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Abstract

I consider a model of arming in which states choose in successive periods whether to build weapons and
whether to attack, and in which arms accumulate across periods. Surprisingly, despite a long history
of formal models of arms races, the models we have in the literature lack one or more these features
– no choices (Richardson models), no option to use the weapons (Prisoners’ Dilemma models), or no
accumulation of arms over multiple periods (Powell 1993, Jackson and Morelli 2009). In a Markov
Perfect Equilibrium with two symmetric states, the states either (a) build up to stability at the first arms
level such that a one-period “break out” does not give enough advantage to make attack worthwhile; or
(b) fight at the outset because they anticipate that building to stability would not be worth the cost. (a)
is more likely when the military technology favors defense and when the states have less “expansionist”
preferences, in terms of value for territory. When the states differ enough in some respect – capacity
to build, preferences for conquest, or size of economy, for example – mixed strategies appear on the
equilibrium path. War or peace may result from an arms race between asymmetric rivals, with perhaps
some tendency for races to be more dangerous as they proceed.

1 Introduction

Some of the first formal models developed in political science were models of arms races. Lewis

Richardson (1919) represented an arms competition with a pair of differential equations. States

were assumed to build at a rate determined by their perception of threat, which was in turn a

function of the other side’s arms level and its own population’s “resistance” to arms expenditures.

In these models states react automatically. There are no decisions or choices, whether about arms

levels or attacking. With developments in game theory after World War II and the U.S.-Soviet arms

race, the Prisoners’ Dilemma game was commonly used as a model of the problem, and repeated
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PD as a model of arms racing with cooperative equilibria representing the possibility of an arms

control agreement (Snyder, 1971; Axelrod, 1984; Downs and Rocke, 1990; Downs, 1991).

Given this long tradition, it is surprising that there is still no model of arming and arms

races in the literature that has what one might think are the minimal features needed to analyze the

strategic situation properly. Namely, there are no models in the literature in which

1. states can choose whether to build arms in successive periods;

2. arms accumulate across (potentially many) periods; and

3. states can choose to attack the other in any period if they wish.

Richardsonian models of arming do not involve any choices or decision-making. Repeated Pris-

oners’ Dilemmas do not represent either the accumulation of arms or the possibility of attack and

war, which introduce a non-stationary aspect to the situation and so argue against any standard

repeated game as a good model.1

Powell (1993) studies a model in which states choose in successive periods how much to

build (or buy) and whether to attack the other state, but in his treatment arms do not accumulate

across periods, so there is no possibility of arms racing in the usual sense. Jackson and Morelli

(2009) study a similar game but in which states choose arms levels in each period simultaneously

before deciding whether to attack. Like Powell, they assume that arms do not accumulate across

periods. The Powell and Jackson and Morelli models might thus be thought of as models of the

decision of how many soldiers to employ each year, rather than models of the accumulation of

military capital.2

1Skaperdas (1992), Hirshleifer (1995) and others analyze “contest models” in which states simultaneously choose
levels of arms, but there is no choice whether to attack. Instead, either war is assumed to occur for sure, or transfers
are made automatically as a function of the balance of arms (perhaps representing an unmodelled, efficient bargaining
process). I am not aware of papers in this literature that have studied a multi-period model with the possibility of
accumulation of arms.

2One can imagine an “arms race” in the sense of escalation of the size of standing forces in two states, but this
possibility does not arise in the Powell and Jackson and Morelli models. I believe the main reason is the assumption
that the only constraint on how much a state can increase military spending above the previous period’s levels is the
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Brito and Intriligator (1985), Kydd (1997, 2000, 2005), and Slantchev (2005) consider mod-

els that have both arming and attack decisions, but with only one period (or round) of arming. As

such they are not well-suited for exploring the dynamics or stability conditions of armament deci-

sions. This is not the focus of these articles in any event. Instead, especially in Kydd’s work and in

Slantchev (2005), the main concern is whether and how arming decisions signal private informa-

tion about a state’s costs for war or preferences over taking territory, and the overall implications

for the risk of war. These are important issues, at the heart of the cluster of informal arguments

known as the “security dilemma,” the “spiral model,” and the “deterrence model,” which are in

turn at the heart of international relations theory (Jervis, 1976, 1978; Glaser, 2000, 2010). The

model considered in this paper, which has complete information about states’ types, does not get

to considerations about whether and how arming might signal preference for peace or conquest

(although I briefly consider a simple version with private information about types in section 5). It

is, hopefully, a step towards a more thorough analysis of that problem.

I consider the simplest possible model that incorporates all three features mentioned above.

Two states choose in successive periods whether to build a unit of arms and, after observing the

arms decisions, whether to attack the other. In the first version, considered in the next section, an

attack is successful and the loser is eliminated if the attacker has at least m > 1 times as many

arms as the defender. I show that in a Markov Perfect Equilibrium, if the states put enough value on

controlling the other’s territory relative to the costs of building and if they are sufficiently patient,

then they build up to the first level such that neither could attack and win by building one more

time when the other does not. The equilibrium level of armament is increasing in the advantage

for offense and in the amount they can build without a reaction by the other side.

These comparative statics have been suggested in informal treatments (e.g., Hoag 1961,

Glaser 2000). The formal analysis characterizes in addition the “off the path” strategies that give

rise to the “on the path” behavior. Here, we find that a somewhat complicated set of mixed strate-

total amount of resources available. Acemoglu et al. (2011) consider a dynamic model of resource competition in
which one state decides how much to arm and whether to attack each period; arms do not accumulate.

3



gies obtain if either player deviates. Thus armed conflict occurs with positive probability off the

path, and it turns out that deviations are more dangerous (in the sense of greater risk of conflict)

the earlier they occur in the race.

In the third section I consider a richer version of the game in which the probability of win-

ning a war can be a continuous function of current arms levels, although I continue to assume

symmetric states (that is, they have the same preferences for conquest, costs for arming, and build-

ing capacities). This modification seems minor, but the new game proves more difficult to analyze.

As before, the problem is non-stationary in that today’s actions can change the situation tomorrow

by changing the baseline military balance. Thus optimal behavior at arms levels (a1, a2) depends

on what would happen at levels (a1 + i, a2 +j), i, j ∈ {0, 1}, which in turn depends on what would

happen at higher levels of arms. With a natural diminishing returns assumption about the “contest

success function” p(a1, a2), it can be shown that if at (a1, a2) a state prefers attack to stability with

no further building, then in any MPE the state attacks at that point. Along with the conjecture that

an arms level is stable if neither state gains from building once and attacking, this result makes it

possible to pin down MPE strategies for all other arms levels.

The main results for the equilibrium path are similar to the “threshold” case, though we get

a richer set of comparative statics. There is a smallest level of arms such that if both states reach

this point, neither wants to “break out” and attack. This first stable arms level is higher the more

“greedy” the states are about taking new territory, the lower the costs of war, the more the offense-

defense balance favors offense, and the worse their ability to monitor “break out.” Comparative

statics on the discount rate and the incremental cost of arms are indeterminate. Both states building

up to the first stable point is the equilibrium path provided that the discounted costs of the build

up are not so large that fighting with a one half chance of winning is preferable in the first period.

Thus, immediate conflict to avoid the costs of an arms race to stability can also be the equilibrium

outcome; this is more likely the more offense is favored and the more greedy the states (relative to

the costs of war), both of which imply higher costs to arms race to stability.

Off the path, mixed strategies are less common than in the case of the threshold contest
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success function, but can still appear.

In section 4, I provide a partial analysis of two asymmetric cases. In the first, one state is a

“security seeker” that has no value for taking new territory (or has very high costs for war), while

the other is a “greedy state” that values conquest per se.3 Markov perfect equilibrium now involves

mixed strategies on the equilibrium path, as both states mix on “build” and “not build” until either

(a) the security seeker arms and the greedy state does not, in which case the race ends peacefully,

(b) the greedy state arms and the security seeker does not, in which case the greedy state attacks (or

extorts), or (c) mutual building leads to a stable armament level. The intuition for mixed strategies

is that the security seeker wants to build to deter attack or coercion by the greedy state, but the

greedy state has no reason to build a large army if it will not be able to use it to gain anything.

Comparative statics on when arms races are “dangerous” in the sense of generating a risk of war

are then possible, although the results mainly suggest that war would not be a very likely outcome.

The other asymmetric case examined in section 4 involves one state that builds arms faster

than the other. The results are similar in that there must be mixing on the equilibrium path (if the

advantaged state is not so advantaged that it wants to attack right away). Here, however, both states

may build for sure at first, so that the mixing, and thus a chance of war, start later in the race. Also,

whereas in the “greedy state vs. security seeker” case the security seeker arms more in expectation,

when the asymmetry is in building rates the advantaged state ends up with more weapons (or more

effective weapons).

Section 5 informally interprets a number of the main results, contrasting them with related

models, and briefly discusses some natural extensions: “carrying costs” for arms, and private in-

formation about values for changing the status quo relative to war costs.

3This specific language is due to Glaser (1992), but see also Jervis (1976).
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2 An arming game with a ‘threshold’ military technology

There are two states, 1 and 2, that interact in successive periods t = 0, 1, 2, . . .. At the start of

each period each state receives resources v > 0. They next choose simultaneously whether to

“build” or “not build,” where building costs c ∈ (0, v). After observing these actions, they choose

simultaneously whether to attack the other state. If neither state attacks then play proceeds to the

next period.

Arms accumulate across periods and there is no depreciation, so that if state i has built ai

times and has not lost a war, it has ai units of arms. Consumption occurs prior to the decisions

about whether to attack, so that a state gets v in a period when it has not built, and v− c in a period

when it has built.

If state i has at least m > 1 times as many arms as state j, then if there is a war state i takes

over j and the strategic interaction ends. In this event i receives v(1 + β) in all future periods,

where β ∈ (0, 1). β can be interpreted in three main ways: first, as the the share of the other state’s

resources that the winning side can appropriate; second, as the value that the winning state places

on controlling the losing state, or changing its regime; and third, as a reflection of the costs of

fighting (higher β means lower costs). The losing side receives 0 in all future periods. If a state

attacks another when it does not have enough to win, suppose that it is taken over by the other

state.4 Both players discount future payoffs by the factor δ ∈ (0, 1) per period.

The parameter m represents one aspect of what international relations scholars call the

“offense-defense balance,” and economists refer to as “decisiveness” when describing contest suc-

cess functions.5 Military strategists talk about the force ratio needed for successful attack. So, for

example, if m = 3 then the attacker needs a three-to-one advantage in force size to prevail. This

4If both states attack in a period when neither can win, assume that both are eliminated; this is for the simplicity
and convenience of not having a continuation game after a state chooses attack. In the more continuous formulation
for the chances of winning in section 3, war always results in one side being defeated if both attack.

5On the offense-defense balance, see for example Jervis (1978) and Glaser and Kaufmann (1998). The other main
aspect of the offense-defense balance in typical informal discussions in political science is the advantage accruing to
the side that strikes first; in the present model, there are no first-strike advantages.
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would represent a situation in which defense has a moderate advantage, or in which conflict is not

highly “decisive.”

Let at = (a1, a2) represent the arms level, or balance of forces, in period t, where ai is

the number of times state i has built prior to period t. A complete strategy in the stage game is

an element of {0, 1} × {0, 1}4, where the first component represents the state’s decision whether

to build and the next four say whether the state would attack as a function of the four possible

outcomes of the building choices.

I will focus on Markov Perfect Equilibria, defined as follows. Since each of the four “attack”

subgames of the stage game starts a proper subgame of the whole game, it seems natural to require

that the states make the same build decisions and the same attack decisions whenever arms level

is the same. Let σi(at) ∈ {0, 1} represent state i’s choice of whether to build or not whenever the

arms level is at, and let τi(at) ∈ {0, 1} be i’s choice of whether to attack or not given arms level

at. In an MPE, for each point a′ = (a′1, a
′
2), the choices σi(a′) and τi(a′) maximize i’s discounted

expected payoffs given σ(a) = (σ1(a), σ2(a)) and τ(a′) = (τ1(a), τ2(a)) for all other points a 6= a′.

I will also restrict attention to equilibria in which states do not play weakly dominated strategies,

which rules out mutual attack equilibria when one or both would be better off not attacking.

The simple form of the “threshold” military technology makes it is easy to pin down the

states’ attack decisions in any attack subgame.

Proposition 1. If ai ≥ maj , state i attacks, τi(a1, a2) = 1. At all other points, i does not attack,

τi(a1, a2) = 0.

To prove this, note that when ai ≥ maj , i gets v(1+β)/(1−δ) by attacking, which is greater

than any payoff i could possibly get by not attacking. Further, attacking is weakly dominated when

ai < maj , which rules out mutual attacks when neither can win.6 For the case of m = 1.5, Figure

1 illustrates the arms levels at which state 1 attacks by marking them in red.

The harder problem is to characterize Markov perfect building decisions, σ. Since everything

is symmetric, we can focus on points where a1 ≥ a2 without losing generality. It is immediate that

6In fact, these arguments imply that the claim holds in any subgame perfect equilibrium.
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if the balance of forces is so skewed in state 1’s favor that it can attack and win even if state 2

builds while state 1 does not, then it must be that neither state builds and state 1 then attacks. This

is because state 2 is surely going to be attacked and defeated, so neither has any reason to waste

current resources on another unit of arms. Such points are indicated in Figure 1 by the squares.

To make further progress, consider whether we can construct an MPE in which an arms level

a = (a1, a2) is stable, meaning that neither state builds, if neither state could attack successfully

by building once when the other does not: thus ai + 1 < maj for both states. Such points are

indicated with circles in Figure 1. Proposition 1 confirms that this is indeed possible; what remains

is to specify strategies for arms levels that are neither stable nor that involve certain attack by the

advantaged state. Unfortunately most such points prove to require mixed strategies on building and

not building, and there can be a number of distinct equilibrium mixed strategy pairs for different

arms levels.

Proposition 2. If the gains from attack exceed the costs of building once when victory is assured

(that is, when δβv > c(1− δ)) and if δv > c, then the following is an MPE of the game described

above. Consider (a1, a2) such that a1 ≥ a2. (For a2 ≥ a1, flip the subscripts in the conditions

below.) State 1 attacks if and only if a1 ≥ ma2. For m ∈ (1, 2), building decisions are as follows:7

1. If a1 + 1 < ma2 then neither state builds. Neither state attacks at these points.

2. If a1 = a2 and a1 + 1 ≥ ma2 then both states build and neither then attacks.

3. If ma2 − 1 ≤ a1 < ma2 + min{0,m − 2}, the states mix on build and not build with build

probabilities

b∗1 =
c(1− δ)2

δv − cδ(1− δ)
and b∗2 = 1− c(1− δ)

δvβ
.

Attack by state 1 follows if 1 builds and 2 does not; otherwise neither attacks.

4. If ma2 + m − 2 ≤ a1 < ma2, then the states mix on build and not build. Let w = v/(1 −

7For clarity I also give the attack decisions that follow in equilibrium at each point.
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δ)− c(2− δ). Build probabilities are

b∗1 =
w −

√
w2 − 4c2(1− δ)

2δc
and b∗2 = 1− c(1− δ)

δvβ
.

Attack by state 1 follows if 1 builds and 2 does not; otherwise neither attacks.

5. Ifma2 ≤ a1 < ma2 +m−1, then state 2 builds and state 1 does not, and neither then attacks.

6. If ma2 +m− 1 ≤ a1 < ma2 + min{m, 2(m− 1)}, then the state mix with build probabilities

b∗1 =
δv − c(1− δ2)

δv − cδ(1− δ)
and b∗2 =

c(1− δ)
δβv

.

Neither attacks if 2 built and 1 did not; otherwise state 1 attacks.

7. If ma2 + 2(m − 1) ≤ a1 < ma2 + m, then the states mix. Let V case4
2 = v − c + δ(1 −

b∗1)v/(1− δ) be 2’s continuation payoff in case 4 above, using the b∗1 from that case. Then the

build probabilities in this case are

b∗1 = 1− c

δV case4
2

and b∗2 =
c(1− δ)
δβv

.

Neither attacks if 2 built and 1 did not; otherwise state 1 attacks.

8. If a1 ≥ m(a2 + 1), then neither builds and state 1 then attacks.

9. If a1 = a2 + 1 and a1 ≥ ma2, then the states mix. Let a∗ be the smallest integer strictly

greater than 1/(m− 1), and let z = a∗ − a1. The build probabilities are

b∗1 =
δv − c(1− δz+1)

δv − cδ(1− δz)
and b∗2 =

c(1− δ)
δβv − c(1− δz)

.

Neither attacks if 2 built and 1 did not; otherwise state 1 attacks.

When m > 2, then only cases 1, 2, 3, 5, 6, and 8 apply.

The proposition implies that on the equilibrium path, both states build in each period until

they reach the first point at which neither would be able to attack and win if it built one more time

while the other did not. At (0, 0), case 2 is always satisfied so both states always build, and will
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continue building up to the smallest level a∗ such that a∗ + 1 < ma∗. So the long-run equilibrium

arms level a∗ is the smallest integer greater than 1/(m− 1).

The greater the advantage to defense – or equivalently the smaller the “jump” one can get

before the other side can observe that you are building – the less time it takes to reach this point.

For example, if m = 2, then both states build in the first two periods up to a3 = (2, 2), at which

point one additional unit does not provide enough an advantage to make successful attack possible

(3/2 < 2). By contrast, if m = 3, the states build in the first period and then quit, since building

one more unit when the other does not gives only a two-to-one advantage (2/1 < 3).

As m approaches 1 from above, the equilibrium stable arms level increases, and in the limit,

at m = 1, the equilibrium has both states building in every period and never attacking on the

equilibrium path – a permanent arms race. Obviously, states’ payoffs are increasing in the size of

the defensive advantage m. At m = 1 the average per-period payoff is v − c while for m > 2 it is

v − c(1− δ).

The model’s equilibrium thus captures the usual “if you want peace, prepare for war” maxim,

and also generates natural comparative statics in m on the equilibrium stable arms level. A sur-

prising feature of equilibrium in the game, however, is that off the equilibrium path there are force

levels such that the states play mixed strategies and there is a risk of war if the advantaged state

happens to build (and, in cases 3 and 4, if the disadvantaged state does not).

To understand why mixed strategies must arise in equilibrium, consider the case of m = 1.5

illustrated in Figure 1, at at = (5, 4). State 1 cannot attack successfully at this point, but if it built

one more time without a response from state 2, it could. State 2’s best reply if it expected this

would be to build, which would lead to (6, 5), where state 1 could not attack and win. And if state

1 expects state 2 to build, then its best reply is not to build in period t. Finally, if state 1’s Markov

strategy is to not build at (5, 4), then state 2 would have no reason to build to prevent attack.

So no pair of pure actions in stage games with at = (5, 4) are mutual best replies. Equilibrium

requires mixing, such that state 1 is indifferent between not building which yields v/(1 − δ), and

building which produces a chance of being able to attack successfully if state 2 happens not to
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build. Likewise, state 2 must be indifferent between not building, which saves c today but may

lead to elimination, and building, which assures a payoff of v − c + δv/(1 − δ). If the discount

factor is close to 1 or if the cost of building is small, then the equilibrium mixed strategies have it

that the advantaged state almost surely does not build and the disadvantaged state almost certainly

builds, thus leading to a high probability of return to (or towards) equal arms levels. Pure and

mixed strategy build probabilities are illustrated graphically with vectors in Figure 2.8

A different sort of mix arises at certain “attack points” where the balance of forces is not so

extreme that state 1 can attack and win even if 2 builds. Consider m = 1.5 and at = (5, 3), so

that 1 could attack and win at these arms levels. To reach this “off path” point state 1 must have

built twice without attacking from (3, 3), without a reply form state 2.9 At (5, 3), state 1’s best

reply if state 2 does not build is to not build and then attack. State 2’s best reply to state 1 not

building, however, is to build to get to (5, 4), which prevents attack. And state 1’s best reply to

state 2 building is to build and attack, which is possible at (6, 4). And to this state 2’s best reply

would be to not build and let itself be attacked. Again equilibrium is in mixed strategies. In this

case, when the discount factor is close to 1 or when the cost of building is small, the advantaged

state almost certainly builds and the disadvantaged state probably does not, leading to probable

elimination of the weaker state. The case 7 and 9 mixes are closely related, differing because state

2’s continuation payoffs involve more expected building costs.

If there are mixed strategies off the equilibrium path where the advantaged state may be able

to attack and win, why don’t states have an incentive to build to get to such a position? In brief,

a state can assure that it won’t be attacked by keeping ai large enough, and it will always want

to do this if it is patient enough (large enough discount factor). Thus, in the first sort of mixed

8A similar but slightly different mix can occur at points like (4, 3) in this case of m = 1.5; the difference is that
here, if both build state 2 has to build again to ensure peace and stability, whereas both building leads to a stable point
from (5, 4).

9Alternatively, we can analyze the game under the assumption that the states begin with initial levels of arms
a0 = (a01, a

0
2), and ask about what would happen in the MPE. For instance, if the game “begins” with state 1 having a

5-to-3 advantage andm = 1.5, then in the first period there is a positive chance of war as given by case 6 in Proposition
2.
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strategy subgames described above, the advantaged player’s expected payoff cannot be better than

v/(1− δ), which is also the expected payoff once the equilibrium stable arms level is reached. So

there is no incentive to pay a cost of c to get to a point where one’s expected payoff is the same as

it was before, even if a chance of victory figures into that expected payoff.

As noted, Figures 1 and 2 illustrate the MPE in this simple arming game for a case where

m = 1.5 and for a1 ≥ a2 (the results are symmetric for a2 > a1). In this example, if the game

starts at (0, 0) then on the equilibrium path both build up to (3, 3) and then stop. Off the path,

failing to build in any of the first three periods, during the arms race, leads to being attacked (or

coerced) for sure by the other player. If the states “start” from an arms level such as (1, 0) or (2, 1),

war (or coercion) is highly likely but not certain due to the mixed strategies. At the higher level

(3, 2), stability at (3, 3) is very likely to follow but there is a small chance that state 1 will build, 2

will not, and war will occur. Small deviations from equality at higher arms levels are likely to be

self-correcting, while larger deviations make for conflict.

Proposition 1 required two conditions. The first, δβv > c(1 − δ), implies that the states are

“greedy” enough about taking new territory relative to the costs of building. If this inequality goes

the other way, then (0, 0) is a stable point, and the unique efficient outcome in an MPE. So, in

a somewhat reductive fashion, we have the additional comparative static that states arm more the

more weight they put on conquest, the lower their opportunity costs for arming, and the more they

care about future payoffs.

The second condition, δv > c, plays a more subtle role: When this is the case, the states

would prefer to build forever rather than to not build and be attacked in the first period ((v −

c)/(1 − δ) > v). This condition ensures that in the first period, when neither has any arms, it

is preferable to “race” to the stable point rather than not arm and allow oneself to be attacked.

Without this condition, it is possible that the anticipated costs of the arms race will make it not

worth running, so that in a pure strategy MPE one state builds and the other does not in the first

period, and the non-builder is attacked and absorbed. There will be a symmetric mixed strategy

MPE as well, in which both states mix on whether to build. Either way, of course, war occurs with
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positive probability.10

δv > c is a sufficient but not necessary condition, since being willing to race forever rather

than not build and be attacked is stronger than needed. The necessary and sufficient condition

for a MPE to imply that the states arms race to a stable point, with no chance of war on the

equilibrium path, is δv > c(1− δa∗), where a∗ is the first stable point, the smallest integer greater

than 1/(m−1). More comparative statics follow. In particular, greater offense dominance (smaller

m) increases the likelihood that equilibrium will entail a positive risk of war, since greater offense

dominance increases the amount states have to build to get to a stable point, making war early

on more attractive. This result appears again, in a somewhat more realistic way, in the model

considered in the section.

3 A more general version

In this section I consider a more general version of the model, now allowing that if a state attacks,

victory or defeat is not certain and the probabilities depend on the balance of forces. Even though

we will keep the assumption of symmetry in this section, the analysis turns out to be more involved,

as there are more cases off the equilibrium path. The richer set up is worth considering for three

main reasons. First, it provides a richer set of comparative statics. Second, one may wonder how

much the mixed strategy results above are due to the threshold contest success function. And third,

it is a necessary bridge towards the asymmetric case where states can differ in various ways.

Let p(x, y) be the probability that the state with x ∈ R units of arms wins if there is a

war, with p strictly increasing in x and strictly decreasing in y. Symmetry is implied: p(x, y) =

1− p(y, x).

It will be useful to let pmn represent state 1’s probability of winning when 1 and 2’s building

choices were m and n, where m,n ∈ {0, 1} and 1 means “build.” For example, p10 = p(a1 +1, a2)

and p11 = p(a1 + 1, a2 + 1). Note that pmn is always a function of the arms level (a1, a2).

10This observation also implies that for some parameter values, the game has multiple MPEs.
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I will make the additional assumption that when both states add equal amounts to their forces

– so moving the force ratio towards equality – the probability that the stronger would win a war

moves towards one half. Formally,

A1: For x > y, p(x+ a, y + a) is strictly decreasing in a > 0.

This is satisfied for all ratio form contest success functions, which are defined by p(a1, a2) =

an1/(a
n
1 + an2 ) where n is a parameter greater than zero (Hirshleifer, 1989). Higher values of n

imply greater “decisiveness,” or “offensive advantage,” in military contests, in the sense that a one

unit increase from equal arms translates to a larger increase in the odds of winning.11

In the attack subgames, if either or both states attack, a war occurs that state i wins with

probability p(ai, aj), with the losing state eliminated, so state i’s time-averaged payoff for war

when the balance of forces is (ai, aj) is p(ai, aj)δv(1 + β). Once again, Markov strategies are

functions σi(a) ∈ {0, 1} and τi(a) ∈ {0, 1}, i = 1, 2, that describe the states’ build and attack

decisions whenever the arms levels are a = (a1, a2).

Taking a similar approach to the last section, consider first whether there are arms levels so

imbalanced that, in an attack subgame, the advantaged state (say, state 1) would surely want to

attack. Attacking is better for state 1 than subsequent stability when p(a1, a2)δv(1 + β) > δv, thus

at points a such that

p(a) > pl ≡
1

1 + β
. (1)

However, contrary to the case of the threshold contest function in section 2, it is now hypothetically

possible that state 1 would want to delay in hopes of attacking with a better chance of winning

later on. Intuitively one might think this unlikely, since state 2 would have an incentive to build

to prevent being attacked at worse odds. And in fact, for military technologies that satisfy A1, we

can show that this is the case and so in an MPE state 1 attacks in attack subgames that satisfy (1).

Proposition 3: For ai > aj and given A1, in any MPE state i attacks in any attack subgame if

11A1 is not satisfied for so-called “difference” contest success functions, for which the probability of winning de-
pends only on the difference between the combatants forces rather than the ratio (Hirshleifer, 1989). Although there
may be contexts where this conflict technology makes sense, I find it hard to imagine it applying in the case of fights
between armed groups.
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arms levels are such that p(ai, aj) > 1/(1 + β).

Figure 3 illustrates “attack points” that satisfy (1) with red dots. Define an internal attack

point as an attack point (a1, a2) such that (a1, a2 + 1) is also an attack point. War must occur

following such points in any MPE; the only question is who builds. Under A1, there prove to be

three possibilities, which are illustrated in Figure 3.

Proposition 4. Let C = c(1−δ)/δv(1+β), which is the cost-benefit ratio such that if war is going

to occur, a state prefers to build if its gain in probability of winning is greater than C. For a1 > a2

and given A1, at an internal attack point build strategies are as follows:

1. If p00 − p01 < C, neither builds and 1 attacks.

2. If p00 − p01 > C > p11 − p01, then 2 builds, 1 does not, and 1 attacks.

3. If p11 − p01 > C, then both build and 1 attacks.

A1 ensures that these are exclusive cases.

As in section 2 above, an arms level is stable if neither state builds or attacks at this point in

equilibrium. Following the earlier approach, the next step is to conjecture that there is an MPE in

which a is stable if it is not an attack point and if neither state would prefer to deviate to build and

attack. For a1 ≥ a2, the latter constraint is v ≥ (v − c)(1− δ) + δp10v(1 + β), or

p(a1 + 1, a2) ≤ ph ≡
δv + c(1− δ)
δv(1 + β)

= pl + C. (2)

In the case of ratio military technologies, it is easy to show that points with a1 ≥ a2 are

stable in this sense if

a2 ≥
(

1− ph
ph

) 1
n

(a1 + 1) and (3)

a2 ≥
(

1− pl
pl

) 1
n

a1 = β
1
na1. (4)

Figure 3 illustrates the set of stable points for a simple ratio form case,12 with the two lines defined

12That is, n = 1 so that p(a1, a2) = a1/(a1 + a2). (Let p(0, 0) = 1/2.) The other parameters are c/v = .5, β = .8,
δ = .9.
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by (3) and (4) also shown. Since pl < ph, line (4) has higher slope and eventually becomes

the binding constraint. It is evident that the first stable point is the smallest integer a∗ such that

p(a∗ + 1, a∗) ≤ ph. With a ratio form contest success function, this implies that

a∗ = d 1(
ph

1−ph

)1/n

− 1

e,

where dxe is the smallest integer greater than or equal to x.

With ratio-form contest functions, a first stable point a∗ always exists. For the more general

case of p(a1, a2) that satisfy A1, an additional assumption is needed to guarantee this. Namely,

for large enough arms levels, we assume that adding one more “tank” has almost no effect on the

chance of winning, which seems reasonable.

A2: p(a+ 1, a) approaches one half as a gets large.

To find an MPE with these characteristics it remains to fill in strategies for the arms levels

that are neither stable nor internal attack points, and to check that the whole assembly works. We

begin with the equilibrium path following (0, 0). In effect, the states have a choice between both

building up to the first stable point a∗, which will yield the time-averaged payoff v − c(1 − δa∗),

or both building and then attacking straight away, which gives (1− δ)(v − c) + δv(1 + β)/2. For

large enough a∗, getting to stability may be so costly that the states prefer to fight rather than arms

race. The condition is given in Proposition 5.

Proposition 5. Suppose A1 and A2 hold and that δv > c. There is a first stable point a∗. If

c(1 − δa∗−1) > v(1 − β)/2, then an MPE with the characteristics given so far must involve both

states arming and at least one state attacking at a = (0, 0). Else both states arm but do not attack

for points a1 = a2 < a∗.

Thus, the prospect of a burdensome arms race, even if it would lead to a stable situation,

may be dangerous by making a fight in the present more attractive. Conflict is still inefficient, of

course. If the states could commit not to build and attack at a level of arms less than a∗, they would

not want to fight initially and both would be better off.13

13The mechanism is parallel to that in Powell’s (1993) model, where war may be the only MPE when the level of
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The comparative statics on the likelihood that (a prospective) MPE involves war at the outset

are as follows.

• Greater advantage for offense in the offense-defense balance increases the risk, since this

increases the amount of building needed to get to a stable level of arms.

• The more value the states put on controlling the other’s territory, or the lower the costs of war

(higher β), the greater the war risk. This increases both the temptation to fight now and the

amount of building needed to get to stability.

• Smaller costs for building arms relative to national income (and for a given “break out” time)

have no clear impact, since this increases the building time to stability, but also lowers the

cost.

• More patient states may be more or less likely to fight, as they value more the peace they

would eventually reach by building, but will have to build more to get there.

Figure 3 shows the build decisions (σi(a1, a2)) for the sets of arms levels that have been

pinned down so far. A full characterization of an MPE requires that we specify σ for the remaining

points (and for any admissable set of parameters). This can be done case by case; results for this

particular set of parameters are illustrated in Figure 4. Here, if the states were to start from (0, 0),

they would build three times and then stop at (3, 3). Mixed strategies are still possible off the

path (for example, at (5, 4)), and with other parameters a variety of other mixed strategy points are

possible.

Figure 5 gives (almost all of) the MPE when we increase the offense-defense parameter n in

the contest function to n = 2, which increases the marginal advantage gained from building. Now

if the states were to “begin” from equal arms levels less than or equal to (3, 3), they prefer fighting

at even odds to building up to the first stable point, (6, 6). If the initial levels are (4, 4) or (5, 5),

then the building to stability at (6, 6) is preferred.

arms spending required for stability is so high that it’s better to just fight.
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The complete characterization of MPE for contest functions p(a1, a2) that satisfy A1 is ren-

dered particularly tedious by points like (10, 9) in Figure 5. Here, state 2’s continuation payoff if

both build depends on state 1’s mix at (11, 10), which leads to a quadratic for state 1’s equilibrium

mix at (10, 9). This is tractable, but for other parameter values there can be a long succession of

such points, with increasingly complicated recursions for each one.

4 Arms races when states differ in aims or capacity to build

So far the two states have been assumed to have the same value for acquiring new territory, the

same arms budgets, the same costs for building and for war, and the same capabilities to build

arms. In this section I provide a partial analysis of the more interesting situation where the states

differ in either preferences or capabilities. Call a state “status quo” if it has no value at all for

acquiring new territory (βi = 0), and “greedy” if it has value βi > 0 (Glaser, 2010). This case

is analyzed next. Mixed strategies now appear on the equilibrium path, with the status quo state

typically more likely to build. War may occur if the greedy state happens to build when the status

quo state does not, although for almost any reasonable-seeming values of the parameters, this is

quite unlikely. The more likely outcome is that there is a brief arms race that ends peacefully

when the status quo state builds and the greedy state does not. One implication is that the expected

equilibrium arms level of the status quo state is higher than that of the greedy state.

The next subsection considers a different asymmetry: Suppose that one state can build

weapons faster, or can build more effective weapons, than the other. The results are broadly sim-

ilar. If the advantaged state is not so advantaged that it wants to build just once and attack at the

outset, then the states arm for sure up to the first level where the disadvantaged state is not tempted

to “defect,” and then start mixing as in the previous case. The race may end in either conflict or

stability, with the militarily advantaged state having more arms.

These analyses are suggestive but partial, in that there are a number of natural ways that

two states may differ on the main parameters considered in the model, and these may be related.
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For instance, the most natural way of interpreting the game’s timing empirically is to suppose that

building takes place in continuous time, but a state cannot observe (or react to) what the other state

has been doing for the last ∆ > 0 amount of time. ∆ thus corresponds to what is sometimes called

the “breakout” capability or time in the informal arms race literature. It depends on, among other

things, the technology for monitoring and responding to military acquisitions and deployments. In

time ∆, state i can build, say, mi∆ units of arms at cost ci∆. The discount factor per period is

δ = e−r∆ where r > 0 is the discount rate. A natural assumption would be that mi is proportional

to the size of state i’s resource flow, vi, in which case vi > vj implies that i has an advantage in

terms of building arms but is also a more attractive target for a greedy state j. This would roughly

correspond to a common (U.S.-based) characterization of the U.S.-Soviet arms race (economically

stronger but status quo U.S. versus possibly greedy U.S.S.R) and to the India-Pakistan rivarly

(economically stronger India versus territorially dissatisfied Pakistan). [no analysis of such cases

yet.]

4.1 A greedy state and a status quo state

Let state 1 be greedy, with β1 > 0 value for territory, while state 2 has β2 = 0 indicating either

zero value for controlling new territory or prohibitive costs for war. Otherwise, use the model from

the last section.

The only reason for the security-seeker to arm is to dissuade attack by the greedy state. But

if the security seeker would certainly arm to prevent attack, then the greedy state has no reason to

build a large and costly army.14 These observations immediately suggest why equilibrium in this

case must involve mixed strategies on the equilibrium path.

Proposition 6. Suppose the military technology is ratio form. In the case of a greedy state with

β1 = β > 0 and a security seeker with β2 = 0, if the states are sufficiently patient then on the

equilibrium path both states mix in each period until one of the following things happens. (a)

14In this very “third image” model, at any rate. Empirically, it could be that greedy states are greedy for domestic
political reasons that at the same time incline them to build large militaries, irrespective of the possibility of conquest.
Militarism may be domestically useful for rulers even if the military is not used (e.g., Snyder (1991))
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The status quo state builds while the greedy state does not. This leads to a stable point. (b) The

greedy state builds and the status quo state does not. If this occurs then the greedy state attacks.

(c) Mutual building leads to the stable point (a∗, a∗), where a∗ is the first arms level such that

p(a∗ + 1, a∗) ≤ ph.

With a greedy state and security seeker, then, the length and results of an arms race are

stochastic. It can end in peace or war, and if it ends in peace at a stable arms level, this level might

be any of the following: (0, 1), (1, 2), . . . , (a∗ − 1, a∗), (a∗, a∗). An immediate implication is that

conditional on stability, the status quo state arms at least as much or more than the greedy state.

This is because the greedy state has no need to deter attack or coercion by the status quo state,

while the status quo state does need to deter the greedy state.

The probability distribution on the various possible outcomes of course depends on the spe-

cific mixed strategies, and unfortunately these are difficult to obtain in closed form for the greedy

state except for the cases of a∗ = 1 and a∗ = 2. The problem is that the mix on building and not

building by the greedy state that makes the status quo state indifferent in a period must be derived

by working backwards from the point (a∗ − 1, a∗ − 1), and the mix in one period depends on the

continuation value if both build, creating a complicated recursion. It is, however, straightforward to

show that the mix by the status quo state that renders the greedy state indifferent between building

and not building at point (a, a), a = 0, 1, . . . , a∗ − 1, is

ba2 = 1− c(1− δ)
δv[p(a+ 1, a)(1 + β)− 1]

.15

Thus, the probability that the status quo builds is highest at the start of the race and decreases

thereafter. This is because the greedy state’s temptation to build and attack is diminishing as arms

increase, which in effect somewhat reduces the pressure on state 2 to build. It is also evident that as

δ approaches one, the security seeker becomes virtually certain to build at any level of arms (less

than a∗), so that the probability of war must approach zero.

15This comes from setting what the greedy state can always get by never building, v, equal to its expected payoff for
building, which is (v − c)(1− δ) + δ(1− ba2)p10(a)v(1 + β) + δba2v.
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As noted, there is no such simple result for the greedy state’s equilibrium mixture on building

and not building. For the case of a∗ = 2 (i.e., stability if both build twice), it can be shown that at

(1, 1) state 1 builds with probability

b1
1 =

c(1− δ)2

δ[v − c(1− δ)− δ(1− p(2, 1))]
,

while in the first period b0
1 is the positive root of the quadratic b2

1 + Bb1 − C, where B = 1 +

v/cδ(1− δ) and C = (1− δ)/δ2.

Table 1 illustrates the likelihood of different arm race outcomes for five different sets of

parameters. The first two columns show the probability of four different outcomes in a given

period of play at points (0, 0 and (1, 1). For example, in the first scenario the probability that 2

builds and 1 does not (“peace”) is about .879 in a given period at (0, 0), and is .541 conditional on

being at (1, 1). Since there is a positive probability that neither will build at each of these points

(“sq”) and so the situation will be repeated, the “total probability” of a move from, say, (0, 0) to

(0, 1) is larger. These “total” probabilities (conditional on being at a point) are shown in columns

three and four. The final column shows the probability distribution on outcomes in the game.

The five different scenarios sequentially vary one parameter at a time (bolded), always sub-

ject to the constraint that the parameter set implies that a∗ = 2. Observe that in all cases, at least

for these parameters, by far the most likely outcome is peace after the status quo state arms and the

greedy state does not. For small discount factors and/or greater greed it is possible to get somewhat

lower probabilities of this outcome, but not by much.

A second interesting result is that while mutual escalation to (1, 1) is not very likely, if it hap-

pens then war might be quite likely to occur. Note that the total probability of war is always greater

from (1, 1) than from (0, 0), so at least in the case of a∗ = 2 it appears that these greedy/security-

seeker arms races become more dangerous as they proceed (albeit not especially dangerous, from

an ex ante perspective). The intuition is that, in effect, the security seeker is more likely to err

on the side of hoping that deterrence will hold at higher arms levels, because war is less bad if it
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happens to underestimate the greedy state’s aggression.16

Some of the other examples show surprising comparative statics. Reducing the greedy state’s

value for conquest can increase the risk of war; reducing the costs of building can lower it; increas-

ing offensive advantage can also decrease war risk. A partial intuition is that (for instance) greater

defensive advantage makes war less attractive for the greedy state, which makes the security seeker

more willing to risk attack by not building. Note, however, that at least some of these are “local”

relationships that will not hold if a∗ changes. For example, for β small enough peace at (0, 0) is

certain, so eventually reducing the greedy state’s “greed” must reduce war risk.

The example considered here is extreme in that state 2 was assumed to be a pure security-

seeker that has zero value for taking territory (or other international issues where it could poten-

tially gain by military coercion). What would happen if both states are at least somewhat greedy,

but one is greedier than the other? Say 1 > β1 > β2 > 0. Then the first arms level at which state 2

would be willing to stop and remain at peace – call this â2 – is (weakly) smaller than the first such

arms level for state 1 (â1). And â2 can be greater than zero if state 2 is somewhat greedy. If the

costs of arming are not so high that one or both prefer war at the outset, then both will build for

sure up to â2, and then mixed strategies will begin. In such cases, an arms race that starts from a

low level becomes more “dangerous” in the sense of having higher risks of conflict farther into the

race.17

4.2 One state builds faster than the other

Now assume two greedy states with values for expansion β1 = β2 = β > 0, but state 1 produces

m > 1 units of arms each period it builds whereas state 2 produces just one unit.18 Let state 1’s

probability of winning if war occurs at point (a1, a2) be p(ma1, a2). With the ratio form contest

function, state 1’s odds of winning at (a1, a2) are (ma1/a2)n, which implies that if both have built

16More on this “purification” interpretation of mixed strategies and conflict in the model in the next section.

17Although I think it is not necessarily the case that once the mixed strategies start, the risk of war increases with the
arms levels.

18This section is more preliminary than the others ...
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Table 1: Outcome prob’s for a greedy vs security-seeker arms race

Period probs Total probs Outcome probs
(0, 0) (1, 1) (0, 0) (1, 1)

v = 1, β = .8, c = .5, δ = .85, n = 1
peace .87864 .541 .98605 .94433 peace at 0,1 .98605
war .00137 .01407 .00154 .02456 peace at 1,2 .01172
esc .01106 .01782 .01241 .03111 war at 1,0 .00154
sq .10892 .42711 war at 2,1 3e-04

peace at 2,2 .00039

v = 1, β = .8, c = .5, δ = .8, n = 1
peace .82425 .35268 .97273 .8556 peace at 0,1 .97273
war .00361 .0372 .00426 .09025 peace at 1,2 .01969
esc .0195 .02232 .02301 .05415 war at 1,0 .00426
sq .15264 .5878 war at 2,1 .00208

peace at 2,2 .00125

v = 1, β = .7, c = .5, δ = .8, n = 1
peace .80245 .059 .97201 .51318 peace at 0,1 .97201
war .00413 .05247 .005 .45639 peace at 1,2 .0118
esc .01898 .0035 .02299 .03043 war at 1,0 .005
sq .17444 .88503 war at 2,1 .01049

peace at 2,2 7e-04

v = 1, β = .7, c = .4, δ = .8, n = 1
peace .84105 .23929 .97816 .8481 peace at 0,1 .97816
war .00268 .03214 .00312 .11392 peace at 1,2 .01587
esc .01609 .01071 .01872 .03797 war at 1,0 .00312
sq .14017 .71786 war at 2,1 .00213

peace at 2,2 .00071

v = 1, β = .7, c = .4, δ = .8, n = 1.4
peace .84105 .54963 .97816 .93755 peace at 0,1 .97816
war .00268 .01572 .00312 .02682 peace at 1,2 .01755
esc .01609 .02089 .01872 .03563 war at 1,0 .00312
sq .14017 .41375 war at 2,1 5e-04

peace at 2,2 .00067

a times, 1’s odds of victory are mn. (To recall, n is the “decisiveness” parameter in the contest

function.)

With the ratio form, because both arming at the same rate preserves the ratio of forces, state

1’s probability of winning stays constant as both build. Intuitively, then, if state 1’s advantage is
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large enough that it prefers attacking at odds mn to peace and stability – that is, when mn > 1/β

– then an MPE will certainly involve both building and state 1 attacking in the first period. Racing

is costly and brings no advantage if state 2 would match state 1, which it would if it expects to be

attacked.

If, on the other hand, mn < 1/β then there is an arms level â1 large enough that if reached,

state 1 would not find it worthwhile to “defect” by building and attacking. There is an analogous

level, â2, for state 2, and it is easy to show that â2 ≤ â1.19 So the point (â1, â1) is certainly stable.

Now consider (â1 − 1, â1 − 1). Here we have the same kind of “matching pennies” dynamic seen

in the case of a greedy state and security seeker. If state 1 builds for sure then state 2 wants to build

to prevent attack, but if state 2 builds for sure then state 1 will get stability whether it builds or not

and so prefers to not build so as to save on costs. But if state 1 never builds at this point, then state

2 would have no reason to build either, to which building and attacking is a best reply for state 1.

So the results for asymmetric building rates appear to be similar to those for the “greedy

state vs. security seeker” case, in that the equilibrium path will involve mixed strategies that could

lead to war or coercion if the asymmetry is not so large that war occurs right away. There is a

difference, however, in that here, in an arms race, both will build for sure at the outset and mixing

will start farther into the race. This is because we have assumed some “greed” on the part of state

2, so that it would want to build and attack at (0, 0) if state 1 was not building.

5 Discussion

5.1 If you want peace, prepare for war?

At least for the case of symmetric states, the model and analysis here are largely consistent with

the Roman adage “if you want peace, prepare for war.” The reason states build is to deter attack (or

coercion) by other states that would like to expand or otherwise change the status quo away from

what the state likes. Arms build ups are costly and inefficient. The states could do better if they

19Specifically, â1 = d((oh)1/n/m− 1)−1)e, and â2 = d(m(oh)
1/n − 1)−1)e, where oh = ph/(1− ph).
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could commit themselves not to arm, or not to use arms for attack or coercion. Either possibility

would enable a stable outcome at zero or lower levels of arms.

In the symmetric case, however, even if arms build ups are costly they are not themselves

“dangerous.” They do not raise the probability of war by any sort of dynamic internal to the build

up itself. Indeed, it is failing to race that would be dangerous, if states start from or newly find

themselves in a position where current arms are inadequate for deterrence.

Contrary to the Roman adage, or going beyond it, the analysis does make clear that while

build ups in the symmetric case are not in themselves dangerous, the anticipation of a costly arms

race could be dangerous, by inclining states to fight in the present rather bear the costs of arming

to a stable level. In this complete information model this is “all or nothing” in the sense that either

the states fight at the outset or they do not. Note, however, that the mechanism is more general

in that the greater the anticipated costs of getting to stability, the more willing the states would be

to run risks of armed conflict in crisis bargaining over other issues. This is a potential source of

pressure for war that is almost completely missed in standard Realist discussions.20

5.2 Arms control?

Contrary to typical Prisoners’ Dilemma models of arms races, there is no role here for arms control

to prevent costly arms build ups. Because they do not explicitly incorporate an option to use the

arms for attack or coercion, PD models implicitly assume that the players are always around to

punish a state that defects from an agreement, by returning to arming or competition on the same

terms. When we explicitly model the possibility of using the weapons, it is immediately clear that

a state that is the “sucker” may be permanently disadvantaged – here, eliminated in a war – so

that lower, more efficient arms levels cannot be sustained by the conditional retaliation mechanism

available in a standard repeated PD (such as Tit for Tat).

Put differently, in the repeated PD understanding of the arms problem, “arms control” is

20Section 3 of Fearon (2008) shows that in a model where states choose arms levels and then may “crisis bargain”
with private information about costs for fighting, greater arms burdens (and the things that cause them, like offensive
advantages) lead the states to run more war risk in bargaining, by making more aggressive offers.
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talking to facilitate coordination on relatively efficient equilibria that involve lower levels of arms

than do other equilibria. But when we allow for actual use of the weapons that may be acquired,

we find that there is a minimum stable level of arms for given parameters and this will be reached

if the states start from below this level. No arms levels below this are equilibria, so there is nothing

better to coordinate on via arms control negotiations.

In the basic model analyzed above, there are no “carrying costs” for arms. That is, once they

are built, there are no continuing costs for maintaining them. An implication is that in this model,

there is also no role for arms control talks to coordinate reductions in arms from a high level, if an

exogenous shock were to lower one or both states’ value for taking territory, increase the costs of

war, or create new advantages for defense.

One can imagine, however, that if there were carrying costs there might be a role for arms

control talks for facilitating coordination on lower levels of arms if, due to a change in (say) one or

both states territorial aspirations, a lower level became a stable point. Consider for example arms

level (4, 4) in Figure 4, and suppose that this was the first stable point until some time when there

was a change in the military technology or both states’ values for taking territory that reduced the

first stable point to (3, 3). Because (4, 3) and (3, 4) are both attack points, neither state can safely

cut its arms level unilaterally – the other side would then want to attack it. If, however, there is

a possibility of a coordinated reduction to (3, 3), this is a stable point that both prefer. So in this

specific situation, or in any attempt to coordinate on (3, 3) from higher levels, “arms control” in

the received sense could play a role.

Note, though, that there are other moves from high to lower levels of arms that do not re-

quire coordination – for instance, if there are small carrying costs for arms levels, then unilateral

disarmament moves would take the states from any stable points above (4, 4) down to (4, 4).21 So

the results suggest a somewhat nuanced take on arms control, if arms control is understood in the

sense of coordination on Pareto-superior equilibra at lower arms levels.

21Carrying costs introduce some new issues, however; see the discussion below. The claims in the text here are
surely valid, however, for small enough carrying costs.
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To the extent that these objections to the standard PD story about arms control as a means to

prevent arms build ups, other interpretations of arms control may gain in plausibility. In particular,

arms control might have more to do with signaling and screening among types in a incomplete

information problem, where states’ levels of “greed” βi are private information (Kydd, 2001). Al-

ternatively, arms control might be more about facilitating coordination on monitoring arrangements

that affect underlying parameters in the model studied here, concerning the ability to “break out”

without detection.

5.3 Interpreting the model: Races and adjustments.

Almost all of the analysis above started from the assumption that the two states in the model begin

with zero arms, so that if one builds and the other does not the former can defeat the latter for

sure. Empirically, it is hard to think of any situation in which states simultaneously “start” with no

military capabilities at all. Instead, at any given time states have some allocation (a1, a2) > 0, and

then make decisions about whether to build more or less in light of current circumstances.

In an MPE, strategies depend only on the current arms balance and not on how this was

reached, so that we can “start” the interaction at any point (a1, a2) and ask what would follow.22

The most natural interpretation would then be that the states “start” at some level (a1, a2) which

is a stable point, and then may experience an exogenous shock that changes some parameter(s).

For example, an arms race from the current level of arms could occur if a technological change

created some new offensive advantage, or if regime changes made one state more “greedy” than it

had been before.

Arms races, in the ordinary language sense of rival states rapidly building up their militaries

out of fear or aggressive aims with respect to each other, are not that common. Large-N studies

typically identify between 20 and 30 “arms races” involving major powers between 1816 and the

22I suspect that subgame perfect equilibria of the game are always MPEs, but this is only a conjecture at this point.
This is almost certainly true for a finite horizon version of the model, where backward induction would lead to an
MPE, so I am guessing it will also be true in the infinite horizon case with diminishing returns in the contest function.
If this is right, then the restriction to MPE is not consequential.
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end of the Cold War (Sample, 1997). States do, however, quite often adjust their military’s size

in light of perceived changes in other states’ military policies and aims. The comparative statics

of the models analyzed here can also be used to consider how states would optimally adjust their

arms levels in light of such changes.

5.4 When and why are arms races “dangerous”?

As noted above, from the perspective of a state in the model, the biggest danger would be failing

to arm against a greedy adversary, as this would lead to attack or coercion if they are starting from

low enough arms levels. Nonetheless, armed conflict can arise in equilibrium in these models even

when the states are well aware of this danger and are trying to avoid it.

It is important to distinguish between two different types of equilibrium armed conflict that

emerge in these models. First, war may occur at the outset if the states anticipate that the amount

of arming needed to get to stability is large enough that simply fighting is the better option. In

this case, armed conflict is due to a commitment problem that is “robust” in the sense even if we

were to change the extensive form of the game to allow for bargaining between the states, that

wouldn’t help. The problem in this case is not getting to a distribution of resources that both prefer

to fighting, but that it is too costly to get to a level of arms such that peace is self-enforcing.

Second, war may occur if, at a mixed strategy point or when one state has a large enough

building advantage, one state builds while the other does not. The advantaged state can then

fight to “lock in,” in expected terms, a stream of payoffs that is better than a status quo of v

every period, and the disadvantaged state may as well fight because this provides some chance of

surviving to enjoy future consumption. In this second case, allowing for bargaining and resource

transfers could potentially allow the states to avoid a violent armed conflict. Once one state has a

military advantage that makes it dissatisfied with the status quo, the two states are in the situation

of a “dissatisfied” and “satisfied” state as appear in many bargaining models,23 and there will be

agreements on transfers that both sides would prefer to a costly fight.

23See especially Powell (1999).
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Bargaining may fail, of course, whether due to private information about willingness to fight,

or commitment problems related to whether the stronger state can guarantee to uphold a deal in

the future (Fearon, 1995, 2007; Powell, 1999). So we should probably interpret this type of armed

conflict in these arms race models as arising as follows: Arming can produce an imbalance of

power, which can make one state prefer armed conflict to the status quo, which in turn raises the

odds of armed conflict if bargaining over redistribution fails for whatever reason.

Alternatively, bargaining may not fail, so that resources are redistributed but there is no

destructive fight. If so, then what happens is coercion rather than war. Although this is bad for the

coerced state, the outcome is not necessarily inefficient.24

But how is it that arming might produce a dangerous imbalance of power and thus conflict or

coercion? As we have seen, in the case of symmetric states imbalances do not arise endogenously

if the states start from a position of equality (or rough equality if at higher levels of arms). With

symmetric states the only conflict risk from arms races is of the first sort. Possibly the most

interesting result is that when states differ in their “greed” or ability to build, arms races may

necessarily involve states mixing on whether to build, so that power imbalances and thus war or

coercion can arise endogenously.

It is still not clear, however, how to interpret these mixed strategies. Surely state leaders

never consciously randomize over decisions to build more weapons, or increase the size of the

army.

Harsanyi (1973) showed that for any mixed strategy Nash equilibrium in almost any com-

plete information game there is a “near by” game with incomplete information such that players

choose pure strategies but the equilibrium distribution on strategies is the same as in the mixed

strategy case. This suggests interpreting mixed strategy equilibria as artifacts of too “coarse” a

model: if we allow for some small private variation in preferences, then the players are choosing

24A natural alternative model assumes that the balance of forces determines the disposition of an international issue
(or composite of issues) automatically, so there is never any fighting but there can be coercion. [I’m working on this
one ...]

29



pure strategies in light of their particular preferences, while they are uncertain about what the other

players are doing.

Applied to the arms race model, the interpretation is that, depending on their idiosyncratic

preferences, the status quo state’s leaders may or may not want to take a chance that the adversary

will keep building, even though they know war or coercion could follow if they don’t build. Like-

wise, depending on idiosyncratic, privately known leadership preferences, the greedy state may or

may not plunge ahead with its armaments program, hoping but not certain that the security seeker

will not keep up.

The difference between a mixed strategy point and a pure strategy point in the arms race

models considered here is that in the former, the strategic situation forces a “tough call” by the

leadership, because it has to be unclear what the adversary will do. The mixed strategy result sug-

gests that, in an arms race between asymmetric states, a time may come when it cannot be common

knowledge that the adversary will continue to build, or will not build. This is why arms races be-

tween asymmetric adversaries may endogenously generate a risk of armed conflict or coercion.

5.5 What about “carrying costs”?

For simplicity and to work through the most relevant limiting case, the models above assumed there

were no costs to maintaining arms once built. But of course it costs a lot to maintain aircraft carriers

and nuclear forces, not to mention the direct wage costs of soldiers. What would happen if we

introduced such carrying costs into the model? Suppose, for example, that the cost of maintaining

ai units of arms is kai per period, where k is a parameter greater than zero.

So modified, the model moves a step in the direction of Powell’s (1993) guns-butter game,

where the states choose how much to spend on arms out of total resources in alternate periods, and

there is no accumulation over time (see also Jackson and Morelli 2009). Powell showed that if

there is a peaceful MPE with deterrence, then there is a set of peaceful arms allocations that look

like the cross-section of a lense in the (a1, a2) space, the smallest of which is an efficient MPE. At

allocations within the lense, neither state would want to “break out” and attack the other – what it
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gets from deterrence is better than what it could get by arming up and attacking given the other’s

allocation. This set is bounded above because for high enough levels of arms, the states would

prefer to fight even at even odds of winning to living at the low levels of consumption needed to

sustain deterrence.

In Figures 1-5, the set of stable points forms (half of) the lower end of the lense seen in

Powell’s model, but it does not “close” above. This is because there are no carrying costs. If the

states were somehow to reach or start at any level of arms in the stable set, the fact of no carrying

costs means they are happy just to stay there, not building or attacking. Adding carrying costs will

most likely cause the set of stable allocations, when it exists, to take the shape of a lense as in

Powell’s model.

I do not have a full analysis for this extension, but it is easy and instructive to write down a

necessary condition for a stable point (a, a) in the case of symmetric states:

v − ka ≥ (v − ka− c)(1− δ) + δp(a+ 1, a)v(1 + β).

The left-hand side is the (time averaged) value of residing at peace with carrying costs ka each

period; the right side is what a state can get by building and attacking. Note that a new and

potentially major attraction of war here is that the winning state no longer has to pay the costs to

maintain arms for deterrence (in this two state model). Rearranging, we have

p(a+ 1, a) ≤ δv + c(1− δ)− δka
δv(1 + β)

= ph −
δka

δv(1 + β)
.

For large enough carrying costs and if states would want to attack an unarmed adversary, no level

arms will satisfy this expression, since p(a+ 1, a) > 1/2 for any a, and p(1, 0) = 1 > ph. We see

here essentially the same trade-off, or tension, as in Powell’s model. A stable arms allocation must

be at a high enough level that neither side is tempted to “break out” and attack, but if maintaining

the forces necessary for deterrence is very costly, trying one’s hand at war in hopes of getting to a

less burdensome peace may be the better option for both states.

With small enough carrying costs, of course, we should expect that the main results to go

through – states arming up to the first stable arms level. An interesting question is how increasing
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carrying costs would affect this level. Making the inequality above an equality and implicitly

differentiating in k leads the conclusion that increased carrying costs imply a longer arms race, if

there is still a stable arms level both prefer to fighting.25

5.6 Uncertainty about the other state’s aims

An important line of theorizing about international politics is based on what might be called “the

Jervis model,” after arguments in Jervis (1976) and Jervis (1978). Glaser (2010) provides the

fullest informal development of the model, which to date has been analyzed most thoroughly in

formal terms by Kydd (1997, 2005).

The Jervis model posits two states, each of which may be one of two types, a “greedy state”

or a “security seeker.” As above, a greedy state puts positive value on expanding into new territory

or changing the resolution of some international issues, while a status quo state does not. The states

in the model know their own type but may be unsure about their adversary’s type. In informal

treatments, the choice variables range over whether to build more arms, what type of arms to build,

what type of military doctrine to implement, whether to try to control the politics of “buffer states,”

and so on. In general the choice is posed as whether to adopt “cooperative” or “competitive”

policies. It is commonly argued that the security seeker faces a dilemma, in that arming may be the

best course against a greedy state, but could worsen matters if the other side is a security seeker

and arming signals greed (or fails to signal lack of greed).

Full analysis of this extension is too much for this paper, but we can get some first-order

conclusions by considering a simple special case. Suppose states 1 and 2 may be either “status

quo,” S, or “greedy,” G; that S types put zero value on taking new territory while G types put

value β > 0; and that the prior probability that state i is greedy is αi ∈ (0, 1). Consider the game

in the case where (2, 2) is the first stable point for two greedy states, and start the interaction at (1,

25This is easier to see with the graphical argument: p(a+ 1, a) is decreasing from 1 towards 1/2 as a increases from
zero, and so if it intersects the line on the right-hand side it does so from above. Thus making the slope of that line
more negative (increasing k) increases a∗ (a at the first intersection, if there is one).
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1).26

Proposition 7. Suppose beliefs about the other’s probability of being greedy are the same, so that

α1 = α2 = α. Then in the game’s MPE, at (1, 1) greedy states certainly build, while S types

build if α > c(1 − δ)/δvp(2, 1) and not otherwise. Thus, if this condition does not hold, then in

equilibrium the types “separate,” with peace at (1, 1) following if both are type S; war at (1, 2) or

(2, 1) if one is G and one S; and peace at (2, 2) if both are G. If the condition holds, then all types

build at (1, 1) and peace prevails (on the path) at (2, 2). In the latter case, the states’ beliefs about

the other’s type are the same after both build as they were before (there is no “spiral of hostility”).

The comparative statics are straightforward: Security seekers are more likely to arm, acting

like expansionists, the greater the initial belief that the other is greedy, the more the offense-defense

balance favors offense (which makes guessing wrong worse), and the smaller the costs of a round

of arming relative to total resources. This last depends on “break out” time as well as the state

of military technology: better monitoring implies smaller arms costs per “period,” so that better

monitoring and shorter response times actually incline security seekers to act like greedy states,

since there is little cost to doing so (and equilibrium arms levels will be lower for greedy states as

well).27

Now suppose that one state is thought much more likely to be greedy than the other – say that

α1 is close to 1 and α2 is close to zero, so that state 1 is probably greedy and state 2 is probably a

security seeker. As in section 4.1, equilibrium has to involve mixed strategies. It can be shown that

state 1S does not build while 1G mixes, and state 2G builds for sure while 2S mixes. If it happens

that neither builds, then it becomes known that state 2 is a security seeker, but mixed strategies

26The game is similar to that analyzed by Kydd (2005, chapter 2), differing most of all in that his game does not have
attack decisions (it is what might be called a coercion model).

27The comparative statics on beliefs α and the offense-defense balance economically summarize core arguments in
Jervis (1976) and Glaser (2010). One difference concerns the role of costs of arming. This are typically put to the side
in informal treatments, where the S types sole objective is usually said to be “security.” The formal analysis shows that
at least in this first-order formalization of the Jervis model, costs of arming are necessary for there to be any dilemma.
If c = 0, then security-seekers should just arm irrespective of their beliefs. It requires a more elaborate argument that
implies that arming produces a “spiral of hostility” and greater risk of preemptive war to have a hope of making the
standard approach coherent if c = 0.
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may continue in the next round since 1G wants to build if 2S does not build but not otherwise. If

both happen to build in the first period, both states correctly increase their beliefs that the other

is a greedy type – there is a “spiral of hostility,” although it is not consequential since (2, 2) is a

stable point even between greedy states. If state 2 builds and 1 does not, then peace prevails at (1,

2), with state 2 increasing its belief that 1 is a security seeker, but not completely sure. If 1 builds

and 2 does not there is conflict, which is more likely to be between greedy states than the ex ante

probabilities of the two types, but can still involve greedy 1 and security seeking 2.

This brief analysis of a special case suggests that, as with complete information arms races,

asymmetries between the states imply behaviors that have not been seen in standard analyses of the

“security dilemma” problem. In sum, asymmetries in preferences for expansion, or beliefs about

these, imply strategic dynamics that can lead to endogenously created power imbalances, which in

turn favor either stable peace if security seekers end up favored, or conflict if greedy states end up

favored.

6 Appendix

Proof of Proposition 2. [tedious]

Proof of Proposition 3: Consider a1 > a2. Note first that if at a point a state 1 builds and then

attacks in an MPE, then state 2 also builds. If state 2 does not build in this situation, for state 1 to

want to build and attack it is necessary that (v−c)(1−δ)+δp10v(1+β) > v(1−δ)+δp00v(1+β),

which reduces to

p10 − p00 > C ≡ c(1− δ)
δv(1 + β)

.

By A1, p11 < p00 and thus p10−p11 > p10−p00 > C. But p10−p11 > C proves to be the condition

for state 2 to prefer to build if it expects 1 to build and attack.

Now suppose the proposition is false, so that there is an MPE with an a such that in an attack

subgame, p(a) > 1/(1 + β) but state 1 does not attack. The only way for state 1 to do better than

δp00v(1 +β)/(1− δ) is by attacking at a subsequent point with better odds of winning. Thus there
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is an a′ = (a1 + x, a2 + y) where x and y are non-negative integers, at which both state 1 and state

2 build and state 1 then attacks at (a1 + x+ 1, a2 + y + 1). But this could occur only if state 1 did

not attack at a′ when, by A1, it had a better chance of winning. This is impossible in an MPE (why

pay cost c to fight a war at worse odds?).

Proof of Proposition 4. A1 implies that when x > y,

∂p(x, y)

∂x
< −∂p(x, y)

∂y
,

or in words, 1’s probability gain from building another time is smaller than 2’s.

Neither state wishes to build given that 1 will attack when

v + δp00δv(1 + β) ≥ v − c+ δp10δv(1 + β),

and, for state 2,

v + δ(1− p00)δv(1 + β) ≥ v − c+ δ(1− p01)δv(1 + β).

These reduce to p10 − p00 < C and p00 − p01 < C. By A1, the second implies the first, so this is

the condition for (NB,NB) at such build points.

Similarly, we find that 2 prefers to build and 1 not to build when p00− p01 > C > p11− p01.

(This range always exists since p11 < p00.) And (B,B) are best replies when p11 − p01 > C and

p10 − p11 > C.

The first inequality for (NB,B) contradicts the second inequality for (NB,NB), there is

likewise a contradiction that means we cannot have both (NB,B) and (B,B). (NB,NB) and

(B,B) cannot both obtain because the first inequality for (B,B) implies p00 − p01 > C, which

contradicts the second condition for (NB,NB).

Proof of Proposition 5. First, δv > c implies that if state i expects that building up to a∗, it will

prefer to do so rather than not build at t = 0 and be attacked. The latter yields, time-averaged

payoffs, v(1− δ), and the former v− c(1− δa∗). So δv > c is a sufficient condition for the second

to be greater than the first.
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A2 implies that there is a first stable point a∗: By A2 for large enough x, p(x + 1, x) < ph,

since ph > 1/2. So there is a smallest integer a such that p(a + 1, a) ≤ ph, the condition for a

stable point.

The time-averaged payoff for building up to the first stable point is v − c(1− δa∗), which is

less than the payoff for attacking after both build in t = 0 when

v − c(1− δa∗) < v(1− δ) + δv(1 + β)/2.

This gives the condition in the proposition. By δv > c, a state does worse to not build and get

attacked with no chance of winning. If the inequality is reversed, then a state prefers building to a∗

to fighting at (0, 0), which ensures that the state also prefers building to a∗ from any (a, a), a < a∗,

since the costs of getting there are smaller.
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Figure 1.  Threshold csf with m = 1.5.
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Figure 4.  MPE for ratio form with c/v = .5, beta = .8, delta = .9.
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Figure 5.  MPE for c/v = .5, beta = .8, delta = .9, n = 2.
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