974)’s original definition, weak complementarity means that the demand for a public 

environmental good (such as the air at a tourist site) is zero if the demand for the related private good (such as 

the tourist site itself) is zero. 
4 The attribute of a good here is defined in a broad sense. It includes not only the quality of the good but also 

the amount or the quality of the publicly provided good that affects the utility of the focal good.   
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good5 (Bockstael and McConnell 2007). Further, together with the non-essential condition, 

weak complementarity ensures that the area under the demand curve yields a closed form 

integral for choice probabilities that satisfy McFadden’s condition for a probability choice 

system consistent with RUM.      

The weak complementarity property seems intuitively appealing in many situations. 

However, there are circumstances in which this property appears to be a restriction. The 

most often mentioned case in environmental economics is where publicly determined and 

provided environmental goods may act as a symbol of something inherently valued by the 

decision maker – generating an “existence value” even when use is absent (Bockstael and 

McConnell 2007; Krutilla 1967). For example, some environmentally conscious individuals 

derive satisfaction from the fact that endangered species are protected in a remote area even 

though they will most likely never travel to the area to see those species. Altruism has often 

been given as a rationale for existence value.  

Second, and more related with our work here, there may be more than one good that 

forms the set of goods that is weakly complementary to one or more attributes of these 

goods that are common. An example is that the quality of water (common attribute) may 

affect the utility of drinking, swimming, and fishing (Just et al. 2004). In this case, water 

quality is not weakly complementary to each of the individual alternatives: drinking, 

swimming, and fishing. To illustrate this, consider how weak complementarity fails between 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 A good is non-essential if a bundle of other goods can be found that will compensate the consumer for its 

complete absence Willig, R. D. (1978), "Incremental consumer's surplus and hedonic price adjustments," 

Journal of Economic Theory, 17, 227-53..  
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water quality and drinking. The utility of a consumer who does not drink this water at all is 

nevertheless affected because this consumer goes fishing or swimming. This kind of 

violation of the weak complementarity property at the individual alternative level is especially 

important in marketing because non-price promotion of a product has the potential to affect 

the utilities of competing goods in the same category. For instance, the information provided 

by certain promotions may convince consumers that all products in a category have certain 

superior characteristics, and as a consequence, boost utility of all products in that category. 

On the other hand, comparative advertising by a brand is sometimes intended to convince 

consumers that competing brands have inferior characteristics, and therefore, decrease the 

utility of those goods (Just et al. 2004). This failure of weak complementarity implies that 

RUM models may not be appropriate in modeling category expansion and share stealing 

situations.  

To maintain the weak complementarity condition in RUM, the indirect utility derived 

from any good must be specified to depend on the quality of that alternative alone. This 

restriction in indirect utility specification leads to restrictions on substitution patterns among 

alternatives, defined as the IPS property by Steenburgh (2008). IPS implies that the 

proportion of demand generated by substitution away from a given competing alternative is 

the same, no matter which marketing instrument is employed. The IPS property is especially 

troubling in our context because the point of our study is to determine whether specific 

marketing investments steal demand from competing drugs or from the non-drug treatment. 

We might expect detailing to draw a greater proportion of demand from competing goods 
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than M&E and DTCA do. The standard RUM would not let us find this out because it 

requires demand to be drawn from each competing alternative in proportion to its market 

share. Returning to the example, the model requires 60% of the incremental demand to be 

drawn from competing drugs and 40% to be drawn from the non-drug treatment no matter 

which investment is made. 

3.2 Cross Nests Flexible Substitution Logit (CNFSL) 

Given that weak complementarity is an inherent assumption of RUM consistent discrete 

choice model, relaxing the IPS property within the RUM framework seems too challenging. 

By contrast, the direct utility representation provides a utility theoretical framework that 

allows a more general representation of consumer preferences, within which weak 

complementarity need not be assumed a priori. In this section, we follow the direct utility 

approach to propose a utility maximization model called the cross nests flexible substitution 

logit (CNFSL); this model allows weak complementarity to apply to a group of goods. 

Unlike a standard RUM-consistent discrete choice model, it accommodates the possibility of 

non-price promotions on one product to have spillover effects on the utility of other 

products. 

Consider an economy with J brands and one consumer making purchases from multiple 

occasions. Let the choice set be grouped into N non-overlapping subsets (or nests) denoted 

by 1 2, ,  , NB B BK . The consumer is assumed to follow a two-step sequential choice process 

when selecting her most preferred alternative. In the first step, the consumer must decide 

which subset she wants to choose from. In the second step, the consumer chooses a 
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particular alternative j from subset n given that she chooses subset n in the first step. We 

assume that the consumer makes her two-step decision by maximizing her total direct utility 

U. This is equivalent to the consumer maximizing utility by solving a two-stage dynamic 

programming problem. In the first step, the consumer chooses the subset with the highest 

utility taking into account the current utility associated with subsets and the expected 

maximum utility from choosing an alternative from the chosen subset. Given her decision in 

the first step, the consumer chooses the alternative with highest utility from the chosen 

subset.   

We next derive the choice probability based on demand constraints and the direct utility 

specification. Since the demand for subset n, nZ , is split among
nBJ alternatives options, this 

gives us the first constraint:  

 
1

Bn
J

n jn
j

Z Z
=

= !                                                      (1) 

where jnZ  is the demand for alternative j in subset n. 

 The consumer buys a given amount T of these differentiated goods across multiple 

purchase occasions, leading to the following constraint:  

1 1 1

Bn
JN N

n jn
n n j

Z Z T
= = =

= =! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! !  (2) 

If Y is the income of the representative consumer, we have the budget constraint,  

 
1 1

Bn
JN

jn jn
n j

Y p Z
= =

= !!                                          (3) 

where jnp is the price of commodity j from subset n.  
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Following Anderson et al. (1988), we specify a consumer’s utility function as 

1 1 1 1 1 1
1 1

log ( log )  (1) and (2)

,   otherwise

B Bn n

Bn

J JN N N N
jnn

n n jn jn n jnN J
n n j n n jn inn i

ZZ
w Z Z Z Z if

U Z Z
µ

= = = = = =
= =

!
+ " "#

= $
#
"%&

' '' ' ' '
' '

The utility specified here includes four different effects. The first term expresses the utility 

from consumption of nests 1, , NZ Z! , and the second term expresses the utility from 

consumption of 11, , JNZ Z! . nw  measures marginal quality of one unit of nest n, jnµ

measures marginal quality of one unit of alternative j in nest n, and the last two terms 

represent this consumer’s preference for diversity. These preferences for diversity are added 

to explain the intrapersonal or interpersonal variation in preference.  

   The nest structure above allows us to accommodate situations where weak 

complementarity is unreasonably restrictive. Let jx be non-price promotion of alternative j 

that may spill-over across alternatives within a nest. We define!
n

n n i
i B

w x! "
#

$ %
= + & '

( )
* ! and

jn jxµ ! "= + , where jx affects the decision maker’s utility in two ways: 

 
(1) It increases preference for the focal alternative over competing alternative in the nest 

by ! . 

(2) It increases preference for the focal alternative and other alternatives in the same 

nest over alternatives outside the nest by ! "+ . 

In this specification, the summation of non-price promotion for alternatives in nest n 

accounts for the possible spill-over effect and acts as a nest-level attribute. As a 

consequence, within nest n weak complementarity for individual good does not hold; a 
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change in the quality of good j due to non-price promotion affects the utility of a consumer 

who does not consume good j, but consumes a different good in the same nest. The 

inclusion of term, 
n

i
i B

x!
"

# $
% &
' (
) , in the model specification gives us a general framework for 

empirical work. If ! is zero, it indicates that the spill-over effect is zero and weak 

complementarity condition is not violated. If! is positive, it indicates that the focal 

marketing instrument positively affect consumers’ utility for all brands in the choice set and 

suggests a strong category expansion effect. if! is negative, it indicates a negative spill-over 

effect and suggests that the focal marketing instrument has strong business stealing effect. 

The Lagrangian function is written as, 

 
1 1 1 1 1 1 1

0
1 1 1 1 1

(log log ) ( (log log( )))

( ) ( ) ( )

B B Bn n n

B Bn n

J J JN N N N

n n jn jn n n jn jn in
n n j n n j i

J JN N N

jn jn n n n jn
n j n n j

L w Z Z Z Z T Z Z Z

Y p Z T Z Z Z

µ

λ γ γ

= = = = = = =

= = = = =

= + − − − −

+ − + − + −

∑ ∑∑ ∑ ∑ ∑ ∑

∑∑ ∑ ∑ ∑
 

Taking the first-order condition with respect to jnZ , we get: 

log log( ) 0 ,
n

jn jn jn in n ni B
jn

L p Z Z n j B
Z

µ λ γ
∈

∂
= − − + + = ∀ ∀ ∈

∂ ∑  

Solving this we have the choice probability of alternative j given that nest n is chosen:  

 |
jn jn n

n

pjn
j n

ini B

Z
P e

Z
µ λ γ− +

∈

= =
∑

 

Since | 1
n
i ni B
P

∈
=∑ , we can easily see that 1in in n

n

p
i B
eµ λ γ− +

∈
=∑ . Thus, it follows that  

|

jn jn n jn jn

in in n in in

n n

p p
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i B i B

e eP
e e

µ λ γ µ λ

µ λ γ µ λ
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∈ ∈
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This is consistent with a standard multinomial logit choice probability. Let nφ be the 

expected maximum utility associated with alternatives in nest n. We have   

(max { }) log( )in in

n n

p
n i B in in in i B
E p eµ λφ µ λ ε −

∈ ∈
= − + = ∑  

Taking the first-order condition with respect to nZ , we get: 
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Solving this we have  
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Taking n nγ φ= ,  

We end up with the choice probability of nest n as:  
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The choice probability for alternative j in nest n is then given as:  
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(Proof is provided in the appendix.) The above choice probability coincides with that 

derived from a special form of the universal logit model6(Koppelman and Sethi 2000; 

McFadden 1975) because it allows the attributes of competing alternatives to enter the utility 

function of the focal brand via a summation term. If 0θ = , then the choice probability is 

equal to that derived from a standard logit model. If the utility function does not contain the 

two terms capturing preferences for diversity, a consumer will buy only the alternative that 

gives the largest  

 ,x x p j nn i j j jni Bn

! " # $ %
& '
( )+ + + * +,( )
( )-
. /

 

On the other hand, if the utility function only includes the last two terms, the consumer’s 

purchasing will be equally divided among available subsets and alternatives.  

Unlike the RUM framework, the demand system derived here does not impose the weak 

complementarity condition, and therefore relaxes the IPS restriction across nests. This can 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 The universal logit has not been used much in practice. A notable exception is Krishnamurthi et al. (1995).  



 21 

be seen by the substitution ratio ( / ) / ( / )k ja j jaP x P x!" " " "  derived below, which represents 

the proportion of the increase in expected demand for alternative j that is generated by 

substitution away from alternative k following an improvement to attribute jax .  

( ) ( )( )
( )

( ) ( )( ) ,

(1 )
, ,

1 1

,
1 1

k j a k n a
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(Proof is provided in the appendix.) 

No matter whether k is from the same nest or a different nest than j, the substitution ratio 

does depend on marketing instrument specific parameters. The flexibility is achieved because 

 and a!  can vary across marketing instruments.   

Following the work of Bucklin, Gupta et al. (1998) and Bell, Chiang, et al (1999), we 

divide the choice alternatives into two nests: one ( 0B ) containing the non-drug treatment 

and the other ( 1B ) containing the four drug brands. However, unlike the previous two 

studies, we use summation of all non-price promotions at the nest level to allow for 

spill-over effects across brands within nest B1. The physician’s decision tree is as follows:  

 

 

    

 

 

 

a!

Drug 
treatment 

Non-drug 
treatment 
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Unlike either of the previous models, the CNFSL model allows the proportion of 

demand drawn from both competing drugs and the non-drug treatment to vary across 

marketing instruments. For example, 80% of the incremental demand could be created by 

market expansion if the brand manager were to invest in DTCA, but only 15% of the 

incremental demand could be created by market expansion if the manager were to invest in 

detailing. It seems reasonable to allow for this possibility given our prior expectations of 

how the two marketing instruments work. 

It is worthwhile to note that the proposed demand has some limitation in terms of 

relaxing the IPS property across alternatives. As shown below, the ratio of the proportions 

of demand drawn from two brands within nest n between them, or two brands outside nest 

n does not depend on the instrument used by alternative j. In other words, for subset of 

brands within nest n and outside nest n, IPS property still applies. 
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( )( )

, , , ,

, ,

, ,
1

k
n

l

k ja k
n n

l ja l

k j a m a
n n

l n a j a

P for k l j and k l j B
P

P x P for k l B and j B
P x P

P P P
for k B and l j B

P P P
β θ

θ β

⎧
⎪ ≠ ∈
⎪
⎪∂ ∂ ⎪

= ∉ ∈⎨
∂ ∂ ⎪

⎪ − +
⎪ ∉ ∈
⎪ − −⎩

 

It is not so troubling for the former case given that we can always separate brands into 

different nests if there are enough reasons to believe the non-price promotion affects these 

brands in a different way. To address the limitation that applies to brands outside n, but in 

different nest, we can expand the proposed model to multi-levels. Taking a pharmaceutical 

"#$#%&'! (')*%&'!+&,&'! -'./.,0&
1!
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example, we can create a choice decision tree for anti-diabetic medication category as shown 

below: 

 

    

 

 

 

 

 

 

 

 

In this three-level structure, summations of non-price promotion of all subsidiary 

options enter the utility function as nest-level quality for each nest in different level. With 

this specification, we can relax IPS for alternative across all nests. 

3.4 Flexibility Provided by Taste Heterogeneity 

Heterogeneous choice models allow a wider variety of substitution patterns to occur 

among market shares than their homogeneous counterparts do. This does not mean, 

however, that allowing for heterogeneous tastes solves the problems associated with IIA and 

IPS. Adding taste heterogeneity to a choice model does not change individual substitution 

patterns, and models such as the random coefficient logit and random coefficient nested 

Non-drug 
treatment 

Drug treatment 

2'.1!03$&413,)5#,!

.4)6%* 
Injected insulin 

Januvia 789#:: 26413;. <&/&1&4 =9591&4 
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logit preclude individual choice behavior that is reasonable (Steenburgh, 2008). By contrast, 

the CNFSL allows a wider variety of individual-level choice behavior to be recovered from 

the data.  

Even though individual decision maker’s choice behavior follows IPS, the aggregate 

demand can break IPS if decision makers are heterogeneous. To illustrate this, in the 

following table we give an example of two physicians with different tastes each making drug 

choices from the set {B1, B2, B3}. Brand B1 employs two different marketing instruments 

I1 and I2. The proportion of demand drawn by brand B1 from brands B2 and B3 is the 

same for both instruments, for each physician. This implies that choices of each physician 

conform to IPS. However, for the market as a whole (i.e., the aggregation of the two 

physicians’ choices), instrument I1 draws more market share from B2, while instrument I2 

draws more market share from B3. This indicates that we cannot exclude the possibility that 

non-conformity with IPS at the market level may be only a mathematical outcome instead of 

a result of non-conformity at the individual level.  

Physician  Brand Original 
Choice 

Probability 

Choice 
Probability 

after 
Instrument I1 

Improves 

Proportion 
Drawn 
from B2 
and B3 

Choice 
Probability 

after 
Instrument 
I2 Improves 

Proportion 
Drawn 
from B2 
and B3 

Physician 1 B1 8/32 14/32  20/32  

B2 10/32 8/32 1/3 6/32 1/3 

B3 14/32 10/32 2/3 6/32 2/3 

Physician 2 B1 10/32 22/32  6/32  

B2 16/32 8/32 2/3 12/32 2/3 

B3 6/32 2/32 1/3 4/32 1/3 

Total B1 9/32 18/32  18/32  
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B2 13/32 8/32 5/9 9/32 4/9 

B3 10/32 6/32 4/9 5/32 5/9 

An important aspect of marketing practice is the targeting of consumer segments for 

differential marketing instruments. Rossi et al. (1996) has shown that individual level 

targeting can achieve substantial gain even with rather short purchase histories. The 

increased availability of individual consumer panel data and the development of hierarchical 

Bayesian estimation techniques have facilitated direct targeting of consumer at individual 

level7. As individual-level targeting becomes more popular in practice, it becomes 

increasingly important that individual-level models be correctly and flexibly specified.  

We create heterogeneous versions of all three models (logit model, nested logit model, 

and CNFSL model) through random coefficients specifications. For example, the random 

coefficients CNFSL is specified as  

ij j i ijU X β ε= +  

where       βi  N (β ,Σ)  

Since the random coefficients CNFSL nests the random coefficients logit, we can 

empirically test whether adding flexibility at the individual-level of the model matters. 

Furthermore, we will use the estimates to compare the substitution patterns of all three 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 In pharmaceutical market, individual-level targeting is mainly at physician level since physicians are main 

decision makers for prescriptions. In addition, physician-level prescription data are made available by marketing 

research firms such as impact Rx or IMS health, while patient-level data are often hard to get because of the 

protection of privacy.  
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models at both the individual and population levels, showing that the patterns of the CNFSL 

are logically consistent at both levels. 

4. Results 

 To begin with we assumed parameter homogeneity across physicians and estimated a 

standard logit, a nested logit, and a CNFSL model. We then incorporated physician 

heterogeneity and estimated a random coefficient logit, a random coefficient nested logit, 

and a random coefficient CNFSL model on the data. 

4.1 Homogeneous Case 

! We show model fit statistics of the three homogeneous models in Table 2 but do not 

show parameter estimates for reasons of space. Instead, we present the own elasticities for 

Lipitor (as an illustration) and the substitution matrices. Both AIC and BIC indicate that the 

CNFSL model fits the data best, followed by the nested logit model and then the logit.   

______________Table 2 about here______________ 

All the models find positive effects of detailing, DTCA, and M&E on physicians’ probability 

of prescribing the marketed drug. Notice that each model comes to roughly the same 

conclusion about the ability of marketing instruments to generate demand. The elasticity of 

demand is greatest from detailing (the own-elasticity is 0.257 in the logit, 0.284 in the nested 

logit, and 0.307 in the CNFSL model). This is followed by the elasticity of demand from 

DTCA (0.107 in the logit, 0.088 in the nested logit, and 0.082 in the CNFSL). The elasticity 

of demand is smallest from M&E (0.064 in the logit, 0.061 in the nested logit, and 0.060 in 

the CNFSL). Although the models come to roughly the same conclusion about the ability of 
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the marketing instruments to generate demand, they predict very different substitution 

patterns among the drugs. Due to the IIA property, the logit model predicts that demand 

will be drawn from each of the alternatives in proportion to their market share. Thus, for 

every marketing instrument, the logit model implies that 67.6% of the incremental demand 

for Lipitor is drawn from competing drugs (21.1% from Zocor , 14.8% from Pravachol, and 

31.7% from Crestor) and 32.4% is drawn from the non-drug treatment. This approach to 

decomposition is consistent with the unit-based decomposition proposed by van Heerde, 

Gupta et al. (Van Heerde et al. 2003) and Steenburgh (Steenburgh 2007). By comparison, the 

market shares in the raw data, excluding Lipitor, are 21.0% for Zocor, 14.7% for Pravachol, 

31.9% for Crestor and 32.4% for the non-drug treatment.  

The logit model imposes overly restrictive substitution patterns on the data. First, there 

is no reason to believe that demand will be drawn from the competing alternatives in 

proportion to their market share. Second, there is no reason to believe that the substitution 

patterns will be the same across the marketing instruments. The nested logit model has been 

used in many previous decomposition studies because it cures the first problem. However, it 

does not cure the second problem which is due to the IPS property. Regardless of the 

marketing instrument being used, 78.5% of the incremental demand for Lipitor is drawn 

from competing drugs (24.5% from Zocor, 17.1% from Pravachol, and 36.9% from Crestor) 

and only 21.5% is drawn from the non-drug treatment. There is no reason to believe that the 

proportion of demand created by market expansion is the same for detailing, DCTA and 

M&E. 
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 The CNFSL model allows a much richer set of substitution patterns to be recovered 

from the data because it is not subject to the IPS property. Most of the incremental demand 

created by detailing, 83.9%, is stolen from competing drugs (26.3% from Zocor, 18.3% from 

Pravachol, and 39.3% from Crestor) and only 16.1% is drawn from the non-drug treatment. 

These results suggest that salespeople may be selling the benefits of Lipitor against the 

benefits of competing drugs behind the closed doors of a doctor’s office. In stark contrast, 

the opposite occurs with the other marketing instruments. Most of the incremental demand 

created by DTCA -- 87.3% -- is drawn from the non-drug treatment, with only 12.7% being 

drawn from the competing drugs (4.0% from Zocor, 2.8% from Pravachol, and 6.0% from 

Crestor). Similarly, most of the incremental demand created by M&E, 74.0%, is drawn from 

the non-drug treatment, with only 26.0% being drawn from the competing drugs (8.1% from 

Zocor, 3.7% from Pravachol, and 12.2% from Crestor). These results suggest that DTCA 

and M&E have spillover effects not found in detailing.  

These results seem reasonable because some pharmaceutical advertisements create 

awareness of a drug option and may also generate patient requests for medication. Donohue, 

Berndt et al.(Donohue et al. 2004) studied how DTCA works for antidepressant drugs and 

observed that “for conditions like depression, which are associated with social stigma, 

advertising may reduce negative views associated with treatment” thereby making it easier 

for patients to request medication. Furthermore, meetings and events are disease oriented 

communications in nature and allow physicians to speak to one another, which may make 

the drug companies less willing to draw comparisons between the drugs. 
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These results have important managerial implications too. Suppose a brand manager is 

trying to decide whether to invest marketing dollars in detailing or DTCA. An investment in 

detailing will lead to a greater immediate increase in demand. The estimated elasticity implies 

that a 10% increase in the level of detailing will yield a 2.69% increase in demand, whereas a 

10% increase in the level of DTCA will yield only a .95% increase in demand. Given these 

numbers, it seems like we would much rather invest in detailing than in DTCA. 

Nevertheless, 84.0% of the demand created by detailing is stolen from competing drugs, 

meaning that the demand for Lipitor increases by 2.26% by stealing demand away from 

other drugs and 0.43% comes at the expense of the non-drug option. By comparison, 87.4% 

of the demand created by DTCA comes from the non-drug option. This means that the 

demand for Lipitor increases by 0.12% by stealing demand away from other brands and 

.83% comes at the expense of the non-drug option. Thus, it would seem that competing 

drugs would have a greater incentive to retaliate if the Lipitor brand manager invests in 

detailing than if she invests in DTCA.  

One may wonder whether there are factors that drive increases over time in both drug 

usage and marketing instruments (like DTCA and M&E). If so, the category expanding 

effect we observe in the model results might only be a spurious effect. To examine whether 

there are such missing factors, we try to add a time trend to the model. We tried a linear time 

trend and a log transformation of a linear time trend but neither was statistically significant, 

alleviating our concern. 

4.2 Heterogeneous Case 
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 Although the CNFSL is the most flexible of the three homogeneous models we 

considered, we may wonder whether allowing for heterogeneity across physicians increases 

the flexibility of the logit and nested logit models and allows them to recover more realistic 

substitution patterns. To answer this empirical question we estimate heterogeneous versions 

of the three previously presented models – a random coefficient logit, a random coefficient 

nested logit, and a random coefficient CNFSL model. Estimation results are presented in 

Table 3. In all models, we find evidence of significant heterogeneity across physicians in their 

responsiveness to marketing instruments (standard deviations are not shown for reasons of 

space). Furthermore, we find that the random coefficient CNFSL fits the data best, followed 

by the random coefficient logit, and then the random coefficient nested logit. 

_________Table 3 about here_________ 

 In Table 4, we present the own elasticities for Lipitor (as an illustration) and the 

substitution matrices. All three models imply that detailing, DTCA, and M&E have positive 

effects on a physician’s probability of prescribing the marketed drug. As before, notice that 

all three models come to roughly the same conclusion about the ability of the marketing 

instruments to generate demand for Lipitor. The elasticity of demand is greatest for detailing 

(the own-elasticity is 0.334 in the random coefficient logit, 0.319 in the random coefficient 

nested logit, and 0.275 in the random coefficient FSL). The elasticities of demand for DTCA 

and M&E for all three models are considerably smaller than the elasticities for detailing.  

  ________________Table 4 about here_______________ 
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 Nevertheless, the models again come to very different conclusions about the 

substitution patterns among drugs. Unlike the homogeneous case, the random coefficient 

logit does allow for some variation in the substitution patterns across marketing instruments. 

The proportion of demand drawn from the non-drug treatment is 20.8% from detailing, 

34.8% from DTCA, 33.9% from M&E. Similarly, the random coefficient nested logit implies 

that the proportion of demand drawn from the non-drug treatment is 15.5% from detailing, 

27.4% from DTCA, and 27.2% from M&E. The direction of these results is consistent with 

what we found with the homogeneous CNFSL model. The proportion of demand that is 

stolen from competing drugs is greater for detailing than it is for DTCA and M&E. The 

magnitude of these differences, however, is much smaller, suggesting that the model is not as 

flexible as might be desired. 

 In contrast, the random coefficient CNFSL allows a richer set of substitution patterns 

to be recovered from the data. As we found in the homogeneous case, most of the 

incremental demand created by detailing -- 80.1% -- is stolen from competing drugs. Yet, the 

opposite occurs for the other marketing instruments. Most of the incremental demand 

created by DTCA and M&E is drawn from the non-drug treatment, 82.3% and 59.7% 

respectively. Allowing for heterogeneity adds only a small amount of flexibility. Depending 

on the question being addressed, it may be more important to allow for flexibility across 

marketing instruments than across individuals. 

We explore this issue further by examining the flexibility allowed and restrictions 

imposed by the models on the substitution patterns of individual physicians. In Tables 5a 
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and 5b, we report the own elasticities and the substitution patterns for two systematically 

selected physicians in our data set. The random coefficient logit and random coefficient 

nested logit do provide more flexibility than their homogeneous counterparts because they 

allow the own elasticites to vary across physicians. For example, the random coefficient 

(nested) logit implies that the own elasticity from detailing is 0.219 (0.125) for physician A 

and 0.387 (0.200) for physician B. Furthermore, these models allow the substitution patterns 

to vary across physicians. The random coefficient (nested) logit implies that 27.8% (20.1%) 

of the incremental likelihood of Physician A prescribing Lipitor is drawn from the non-drug 

alternative whereas Physician B draws 33.3% (31.8%) from the non-drug treatment.   

_________Tables 5a and 5b about here_________ 

 Nevertheless, both the random coefficient logit and the random coefficient nested logit 

impose the IPS property on individual physicians’ choice behavior. This means that the 

substitution patterns for a given physician must be the same across marketing instruments. 

For example, regardless of the instrument being used, the random coefficient (nested) logit 

implies that 72.2% (79.9%) of the incremental demand for Lipitor attributable to physician A 

is drawn from competing drugs and 27.8% (20.1%) from the non-drug treatment. Yet, there 

is no reason to believe that the Physician A will behave the same way regardless of the 

marketing investment being made. The same pattern can be seen in Physician B’s choice 

behavior. Given that the focus of the study is to make statements about differences in the 

substitution patterns across marketing instruments, it seems especially hard to justify 

requiring them to be the same at the individual level. 
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 In contrast, the random coefficient CNFSL allows the substitution patterns to vary 

across marketing instruments at both the individual and aggregate levels. For example, the 

random coefficient CNFSL model implies that Physician A substitutes among the drugs in 

different ways depending on the marketing action being taken. Most of the incremental 

demand for Lipitor, 69.1%, is drawn from the competing drugs when detailing is used. Yet, 

most of the demand is drawn from the non-drug treatment when the other marketing 

instruments are used, 89.9% for DTCA and 85.0% for M&E. Unlike the other models, the 

random coefficient CNFSL can recover more realistic substitution patterns at both levels of 

the model. 

5. Discussion, Conclusions, and Future Research 

An essential decision facing any brand manager is the choice of marketing instruments 

to enhance the sales of the brand. Different instruments are relevant for different marketing 

objectives (category demand expansion or market share stealing). Discrete choice models 

that include the logit, the nested logit, and the probit have been used to analyze how 

consumers respond to marketing actions in terms of whether or not to buy (purchase 

incidence) and which brand to buy (brand choice). However, these models possess the IPS 

property.  The IPS property implies that the proportion of demand generated by 

substitution away from a given competing alternative is the same, no matter which marketing 

instrument is employed. We discuss the theoretical roots of the IPS property, namely, the 

weak complementarity assumption that underlies RUM models. To avoid the weak 

complementarity assumption it is necessary to derive utility theoretic discrete choice models 
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by beginning with the direct utility function. With the recognition that a set of goods, e.g., 

goods in a category, can be weak complementary to some common attributes, e.g., total 

expenditure of marketing instruments in that category, we propose such a model -- the Cross 

Nests Flexible Substitution Logit (CNFSL) model -- that relaxes the IPS property. The 

CNFSL model, both homogeneous and random coefficient forms, predicts that increases in 

DTCA and M&E result in sales gains that come primarily from non-drug treatments rather 

than from other cholesterol lowering drugs. By contrast, the random coefficient logit model 

predicts for all three marketing instruments – DTCA, detailing, and M&E – that gains would 

come largely at the expense of competing drugs, a counter-intuitive estimation of the sources 

of demand gain due to different marketing isntruments This empirical result also suggests 

that the IPS property cannot be relaxed by adding physician heterogeneity.  

With the proposed CNFSL model, a brand manager of prescription drugs can develop a 

more nuanced and precise understanding of how different marketing instruments work, and 

plan the marketing mix accordingly. For example, the brand manager may place greater 

emphasis on category expanding instruments like DTCA or M&E if retaliation by competing 

brands is a significant concern. We believe there is considerable room for future research in 

this area. For instance, it would be important to identify other contexts in which the IPS 

property has important implications.  Similarly, alternative models that overcome IPS 

should also be explored.   
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Table 1: Summary Statistics 

Unit of analysis is physician-month. N=5928 
Number of 
Prescriptions 

Brand Mean Std Dev Share of 
prescriptions 

 Lipitor 0.557 1.177 0.287 

 Zocor 0.291 0.620 0.150 
 Pravachol 0.203 0.704 0.105 
 Crestor 0.442 1.415 0.228 
 Non-drug 

Treatment  
0.448 1.076 0.231 

Marketing 
Instrument 

    

Detailing Lipitor 0.634 1.035   

(number of visits) Zocor 0.728 1.128  

 Pravachol 0.366 0.746  

 Crestor 0.960 1.316  

DTCA Lipitor 0.040 0.016  

($ per capita) Zocor 0.028 0.009  

 Pravachol 0.008 0.009  

 Crestor 0.023 0.039  

M&E Lipitor 0.031 0.202  

(number of 
meetings & events) 

Zocor 0.006 0.079  

 Pravachol 0.004 0.064  

 Crestor 0.047 0.227  
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Table 2: Substitution Matrices and Own Elasticities (for Lipitor) for the Three 
Homogeneous Models and Fit Statistics 

 

 
For each model, cell entries in each column indicate the percentage of sales increase of 
Lipitor due to a 1% increase in its marketing instrument (e.g. detailing) that is drawn from 
the alternative indicated in the row. For example, the logit model predicts that if Lipitor 
increases its detailing by 1%, 21.1% of its incremental sales will come from Zocor. 

 

 

 

 

 

 
 Logit Model   Nested Logit Model   CNFSL  

Detailing DTCA M&E Detailing DTCA M&E Detailing DTCA M&E 
Lipitor - - - - - - - - - 
Zocor 21.1% 21.1% 21.1% 24.5% 24.5% 24.5% 26.3% 4.0% 8.1% 

Pravachol    14.8 
   
14.8 

   
14.8 

   17.1 
   
17.1 

   
17.1 

   18.3  2.8  5.7 

Crestor    31.7   
   
31.7   

   
31.7   

   36.9 
   
36.9 

   
36.9 

   39.3  6.0 12.2 

Nondrug 
Treatmen
t 

   32.4  
   
32.4  

   
32.4  

   21.5 
   
21.5 

   
21.5 

   16.1 87.3 74.0 

Total    100 
   
100 

   
100 

   100 
   
100 

   
100 

   100 100 100 

Own 
Elasticity 

0.257 0.107 0.064 0.284 0.088 0.061 0.307 0.082 0.060 

Log 
likelihood 

 -7751   -7746   -7721  

AIC  15516   15508   15462  
BIC  15562   15560   15527  
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Table 3: Parameter Estimates and Fit Statistics of Random Coefficient Models 

 Logit Nested Logit CNFSL 

Variables Mean Interval (95%) Mean Interval (95%) Mean Interval (95%) 

Intercept of Lipitor -0.170 -0.315,  -0.018 0.135 0.026,  0.245 -0.350 -0.530, -0.150 

Intercept of Zocor -1.167 -1.386,  -1.948  -0.487 -0.625,  -0.352  -1.309 -1.526, -1.082 

Intercept of Pravachol -1.699 -1.961,  -1.430 -0.821 -1.014,  -0.642 -1.815 -2.082, -1.520 

Intercept of Crestor -1.008 -1.282,  - 0.749 -0.378 -0.561,  -0.203 -1.122 -1.429, -0.826 

Own - detailing - stock 0.174 0.143,  0.207 0.118 0.090,  0.148 0.141 0.101, 0.187 

Own - DTCA – stock 0.849 0.646,  1.076 2.246 1.994,  2.467 1.432 1.203, 1.656 

Own - M&E - stock 0.204 0.156,  0.250 0.207 0.074,  0.338 0.294 0.219, 0.371 

Inclusive Value   0.679          0.648,  0.710   

Total-detailing-stock*     - - 

Total-DTCA-stock     1.359 1.020, 1.589 

Total-M&E-stock     0.154 0.058, 0.215 

Log of Integrated Likelihood -5900  -5961  -5878  

 
* The effect of total-detailing-stock is not significant and therefore removed from the model.  
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Table 4: Substitution Matrices and Own Elasticities (for Lipitor) for Random coefficient 

Logit, Random coefficient Nested Logit and Random coefficient CNFSL Models 
 

 
 
 
 
 
 
  

 
 

Random coefficient 
Logit Model 

  
Random coefficient 
Nested Logit Model 

  
Random coefficient 

CNFSL 
 

Detailing DTCA M&E Detailing DTCA M&E Detailing DTCA M&E 
Lipitor - - - - - - - - - 
Zocor 28.0% 23.4% 24.0% 29.4% 26.1% 25.8% 29.5% 6.5% 14.4% 

Pravachol   15.0 14.2 14.2   16.0 16.2  16.1 16.1 3.5 8.6 
Crestor   36.3 27.5 28.0   39.0 30.3  30.9 36.5 7.7 17.3 

Non-drug 
Treatmen

t 
  20.8 34.8 33.9   15.5 27.4  27.2 17.9 82.3 59.7 

Total   100 100 100   100 100  100 100 100 100 
Own 

Elasticity 
0.334 0.017 0.039 0.319 0.061 0.054 0.275 0.063 0.037 
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Table 5a: Substitution Matrices for Random coefficient Logit, Random coefficient Nested 
Logit and Random coefficient CNFSL – Physician A who is relatively insensitive to detailing 

 
Table 5b: Substitution Matrices for Random coefficient Logit, Random coefficient Nested 

Logit and Random coefficient CNFSL – Physician B who is more sensitive to 
detailing 

 
  

 
 

Random coefficient 
Logit Model 

  
Random coefficient 
Nested Logit Model 

  
Random coefficient 

CNFSL 
 

Detaili
ng 

DTCA M&E Detailing DTCA M&E Detailing DTCA M&E 

Lipitor - - - - - - - - - 
Zocor 21.1% 21.1% 21.1% 27.8% 27.8% 27.8% 25.3% 3.7% 5.5% 

Pravachol   19.1   19.1   19.1   21.7   21.7 21.7 17.8 2.6 3.9 
Crestor   31.4   31.4   31.4   30.4   30.4 30.4 26.0 3.8 5.7 

Non-drug 
Treatmen

t 
  27.8   27.8   27.8   20.1   20.1 20.1 30.9 89.9 85.0 

Total   100  100  100   100   100 100 100 100 100 
Own 

Elasticity 
0.219 0.024 0.036 0.125 0.074 0.067 0.166 0.049 0.100 

 
 

Random coefficient 
Logit Model 

  
Random coefficient 
Nested Logit Model 

  
Random coefficient 

CNFSL 
 

Detailing 
DTC

A 
M&E Detailing DTCA M&E Detailing DTCA M&E 

Lipitor - - - - - - - - - 
Zocor 29.0% 29.0% 29.0% 38.4% 38.4% 38.4% 29.4% 16.7% 21.2% 

Pravachol 5.1 5.1 5.1 3.7 3.7 3.7 4.4 2.5 3.2 
Crestor 32.6 32.6 32.6 26.2 26.2 26.2 35.3 20.1 25.5 

Non-drug 
Treatment 

33.3 33.3 33.3 31.8 31.8 31.8 31.0 60.7 50.2 

Total 100 100 100 100 100 100 100 100 100 
Own 

Elasticity 
0.3864 0.012 0.029 0.200 0.049 0.043 0.349 0.024 0.042 
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