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Abstract

Standard models of political competition do not differentiate between parties and the can-

didates selected by those parties, nor between electoral competition and competition between

parties for support and influence among the public. This paper introduces a framework that

distinguishes between parties and their candidates, creating roles for both the importance of a

party’s power (size) and of party leaders’ preferences for policy, which have been separately

emphasized in the existing literature. For this interplay between party size and policy concerns

to work, our model is dynamic. The paper provides results on existence and uniqueness of

equilibria, investigates the impacts of party extremism on candidate choice and political polar-

ization, a party’s decision whether or not to compete in an election, and conditions under which

a dynamic median voter theorem can be obtained. We also show that if aggregate preferences

are not transitive, political competition may lead to extremism.
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1 Introduction

The classic models of political competition assume that parties are teams of individuals who either

“seek office to enjoy income, prestige, and power” (Downs, 1957) or attempt to maximize their

utilities (Wittman, 1973). These papers neither differentiate between parties and the candidates

selected by those parties, nor between electoral competition and party competition for support and

influence among the public. Further, parties are static (Wittman, 1977): Elections matter only

for the current period, and do not affect party composition, availability of competitive candidates,

and preferences of party leaders in the future. The objective of this paper introduce a framework

that distinguishes between parties and their candidates, creating a role for both the importance

of a party’s power (size) and party leaders’ preferences for policy, which have been emphasized

separately in the existing literature. Our approach is able to resolve difficulties in reconciling

predictions of existing models with empirical evidence.

For example, standard models with parties that seek to maximize their vote share cannot ex-

plain the divergence of party platform or changes in political polarization in the U.S that has been

observed in the data (e.g., Poole and Rosenthal (2000)). If parties care about policy outcomes, and

median voter positions are uncertain, then standard models predict polarized policy platforms. In

these models, polarization only increases if parties become more uncertain about the position of

the median voter. It seems unlikely that the reported increase of political polarization in the US

over the last decades was caused by less accurate polling data.

Furthermore, if party leaders maximize utility and thus care only about policy, then according

to standard models parties should enter every election, because this would force the opposing

party to moderate. In practice, many elections at the state level in the U.S. are not contested. For

example, in one third of all House and Senate elections in North Carolina in 2016, only a single

candidate will be on the general election ballot. If there is a Democratic candidate in a North

Carolina district, the candidate may choose not to enter the campaign even if that candidate’s

preferences match those of the district’s median voter. Krasa and Polborn (2016) argue this would

be because the median voter dislikes the positions of Democrats from other districts and therefore

wants Democrats to remain in the minority. However, this argument does not apply because both

the House and Senate in North Carolina have very large Republican majorities, and thus small

party changes in individual Senate and House districts would not affect control of the Legislature.

Similarly, this argument fails to explain why Republicans do not contest some districts in North

Carolina.

To create a model whose results can be better reconciled with observations, we introduce a
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framework that distinguishes between parties and their candidates, creating a role for both the

importance of a party’s power (size) and party leaders’ preferences for policy, which have been

emphasized separately in the existing literature. For this interplay between party size and policy

concerns to work, our model must be dynamic.

In our model, parties select candidates to compete in an election. As in Osborne and Slivinski

(1996) and Besley and Coate (1997), candidates are unable to commit ex-ante to policies, and if

elected, will make policy choices that maximize their own utility. We assume that each party must

select a candidate from the set of its members. As in Snyder and Ting (2002) or Osborne and

Tourky (2008), we can think of parties as providing information about the candidate types that oth-

erwise would not be known to voters, and parties have this information about their members only.

The assumption also can be justified if individuals do not want to be candidates for a party, unless

their preferences are compatible with those of other party members. This reflects the experience

of many Southern Democrats who became Republicans when they felt that their views were no

longer welcome in the Democratic Party (Strom, 1990).

In the model, we assume candidates are chosen by party leaders, whose identity in turn depends

on the party membership. In general, we describe a mapping from the set of parties into the space

of citizen types, which we also can interpret as an aggregation of preferences, as in Baron (1993)

or Caplin and Nalebuff (1997). For example, if the space of citizen types is one-dimensional, and

the candidate is determined in a primary in which all party members participate, then the median

party member would be the leader. If, instead, partisans participate at higher rates in the primary,

then party leaders would be more extreme than the party medians.

Although party leaders care about policy, they also seek to attract more citizens who identify

with the party, because this provides the party with a larger set of individuals from which candidates

can be selected in the future. Thus, both policy and party support are modeled, combining the two

key features of Downs (1957) and Wittman (1973). The choice of candidate determines party

membership in the following model period. Hence party leaders may face a tradeoff between

growing the party to include more moderates and choosing more partisan policies that leaders may

prefer, but which in turn may alienate moderates. A further tradeoff arises because the leader in

the current period may not be the leader in the next period: If the party attracts more moderate

members then the leadership may become more moderate and vice versa if the party loses the

support of moderates.

Our model describes a dynamic game in which the state of the game at each point in time is

given by the allocation of citizens into parties. We first provide existence result for Markov perfect
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equilibria and investigate model equilibria when the type and policy space are one dimensional,

as in many current models. We show that equilibrium policies are more volatile than the median

voters positions, even without any uncertainty about the median voter’s position. Further, policy

divergence is a general feature of the equilibrium of our model. In contrast, in the standard model

with policy motivated candidates (without uncertainty) policies converge and track the position of

the median voter.

The model also differentiates between extremism of candidates and extremism of parties. The

latter would for example arise if an increasing number of partisans participate in a party’s primary.

We show that if a party is more extremist it will be more concerned about its ability to win with

a more extreme candidate in the current period, than about the party’s future, thus alienating its

more moderate supporters.

We also show that parties may choose not compete in an election. If initially one of the parties

is too dominant, the model indicates that the other party will not compete in the election, because

it does not have a candidate who is attractive in the general election and because it would take

too long to grow party membership to the point where such a candidate can be found. Instead,

the dynamic model indicates that party leaders prefer that their former members participate in the

other party’s selection process, providing a moderating influence on candidate choice. However,

not competing become less attractive if the opposing party is more extreme. In other words, the

model provides a very simple explanation of why it may not be optimal for a party to contest an

election.

The paper also provides condition under which equilibria in an infinite horizon converge to the

steady state in which the median voter theorem applies. In the steady state the median voter also

becomes the cutoff between the party on the left and the party on the right.

We then apply our model to situations in which aggregate preferences are not transitive and

Condorcet cycles exist. As already noted by Wittman (1973), the presence of policy-motivated par-

ties can lead to existence of pure strategy equilibria, and the same is true for our model. However, a

key difference in our model is that the identity of the party leaders is determined endogenously. We

first show in a simple model with three preferences types and no Condorcet winner that the most

frequent preference type will be elected, illustrating that this model comes up with a unique pure

strategy equilibrium. In contrast, Downs (1957) would predict randomization between all policies,

while in Wittman (1973) any equilibrium outcome can be generated, depending on the exogenous

policy preferences of each party. It is advantageous to have a model that gives sharp predictions to

make it empirically testable.
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We then consider a situation in which there are two policy issues. A majority of individuals

care primarily about the first issue (say the economy), while a minority of voters strongly prefer

a position on the second issue (say opposition to gun control), which the majority opposes. In a

model with policy motivation as in Wittman (1973), opposition to gun control would only be in

the wining platform if it is also the preferred position of one of the parties. In contrast, in our

model, the steady state equilibrium involves both parties choosing candidates who oppose gun

control, despite the fact that the party leaders would prefer stricter gun laws. Thus, candidates

have politically more extreme positions than party leaders and average party supporter, contrasting

with results from standard models in which political competition forces parties to moderate. The

difference in predictions arises from the fact that parties and candidates are separate entities in our

model, and that parties are limited to choosing candidates from among their members.

A standard explanation of why candidates adopt positions that are unpopular with a majority of

the electorate is that outside lobbyists or donors force candidates into these positions. The problem

with this explanation is that voters have to be somewhat ignorant about the impact of those policies,

otherwise a candidate who chooses the popular position would win, and the lobbyists’ or donors’

expenses would not yield any payoff. In contrast, our model provides a simpler explanation in

which political competition by itself is sufficient to produce this effect.

An important aspect of our model is the link between candidate policies and party membership

in subsequent time periods. Poutvaara (2003) provides a dynamic model in which such a link

exists, but parties are myopic and policy choice is unrestricted as in the standard models. As a

consequence, parties are policy motivated and size or party power is irrelevant. Gomberg et al.

(2004) and Gomberg et al. (2016) consider static models, in which parties aggregate preferences

and propose policies, and individuals sort themselves into parties as a function of these policies.

Unlike in our model, policy choice is not driven by political competition.

In our model parties select candidates who implement their most preferred policy if elected.

We could also assume that parties choose platforms, but that these platforms are restricted to the

Pareto set of all party members, as in Levy (2004).1 Such an alternative approach would not affect

the results in the one-dimensional case, because we show that parties are intervals and therefore

any policy in a party’s Pareto set, can be implemented as the preferred policy of one party member.

Similarly, our results for discrete type and policy spaces would remain essentially unchanged.

The paper is organized as follows. Section 2 describes the model. The definition and existence

of equilibria is discussed in section 3. Section 4 analyzes the the case where the policy space is the

1Similarly, in Morelli (2004) parties also impose restrictions on the policies that candidates can select.
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interval [0, 1], proves existence of equilibria and provides comparative static results. Section 5.1

derives a dynamic median voter theorem. Sections 5.2 and 5.3 investigate convergence to steady

state equilibria when aggregate preferences are not transitive. Section 6 concludes.

2 Model

Time is indexed by t = 0, . . . , T , where T can be either finite or infinite. Let X be the policy

space at each time t. The preferences of a citizen of type θ ∈ Θ are described by a utility function

uθ : X → R. We assume that there is a unique policy x(θ) ∈ X that maximizes the citizen’s utility,

i.e., x(θ) solves maxx uθ(x). The population of citizens at time t is described by a probability

distribution φt on Θ. Each citizen discounts future utility at a rate β, where 0 < β < 1.

There are two parties indexed by i = 1, 2. The set of party members at time t are given by

S 1,t, S 2,t ⊂ Θ. We allow for the possibility that S i,t = ∅, which will imply that a party does not

compete in the election.

Each party has a leader at time t who selects the candidate for the election. The identity of the

party leader can change over time as the party changes. To described this dependency formally, let

S be the set of all subsets ofΘ. Then the leader of party i is determined by a function mi : S → Θ.

If Θ ⊂ R, then the party leader could, for example, be the median of S i. We require that the party

leader is always a member of the party, i.e., mi(S ) ∈ S for all S ∈ S with S , ∅.

At each time t, the leader of each party i selects a candidate θi,t ∈ S i,t. All citizens vote for one

of the candidates, and the candidates with the majority of votes wins. Winning candidates select

policies that maximizes their utility, i.e., a candidate of type θ implements policy x(θ). A party can

also choose not to compete at period t, in which case S i,t = ∅.

In the subsequent periods, party membership may change, depending on policies chosen in

each period. Party membership in period t + 1 is described by a function ψ : Θ2 × S 2 → S 2,

mapping the candidate types θi, i = 1, 2 and the party structure at time t into a party structure at

time t + 1. We assume that if S i,t = ∅ then S i,t+1 = ∅

We will consider alternative specifications for ψ, which will be governed by the basic principle

that if individual choose to be affiliated with a party, then they choose the party whose policy they

prefer. We refer to this property as consistency.

Definition 1 Function ψ = (ψ1, ψ2) is consistent if and only if for all for all θ1, θ2 ∈ Θ and for all

S 1, S 2 , ∅, the sets S ′
i
= ψi(θ1, θ2, S 1, S 2) have the following property:
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If θ ∈ S ′i then uθ(x(θi)) ≥ uθ(x(θ−i))

Consistency allows for the possibility that some individuals, θ are “independent”, i.e., that they are

not affiliated with any party. If all individuals belong and thus could be candidate of one of the two

parties, then the the following condition must be satisfied.

uθ(x(θi,t)) > uθ(x(θ−i,t)) implies θ ∈ S i,t+1 and θ < S −i,t+1. (1)

So far we allow for arbitrary party structures. However, in practice the set of parties that can

occur in a game may be a strict subset K of S ×S .

For example, suppose that the policy and type space is [0, 1] and that utility is of the form

uθ(x) = −(x − θ)2. Suppose that the parties select candidates of type θ1 = 1/3 and θ2 = 2/3 and

that there are no independents, i.e., (1) holds. Then the new parties are given by S ′1 = [0, 0.5] and

S ′
2
= [0.5, 1]. Moreover, for these utility functions, any policies θ1 , θ2 would lead to parties that

are intervals of the form [0, s] and [s, 1].

Formally we describe such a set K as attainable.

Definition 2 A set of party allocations K ⊂ S ×S is attainable if and only if ψ(θ1, θ2, S 1, S 2) ∈
K for all (S 1, S 2) ∈ S ×S and θi ∈ S i, i = 1, 2.

There is a large literature that uses dynamic games to investigate how policies are determined.

Most prominently the literature on legislative bargaining extends the sequential bargaining model

of Baron and Ferejohn (1989) to the case where changes to policy can be enacted repeatedly

over time, with a deterministic status quo policy as in Baron (1996) and Kalandrakis (2004), or

a stochastic status quo as in Duggan and Kalandrakis (2012). There are a number of differences

between these previous models and our model. First, we have restrictions on the action space

that change endogenously over time, because of our assumption that candidates must be selected

from their respective parties. Second, we always have two simultaneous rather than sequential

proposers, who are the leaders of the two parties. Third, there is no status quo policy, because in

every period a new policy can be enacted. Finally, the state is the party allocation, rather than the

previous policy, and it depends deterministically on the actions of players in previous periods.

3 Equilibrium: Definition and Existence

A sub game at time t is determined by the sets S i,t, t = 1, 2 that represent party membership.

Because party membership in period t + 1 is determined by the candidate positions and not by

6



the outcome of the election, the election outcome only determines current but not future payoffs.

Thus the voting stage reduces to a one-period problem. Given a set of candidates θi
t ∈ S i,t at

t and citizens using weakly dominant strategies, it follows that type θ votes for candidate i if

uθ(x(θi,t)) > uθ(x(θ−i,t)). Hence, the median voter, θm,t, is decisive.

Let x(θi) be the policy chosen by candidate θi, i = 1, 2. Then the probability that party i wins

the election at time t is given by πi,t(θ1, θ2) where

πi,t(θ1, θ2) =



























1 if φt

(

{

θ
∣

∣

∣ uθ(x(θi)) > uθ(x(θ−i))
}

)

> 0.5;

0 if φt

(

{

θ
∣

∣

∣ uθ(x(θi)) > uθ(x(θ−i))
}

)

< 0.5;

q ∈ [0, 1] otherwise;

(2)

Clearly, π1,t(θ1, θ2) + π2,t(θ1, θ2) = 1

In contrast to voting by citizens, the selection of candidates by party leaders impacts payoffs in

future time periods, because it influences future party composition. We consider Markov perfect

equilibria. The state at time t is given by the party composition (S 1, S 2) ∈ K . A Markov strategy

maps states, i.e., the composition of parties, into a probability distribution over candidates. That

is, let K be an attainable set of party allocations, and P(Θ) the set of all probabilities on Θ. Then

a (mixed) Markov strategy for party i is given by a transition probability µi : P(Θ) ×K → [0, 1].

That is, µi(·, S 1, S 2) is a probability distribution over candidate positions θ for all K = (S 1, S 2) ∈
K . Because candidates are selected from parties, θi ∈ S i, the support of µi(·, S 1, S 2) must be

contained in S i, i.e., µi(S i, S 1, S 2) = 1.

The payoff of an individual of type θ from strategies µi,t = 1, 2 at time t given party allocation

K = (S 1, S 2) ∈ K is given by

Ut(K, µ1,t, µ2,t, θ) =

∫

( 2
∑

i=1

πi,t(θ1, θ2)vθ(x(θi))

+ βUt+1(ψ(θ1, θ2,K), µ1,t+1, µ2,t+1, θ)

)

dµ1,t(dθ1,K)dµ2,t(dθ2,K)

(3)

Before candidates are chosen parties can choose wether or nor to to compete. If party i does

not compete then S i = ∅.

In a Markov perfect equilibrium, the candidate choices must be optimal for each leader, given

the candidate chosen by the other party.

Definition 3 (µ1,t, µ2,t), πi,t, t = 1, . . . , T is a Markov perfect equilibrium if and only if

1. πi,t satisfies (2) for all t = 1, . . . , T;
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2. For all t = 1, . . . , T, and for all K ∈ K and all probabilities ν with support on S i, where

K = (S 1, S 2),

Ut(K, µ1,t, µ2,t,mi(S i)) ≥ Ut(K, µi,t, ν,mi(S i)), (4)

for parties i = 1, 2.

3. If party i competes at time t then

Ut(K, µ1,t, µ2,t,mi(S i)) ≥ Ut(∅, S −i, µ1,t, µ2,t,mi(S i)), (5)

where K = (S 1, S 2). If party i does not compete, then the inequality in (5) is reversed.

If the type spaceΘ is finite and there are finitely many time periods T , then existence of Markov

perfect equilibria is standard (c.f., Theorem 1.3.1 in Fudenberg and Tirole (1991)). In particular,

at each time t the players are θi,t = mi(S i,t). These players choose from a finite set of strategies

θi,t ∈ S i,t. The state at period t + 1 is given by ψ(θ1,t, θ2,t, S i,t, S 2,t). We can translate this game into

strategic form. If T is finite, then the set of players, θi,t, as well as the set of strategies is finite, and

existence of mixed strategy Nash equilibria follows immediately. By construction, i.e., because

each agent at time t is identified as a separate player, the equilibrium is also Markov perfect.

The existence result generalizes immediately to the case with infinitely many time periods.

Proposition 1 Let Θ be finite and time T finite or infinite. Then there exist a Markov perfect

equilibrium (in mixed strategies).

In the final sections of this paper, we will consider models with finitely many types, where

Proposition 1 is applicable. However, we also want to investigate the party dynamics when the

type space and policy space are the interval [0, 1] to compare our result to the classic case.

4 The Model with Two Time Periods

4.1 Existence of Pure Strategy Equilibria

Proposition 1 does not apply if the type space is continuous. In fact, it is well known that subgame

perfect equilibria may not exist even in a two-stage game, when actions spaces are no longer finite

(Harris et al., 1995). One possibility to derive general existence results it to introduce noise in the

process that affects the future state (the allocation of parties) in the next period. More specifically,

in order to get existence with a finite time horizon, the transition probability for the states must be
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setwise continuous (Rieder, 1979). Alternatively, if the time horizon is infinite, norm-continuity is

required (see Theorem 2 of Jaśkiewics and Nowak (2016)). Neither property holds if the transition

function is deterministic as in our case, but the properties can be satisfied if sufficient noise is added

(Duggan, 2012). For example, we could assume that after ψ selects an interim party allocation

K ∈ K , a random shock, modeled as a transition probability qt : P(K )×K → [0, 1], determines

the final party allocation according to the probability distribution qt(·,K).

We choose to work with a deterministic setting instead, because this allows us to get a sharper

result on convergence of policies. As a consequence, we will have to make more specific assump-

tion on the mapping, ψ, that determines party affiliations and on preferences.

If all citizens belong to one of the parties and a single-crossing property holds, then we can

show that parties can be represented as intervals.

Lemma 1 Let X = Θ = [0, 1] and suppose that ψ1 and ψ2 satisfy condition 1, and are compact

valued. Further, suppose utility satisfies the single-crossing property that
∂uθ(x)

∂θ
is strictly monotone

(increasing or decreasing) in x. Let θ1 , θ2 be the previous period’s policies. Then there exists

s ∈ [0, 1] such that ψi(θ1, θ2, S 1, S 2) = [0, s] and ψ−1(θ1, θ2, S 1, S 2) = [s, 1].

For example, if we consider Euclidean preferences, uθ(x) = −(x− θ)2 and the previous period’s

candidates are θ1 < θ2, then the next period party cutoff is s = 0.5(θ1 + θ2), and parties will be

S 1 = [0, s] and S 2 = [s, 1]. 2

We next determine what happens if one of the parties does not compete. Recall that the choice

of not competing is made before parties select their candidates. As a consequence, citizens who

would otherwise have been affiliated with the opposing party may now choose to be candidates

or participate in the election of the candidate who will be unopposed in the main election. We

therefore assume the that party i consists of all types Θ = [0, 1] if the opposing party does not

compete.

Assumption 1 Suppose that S i , ∅ and S −i = ∅. Then ψi(θ1, θ2, S 1, S 2) = [0, 1].

Finally, we describe the functions mi that determine the party leader who strategically selects

a candidate. In view of Lemma 1 we can restrict attention to parties that are given by intervals

2More generally, we can allow for the possibility that there are independents, i.e., some types that are not affiliated

with one of the two parties. For example, suppose that currently parties are given by S 1 = [0, s1] and S 2 = [s2, 1] with

s1 < s2, and that policies are θ1 < θ2. If party membership is slower to adjust to changes, then ψ1(θ1, θ2, S 1, S 2) =

[0, αs1+ (1−α)0.5(θ1+θ2)] and ψ2(θ1, θ2, S 1, S 2) = [αs2+ (1−α)0.5(θ1+θ2)], where 0 ≤ α ≤ 1. If α = 0 then we have

again the case without independents, where adjustments are immediate, while α = 1 means that party composition

never changes. Note that this definition of ψi may not satisfy consistency.

9



of the form [0, s] or [s, 1]. As a consequence, with a slight abuse of notation we can describe the

party leader by functions m1 and m2 that only depend on s. That is, m1(s) is the party leader if the

party is given by [0, s], while m2(s) is the party leader if the party is given by [s, 1]. We make the

following assumptions.

Assumption 2

1. mi : [0, 1]→ R are continuous for i = 1, 2.

2. m1(s) ≤ s and m2(s) ≥ s.

3. m1 is increasing and m2 is decreasing in s.

4. m1(1) ≤ θm ≤ m2(0).

For example, if party 1 is [0, s] we could define m1(s) = 0.5s or m2(s) = 1 − 0.5s if party 2

is given by [s, 1]. This would correspond to the case where citizens are uniformly distributed on

[0, 1] and the “party leader” is the median party member, a situation that would arise if all party

members participate in the primary.

We can also model the case where party leaders are more extreme than the median party mem-

bers. For example, if the candidate is selected in a primary at which a higher fraction of partisan

members participates, then m1(s) would always be to the left of the party median and m2(s) to the

right. Linear functions mi(s) that satisfy assumption 2 and have this property are given by

m1(s) = ξ1s, m2(s) = 1 − ξ2(1 − s), where 0 ≤ ξ1, ξ2 ≤ 0.5. (6)

We will use this representation of mi in Proposition 5 to perform comparative statics with

respect to “party extremism” — party i becomes more extreme if ξi is decreased. If mi changes

over time then we write mi,t.

Next, we start by analyzing the case with two time periods, and prove existence of pure strategy

subgame perfect equilibria. Even if there are multiple equilibria, payoffs are always the same.

Proposition 2 Let T = 2. Suppose that condition (1), and assumptions 1, and 2 hold. If prefer-

ences satisfy the single crossing property of Lemma 1 then there exists a Markov perfect equilib-

rium in pure strategies.

All pure strategy subgame perfect equilibria are payoff equivalent. Further, if parties are not

indifferent between competing and not competing then equilibrium strategies are unique.
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4.2 Non Centrist Policies and Policy Divergence

We now use the fact that equilibrium payoffs are unique, which we established in Proposition 2, to

analyze how equilibrium policies change in response to movements of the median voter’s position.

We show that if different parties win in the two periods, then equilibrium policies can move by

more than the position of the median voter. In contrast, if the same party wins twice, policies may

not respond at all to changes of the electorate. This is substantially different from the standard one

dimensional case without uncertainty, where policy positions shift exactly by the same amount as

the median voter. The results are summarized in Proposition 3 below.

To determine equilibria, we proceed by backward induction, following the argument in the

proof of Proposition 2. If θm,2 is the position of the median voter at t = 2, then party 1 wins if

θm,2 < s2. If θm,2 > s2 then party 2 wins. If θm,2 = s2 then either candidate can win.

If party 1’s candidate wins at t = 2 then the candidate’s position is θ1,2 = max{m1(1), 2θm2− s2},
where m1(1) is the position of the leader of party 1 if party 2 does not compete, and θm,2 is the

position of the median voter at t = 2. If party 2 competes, then the party chooses a candidate θ2,2 =

s2. If party 2’s candidate wins, then the position of that candidate is θ2,2 = min{m2(0), 2θm2 − s2}.
If party 1 competes then the position is θ1,2 = s2. The winning policy at t = 2 is therefore

x2 = h(s) =



























m2(0) if s < 2θm,2 − m2(0);

2θm,2 − s if 2θm,2 − m2(0) ≤ s ≤ 2θm2
− m1(1);

m1(1) if s > 2θm2
− m1(1).

(7)

At t = 1 party 1 wins if θm,1 < s1 and party 2 wins if θm,1 > s1. Further, at t = 1 it is optimal

for the losing party to select the most moderate candidate possible, provided party 1 competes. In

other words, if the party cutoff is s1 and party 2 loses then θ2,1 = s1. Party 1 selects a candidate

with policy, x1, that solves

max
x1∈[0,s1]

uθ(x1) + βuθ

(

h

(

x1 + s1

2

))

s.t. x1 ≥ 2θm,1 − s1, (8)

where θ = m1(s1) is the position of the leader of party 1.

Similarly, if θm,1 > s1 then party 2 wins, and the winning policy x2 solves

max
x1∈[s1,1]

uθ(x1) + βuθ

(

h

(

x1 + s1

2

))

s.t. x1 ≤ 2θm,1 − s1, (9)

where θ = m2(s1) is the position of the leader of party 2.

Consider the case where party 1 wins in the first period and hence Problem 8 applies. If the

constraint in the problem binds, then it is immediate that policies move more than the median if
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party 2 wins in the second period. In particular, the winning policy in the first period is x1 =

2θm,1 − s1, resulting in a party cutoff s2 = θm,1. If θm,2 > θm,1 then party 2 wins in the next period,

and the winning policy x2 = h(s1) ≥ θm,1. Thus |x2 − x1| > |θm,2 − θm,1|.

If θm,2 < θm,1 < s1 then party 1 wins in both periods, and if the constraint of Problem 8 binds,

then the winning policy in both periods is strictly to the left of the median voter (assuming that

m1(1) < θm,2). In this case it is possible that the policy changes less than the median voter.

For example, suppose that θm,1 = 0.5, θm,2 = 0.45 and s1 = 0.6. If the constraint of Problem 8

binds then x1 = 2θm,1 − s1 = 0.4. In the next period, the party cutoff is s1 = 0.5. The winning

policy at t = 2 is therefore 2θ2,m − s2 = 0.4 and hence the policy does not respond to changes in

the electorate’s preferences. Note that in both periods policies are strictly to the left of the median

voters’ ideal points.

We now prove more generally, that the policies move more than the median voters if different

parties win, while they move less if the same party wins twice.3

Proposition 3 Suppose that utility is of the form uθ(x) = −|x − θ|γ, γ ≥ 1. Let m1(1) + s1 < 2θm,1,

θm,1 < s1 and β > 0. Then:

1. Policies change more than the median voters, i.e., |x1 − x2| > |θm,1 − θm,2|; party 1 wins in

period 1; party 2 in period 2, and there is policy divergence in both periods if one of the

following two conditions holds:

(a) s1 < (θm1
+ θm,2)/2;

(b) (θm1
+ θm,2)/2 ≤ s1 < θm,2 and β < min

{

22−γ, 1
}

.

2. Let θm,1 < θm,2 < s1. Then party 1 wins in both periods. If γ → ∞ then in the limit

winning policies do not change in response to changes of the median voter’s position, i.e.,

|x1 − x2| → 0 as γ→ ∞.

Intuitively, why does the restriction that candidates are selected from parties increase the

volatility of policies? Suppose that party 1 wins in the first period and party 2 in the second

period. Party 1 could constrain party 2 at t = 2 by nominating a more moderate candidate at

t = 1. The new party cutoff s2 would then be closer to the median voter, which in turn means that

party 1’s candidate is more competitive, which prevents party 2 from nominating a candidate who

is too extreme. However, the new party cutoff is s2 = (s1 + θ1,1)/2. Hence nominating a candidate

3The proposition is written for the case where θm,1 < s1. The case θm,1 > s1 is analogous.
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who is more moderate by “one unit” only results in the party cutoff moving to the right by 1/2 of

a unit. If utility is uθ(x) = −|x − θ| it follows that moderation at t = 1 is not worthwhile.

If the curvature of utility and if β are increased, parties may lower the volatility of policies, but

at least if β < 22−γ policies still move by more than the median voter. For example, if utility is

uθ(x) = −(x − θ)2, then the result holds for any β < 1.

However, even if the curvature of utility goes to infinity, volatility does not go to zero when

different parties win, and we can still find cases in which policies move more than the median

voters as condition (a) of the proposition indicates. Policy x1 must be in [0, s1], and if s1 is closer

to θm,1 than to θm,2, party 2 uses its electoral advantage in the second period to nominate a more

partisan candidate, resulting in a large policy change |x1 − x2|.

Proposition 3 also shows that policies may change very little if the same party wins in both

periods. If the curvature of utility is sufficiently large, and the same party has an electoral advantage

in both periods, the winning party will attempt to minimize policy changes.

4.3 The Effect of Current Candidates on the Party’s Future

Consider a situation in which one party selects an extremist candidate. Such a candidate will have

a negative impact on the future composition of the party, resulting in a tradeoff between winning

with a more extreme candidate or improving the party’s future electoral prospects.

To better understand this tradeoff, consider the following example. Suppose that the current

party cutoff is s1 = 0.6: All types θ ≤ 0.6 belong to party 1, and all types θ ≥ 0.6 to party 2.

Because parties can only select one of their members as a candidate, party 2’s most competitive

candidate is located at 0.6. If the median voter is at θm,1 = 0.5, party 1 can win by nominating

any candidate θ between 0.4 and 0.6. However, a more extreme candidate nominated by party 1

alienates more party members, and the new party cutoff becomes s2 = (θ + 0.6)/2. If s2 remains

to the right of the median voter, θm,2, then party 1 can still win at t = 2, but it must choose a

more centrist candidate, given that party 2 has now access to more competitive candidates. If

θm,2 > s2 then party 1 will lose in the next round, because party 2 can select a candidate who is

more attractive to the median voter. Thus, party leaders in our model face the tradeoff of selecting

more partisan candidates in the current period versus retaining the party’s size and dominance in

the future.

We want to investigate how this tradeoff between choosing more extreme candidates in the

current period versus retaining the party’s size in the future is affected by party extremism.
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Consider the following example. Suppose that utility is given by uθ(x) = |x − θ|, that θm,1 =

θm,2 = 0.5 and s1 = 0.6. Let m1(s1) > 0.4.4 Then party 1 nominates a candidate at position x1 that

solves problem 8. It follows that x1 = m1(s1). If function h defined in (7) is locally independent of

the next period’s party cutoff, s2, then this is immediate. Otherwise, if h(s2) = 2θm,2 − s2 = 1 − s2,

then the fact that s2 = (s1 + x1)/2 implies x1 = m1(s1) is optimal.

The party cutoff in the next period is therefore s2 = (s1 + m1(s1))/2 = 0.3 + 0.5m1(s1). If

h(s2) = 2θm,2−s2, then the winning policy in the next period is x2 = 2θm,2−s2 = 0.7−0.5m1(s1). The

distance between x2 and the median voter is
∣

∣

∣θm,2 − x2

∣

∣

∣ = 0.5m1(s1) − 0.2. Thus, a more moderate

party, characterized by a higher value of m1(s1), will be able to use its electoral advantage in the

next period in order to implement a more extreme position. In contrast, a more extreme party wants

to take advantage of a current electoral advantage, thereby hurting their prospects in the future.

We get a similar result if party 2 wins in the next period. For example, suppose that θm,2 = 0.55

and that 0.4 < m1(s1) < 0.5. The party cutoff in the next period is again s2 = 0.3 + 0.5m1(s), but

now s2 > θm,2. Thus party 2 wins, and the winning position is x2 = 0.7−0.5m1(s1). The distance of

this policy from the median voter is
∣

∣

∣θm,2 − x2

∣

∣

∣ = 0.15 − 0.5m1(s1). Thus, a more moderate party 1

will now result in a more moderate winning position, i.e., a policy x2 that is closer to the median

voter at θm,2. The reason is that the more moderate party 1 nominates a more moderate candidate at

t = 1, which result in a larger party at t = 2. This larger, more competitive party 1 limits party 2’s

ability to win with more extreme candidates.

The insights from this example also hold more generally.

Proposition 4 Suppose that utility is of the form uθ(x) = |x−θ|γ for γ ≥ 1. Let xt denote the winning

policies in periods t = 1, 2. Suppose that the winning party i at t = 1 becomes more extreme, i.e.,

the distance between the party leader and the median voter,
∣

∣

∣mi(s) − θm,1

∣

∣

∣, increases, resulting

in policies yt, t = 1, 2. Then the winning policy is more extreme in period 1, i.e.,
∣

∣

∣y1 − θm,1

∣

∣

∣ ≥
∣

∣

∣x1 − θm,1

∣

∣

∣, but more moderate in period 2, i.e.,
∣

∣

∣y2 − θm,2

∣

∣

∣ ≤
∣

∣

∣x2 − θm,2

∣

∣

∣, if party i wins again, and

more extreme, i.e.,
∣

∣

∣y2 − θm,2

∣

∣

∣ ≥
∣

∣

∣x2 − θm,2

∣

∣

∣ if party i loses at t = 2. The inequalities are strict for

some values of mi(s) and γ.

This result show that if the decision makers in a party become more extreme, for example, because

partisans start participating more in primaries compared to moderates, then these decision makers

become more concerned about electing a partisan than about damaging the party’s future elec-

toral prospects. A “weaker” party i in the second period will have to nominate a more moderate

4We assume for the moment that the identity of the party leader is not a function of time.
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candidate and will be less able to prevent the opposing party from winning.

4.4 The Choice not to Compete

As mentioned in the introduction, in many state level elections in the US only one major-party

candidate is on the ballot. The decision by a party not to compete is also a feature of our model,

and is largely determined by two parameters: (i) the extremism of the party leaderships, and (ii) a

party’s current electoral advantage. We will see that a more extreme leadership of one party makes

it more likely that both parties compete. The comparative statics with respect to a party’s electoral

advantage, i.e., the party cutoff s1, is more subtle. That is, increasing the electoral disadvantage

may not make a party less likely to compete.

In section 4.2 we have analyzed the equilibrium for subgames starting at t = 2, and the winning

policy is characterized in (7). These results immediately imply when it is optimal for a party to

compete in the second period.

Suppose that θ2,m = 0.5 and that m1(s) = ξ1s, and m2(s) = 1− ξ2(1− s) as in (6). If s2 > 0.5 and

party 2 competes, then party 1 will select a candidate at x2 = max{1 − s2, ξ1s2}; position 1 − s2 is

the most liberal position that can win, while ξ1s2 is the ideal point of party 1’s leader. If party 2 did

not compete, then the resulting policy is m1(1) = ξ1. Hence, party 2 competes if ξ1 ≤ ξ̄1 = 1 − s2.

In other words, party 2 is more likely to compete if party 1 is more extreme, or if party 1’s electoral

advantage, s2, is not too large. Note that the extremism of party 2, i.e., the value ξ2, is irrelevant

for party 2’s choice whether or not to compete.

If we consider the initial model period, t = 1, then it is still true that a more extreme party 1

makes party 2 more willing to compete. However, the cutoff, ξ̄1 now depends also on ξ2, and a

lower value of ξ2 (a more extreme party 2) will in general raise the cutoff ξ̄1. The effect of a party’s

competitiveness, s1 becomes ambiguous.

We now state the formal result and then provide some intuition.

Proposition 5 Suppose utility is of the form uθ(x) = −|x − θ|γ and that θ1,m = θ2,m = 0.5. Further,

assume that m1(s) = ξ1s, and m2(s) = 1 − ξ2(1 − s) as in (6) where 0 ≤ ξ1, ξ2 ≤ 0.5. Let s1 > 0.5

Then:

1. There exists ξ̄1 such that party 2 competes at t = 1 if and only if party 1 is sufficiently extreme,

i.e., ξ1 ≤ ξ̄1.
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2. The cutoff ξ̄1 is non-increasing in ξ2, i.e., a more extreme party 2 competes if a less extreme

version of party 2 would also compete.

3. If the constraint of problem 8 binds, i.e, if ξ1 ≤ (2−2s1− (0.5β)
1
γ−1 )/(2(1− (0.5β)

1
γ−1 )s1), then

increasing the party cutoff s1 decreases ξ̄1, i.e., if party 1’s electoral advantage increases,

party 2 is less likely to compete.

4. If the constraint of problem 8 is slack, then ξ̄1 decreases when s1 is increased if (0.5β)1/(γ−1)

is sufficiently close to 1.

The cutoff ξ̄1 is obtained at the point where party 2’s leader at θ = 1 − ξ2(1 − s1) is indifferent

between competing and not competing, i.e., where

−(θ − x1)γ − β(θ − x2)γ = −(θ − ξ̄1)γ − β(θ − ξ̄1)γ, (10)

and where x1 and x2 are party 1’s winning polices, who may themselves depend on ξ̄1. If party 2

does not compete at t = 1, a candidate at m1(1) = ξ1 is nominated.5 Recall that x2 ≥ ξ1, because by

not competing party 2 can ensure that no policy to the left of ξ1 wins. Thus, if ξ1 = ξ̄1 then x1 ≤ ξ̄1

and x2 ≥ ξ̄2. In fact both equalities must be strict.

Now suppose that party 2 becomes more extreme, which implies that θ in (10) increases. Be-

cause x1 < x2 it must be the case that x1 < ξ̄1 < x2. Consider a lottery with outcomes x1 and x2

that occur with probabilities 1/(1 + β) and β/(1 + β), respectively. Then (10) implies that ξ̄1 is the

lottery’s certainty equivalent. The degree of absolute risk aversion for utility u(x) = −(θ − x)γ is

rA = −u′′(x)/u′(x) = (γ − 1)(θ − x). Thus, if θ increases, absolute risk aversion decreases. This

implies that raising θ raises the lottery’s certainty equivalent ξ̄1.

Intuitively, a party leader has the choice between not competing, and receiving policy ξ̄1 in both

periods, or competing and receiving a less preferred policy x1 < ξ̄1 at t = 1 and a more preferred

policy x2 > ξ̄1 at t = 2. An extreme leader of party 2, dislikes both policies more than a moderate

party leader. However, the more extreme leader’s tradeoff between the policies differs: He receives

relatively more utility from x2 compared to x1 and is therefore more willing to compete at t = 1 in

order to get the more moderate policy at t = 2.

Numerically, the effect of party 2 extremism on ξ̄ is limited as figure 1 indicates. Recall that

ξ2 = 0 corresponds to the most extreme possible leader of party 2, located at θ = 1, whereas

ξ2 = 0.5 moves the party leader to θ = 0.8 (when s1 = 0.6). Party 2 competes as long as ξ1 ≤ ξ̄1,

5We assume that party 2 cannot reenter in the second period, and as a consequence the winning policy at t = 2 is

again ξ̄1.
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Figure 1: The impact of party 2 extremism, ξ2, on the cutoff value ξ̄1, for s = 0.6, β = 0.9, γ = 1.2

(left panel) and γ = 5 (right panel)
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Figure 2: The impact of party 1’s electoral advantage, s1, on the cutoff value ξ̄1, for ξ2 = 0.1,

β = 0.4, γ = 1.2 (left panel) and γ = 3 (right panel)

and ξ2 influences this cutoff only minimally. The impact of ξ2 on the cutoff is even smaller if γ is

closer to 1. Thus, party 2’s decision whether or not to compete is primarily determined by party 1’s

extremism.

Now consider the case where s1 and hence party 1’s electoral advantage increases. If the

constraint of problem 8 binds then x1 decreases, and x2 increases, which makes the leader of

party 2 worse off. This would make it more attractive for party 2 not to compete, but s1 also raises

the position of party 2’s leader, θ, which (as we have just shown) makes party 2 more willing to

compete. It turns out, however, that this latter effect is dominated by the former, i.e., the overall

effect of raising party 1’s electoral advantage is a reduction in party 2’s willingness to compete.

If we raise s1 to a level at which the constraint of problem 8 is slack, the overall effect of s1 on
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ξ̄1 becomes ambiguous. In particular, raising s1 results in a more moderate leader of party 1, who

may prefer a less extreme position at t = 1, i.e., a higher x1. This increase of x1 may also make the

leader of party 2 better off, who as a consequence would be more likely to compete. Proposition 5

indicates that an increase of s1 results in an increase of ξ̄1 if either β and γ are not too large.

Figure 2 shows how ξ̄1 changes in response to s1. Initially ξ̄1 decreases because the constraint of

Problem 8 binds for these values. The lines have a kink at the point where the constraint becomes

slack. In the left-panel γ is sufficiently small so that ξ̄1 rises when s1 is sufficiently large. With the

somewhat higher value of γ in the right-panel, ξ̄1 is strictly decreasing.

Figures 1 and 2 also show that ξ̄1 responds much more strongly to changes in s1 than to changes

in ξ2. In other words, unlike extremism of party 2’s leader, the level of party 2’s electoral disadvan-

tage, measured by parameter s1, strongly influences the party’s decision whether or not to compete.

5 The Model with Infinitely Many Time Periods

5.1 Dynamic Median Voter Theorem

We now address the question whether we get convergence to the median voter’s ideal position if

the position of the median voter does not change over time. Proposition 5 indicates that if β is small

then convergence will not occur if one party is too dominant, in the sense that the party cutoff s

is too far from the median voter, θm. In such a case, the minority party does not compete, and the

majority party will nominate a non-median candidate. Thus, we can only expect a dynamic median

voter theorem to hold if β is sufficiently close to 1.

We will construct an equilibrium in which the minority party always competes by nominating

a candidate at the party cutoff. The majority party selects more extreme candidates, but after

finitely many periods convergence to the median occurs. To determine the equilibrium we proceed

recursively.

Without loss of generality suppose that the party cutoff s > θm. Let x(s) be the policy selected

by the winning party’s candidate, and let U(s, θ) be the continuation utility of an individual of type

θ if the current state is s. Then

x(s) ∈ arg max
x∈[0,s]

um1(s)(x) + βU

(

x(s) + s

2
,m1(s)

)

s.t. x ≥ 2θm − s, (11)

and

U(s, θ) = uθ(x(s)) + βU

(

x(s) + s

2
, θ

)

. (12)
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Condition (11) ensures that the candidate choice is optimal for the current leader of party 1, given

that party 2’s candidate is located at s. In order to ensure that it is not optimal for party 2 to deviate

by selecting a candidate at s′,

U

(

x(s) + s

2
,m2(s)

)

≥ U

(

x(s) + s′

2
,m2(s)

)

, (13)

for any s′ ≥ s. Finally, it must be better for party 2 to compete for any cutoff s, i.e.,

U (s,m2(s)) ≥
um2(s)(m1(1))

1 − β , (14)

for all s > θm.

For the case where uθ(x) = −|x− θ| and functions mi are linear as in (6) we can use (11) to (14)

to find a closed form solution for the equilibrium strategy.

Proposition 6 Suppose that utility is uθ(x) = −|x−θ| and that the median voter is at θm = 0.5 in all

time periods. Further, suppose that party leaders are given by m1(s) = ξ1s and m2(s) = 1−ξ2(1−s).

Then for ξi ≤ min
{√

5 − 2,
β

2−β

}

there exist a Markov perfect equilibrium in pure strategies with

the following properties:

If s > θm then party 1 wins with a candidate at position x(s) = max{2θm − s,m1(s)}. If s < θm

then party 2 wins with a candidate at position x(s) = min{2θm− s,m2(s)}. Starting at any s ∈ [0, 1],

the equilibrium policies converge to a steady state after at most two periods. In the steady state

the median voter is the party cutoff, and the median voter’s preferred policy is implemented in

equilibrium.

An interesting insight of Proposition 6 is that the policy x(s) is not monotone in the party

cutoff s. Consider the case where s > 0.5 and party 1 wins. Initially raising s results in a more

extreme policy, i.e., x(s) is decreasing. However, once s+m1(s) ≥ 2θm, then x(s) is increasing in s.

Intuitively, party 1 first uses an electoral advantage to win with a more partisan candidate. However,

as s is increased further, the party leadership also becomes more moderate. For sufficiently large s

this latter effect dominates and results in the selection of more moderate candidates.

5.2 Steady States Without a Condorcet Winner

In the previous section we showed that in a model with a one dimensional policy space, after

finitely many periods a steady state is reached. Unless one party chooses not to compete, the
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steady state is the Condorcet winner, i.e., the median voter. We now investigate what happens in a

model, in which no Condorcet winner exists.

The simplest such model is as follows: Suppose there are three different types Θ = {A, B,C},
and three policies, X = {xA, xB, xC}. Utilities are as follows:

1. uA(xA) = 2, uA(xB) = 1, uA(xC) = 0;

2. uB(xB) = 2, uB(xC) = 1, uB(xA) = 0;

3. uC(xC) = 2, uC(xA) = 1, uC(xB) = 0.

Further, consider a distribution for which no single type by themselves can determine the outcome

of the election, i.e., φ({θ}) < 0.5, while φ(Θ \ {θ}) > 0.5 for any type θ ∈ Θ. Further, assume that

φ({A}) > φ({B}) > φ({C}). As a consequence of these assumptions, a majority of the electorate

prefers A to B, prefers B to C, and prefers C to A, and we have a Condorcet cycle.

Consider first the classic model of Wittman (1973), where party (or equivalently candidate)

preferences are fixed exogenously. Suppose that candidate 1 has the preferences of the type A

voter, while candidate 2’s preferences correspond to those of type B. Unlike in our model, both

candidates can commit ex-ante to a policy.

Then the game’s payoff matrix is as follows:

Cand. 2

Policy A B C

C
an

d
.

1 A 2,0 2,0 0,1

B 2,0 1,2 1,2

C 0,1 1,2 0,1

As Wittman (1973) already noted, his approach, unlike that of Downs (1957), allows for the ex-

istence of pure strategy equilibria even in cases where aggregate preferences violate transitivity.

Indeed a unique pure strategy equilibrium exists in this game, while office motivated candidates

would mix between all three different policies. In the unique pure strategy equilibrium, candidate 1

selects policy B, and candidate 2 chooses C. Of course, B wins. A dynamic version as in Wittman

(1977) would obviously result in B, C as a steady state, with B winning in every period. Of course,

the equilibrium changes if we change the types of the policy motivated candidates.

Now consider again our model with infinitely many time periods. Rather than being fixed, the

types that can select the candidates are determine endogenously, for given selection functions mi,

which we now specify.
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We assume that the function mi is the same for both parties, and we therefore drop the index i.

Let m(S ) = arg maxθ∈S φ({θ}), i.e., the most frequent type can choose the policy. If S consists of

one or two types, then m(S ) simply corresponds to majority rule for determining a party’s candidate

in a primary.

If parties cannot exit, then the following are the equilibrium strategies:

1. If parties are {A, B} and {C}, then B is nominated and wins against C.

2. If parties are {B,C} and {A}, then C is nominated and wins against A.

3. If parties are {A,C} and {B}, then A is nominated and wins against B.

Suppose that at time t the party composition is {A, B}, and {C}. In the proposed equilibrium, B

is nominated and wins. The party composition remains unchanged, because both A and B prefer

xB to xC . Hence, on the equilibrium path the policy will remain at xB. Now suppose that party

{A, B} nominates candidate A. Both B and C prefer xC to xA. Hence, A loses and the parties change

to {A}, {B,C}. In the proposed equilibrium, C wins and implements xC in all future time periods.

Because both A and B prefer xB to xC , this deviation is not optimal.

Now, suppose that we start with parties {A}, {B,C} at time t. In equilibrium C is nominated,

wins against A and policy xC is implemented. If party {B,C} nominates B then A wins, with the

votes of A and C types. At t + 1 the parties are then {A,C} and {B} and the policy remains at A.

Both B and C are better off with policy xC than policy xA, and hence the deviation is not optimal.

The remaining case, where parties are {A,C}, and {B} is similar. One can also verify that these

strategies are unique.

Now consider the case where parties can exit. Suppose that we are in the situation where parties

are {A, B} and {C}. In this case B wins, resulting in policy xB. If party C exits in the current period,

then in the next period the new single party is S = {A, B,C}. Because m(S ) = {A}, the party leader

is of type A and “wins” (there is no competition), and would select policy xA, which also makes

type C better off.

Similarly, if parties are S 1 = {B,C} and S 2 = {A}, then it is optimal for party 1 to exit, because

this would again move the policy to xA. Finally, when S 1 = {A,C} and S 2 = {B}, then A wins. Party

S 2 = {B} has no incentive to drop out because the equilibrium policy would not change. Thus, in

all cases A wins, and policy xA is implemented.

Note that this result would not change if parties were allowed to reenter, i.e., if starting with a

single party S = {A, B,C}, one type is allowed to separate from S to form its own party.
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For example, suppose that we are in a situation with only a single party {A, B,C}, in which case

type A chooses policy xA. Clearly, it is not optimal for A to form its own party, because this would

result in policy xC . If B separates, then S 1 = {A,C} and S 2 = {B} in which case the optimal policy

remains at xA. Finally, if C separates, then parties are S 1 = {A, B} and S 2 = {C} in which case B

wins, which makes C worse off.

5.3 Minorities with Strong Preference Intensities

Suppose there are two issues i = 1, 2, and two possible policy choices on each issue, which we

denote by 0 and 1.6 For example, we can think of issue 1 as a tax policy (e.g., keeping taxes the

same or lowering taxes) and issue 2 relating to gun control (e.g., for or against background checks).

There are four types of voters, A, B, C, and D, their utilities are as follows, and the fraction of these

types in the population are as follows:

Type A u(x1, x2) = −2|x1| − |x2|. Thus, (0, 0) ≻ (0, 1) ≻ (1, 0) ≻ (1, 1); 35%

Type B u(x1, x2) = −2|x1 − 1| − |x2|. Thus, (1, 0) ≻ (1, 1) ≻ (0, 0) ≻ (0, 1); 25%

Type C u(x1, x2) = −|x1| − 2|x2 − 1|. Thus, (0, 1) ≻ (1, 1) ≻ (0, 0) ≻ (1, 0); 22%

Type D u(x1, x2) = −|1 − x1| − 2|x2 − 1|. Thus, (1, 1) ≻ (0, 1) ≻ (1, 0) ≻ (0, 0); 18%

Suppose that the policy on, say issue 1, is fixed to some value x1 and cannot be affected by candi-

dates. Then a majority of citizens would prefer 0 on the second issue, i.e., a majority prefers (x1, 0)

to (x1, 1). Similarly, if the position on issue 2 is fixed to x2, citizens would also prefer 0 on the

first issue — again a majority prefers (0, x2) to (1, x2). However, types C and D care very strongly

about the second issue, and a consequence (0, 0) is not a Condorcet winner. To see this, consider

two candidates who choose one of the four policies x ∈ X. Then we get the following vote shares:

Cand. 2

Policy (0, 0) (1, 0) (0, 1) (1, 1)

C
an

d
.

1 (0, 0) 0.5,0.5 0.57,0.43 0.6,0.4 0.35,0.65

(1, 0) 0.43,0.57 0.5,0.5 0.25,0.75 0.6,0.4

(0, 1) 0.4,0.6 0.75,0.25 0.5,0.5 0.57,0.43

(1, 1) 0.65,0.35 0.4,0.6 0.43,0.57 0.5,0.5

It is easy to see that (0, 0) would be defeated by policy (1, 1), and that there is no Condorcet

winner. If there are two parties (or candidates) as in Downs (1957), who maximize vote shares,

6See Krasa and Polborn (2010) for a general description of models where policies on each issue are binary.
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only a mixed strategy equilibrium exists. In this mixed strategy equilibrium, (0, 0) is played by

both parties with probability 7/32, (0, 1) with probability 15/32, and (1, 1) with probability 10/32

— (1, 0) is never chosen. As a result, policy outcomes (0, 0) and (1, 1) will occur with probabilities

of about 1/4 each, and (0, 1) with probability 1/2.

In the equilibrium, parties randomize over positions that cover both extremes of the political

spectrum, position (0, 0), and its complete opposite (1, 1). In other words, we get the counterfactual

result that one and the same party may adopt with strictly positive probability a platform that calls

for both higher taxes and gun control or a platform that promises low taxes and no restrictions on

guns. The separation of parties and candidates in our model prevents this from happening. If one

party in our model attracts all low-tax and pro-gun types, (1, 1), then the other party will attract

all the (0, 0) types, who hold the liberal position on both issues. Hence it is not possible for one

and the same party to have both one candidate who could credibly commit to (1, 1) and another

candidate who could commit to (0, 0).

We next determine equilibria for the case of policy-motivated candidates.

5.4 Policy Motivated Candidates

Suppose that candidate 1’s preferences are those of type A voters, while candidate 2’s are those of

type B voters. Then we get the following payoff matrix.

Cand. 2

Policy (0, 0) (1, 0) (0, 1) (1, 1)

C
an

d
.

1 (0, 0) 0,−2 0,−2 0,−2 −3,−1

(1, 0) 0,−2 −2,0 −1,−3 −2,0

(0, 1) 0,−2 −1,−3 −1,−3 −1,−3

(1, 1) −3,−1 −2,0 −1,−3 −3,−1

The unique pure strategy equilibrium is (0, 1), (0, 0), and (0, 0) wins.

In order for the minority positions to get adopted, at least one of the candidate themselves

must prefer the position on the second issue. For example, suppose that candidate 1 still has the

preferences of a type A voter, while candidate 2 has those of a type D voter. Then we get the

following payoff matrix.
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Cand. 1

Policy (0, 0) (1, 0) (0, 1) (1, 1)

C
an

d
.

2 (0, 0) 0,−3 0,−3 0,−3 −3,0

(1, 0) 0,−3 −2,−2 −1,−1 −2,−2

(0, 1) 0,−3 −1,−1 −1,−1 −1,−1

(1, 1) −3,0 −2,−2 −1,−1 −3,0

Now the unique pure strategy equilibrium is (0, 1), (1, 1), where candidate 1 wins with (0, 1).

Thus, whether or not the minority is chosen in equilibrium depends on the policy motivation

of the candidates themselves. In other words, unless candidates themselves want policy 1 on the

second issue, it will not be chosen in equilibrium. We now compare this prediction to that of our

model.

5.5 Party Equilibrium

We now determine steady states using our model where parties and thus the individuals who chose

policy are chosen endogenously. As in section 5.2 assume that mi is the same for both parties,

and as a consequence we drop the index i. We assume that the type whose policy is preferred by

a majority of the party members is the leader. Thus, if a party consists of a single type or two

types, then the most frequent type is the leader, i.e., m(S ) = arg maxθ∈S φ({θ}). Further, this implies

m({A, B,C}) = A, m({A, B,D}) = B, m({A,C,D}) = C, and m({B,C,D}) = D. We can define

m({A, B,C,D}) arbitrarily, because this does not affect the equilibrium.

Consider first the equilibrium from section 5.4 with two policy motivated candidates who prefer

position 0 on the second issue. In this equilibrium x1 = (0, 1) and x2 = (0, 0), and policy x2

wins. Given these policies, parties are uniquely determined (by consistency) as S 1 = {C,D} and

S 2 = {A, B}. The party leaders are therefore m(S 1) = C and m(S 2) = A. However, type C would be

strictly better off choosing D as the candidate. In particular, D would choose policy (1, 1) if elected,

and a majority of the electorate prefers (1, 1) to (0, 0) (see the vote-share table in section 5.3). Type

C prefers (1, 1) to (0, 0), and hence x1 = (0, 1), x2 = (1, 1) cannot be a steady state.

Up to relabeling of parties, there are three steady state equilibria, both of which entail the mi-

nority position being adopted on the second issue. The first steady state equilibrium is as follows:

Parties are given by S 1 = {A} and S 2 = {B,C,D}. Party 1 selects a candidate of type A by

default, while party 2 chooses type D by default. Type D’s policy of (1, 1) wins agains (0, 0). The

leader of party 2, D = m(S 2) receives his most preferred policy, and has therefore no incentive to

deviate, while party ‘ does not have the choice of selecting a different candidate.
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The second steady state is similar:

Parties are given by S 1 = {A,C,D} and S 2 = {B}, while C and B are selected as candidates.

Candidate C wins with policy (0, 1).

In the third steady state, parties are given by S 1 = {A,C} and S 2 = {B,D}, respectively. Because

there are more A than C types, candidate selection in party 1 is done by type A. Similarly, there are

more B than D types in party 2, and thus, B types select a candidate for party 2. As a consequence,

the situation resembles that discussed in section 5.4 with two policy motivated candidates of type

A and B respectively. The key difference, however, is that party 1 must select one of its members,

i.e., either a type A or a type C, as a candidate, which would result in policies (0, 0) and (0, 1),

respectively, if party 1 wins. Party 2 can choose between B and D, with would result in policies

(1, 0), and (0, 1), respectively.

The equilibrium is for both parties to choose candidates that favor the minority position, 1,

on the second issue. In particular, party 1 selects a type C individual, i.e., policy (0, 1), while

party 2 selects type a D individual, which corresponds to policy (1, 1). Thus, the vote-share table

in section 5.3 reveals that party 1 and policy (0, 1) wins. This happens despite the fact that both

party leaders would prefer policy 0 on the second issue. However, if party 1 nominated its leader’s

most preferred candidate, A, then party 1 would lose, because A’s policy (0, 0) loses agains D’s

policy (1, 1). Similarly, party 2 does not benefit from nominating candidate B. Candidate B would

choose policy (1, 0), and hence in the next period, parties are given by S 1 = {A,C,D} and S 2 = {D}.
As a consequence type C = m(S 1) will select the candidate in the next period. Hence, we are in

the first type of steady state with policy (0, 1) winning.

Thus, political competition may force parties to choose candidates whose preferences on some

issues neither represent those of a majority of the party and of the electorate. In the first two types

of steady steady state equilibria one party attracts all members of the minority, who then being a

majority within the party determine the policy within the party. In the third type of steady state,

party leaders share the majority position on the second issue, but political competition forces them

to choose a candidate who prefers the minority position. In all cases, “vocal minorities” have an

outsize influence on policy.

As mentioned above, a majority of citizens separately prefers position 0 on both issue, which

is the policy a type A candidate would implement, if elected. It is indeed possible for candidate A

to win in a steady state, but we need a very particular choice of party leaders, which are specified

in Proposition 7 below.

Suppose for example that parties are given by S 1 = {A,C}, and S 2 = {B,D}, and party leaders
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are the majority types A and B. In order for A to win at time t, party 2 must nominate B. However,

D would win agains A, which would increase the party leader’s payoff in the current period. In

the next period, t + 1, parties are given by S 1 = {A} and S 2 = {B,C,D}. If, in this case party 2

selects either a candidate B or D, then the deviation at t would be optimal. The only deterrent to

such a deviation is that C becomes the party leader and is able to move the parties to a situation

in which C always wins, which can be the case when parties at a future point in time are given by

S 2 = {A,C,D} and S 1 = {B}. Of course, this requires players to be sufficiently patient. In other

words, if β is too small, A can never win in a steady state equilibrium.

Intuitively, what happens is that party 2 at time period t could win by adopting the minority

position on issue 2. However, this would lead extremists, who care primarily about issue 2, to join

the party, and change its direction by changing the leadership. The final outcome, policy (0, 1) is

disliked by the original party leader of type B, however, these types have lost control over party 1

at t + 1, and in the long run they join party 2.

Conditions for existence of steady states in which the minority positions win are easier to

specify. For example, if parties are S 1 = {A,C,D} and S 2 = B and C is the leader of party 1, it is

immediate that C is nominated, wins and that we have a steady state. Note that C can be interpreted

as a “median” type. That is, if voters were separately asked for the favorite position on each issue,

0 and 1 would be the majority position, which is the preferred policy of type C.

Similarly, if parties are S 1 = {B,C,D}, S 2 = {A}, and D is the party leader, then D is nominated,

wins, and we have again a steady state. In this case D would be the “median” type.

In the one-dimensional case we have seen that parties and policies always converge to a steady

state. This is no longer true when there is no Condorcet winner. That is, we can show that in some

cases, parties as well policies oscillate, but never converge. We now state the formal result, which

is proved in Lemma 2 and 3 in the Appendix.

Proposition 7

1. A steady state equilibrium in which candidate A wins can only exist if β is sufficiently close

to 1, if mi({A,C}) = A, m−i({B,D}) = B, m−i({B,C.D}) = C, and if there exists another steady

state in which C wins.

2. If mi({B,C,D}) = C for party i, then there exists a steady state in which C wins. If mi({A,C,D}) =
D then there exists a steady state in which D wins.

3. For any β there exist choices of the leadership functions mi, and initial party allocations such
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that policies and parties do not converge to a steady state.

6 Conclusion

The objective of this paper is to introduce a model that distinguishes between parties and their

candidates, creating roles for both the party’s size and party leaders’ preferences for policy. These

roles have been separately emphasized in the existing literature, starting with the seminal contri-

butions of Downs (1957) and Wittman (1973). Formally, the model is a dynamic game, in which

the state in each period is given by the allocation of individuals into parties.

We show that policy divergence is natural result of the model, generated by the fact that parties

may not be able to choose a candidate that perfectly targets the median voter. The model also pre-

dicts that the winning policies overshoot changes in the media voter’s position. As a consequence,

policies are more volatile than the the median voter. The model also distinguishes between ex-

tremisms of parties and candidates, and shows that when parties become more extreme, more seats

should be contested.

Finally, we apply the model to situations in which no Condorcet winner exists. Unlike existing

models, we derive sharp predictions about equilibria, and we show that candidates may be more

extreme than both party members and party leaders. In such a case, political competition may lose

its moderating influence on policy.
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7 Appendix

Proof of Proposition 1. For T < ∞ the result follows immediately. Suppose that time is infinite.

Because Θ is finite, the number of players in the game remains finite. Theorem 2 of Jaśkiewics

and Nowak (2016) or the related theorem in Mertens and Parthasarathy (2003) implies existence

if the transition rule satisfies norm continuity. The transition rule in our game is deterministic and

given by function ψ. However, since the action space of the game, i.e., the set of candidate types

Θ, is finite, norm continuity is immediate.

Proof of Lemma 1. Let x and y denote the policies that would be implemented by the candidates

of parties 1 and 2, respectively. We can assume that x , y.

Suppose that there exist θ1 < θ2 < θ3 with uθi
(x)− uθi

(y) ≥ 0 for i = 1, 3 and uθ2
(x)− vθ2

(y) < 0.

Then the function f (z) = uz(y)−vz(x) assumes a local minimum at some point z̄ in the open interval

(θ1, θ3). As consequence, 0 = f ′(z) =
∂uz(y)

∂θ
− ∂uz(x)

∂θ
. This, however, is a contradiction because

∂uz(x)

∂θ

is strictly monotone in x, which together with the fact that x , y implies that
∂uz(y)

∂θ
,

∂uz(x)

∂θ
.

As a consequence, there are three cases:

1. uθ(x) − uθ(y) > 0 for all θ,

2. uθ(x) − uθ(y) < 0 for all θ,

3. There exits a unique θ̄ such that uθ̄(x) − uθ̄(y) = α.

In the first case, all types prefer party 2, and in the second case all types prefer party 1, and we

clearly have the desired structure. In the third case, define s = θ̄. Because θ̄ is unique if follows that

the set {θ|uθ(x)−uθ(y) ≥ 0} is an interval of the form [0, s] or [s, 1], and similar for {θ|uθ(x) ≥ uθ(y)}.

Proof of Proposition 2. By assumption each type θ has a unique most preferred policy x(θ).

Further, if θ , θ′ then the single crossing property implies that x(θ) < x(θ′) for θ < θ′.

In particular if y = x(θ) is the individuals optimal policy then
∂uθ(x)

∂x
= 0. By assumption

∂2uθ(x)

∂x∂θ
> 0. As a consequence,

∂uθ′ (x)

∂x
> 0. Since utility is strictly concave it follows that

∂uθ′ (y)

∂x
= 0

for some y > 0.
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Without loss of generality we can therefore rescale Θ such that type θ’s most preferred policy is

θ = x(θ). After this rescaling it is possible that Θ is a strict subset of [0, 1]. We can define arbitrary

preferences on [0, 1] \Θ, because types in [0, 1] \Θ are never picked as party leaders and therefore

do not affect the game.

Suppose that at t = 2 parties are given by S 1 = [0, s] and S 2 = [s, 1], and let θm,2 be the median

type at t = 2. There are two cases to consider:

Case 1: θm,2 ≤ s.

If party 2 competes, then party 1 selects candidate θ1 = max
{

m1(s), 2θm,2 − s
}

; party 2 selects

candidate θ2 = s. The median voter at θm,2 and all types θ < θm,2 prefer candidate 1. Hence, electing

candidate 1 is an equilibrium.

If party 2 does not compete then party 1 is given by [0, 1]. Monotonicity of m1 therefore implies

that m1(1) ≥ m1(s). If the other party does not compete then the party leader m1(1) will nominate

a candidate with at θ̃ = m1(1). Assumption 2 implies θ̃ = m1(1) ≤ θm,2 ≤ m2(s). Thus, party 2 will

exit if θ1 < θ̃. The winning candidate at t = 2 is therefore given by θ̄ = max
{

m1(1), 2θm,2 − s
}

. The

winning policy, x2(s) at time t = 2 is therefore an increasing, continuous function of s.

Case 2: θm,2 ≥ s.

In this case party 2 wins. The analysis is analogous to that of case 1. Specifically, the winning

candidate is given by θ̄ = min
{

m2(0), 2θm,2 − s
}

, where m2(0) is the leader of party 2 if party 1 does

not compete.

If follows immediately that the equilibrium at each subgame at t = 2 is unique.

Now consider the first stage of the game. Suppose that both parties compete and parties are

given by [0, s] and [s, 1]. Assume without loss of generality that the median voter at time t = 1

satisfies θm,1 ≤ s. Then party 1 wins if θ1 ≥ 2θm,2 − s. As a result, the party leader, type θ = m1(s)

solves

max
x∈[0,s]

uθ(x) + βuθ

(

2θm,2 −
x + s

2

)

s.t. x ≥ 2θm,1 − s. (15)

The second derivative of the object with respect to x is

u′′θ (x) +
β

4
u′′θ

(

2θm,2 −
x + s

2

)

< 0.

Hence, (15) has a unique solution, x1, which is party 1’s equilibrium strategy. It is not optimal for

party 2 to deviate, because this would raise the party cutoff at t = 2 which, as shown above, lowers

or at best keeps the policy at t = 2 the same.

Finally, if party 2 does not compete, then party 1 will nominate a candidate at m1(1) in both
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periods. Party 2 will therefore not compete if the payoff uθ(m1(1))+βuθ(m1(1)) strictly exceeds the

payoff from competing, where θ = m2(s). Hence, an equilibrium exists.

We next prove uniqueness.

Given that the solution of (15) is unique for any s, it is sufficient to prove that there does not

exist an equilibrium in the subgame starting after party 2’s decision to compete in which party 2’s

candidate θ2 > s.

If party 2 deviates by changing θ2, then as show above the winner in the second period changes

unless θ̄ = m1(1) or θ̄ = m2(0), depending on whether party 1 or 2 wins. Given that local changes of

θ2 do not change the identity of the winning candidate at t = 2, the same is true for small changes

of the type of party 1’s candidate.

Next, note that the constraint of optimization problem 15 must be slack. Else, lowering θ2

would result in party 1 winning the election. Thus, the leader of party 1’s optimal candidate is

locally unconstrained, and therefore θ1 = m1(s). However, this means that party 2 would be strictly

better off not competing, as this would result in a candidate of type θ = m1(1) > m1(s) = 1 winning.

This contradiction proves that there does not exist an equilibrium in a subgame starting at t = 1

with both parties competing, where the losing party selects a candidate θ , s. Hence equilibrium

payoffs are unique.

Finally, note that the only case in which strategies are not unique is when one of the parties is

indifferent between competing and not competing.

Proof of Proposition 3. First, suppose that θm,1 < s1 < (θm1
+ θm,2)/2. If party 2 does not

compete, the winning policy is m1(1). If party 2 competes, then the equilibrium policy solves

problem 8. Thus, x1 ≥ 2θm,1− s1 > m1(1), where the last inequality follows because by assumption

m1(1) + s1 < 2θm,1. Thus, it is optimal for party 2 to compete, and party 1 wins with a policy

x1 ≤ s1. The winning policy in the next period is x2 = h(x1) = 2θm,2 − 0.5(x1 + s1) ≥ 2θm,2 − s1.

Thus, |x1 − x2| = x2 − x1 ≥ 2(θm,2 − s1) > θm,2 − θm,1, because s1 < (θm1
+ θm,2)/2.

To consider the remaining case, we determine the first-order condition for policy x1.

Suppose that at either s2 < 2θm,2 − m2(0) or s2 > 2θm2
− m1(1). Then ∂h(0.5(x1+s1))

∂x1
= 0. The

objective or problem 8 is strictly concave because u′′ < 0.

If the constraint is slack then u′θ(x1) = 0, which implies x1 = θ (recall that we assume u′θ(θ) = 0).

The constraint must be satisfied and hence m1(s1) = θ = x1 ≥ 2θm,1− s1. This, and monotonicity of

m1 (from assumption 2) imply m1(1) ≥ 2θm,1− s1. This contradicts the assumption that m1(1)+ s1 <
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2θm,1.

Thus, 2θm,2 − m2(0) ≤ s1 ≤ 2θm2
− m1(1) and hence (∂/∂x1)h(0.5(s1 + x1)) = −0.5. Further, we

must have θ = m1(s1) < x1. The derivative of the object of problem 8 is therefore

−γ(x1 − θ)γ−1
+
γβ

2

∣

∣

∣

∣

∣

2θm,2 −
x1 + s1

2
− θ

∣

∣

∣

∣

∣

(

2θm,2 −
x1 + s1

2
− θ

)γ−2

. (16)

If follows immediately that the second derivative is strictly negative.

Note that if x1 <
1
3
(2θm,2 + 2θm,1 − s1), then x2 >

1
3
(5θm,2 − θm,1 − s1) and |x1 − x2| > |θm,2 − θm,1|.

It is therefore sufficient to prove that (16) is strictly negative at x1 =
1
3
(2θm,2 + 2θm,1 − s1), i.e., that

−γ
(

2

3
θm,2 +

2

3
θm,1 −

1

3
s1 − θ

)γ−1

+
γβ

2

(

5

3
θm,2 −

1

3
θm,1 −

1

3
s1 − θ

)γ−1

< 0. (17)

Note that (17) holds if and only if

(

2

3
θm,2 +

2

3
θm,1 −

1

3
s1 − θ

)

>

(

β

2

)

1
γ−1

(

5

3
θm,2 −

1

3
θm,1 −

1

3
s1 − θ

)

. (18)

Next, θ ≤ m1(1) < 2θm,1 − s1. Thus, (18) holds for any such θ if

(

2

3
θm,2 −

4

3
θm,1 +

2

3
s1 − θ

)

≥
(

β

2

)

1
γ−1

(

5

3
θm,2 −

7

3
θm,1 −

1

3
s1 − θ

)

. (19)

Finally, if (19) holds for s = 0.5(θm,1 + θm,2) then it holds for any s ≥ 0.5(θm,1 + θm,2). As a

consequence, (19) holds if

(

θm,2 − θm,1

) ≥
(

β

2

)

1
γ−1

(

2θm,2 − 2θm,1

)

. (20)

Thus, (20) holds if β ≤ 22−γ, in which case |x1 − x2| > |θm,1 − θm,2|.

Finally, suppose that θm,1 < θm,2 < s1. If we set (16) equal to zero, then

x1 − θ =
(

β

2

)

1
γ−1

(

2θm,2 −
x1 + s1

2
− θ

)

. (21)

If γ→ ∞ then (21) implies that x1 → (4θm,2 − s1)/3.

Next, we show that the constraint of problem 8 is slack for large γ. It is sufficient to show that

(4θm,2 − s1)/3 > 2θm,1 − s1. This inequality is equivalent to 2θm,2 > 3θm,1 − s1, which holds because

s1 > θm,1 and θm,1 < θm,2. Because s1 > θm,2 it also follows that (4θm,2 − s1)/3 < s1. Thus, for

large γ the solution to problem 8 is characterized by (21). It is also optimal for party 2 to compete,

otherwise the equilibrium policy becomes m1(1) and by assumption m1(1) < 2θm,1 − s1, which we

have shown to be strictly less than x1. Thus, x1 given by (21) is the equilibrium policy.
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Finally, it follows that h((4θm,2 − s1)/3) = 4(θm,2 − s1)/3. Therefore |x1 − x2| → 0 as γ→ ∞.

Proof of Proposition 4. Without loss of generality consider the case where party 1 wins in the

first period. If function h defined in (7) is locally independent of s, then problem 8 implies that

x1 = θ = m1(s1), i.e., the party chooses its most preferred candidate in the current period. In the

second period, party 1 either chooses again the leader’s most preferred candidate or party 2 does

not compete. In both cases this means that party 2 would be better off not competing and thus the

winning policies do no change.

Now let h(s) = 2θm,2 − s. If the constraint of problem 8 binds, then x1 = 2θm,1 − s. In this case,

changing m1(s) does not change the solution. The same is true if x1 = s1.

Next, suppose that there exists an interior solution. Such an interior solution exists at least if

m1(s) > 2θm,1− s. Let θ = m1(s). Then the first order condition of problem 8 with a slack constraint

is given by

v′(x − θ) = β
2
v′

(

2θm,2 −
x + s1

2
− θ

)

, (22)

where v′(z) = γz |z|γ−2. In order for (22) to have a solution, x − θ and 2θm,2 − x+s1

2
− θ must have the

same sign. Both cases yield the same solution

x =

(

β

2

)
1
γ−1 (

4θm,2 − 2θ − s1

)

+ 2θ

(

β

2

)
1
γ−1
+ 2

. (23)

Equation (23) implies that a more extreme party leader, i.e., a lower θ results in a more extreme

policy in the current period. This, however, means that in the next period, the winning candidate’s

policy is more moderate. If party 1 wins again in the next period, which is the case if θm,2 <

(s1 + x1)/2, then this means that party 1 must nominate a more moderate candidate. If party 2 wins

at t = 2, then they will have a more partisan candidate.

Proof of Proposition 5. First suppose that the constraint of problem 8 is slack. Then x1 is given

by (23) and x2 = 2θm − (x1 + x2)/2. Because θm,1 = θm,2 = 0.5 and θ = ξ1s, we get

x1 =

(

β

2

)
1
γ−1

(2 − s1(1 + 2ξ1)) + 2ξ1s1

(

β

2

)
1
γ−1
+ 2

, and x2 =

(

β

2

)
1
γ−1
ξ1s1 + 2 − (1 + ξ1)s1

(

β

2

)
1
γ−1
+ 2

. (24)
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The constraint of problem 8 would bind if x1 ≤ 1 − s1, i.e., if and only if

ξ1 ≤
2 − 2s1 −

(

β

2

)
1
γ−1

2

(

1 −
(

β

2

)
1
γ−1

)

s1

. (25)

Case 1: Condition (25) holds, i.e., the constraint of problem 8 binds.

In this case party 1’s candidate is at positions 1 − s and 0.5 in periods t = 1, 2. If ξ1 = 0.5 it

is immediate that party 2 is at least as well off from competing in period t = 2, while party 2 is

strictly better off competing if ξ1 < 0.5.

Party 2 is better off competing in period t = 1 if

−
(

θ − (1 − s1))γ − β(θ − 0.5)γ ≥ −(1 + β)
(

θ − ξ1)γ, (26)

where θ = m2(s1) = 1 − ξ2(1 − s1) is the leader of party 2. Inequality (26) holds if and only if

ξ1 = ξ̄1(s1, θ, γ), where

(

θ − (1 − s1))γ + β(θ − 0.5)γ = (1 + β)
(

θ − ξ̄1(s1, θ, γ))γ, (27)

and hence

ξ̄1(s1, θ, γ) = θ −
( (

θ − (1 − s1)
)γ
+ β(θ − 0.5)γ

1 + β

)
1
γ

. (28)

We first show that (∂/∂s1)ξ̄1(s1, θ, γ) < 0. Recall that θ = 1 − ξ2(1 − s1). Thus,

∂ξ̄1(s1, θ, γ)

∂s1

= ξ2 −
1

(1 + β)
1
γ

(1 + ξ2)
(

θ − (1 − s1)
)γ−1
+ βξ2(θ − 0.5)γ−1

(

(

θ − (1 − s1)
)γ
+ β(θ − 0.5)γ

)
γ−1
γ

= ξ2 −
(1 + ξ2)

(

θ − (1 − s1)
)γ−1
+ βξ2(θ − 0.5)γ−1

(1 + β)
(

θ − ξ̄1(s1, θ, γ)
)γ−1

< ξ2 −
(1 + ξ2)

(

θ − (1 − s1)
)γ−1

(1 + β)
(

θ − ξ̄1(s1, θ, γ)
)γ−1
≤ ξ2 −

1 + ξ2

1 + β
< 0,

(29)

where the second inequality follows because ξ̄1 > 1 − s1, and that last inequality because βξ2 < 1.

Next, we show that ξ̄1 is non-increasing in ξ2. Because θ is strictly decreasing in ξ2, it is

sufficient to show that (∂/∂θ)ξ̄1(s1, θ, γ) ≥ 0.

Note that

∂ξ̄1(s1, θ, γ)

∂θ
= 1 − 1

(1 + β)
1
γ

(

θ − (1 − s1)
)γ−1
+ β(θ − 0.5)γ−1

(

(

θ − (1 − s1)
)γ
+ β(θ − 0.5)γ

)
γ−1
γ

= 1 −
1

1+β

(

θ − (1 − s1)
)γ−1
+

β

1+β
(θ − 0.5)γ−1

(

θ − ξ̄1(s1, θ, γ)
)γ−1

(30)
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Let 0 ≤ α ≤ 1 and A, B ≥ 0. Then Hölder’s inequality implies that

(

αAγ−1
+ (1 − α)Bγ−1

)
1
γ−1 ≤ (αAγ

+ (1 − α)Bγ)
1
γ . (31)

In particular, Hölder’s inequality states that

E[|XY |] ≤ (E[|X|p)
1
p (E[|Y |q)

1
q , (32)

for any random variables X and Y , where 1
p
+

1
q
= 1. Substituting X = Zγ−1, Y = 1, p = γ/(γ − 1)

and q = 1/γ into (32) yields

E[|Z|γ−1] ≤ (E[|Z|γ])
γ−1
γ ,

which implies
(

E[|Z|γ−1]
)

1
γ−1 ≤ (E[|Z|γ])

1
γ ,

Substituting for Z the random variables that takes values A and B with probabilities α and 1 − α,

respectively, implies. (31).

Substituting α = 1/(1 + β), A = θ − (1 − s1), and B = θ − 0.5 into (31), and using (27) yields

1

1 + β
(θ − (1 − s1))γ−1

+
β

1 + β
(θ − 0.5)γ−1 ≤

(

1

1 + β
(θ − (1 − s1))γ +

β

1 + β
(θ − 0.5)γ

)
γ−1
γ

=

(

θ − ξ̄1(s1, θ, γ)
)γ−1

.

(33)

which implies that (30) is non negative. Hence, (∂/∂θ)ξ̄1(s1, θ, γ) ≥ 0. Also note (∂/∂θ)ξ̄1(s1, θ, γ)

is strictly positive given that Hölders inequality can be strict.

Case 2: Condition (25) is violated and x2 ≤ ξ1.

If condition (25) is violated then x1 is given by (24) If x2 < ξ1 then party 2 does not compete in

the second period. Thus, party 2 will compete in the first period if and only if x2 ≥ ξ1. Thus,

ξ1 ≤

(

β

2

)
1
γ−1

(2 − s1)

(

β

2

)
1
γ−1

(1 + 2s1) + 2 − 2s1

. (34)

It is immediate that increasing s1 tightens constraint (34) (as long as the right-hand side of (34) is

non-negative). Further, changing ξ2 does not affect the constraint.

Case 3: Condition (25) is violated and x2 > ξ1.

It is better for party 2 to compete if

−
(

θ − x1

)γ

1 + β
−
β
(

θ − 1 + x1+s1

2

)γ

1 − β ≥ −(θ − ξ1

)γ
, (35)
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where x1 is given by (24).

Note that

∂x1

∂ξ1

=

2s1

(

1 −
(

β

2

)
1
γ−1

)

2 +
(

β

2

)
1
γ−1

.

Hence 0 < ∂x1

∂ξ1
< 1. The derivative of the left-hand side of (35) with respect to ξ1 is therefore





















γ(θ − x1)γ−1

1 + β
−
β
(

θ − 1 + x1+s1

2

)γ−1

2(1 + β)





















∂x1

∂ξ1

<





















γ(θ − x1)γ−1

1 + β
+

β
(

θ − 1 + x1+s1

2

)γ−1

1 + β





















∂x1

∂ξ1

<



















γ(θ − x1)γ

1 + β
+

β
(

θ − 1 + x1+s1

2

)γ

1 + β



















γ−1
γ

∂x1

∂ξ1

≤ γ(θ − ξ1)γ−1∂x1

∂ξ1

< γ(θ − ξ1)γ−1,

(36)

where the third inequality follows from (31). Inequality (36) shows that the derivative of the left-

hand side of (35) is strictly less than the derivative of the right-hand side. Thus, if (36) holds for

some ξ1 > 0, it also holds for all 0 ≤ ξ′1 < ξ1.

It follows immediately that (35) is satisfied for ξ1 = 0. Thus, there either exists a unique value

ξ̄ for which (25) does not hold and

(

θ − x1)γ + β

(

θ − 1 +
x1 + s1

2

)γ

= (1 + β)
(

θ − ξ̄1(s1, θ))
γ, (37)

or it is better for party 2 to compete for all ξ1 for which (25) does not hold. In this latter case we

define ξ̄1 such that (25) holds with equality, i.e.,

ξ̄1 =

2 − 2s1 −
(

β

2

)
1
γ−1

2

(

1 −
(

β

2

)
1
γ−1

)

s1

. (38)

If ξ̄1 is defined by (38) then it follows immediately that
∂ξ̄1

∂s1
< 0, i.e., raising s1 decreases the set of

ξ1 for which party 2 is willing to compete. Further, party 2’s ideal point θ = m2(s1) does not affect

ξ̄1.

Now consider the case where ξ̄1 is defined by (37). To show that ξ̄1 is non-increasing in ξ2, it is

again sufficient to show that
∂ξ̄1

∂θ
≥ 0.

If (37) is satisfied then (35) holds with equality. Taking the derivative of the left-hand side of

(35) with respect to θ and using (31) implies

−γ
(

θ − x1

)γ−1

1 + β
− γ

β
(

θ − 1 + x1+s1

2

)γ−1

1 − β ≥ −γ



















(

θ − x1

)γ

1 + β
+

β
(

θ − 1 + x1+s1

2

)γ

1 − β



















γ−1
γ

= −γ(θ − ξ̄1

)γ−1
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Thus, the derivative of left-hand side of (35) is strictly greater than that of the right-hand side.

Raising θ therefore slackens the constraint. As we have shown above, lowering ξ1 also slackens

(35). To equalize to the sides of the inequality, we must therefore raise ξ̄. Thus, raising ξ̄ is

non-decreasing θ, i.e.,
∂ξ̄1

∂θ
≥ 0.

Finally, the change of ξ̄1 when s1 is ambiguous unless ∂x1

∂s1
is sufficiently negative.

Note that

∂x1

∂s1

=

2ξ1 − (1 + 2ξ1)
(

β

2

)
1
γ−1

2 +
(

β

2

)
1
γ−1

,

and hence the derivative is negative if β or γ are large.

It also follows that ∂x1

∂s1
+ 1 > 0. Suppose that ∂x1

∂s1
≤ 0. Keep θ fixed. Then the derivative of the

left-hand side of (35) with respect to s1 is

γ(θ − x1)γ−1

1 + β

∂x1

∂s1

−
β
(

θ − 1 + x1+s1

2

)γ−1

2(1 + β)

(

∂x1

∂s1

+ 1

)

< 0 (39)

Thus, in order for (35) to hold with equality, ξ1 must decrease. Thus, x̄1 is decreasing in s1.

However, as s1 is increased, θ = 1− ξ2(1− s1) increases. We have shown the increasing θ increases

x̄1. The overall effect is therefore only negative if ∂x1

∂s1
is sufficiently small, i.e., if β and γ are small.

Proof of Proposition 6. Note that m1(st) = ξ1s implies that s̄1 = 2θm/(1 + ξ1) solves 2θm − s̄1 =

m1(s̄1). Since ξ1 < 1 it follows that s̄1 > θm. If s ∈ [θm, s̄1] then the new party cutoff is θm, and in

equilibrium both candidates nominate x = θm in any subsequent period.

Let s̄k = 2kθm/(1 + ξ1)k. Then s̄k satisfies m1(s̄k) + s̄k = 2s̄k−1 for k > 1. Further, there exists K

such that s̄K ≥ 1.

Let s̄0 = θm. If the party cutoff s ∈ [s̄k−1, s̄k] and both parties follow the proposed strategies,

then the party cutoff in the next period is in [s̄k−2, s̄k] if k > 1 or s = θm if k = 1. Thus, the

equilibrium policies converge to θm after at most K time periods. For θm = 0.5 it follows that

s̄3 ≥ 1 for all ξ1 < 0.5. Thus, it takes at most three periods to converge to θm as the equilibrium

policy.

We next show that it is not optimal for party 1 to deviate, i.e., (11) holds. If st ∈ [s̄0, s̄1] this

follows immediately. In particular, for any x with 2θm − s ≤ x ≤ θm it follows that the party cutoff

s′ at t + 1 is again in the interval [s̄0, s̄1]. Raising x by some amount δ at t lowers current utility by
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δ, but raises the party cutoff to 0.5δ. This in turn, lowers the equilibrium policy and raises utility

in the next period by only 0.5δ. Hence, a deviation is not optimal.

Now suppose that st ∈ [s̄1, s̄2] for k > 1. Changing x by δ in the current period would lower

utility by δ because the equilibrium is at the party leader’s ideal point x = m1(s). We show that

the benefits of such a deviation in future periods are strictly less than δ. In particular the new

party cutoff s′
t+1 differs from st+1 by δ/2. Note that s′

t+1 ∈ [s̄0, s̄2]. If s′
t+1 ∈ [s̄0, s̄1] then the

equilibrium policy changes by δ/2 and hence the maximum possible gain to the leader of party 1

at t is βδ/2 < δ, i.e., the deviation is not optimal. If s′
t+1
∈ [s̄1, s̄2] then the equilibrium policy

changes by ξ1δ/2. At t+ 2 the party cutoff s′
t+2 differs from the proposed equilibrium cutoff st+2 by

δ/4 + ξ1δ/4. Given that st+2 ∈ [s̄0, s̄1] it follows that the equilibrium policy changes by the same

amount. Thus, the possible gains at t + 1 and t + 2 do not exceed the initial loss of the deviation at

t if
βξ1

2
+
β2(1 + ξ1)

4
≤ 1. (40)

Finally, suppose that st ∈ [s̄2, 1] and that the policy at t is changed by δ, again resulting in a utility

loss of δ. If as a result of the deviation the new party cutoff s′
t+1
∈ [s̄0, s̄2] then the argument is the

same as above. Thus consider the case where st+1 > s̄2. As a result s′
t+1

differs from st+1 by δ/2

and the policy is changed by ξ1δ/2. The party cutoff at t + 2 is changed by δ/4 + ξ1δ/4 and the

policy by δξ1/4 + ξ
2
1δ/4. Finally at t + 3 the party cutoff after the deviation, s′

t+3 differs from st+3

by δ/8 + ξ1δ/4 + ξ
2
1
δ/8, which is the same as the move change of the policy at t + 3. Hence the

possible gains at t + 1, t + 2, and t + 3 do not exceed the initial loss of the deviation at t if

βξ1

2
+
β2(1 + ξ1)

4
+
β3(1 + ξ1)2

8
≤ 1. (41)

It follows immediately that (40) and (41) hold for any ξ1 ≤ 0.5 and any β ≤ 1. Thus, it is not

optimal for party 1 to deviate, i.e., (11) holds.

Next, we must show that it is not optimal for party 2 to deviate, i.e., (13) holds.

It follows immediately that a deviation by party 2 at st ∈ [s̄0, s̄1] to some policy y > st is not

optimal. The deviation has no impact on the current policy, but changes the policy in the next

period from θm to θm − δ/2, making party 2 worse off. Now suppose that st ∈ [s̄1, s̄2]. If after the

deviation, s′
t+1
∈ [s̄0, s̄1] then the resulting policy is shifted by δ/2 to the left, making party 2 worse

off. Thus, assume that s′
t+1

> s̄1. If s′
t+1
∈ [s̄1, s̄2] then the policy at t + 1 is moved to the right by

ξ1δ/2. At t + 2 the cutoff s′
t+2

differs from the proposed equilibrium cutoff st+2 by δ/4 + ξ1δ/4, and

the policy is shifted to the left by this amount, making party 2 worse off. Hence, the deviation is

not optimal if

2ξ1 ≤ β(1 + ξ1). (42)
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Now suppose that s′
t+1 > s̄2. As in the previous case, the policy at t + 1 is moved to the right by

ξ1δ/2 and the cutoff at t+2 is moved by (1+ ξ1)δ/4. As a consequence, the policy at t+2 is moved

to the right by (1+ ξ1)ξ1δ/4. The party cutoff at t+ 3 changes by (1+ ξ1)δ/8+ (1+ ξ1)ξ1δ/8, which

is the amount by which the winning policy is moved to the left in period t + 3. The benefit of the

deviation to party 2 in t + 1 and t + 2 is therefore dominated by the loss in period t + 3 if

4ξ1 + 2β(1 + ξ1)ξ1 ≤ β2(1 + ξ1)2. (43)

Equations (42) and (43) are both satisfied if and only if

β ≥
ξ1 +

√

ξ2
1
+ 4ξ1

1 + ξ1

. (44)

The right-hand side of (44) is greater or equal to one if ξ1 ≥
√

5 − 2. However, for all such values

ξ1 it follows that s̄2 > 1. Hence, it takes only two periods to converge. This, however, means that

(42) is sufficient to prevent deviations by party 2.

Finally, party 2’s payoff from competing must exceed the payoff from not competing. It is

sufficient to consider the case where st = 1. The resulting equilibrium policies are ξ1 and 2θm−ξ1 =

1 − ξ1 and then convergence to θm = 0.5 is obtained. Alternatively, if party 1 exits, the equilibrium

policy is ξ1 in all periods, which makes the leader of party 2 worse off. Thus, a pure strategy

equilibrium with convergence to policy θm exists if (42) holds and s̄2 ≥ 1. Both inequalities are

equivalent to ξi ≤ min
{√

5 − 2,
β

2−β

}

.

Lemma 2 Consider the model of section 5.3. A steady state equilibrium in which candidate A wins

can only exist if β is sufficiently close to 1, if mi({A,C}) = A, m−i({B,D}) = B, m−i({B,C.D} = C,

and if there exists another steady state in which C wins.

Proof of Lemma 2. Consider the following eight different party configurations, which are the

states of the game. In states s1,i, i = 1, 2 parties are S i = {A,C,D}, S −i = {(B}; in states s2,i parties

are S i = {B,C,D}, S −i = {A}; in states s3,i we have S i = {A, B}, S −i = {C,D}; and finally, in

states s4,i we have S i = {A,C}, S −i = {B,D}.

We first show that there does not exist an equilibrium in which B is nominated by one of the

parties and wins. It is only possible for B to win against D. Thus, the state must be s3,1 or s3,2 to

support these choice of candidate in a steady state. Without loss of generality suppose that the state
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is s3,1. Suppose that party 2 deviates at t by nominating C as candidate. Then the state in the next

period, t′ is s1,2, i.e., party 2 consists of all types A, C and D. If C is nominated in all future period,

then we would have reached a steady state. The original deviation at t would then optimal for all

members of party 2. As a consequence, either A or D must be nominated. If D is nominated, then

B wins an we are back in state s3,1. However, the deviation leading to policy (0, 1) in period t made

all members of the party better off. Thus, assume that A is nominated. A wins against B, leading

to policy (0, 0). In the next period, the state is s4,2, i.e., party 2 is S 2 = {A,C}.

Next, suppose that there exists a steady state in which type A is nominated by one of the parties,

say party 1, and wins. Then the state must be either s3,1 or s4,1.

Suppose that the state is s3,1. Thus, parties 1 and 2 must nominate candidates of type A and

D. Suppose that party 2 deviates, by nominating a candidate of type D. Candidate D would win,

leading to state s2,2 in the next period. If m2({B,C,D}) ∈ {C,D}, then this deviation is optimal. In

particular if D is the party leader, then we have a steady state with policy (1, 1) implemented in

every period, compared to (0, 0) which makes both type C and D straitly better off. If the party

leader is of type C, then C’s payoff must be at least as good as that from receiving (1, 1) in every

period, otherwise, the party leader could nominated D. Further, type D is strictly better off with

any policy that is not (0, 0) in every period. Now suppose that m2({B,C,D}) = B. For type B policy

(1, 1) is the second ranked choice after (1, 0). In order to get to a situation in which B can win, B

must be paired against a candidate D. This is only possible in states s3,1 and s3,2. By assumption,

candidates A and D are nominated in state s3,1. Thus, we can assume that the state is s3,2. The only

way to get to state s3,2 from s2,2 is via state s1,2, i.e., where party 2 consists of types A, C and D.

Party 2 would have to nominate candidate D who would lose against B. In state s3,2 candidates D

and B would have to be again nominated. However, note that party 2 can ensure that policy (0, 1)

is a steady state by nominating a candidate of type C. This would make members of party 2 strictly

better off, and hence state s3,2 cannot be reached. This proves that a state s3,1 cannot support a

steady state in which A wins.

Now suppose that the state is s4,1. In order for a type A candidate to win, party 2 must nominate

at type B candidate. Suppose that the leader of party 2 is of type D. Note that party 2 could win

by nominating a type D candidate. The state in the following period would be s2,2. Independent of

the identity of the leader of party 2, the type D is better off then receiving (0, 0) in all periods, and

hence it would be optimal to deviate. Thus, assume that B is the leader of party 2 in state s4,1.

Note that B strictly prefers (1, 1) to (0, 0), but is strictly worse off if the policy is (0, 1), i.e., if

a candidate of type C wins. This is only possible if m2({B,C.D} = C and C is nominated in next
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period, t′. In this case C loses against A and the resulting state is s3,1. As shown above, we cannot

have a steady state with candidates A and C being nominated. Further, if candidates are B and D

are nominated then B would win, and we would have a steady state. However, in this case it would

have been better at t′ for type C to nominate type B, who would would have won. Thus, there

would have to be a mixed strategy equilibrium in state s3,1. If types C and B are nominated, then

we would get to state s1,2, i.e., party 2 is consists of types {A,C,D}. Further, party 2 must nominate

C, else, it wold have been better for type C at time t′ to nominate a type B candidate. Hence, s3,1

is a steady state. As a consequence, type A can win in equilibrium if the discount rate β is not too

small, and if both m2({B,D}) = B and m2({B,C.D} = C. However, in this case there also exists a

steady state in which type C wins with policy (0, 1).

Lemma 3 For any β there exist choices of mi such that neither parties nor policies converge to a

steady state.

Proof of Lemma 3. Let state s1,1 and s4,1 defined as in the proof of Lemma 2, i.e., in state s1,1

parties are S 1 = {A,C,D}, S 2 = {B}; and in states s4,1 we have S 1 = {A,C}, S 2 = {B,D}.

Suppose that m1({A,C,D}) = A, m1({A,C}) = C and m2({B,D}) = B. Then the following is

an equilibrium. In state s1,1 parties 1 and 2 nominate candidates A and B, respectively. A wins,

and the state in the following period is s4,1. Now parties nominate candidates C and B. Candidate

C wins, and the state reverts back to s1,1. Neither candidate can improve. In particular, party 1’s

ideal candidate always wins in each period. The party 1 could only improve by ensuring that in the

subsequent period the policy remains at the current ideal point, which is not possible. Party 2 can

only influence the outcome by changing the candidate in state s4,1 to D. Candidate C still wins, but

the state remains at s4,1. However, the party leader m2({B,D}) = B is worse off given that C wins

in the next period instead of A.
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