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1 Introduction

Our starting point are standard models of political competition. We first allow candidates to

be both policy and office motivated, and the amount of office and policy motivation will differ

between candidates. Second, we allow candidates to choose between policies that are beneficial

in the long run vs policies that have a short-term gain, but are costly in the long run. We refer

to the latter as an example of a populist policy. We assume that the electorate does not fully

understand long-term costs and benefits. More formally, we assume that voters are myopic,

while political parties discount the future at some rate β > 0.

The median voter derives utility from the policy chosen, as well from other unspecified char-

acteristics of the candidates. This is a short cut for modeling other policy issues (e.g., cultural

issues) that matter to voters. More formally, the median voter receives a utility ε from one of the

candidates, where the realization of ε is not known at the time when candidates choose policies.

Examples for forward looking vs instant gratification: Climate Change, Pensions, debt/deficit

in lieu of higher taxes We can interpret party L as representing establishment parties that only

care about policy and therefore converge to the same policy. This way, a result such that party

L wins with almost 100% probability simply means that establishment parties always win.

2 Model

Two parties P = L,R choose capital investment in each period, t = 0, 1, 2, . . .. There is a

consumption good and a capital good. If kt−1 is the amount of capital in period t − 1 then

f (kt−1) = φkt−1 is the amount of the consumption good provided in period t, where φ > 0. The

consumption good can be invested and effectively turned into the capital good: the capital stock

at time t is given by kt = ρkt−1 + it, where it ≥ 0 is the investment, and 0 < 1 − ρ < 1 is the de-

preciation rate of the capital stock. A party’s policy in period t is a proposed investment level it.

The median voter’s utility in period t is u(ct) + vP, where ct = f (kt−1) − it, and vP is a va-

lence shock that measures the utility the voter derives if party P is in power. We will focus on

constant relative risk aversion utility preferences over consumption, i.e., u(c) = c1−s/(1 − s) for

s > 0, s , 1 and u(c) = log(c) for relative risk aversion s = 1. We interpret vP,t as measuring

other, non-economic policy aspects that are fixed. Without loss of generality we assume that

vL,t = 0 and write vt instead of vR,t. Let Gt be the cdf of the distribution of vt, with density gt.

We require that limx→−∞ xG(x) = 0. [explain] The median voter is myopic, and bases electoral

decision solely on period utility. This captures the idea that voters are not sophisticated and do
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not understand the long-term impacts of economic policy.1

In contrast, parties are sophisticated and forward looking. Parties discount future payoffs

by a discount factor 0 < β < 1. There are two parties, a populist party, R that only cares about

winning. That is, the party receives a period payoff of 1 if it wins, and 0, otherwise. The other

party, L, only cares about policy. The party’s period utility from consumption is the same as

that of the median voter, but the parties discounts future payoffs by β.

We make minimal assumptions about the distribution of valence. In particular, the expected

net-valence does not need to be zero. We only require that 0 < Gt(0) < 1, so that even if party

L perfectly mimics party R’s platform, then it has a strictly positive probability of losing, and

that the density gt is strictly positive on its support. To ease presentation, we typically assume

that the valence distribution is i.i.d., and that the density g is strictly positive on R.

Throughout the paper, we maintain the following assumption.

Assumption 1 β(ρ + φ)1−s < 1 < βφ.

The first inequality ensures that L’s discounted expected utility is finite. The second inequality

means that the project’s return exceeds the L’s discount factor. If risk aversion s ≥ 1 then βφ > 1

implies that this second assumption is immediately satisfied.

The game proceeds as follows. At the beginning of each period, parties simultaneously pro-

pose policies iP,t ∈ [0, f (kt−1)], P = L,R. Then the valence shock is realized and the median

voter selects his preferred party. The party that wins the election then implements its announced

investment policy platform.

We consider subgame perfect equilibria of the game.

3 The Planner’s Problem

We first determine the socially optimal level of investment, i.e., the investment that would max-

imize the median voter’s discounted payoff. This outcome would arise absent competition from

the populist party, because party L would then be unconstrained by re-election concerns.

Let k̄ = k−1 > 0 be the initial level of capital. Then the planner seeks to maximize

max
it

∞∑
t=0

βtu(φkt−1 − it) s.t. kt = ρkt−1 + it, 0 ≤ it ≤ φkt−1. (1)

1This is a weak notion of bounded rationality. For example, voters do not understand the consequences of
future debt or pension obligations on future consumption (explain more)—see Greece, or underinvestment in
infrastructure.
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A significant challenge with analyzing this dynamic optimization problem is that the flow pay-

off, u(c), is unbounded. Thus, the usual results that ensure differentiability of the value function

as well as the contraction mapping results that ensure uniqueness do not apply. Further, the

problem does not map into the approaches used when one has constant returns to scale (Stokey

and Lucas 1999, Ch. 4.3). One approach is to exploit the monotonicity of the Bellman operator,

finding an upper bound for the value function, and showing that it converges to its fixed point

(Stokey and Lucas 1999, Theorem 4.14). We take a simpler approach that exploits the scalabil-

ity of the value function. This enables us to quickly arrive at the functional form of the value

function. To show this, we cast the problem in the standard format with kt as the state variable:

V(k) = max
{kt}
∞
t=0

∞∑
t=0

βtu(kt−1, kt) s.t. ρkt−1 ≤ kt ≤ (ρ + φ)kt−1, with k−1 = k. (2)

Let {kt}
∞
t=0 be an optimal sequence. Now, suppose we multiply the initial capital by α > 0, so

that we begin from an initial capital stock of k̂−1 = αk. Similarly, consider a sequence {k̂t}
∞
t=0,

k̂t = αkt. Obviously, this new series, {k̂t}
∞
t=0, satisfies all the constraints because ρkt−1 ≤ kt ≤

(ρ + φ)kt−1 whenever ρk̂t−1 ≤ k̂t ≤ (ρ + φ)k̂t−1. Moreover, because V(k̂) is the optimal value of

the series

V(k̂) = V(αk) ≥
∞∑

t=0

βtu(k̂t−1, k̂t) =


α1−s

1−s Vs(k) ; s , 1

log(α)
1−β + Vs(k) ; s = 1

(3)

Because α and k are both arbitrary, we can use 1
α

instead of α, and αk instead of k to get

V(k) ≥


(1/α)1−s

1−s Vs(αk) ; s , 1

log(1/α)
1−β + Vs(αk) ; s = 1

(4)

Now, suppose the inequality in (3) was strict. Then, combining (3) and (4), we would have

V(αk) > V(αk), a contradiction. Thus, we must have

V(αk) =


α1−s

1−s Vs(k) ; s , 1

log(α)
1−β + Vs(k) ; s = 1

, that is, V(k) =


k1−s

1−s Vs(1) ; s , 1

log(k)
1−β + Vs(1) ; s = 1

,

where Vs(1) ∈ R ∪ {±∞}. It remains to show that Vs(1) is finite. First, consider a lower bound,

which is obtained when the planner never invest, so that kt−1 = ρt, implying a consumption of

ct = φkt−1 = ρtφ. When s , 1,

∞∑
t=0

βt (φρ
t)1−s

1 − s
=

1
1 − s

∞∑
t=0

(β(φρ)1−s)t =
1

1 − s
1

1 − β(φρ)1−s ∈ R,
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because β(ρφ)1−s < β(ρ + φ)1−s < 1 by Assumption 1 and the fact that ρ < 1. When s = 1,

∞∑
t=0

βtlog(φρt) =

∞∑
t=0

βt(log(φ) + tlog(ρ)) =
1

1 − β
log(φ) +

β

(1 − β)2 log(ρ) ∈ R.

Next, observe that because log(ρ) < 0, for sufficiently large t, all the terms of the terms are

negative, φρt < 0. This implies that we have a bounded, decreasing sequence, and hence it

converges. The same argument holds for the case of s > 1. For the case of s < 1, we use a

similar argument, using the upper bound. Consider an upper bound, which is obtained from

letting the planner invest all the output, so that kt−1 = (ρ + φ)t, but setting the consumption at

the sum of principle capital and the output, so that ct = (ρ + φ)kt−1 = (ρ + φ)t+1. When s , 1,

∞∑
t=0

βt ((φ + ρ)1+t)1−s

1 − s
=

(ρ + φ)1−s

1 − s

∞∑
t=0

(β(φ + ρ)1−s)t =
(ρ + φ)1−s

1 − s
1

1 − β(φ + ρ)1−s ∈ R,

by Assumption 1.

We now show this result also implies that a constant fraction of the each period’s capital is

invested, and the remaining constant fraction is consumed. That is, the optimal investment in

period t, is λkt for some λ > 0, which depends on s. To see this, note that we showed that if kt is

the optimal sequence of capital stocks beginning from k−1, then k̂t = αkt is the optimal sequence

of capital stocks beginning from αk−1. Thus, if it = kt−φkt−1 is the optimal investment sequence

beginning from k−1, then ît = k̂t−φk̂t−1 = αit is the optimal investment sequence beginning from

k̂−1 = αk−1.

In sum, the scalability of the initial stock of capital in our dynamic optimization problem

generates a simple closed form value function, which is differentiable and concave. Thus, we

can characterize the solution either by using the Euler equations, or by posing the problem in

its recursive form, and then directly optimizing using the functional form of the value function.

Proposition 1 characterizes the solution.

Proposition 1 The planner’s problem can be described recursively as

VP(k) = max
i∈[0,φk]

u(φk − i) + βVP(ρk + i) (5)

and the value function takes the form VP(k) = k1−svP/(1 − s) if s , 1 where vP/(1 − s) = VP(1)

is the discounted lifetime payoff from starting with initial capital k̄ = 1 and VP(k) = vP + 1/(1−

β) log(k) for s = 1, where vP ∈ R. If k is the capital at the beginning of a period, then the

optimal investment is given by i(k) = λk, where

λ =
(
β(ρ + φ)

)1/s
− ρ > 1 − ρ. (6)
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The planner always grows capital: λ > 1 − ρ. To see this, note that βφ > 1 implies that(
β(ρ + φ)

)1/s
> 1. The optimal level of investment increases in φ and β. This simply reflects

that the value of investment is higher if the future is discounted by less or if the project is more

productive. The comparative statics with respect to ρ are more subtle. However, if s ≥ 1 then

increasing ρ, i.e., decreasing capital depreciation, reduces investment—the planner can achieve

the same level of capital with reduced investment when capital depreciates more slowly.2

4 The Strategic Problem

4.1 Log Utility with Myopic Populist

Now suppose there are two parties, and that party R is the populist party who only care about

winning the election. We first consider the case of a myopic populist party who only cares about

winning the current period.

Electoral competition introduces uncertainty, which is captured by the sequence of wins and

losses of party L. Let Ω = {w, `}N be the sequence representing these wins and losses, and let

Wt : Ω → {0, 1} be the random variable that is 1 if party L wins in period t, and is 0, other-

wise. The history at time t is given by the sequence of wins and losses up to time t − 1. Let Ft

be the filtration of Ω that corresponds to knowing that history. Then the capital stock and the

investments kt, it : Ω→ R must be Ft-measurable.

The probability distribution on Ω (i.e., the distribution over wins and losses) depends on kt

and it. To derive this distribution, let ω ∈ Ω. The median voter in state ω at time t is indifferent

between the parties at a net-valence level εt at which log(φkt−1(ω) − it(ω)) = log(φkt−1(ω)) + εt.

Let Dt be the utility difference from the two policy choices

Dt(ω) = log(φkt−1(ω) − it(ω)) − log(φkt−1(ω)) = log
(
φkt−1(ω) − it(ω)

φkt−1(ω)

)
. (7)

Then the probability that L wins at time t in stateω is G(Dt(ω)). Letting E[·; i, k] be the resulting

expectation over Ω, party L’s optimization problem is

max
it

E

 ∞∑
t=0

βt
(
Wt(ω) log(φkt−1(ω) − it(ω)) + (1 −Wt(ω)) log(φkt−1(ω))

)
; {it(ω), kt(ω)}t∈N


s.t. kt(ω) = ρkt−1(ω) + it(ω), 0 ≤ it(ω) ≤ φkt−1(ω), where kt, it are Ft measurable.

(8)

A key observation is that, with log utility, the winning probabilities remain unchanged after scal-

ing: Dt = log
(
φkt−1−it
φkt−1

)
= log

(
φαkt−1−αit
φαkt−1

)
. This implies that, as in the case of the social planner,

2Why the heck is this not true when s < 1 and β is small?
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party L’s value function is again scalable in k. In turn, this implies that the optimal investment

is linear in capital stock.

Lemma 1 The investment platform problem of party L can be written recursively, with a value

function that takes the form V(k) = v + log(k)/(1 − β).

Using Lemma 1, we write party L’s optimization as

max
i

G(D)
(
log(φk − i) +

β

1 − β
log(ρk + i)

)
+ (1 −G(D))

(
log(φk) +

β

1 − β
log(ρk)

)
, (9)

where D = log((φk − i)/φk). Differentiating party L’s objective with respect to i yields

G(D)
(
−

1
φk − i

+
β

(1 − β)(ρk + i)

)
−
g(D)
φk − i

(
log

(
φk − i
φk

)
+

β

1 − β
log

(
ρk + i
ρk

))
.

Letting i = λk, D = log
(
φk−i
φk

)
simplifies to D = log

(
φ−λ

φ

)
, and our first order condition is3

G(D)
(
−

1
φ − λ

+
β

(1 − β)(ρ + λ)

)
= g(D)

1
φ − λ

(
log

(
φ − λ

φ

)
+

β

1 − β

(
log

(
ρ + λ

ρ

)))
. (10)

The left-hand side of (10) is the marginal effect of increasing savings today on the dis-

counted stream of future consumption, absent electoral competition. The right-hand side of

(10) is the marginal cost of increasing savings through raising the chances of Party R’s winning,

who will not save at all. It is the reduction in the probability of winning due to increased sav-

ings, g(D)/(φ − λ), times the difference in the payoffs from winning and investing λk, versus

losing to party R who will not invest.

Party L seeks to maximizes social welfare just like the social planner, who does not face

electoral competition. However, unlike the planner, party L can only implement their policy if

elected, otherwise savings are chosen by party R at the worst possible level for voters. Thus,

while the planner chooses λ = βφ− (1−β)ρ to make the left hand side zero, party L must reduce

the saving rate to equate the left hand side with the marginal electoral costs of raising savings

on the right hand side.

To characterize the equilibrium choices by party L, it is convenient to multiply both sides of

(10) by φ − λ, and rewrite the first-order condition as

G(D) (βφ − (1 − β)ρ − λ) = g(D)(ρ + λ)
(
(1 − β) log

(
φ − λ

φ

)
+ β

(
log

(
ρ + λ

ρ

)))
. (11)

3Observe that party L’s objective function at the lower boundary of investment, i = 0, and the upper boundary
of investment, i = φk, are the same. Moreover, the derivative of the objective at the lower boundary, i = 0, is
positive if and only if β(ρ + φ) > ρ, which is true by Assumption 1. Thus, we have an interior maximum.
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Proposition 2

1. Equilibrium investment is strictly less than the social optimum, i.e., λ < βφ − (1 − β)ρ.

2. Let λ(ρ) be the equilibrium level of investment given the depreciation rate 1 − ρ. Then if

ρ goes to zero,

(a) The winning probability G(D) converges to G(0).

(b) The share of capital reinvested, λ(ρ), converges to zero at the rate−G(0)φ/(g(0) log(ρ))

independent of the valence distribution, even though the social optimum converges

to βφ > 1.

(c) λ(ρ) is strictly increasing and convex in ρ for small ρ.

That investment falls strictly below the social optimum follows because party L cares about

winning in order to implement its policy, and hence equates the marginal benefit of increased

investment with the marginal cost. At the social optimum, the marginal benefit is zero, while

marginal cost is strictly positive. Hence, reducing investment is optimal.

The more crucial question is: how far below the social optimum does party L choose its in-

vestment? In some respects this is a quantitative question. However, clean characterizations ob-

tain when the depreciation rate 1−ρ is large. One might expect that if party L has a very large ex-

ante valence advantage, so that it is likely to win an election then party L would only marginally

reduce its investment below the social optimum. After all, if the valence advantage is large, one

might posit that G(D) is large and g(D) is small, and hence λ would be close to βφ − (1 − β)ρ.

This reasoning is flawed because the winning probability G(D) is endogenous. In fact, there

is a large marginal benefit of mimicking the demagogue’s policy of i = 0 by lowering λ. As

it turns out, the winning probability goes to G(0), which is large when party L has a large ex-

ante valence advantage, but it is strictly bounded away from one given the assumption that g is

strictly positive on its support. As ρ becomes small, λ goes to zero and the difference between

the socially optimal level of investment and the competitive level chosen by party L becomes

maximal. In other words, even if the threat of a demagogue winning is remote, it can have

large effects on the behavior of established parties and this effect is discontinuous. That is, if

G(D) = 1 for all D then the socially optimal investment is made.4 Otherwise, the distance

between the socially optimal and the equilibrium λ goes to βφ as ρ approaches 0.

To see why λ must go to zero as ρ goes to zero, observe that log ((ρ + λ)/ρ) would go to

infinity if λ were bounded away from zero. That is, the marginal cost would become arbitrarily

4This obviously violates our assumption that g is strictly positive on its support.
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large, making it optimal to lower λ. This implies that even though the social optimum would

have investment of βφ > 1, the socially-minded party L is so concerned about electoral compe-

tition that it drives investment down toward zero, albeit at a somewhat slow rate of 1/ log(ρ).

To establish the rate at which λ approaches zero we substitute λ(ρ) = −G(0)φ/(g(0) log(ρ))

into equation (11) and show that the left-hand side converges to the right-hand side.

Intuition for why this rate of convergence obtains when ρ is small comes from dropping

terms that go to zero at a faster rate (e.g., ρ converges to zero faster than λ(ρ)). Thus, for small

ρ, a solution of equation (11) is approximately equal to a solution of

− g(0)λ(ρ)
(
log

(
ρ + λ(ρ)

ρ

))
+ G(0)φ = 0. (12)

More work is still needed because (12) does not have a closed-form solution. This leads us to

differentiate (12) with respect to ρ and then drop terms that go to zero at a faster rate, to get a

simpler expression for the derivative. In particular, the derivative is

λ′(ρ) =
λ3(ρ)g(0)

ρ
(
G(0)φλ(ρ) + G(0)φρ + λ(ρ)2g(0)

) . (13)

Both λ(ρ)2 and ρ converge to zero at a faster rate than λ(ρ). Thus, for small ρ we get

λ′(ρ) ≈
λ2(ρ)g(0)
G(0)φρ

. (14)

Assuming that (14) holds with equality and solving the differential equation yields

λ(ρ) ≈
G(0)φ

C − g(0) log(ρ)
, (15)

where C is a constant. Thus, we have an approximation of the solution to the original first-order

condition, which shows that λ(ρ) goes to zero at (the slow) rate of −G(0)φ/(g(0) log(ρ)). If also

follows that λ(ρ) is convex for small ρ.

The equilibrium competitive investment policy and the social optimal investment policy dif-

fer in other important ways. Observe that the socially optimal level of investment decreases

linearly with ρ. This reflects that when the depreciation rate 1 − ρ is smaller, less capital has to

be re-invested. Proposition 2 establishes the surprising result that if ρ is small, then λ is strictly

increasing in ρ—electoral competition causes party L to behave in the exact opposite direction

of the social optimum. In fact, depending on parameters, λ(ρ) can be increasing for all ρ, or it

can decrease for ρ sufficiently close to one. This latter case occurs when the distribution G is

shifted sufficiently far in favor of party L so that it is very likely to win—as a result, doing the

‘right’ thing begins to dominate electoral concerns when ρ is large.
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Figure 1: Investment (red), Social Optimal investment (blue), and L’s winning probability for

µ = −1, σ = 0.5, φ = 1.4, β = 0.9.
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Figure 2: Investment (red), Social Optimal investment (blue), and L’s winning probability for

µ = −3.5, σ = 0.5, φ = 1.4, β = 0.9.

The two graphs have a normal distribution over party R’s valence (dis)advantage with a

standard deviation of 0.5 and different means. In both cases, party L has a significant valence

advantage. In particular, for the parameterization in Figure 1, were L to perfectly mimic party R

by offering λ = 0 then L would win with 97.7% probability. Nevertheless, λ is strictly increas-

ing ρ and it is far less than the social optimum even when ρ is high. One measure of the tradeoff

that party L faces is that its equilibrium probability of winning falls below 0.8 for ρ > 0.4.

That is, to achieve the equilibrium benefits of saving, L reduces its ex-ante electoral advantage

by over 20 percent. At the same time, from the perspective of an outsider, it looks as if L is

pandering to voters, reducing investment by approximately 50% from the social optimum. In

other words, pandering to short-sighted voters has large welfare costs.

To illustrate how λ can decrease with ρ for high levels of ρ, behaving similarly to the socially
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Figure 3: Welfare shortfall due to political competition, µ = −1.5 left panel, and µ = −3.5 right

panel; σ = 0.5, φ = 1.4, β = 0.9.

optimal investments, we maintain β = 0.9 and increase mean valence advantage of party L to µ

to −3.5. At these values of µ and σ, the probability that candidate L loses if it perfectly mimics

R is 1.28 × 10−12, which is about 1,000 times less likely than winning the Powerball lottery.

Figure 2 shows how the resulting investment rates vary with ρ. When ρ is small, λ is increasing

as established in Proposition 2. However, as ρ increases, considerations of the marginal benefits

in (11) start to dominate the marginal costs for larger ρ, causing party L to behave more like

the social planner and reduce λ as ρ rises further. The non-monotonicity of λ is reflected in

the lack of monotonicity of the winning probability. In particular, as λ decreases with ρ, party

L’s winning probability rises. Notably, even with such a large valence advantage, party L takes

a 1/500 gamble of losing when ρ = 0.1 (roughly reversing the orders of magnitude in terms

of winning the Powerball lottery), again highlighting the costs of doing the right policy when

voters are short-sighted.

The figures illustrate that as µ → ∞, the equilibrium level of λ converges pointwise to the

social optimum except at ρ = 0. Note that this convergence is not uniform. The graphs also

indicate that this convergence is very slow.

The large difference between the optimal investment chosen by the planner compared to

that by party L, even when L has a big valence advantage, translates into a large welfare loss.

To compute this welfare loss, we calculate the level of constant consumption streams, cP and

cL for the planner and party L, respectively, that would yield the same ex-ante expected utility.

Figure 3 presents the ratio cL/cP in percent. The left panel, party L has a valence advantage of

two standard deviations compared to the demagogue. Nevertheless, the presence of the dem-

agogue results in a level of consumption that is always less than one third of that in a world

without the demagogue. In the right-panel, party L’s valence advantage is seven standard devi-
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ations. Nonetheless, even the now extremely remote possibility that the demagogue wins still

meaningfully lowers welfare.

Proposition 2 implies that if ρ is small enough, then party L lowers λ below the capital

replacement rate of 1−ρ. Because party R never re-invests, it follows that the capital stock con-

verges to zero in such a case. We say that the capital stock exhibits a death spiral if it converges

to zero.

Corollary 1 There exists a ρ̄ > 0 such that if ρ ≤ ρ̄, then the capital stock kt converges to zero

as t → ∞.

To prove Corollary 1 it suffices to establish that λ is close to zero when ρ is small. But death

spirals are not limited to such extreme cases. In fact, death spirals can occur even when ρ is

large, so that party L’s investment rate exceeds the replacement rate of 1 − ρ. Indeed, we now

show that the probability of a death spiral may go to one, even when the expected investment

rate of G(D)(ρ + λ(ρ)) + (1 −G(D))ρ (accounting for the probability that the demagogue wins)

strictly exceeds the replacement rate 1 − ρ.

As a prelude to the characterization, we first provide necessary and sufficient conditions for

a death spiral.

Lemma 2 Let k̄ > 0 be the initial capital stock.

1. If (ρ+λ)G(D)ρ1−G(D) < 1, then for every ε, δ > 0 there exists t̄ such that the probability that

kt < δk̄ exceeds 1 − ε for all t ≥ t̄. That is, the probability of a death spiral goes to one.

2. If (ρ + λ)G(D)ρ1−G(D) > 1, then for every ε > 0 there exists t̄ such that the probability that

kt < k̄ is less than ε for all t ≥ t̄. That is, the probability of a death spiral goes to zero.

Figure 4 plots the cutoff level of ρ below which death spirals are inevitable for different

values of µ. Observe that if no party has a valence advantage, i.e., if µ = 0, then death spi-

rals occur unless ρ is close to one. Such a scenario could reflect a change in how the public

perceives demagogues. If previous opprobrium by society toward demagogues declines, for

example due to changes in political discourse or to changing attitudes about what is politically

correct, then party L’s valence advantage will decline. This contributes to death spirals in two

ways. First, party R is more likely to win. But, what matters more, as our previous discussion

explains and Figures 1 and 2 illustrate, is that party L begins to adopt policies that are closer to

the demagogue’s.

When party L’s valence advantage rises, i.e., as µ falls, death spirals only emerge when ρ

is smaller. Nonetheless, for intermediate levels of ρ, death spirals still arise when party L’s
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Figure 4: Cutoff value of ρ below which a death spiral occurs, σ = 0.5, φ = 1.4, β = 0.9

valence advantage is large. To provide insights into when death spirals obtain, we identify the

value of λ that maximizes long-run capital growth, solving

max
λ

(ρ + λ)G(D)ρ1−G(D), (16)

where, as usual, D = log((φ − λ)/φ). If the value of the objective of (16) exceeds one then

Lemma 2 implies that no death spiral occurs. If it is less than one, then a death spiral occurs

with probability 1.

The first-order condition of problem (16) is

G(D)(φ − λ) − g(D)(ρ + λ) log
(
ρ + λ

ρ

)
= 0. (17)

To provide insights into the ways in which party L still acts as a long-run optimizer when it

faces re-election concerns, we re-arrange party L’s first-order condition for optimization, equa-

tion (11) to obtain

G(D)(β(φ − λ) − (1 − β)(ρ + λ)) = g(D)(ρ + λ)
(
(1 − β) log

(
φ − λ

φ

)
+ β log

(
ρ + λ

ρ

))
,

which is equivalent to

β

(
G(D)(φ − λ) − g(D)(ρ + λ) log

(
ρ + λ

ρ

))
+ (1 − β)(ρ + λ) (G(D) − g(D)D) = 0. (18)

When β = 1, equation (18) reduces to equation (17). Of course, party L’s objective is not well-

defined when β = 1, it means that when β is close to one, party L acts as if its primary objective

is to avoid death spirals. More generally, party L’s first-order condition for optimization can be

re-written as a convex combination of the first-order condition of the problem (16) with weight

β and a weight (1 − β) on (ρ + λ)(G(D) − g(D)D), which measures the distortion in party L’s

objective away from long-run survival.

12



Proposition 3 The equilibrium investment rate λ increases in β. Let ρ̄ be the minimum level of

ρ such that death spirals do not emerge with probability one. Then there exists a ρ̂ > ρ̄ such

that party L’s policy choice results in a death spiral even though there is a feasible policy that

would ensure long-run survival.

As β is increased toward 1, party L increasingly internalizes the future benefits of greater

savings by increasing λ. At the value of λ that maximizes survival, the marginal benefit of

increasing λ is less than the marginal cost, i.e., party L will choose a smaller λ. It follows

that increases in β increase the set of depreciation rates for which the strategic party L invests

enough to avoid a death spiral.

Democracies are not immune to demagogues — there is a lot of discussion on that, US

constitution etc.

4.2 Log Utility with Non-myopic Populist

Markov Perfect Equilibria. First, we show that, restricting attention to linear Markov perfect

equilibria, our results extend to the case of far-sighted populist. In particular, letting the state in

each period be the initial capital stock, a Markovian strategy for player P ∈ {L,R} is a mapping

from the capital stock to an investment amount: iP(k) : [0,∞) → [0, φk]. A linear Markovian

strategy for player P is iP(k) = λPk, for some λP ∈ [0, φ]. A linear Markov perfect equilibrium

is a linear strategy profile, (λLk, λRk), of mutual best responses in every subgame.
Let VP(k; λ−P) be player P’s value function when the initial capital stock is k and the other

player uses the strategy λ−P k. Then, (λL, λR) characterize a linear MPE if and only if they solve
the following equations:

VL(k; λR) = max
λL∈[0,φ]

G
(
log

(
φ − λL

φ − λR

))
(log((φ − λL)k) + β VL((ρ − λL)k; λR))

+

(
1 −G

(
log

(
φ − λL

φ − λR

)))
(log((φ − λR)k) + β VL((ρ − λR)k; λR)) .

VR(k; λL) = max
λR∈[0,φ]

G
(
log

(
φ − λL

φ − λR

))
(β VR((ρ − λL)k; λL)) +

(
1 −G

(
log

(
φ − λL

φ − λR

)))
(r + β VR((ρ − λR)k; λL))

But expanding the populist’s value function, we observe that it does not depend on the initial

capital k:

vR(λL) = VR(k; λL) = max
λR∈[0,φ]

∞∑
t=0

βt

(
1 −G

(
log

(
φ − λL

φ − λR

)))
r. (19)

Therefore, the populist strategy is not to invest at all, i.e., to choose λR = 0. But from our

analysis of the myopic case, we know that if the populist does not invest, investment strategies

13



are linear. It remains to show that, if party L chooses a linear strategy, the the populist’s best re-

sponse is also linear. Using the scalability argument from before, we show that, in fact, if party

L chooses a linear strategy, the the populist’s best response is not to invest at all. Let VR(k) be

part R’s value function when the initial capital stock is k, and party L uses a linear strategy λLk.

VR(k) = max
{iRt }

∞
t=0

∞∑
t=0

(
1 −G

(
log

(
(φ − λL)kt−1

φkt−1 − iR
t

)))
r, (where r is party R’s office rent)

Let ĩR be the populist best response. Now, suppose the initial capital changes to αk, and consider

a populist strategy in which the populist chooses îR
t = αĩR. We have

VR(αk) ≥
∞∑

t=0

(
1 −G

(
log

(
(φ − λL)kt−1

φkt−1 − ĩR
t

)))
r = VR(k). (20)

Now, use 1
α

instead of α, and αk instead of k to get VR(k) ≥ VR(αk). Thus, we have VR(k) =

VR(αk), and hence VR(k) = VR(1). That is, if party L’s uses a linear strategy, then the populist’s

payoff does not depend on the capital stock. Hence, the future capital stock is irrelevant for the

populist, and hence he does not invest.

Thus, there is a unique linear MPE, which coincides with the behavior of a far-sighted ide-

alist part and a myopic populist.5∑∞
t=0 β

tt

The Limit of Finitely Many Periods. Next, we consider a finitely many period game, and

show that our result with the myopic populist is reproduced in the limit when the number of

periods goes to infinity.

The game begins in period t = 0 with initial capital k−1 = k, and ends in period T ≥ 1. We

proceed by backward induction. In period T both players have a dominant strategy not to invest

because. Thus,

iR
T = iL

T = 0, VT (kT−1) = log(φkT−1),

where VT is party L’s (and R’s) value function in period T . In period t = T −1, the populist does

not invest because it hurts his current period payoff, and it does not change his future period

payoffs. To analyze party L’s optimization problem in period t = T − 1, let VT−1(kT−2) be its

corresponding value function, and define λT−1 =
iLT−1
kT−2

. We have

VT−1(kT−2) = max
λT−1∈[0,φ]

G
(
log

(
φ − λT−1

φ

))
(log((φ − λT−1)kT−2) + βVT ((ρ − λT−1)kT−2))

+

(
1 −G

(
log

(
φ − λT−1

φ

)))
(log(φkT−2) + βVT (ρkT−2).

5This result holds if we allow for linear strategies in which the coefficient depends on time, so that iP
t (k) = λP

t k,
where λP

t depends on t, but not on the history of play.
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But recall that VT (kT−1) = log(φkT−1), and hence we can factor out log(kT−2) from the above

maximization:

VT−1(kT−2) = (1 + β) log(kT−2) + max
λT−1∈[0,φ]

G
(
log

(
φ − λT−1

φ

))
(log(φ − λT−1) + β log(ρ − λT−1))

+

(
1 −G

(
log

(
φ − λT−1

φ

)))
(log(φ) + β log(ρ)).

Thus, optimal λT−1 depends on the parameters of the model, (ρ, φ, β), but on capital. Now, let

ṼT−1(β, φ, ρ) = max
λT−1∈[0,φ]

G
(
log

(
φ − λT−1

φ

))
(log(φ − λT−1) + β log(ρ − λT−1))

+

(
1 −G

(
log

(
φ − λT−1

φ

)))
(log(φ) + β log(ρ)),

so that

VT−1(kT−2) = (1 + β) log(kT−2) + ṼT−1(β, φ, ρ). (21)

Next, consider period T − 2. Again, the populist chooses iR
T−2 = 0 because it maximizes his cur-

rent period, and his future payoffs do not depend on capital stock—because party L’s behavior,

and hence R’s winning probabilities do not depend on capital stock. Now, consider party L’s

optimization in period T − 2. We repeat the above procedure.

VT−2(kT−3) = max
λT−2∈[0,φ]

G
(
log

(
φ − λT−2

φ

))
(log((φ − λT−2)kT−3) + βVT−1((ρ + λT−2)kT−3))

+

(
1 −G

(
log

(
φ − λT−2

φ

)))
(log(φkT−3) + βVT−1(ρkT−3).

But recall that VT−1(x) = (1 + β) log(x) + ṼT−1(β, φ, ρ), and hence we can factor out log(kT−3)

from the above maximization:

VT−2(kT−3) = (1 + β + β2) log(kT−3)

+ max
λT−2∈[0,φ]

G
(
log

(
φ − λT−2

φ

))
(log(φ − λT−2) + β(1 + β) log(ρ + λT−2) + βṼT−1)

+

(
1 −G

(
log

(
φ − λT−2

φ

)))
(log(φ) + β(1 + β) log(ρ) + βṼT−1).

That is,

VT−2(kT−3) = (1 + β + β2) log(kT−3) + βṼT−1

+ max
λT−2∈[0,φ]

G
(
log

(
φ − λT−2

φ

))
(log(φ − λT−2) + β(1 + β) log(ρ + λT−2))

+

(
1 −G

(
log

(
φ − λT−2

φ

)))
(log(φ) + β(1 + β) log(ρ)).
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Thus, optimal λT−2 depends on the parameters of the model, (ρ, φ, β), but on capital. Now,

defining ṼT−2 analogously as before we have

ṼT−2(β, φ, ρ) = max
λT−2∈[0,φ]

G
(
log

(
φ − λT−2

φ

))
(log(φ − λT−2) + β(1 + β) log(ρ + λT−2))

+

(
1 −G

(
log

(
φ − λT−2

φ

)))
(log(φ) + β(1 + β) log(ρ)).

Thus,

VT−2(kT−3) = (1 + β + β2) log(kT−3) + ṼT−2(β, φ, ρ) + βṼT−1(β, φ, ρ). (22)

Thus, one can show that

VT−n(kT−(n+1)) = (1 + β + · · · + βn) log(kT−(n+1)) + ṼT−n + βṼT−(n−1) + · · · + βn−1ṼT−1. (23)

Letting n = T , we have

V0(k−1; T ) =

 T∑
t=0

βt

 log(k−1) +

T−1∑
t=0

βtṼt. (24)

Thus, defining v = limT→∞
∑T−1

t=0 β
tṼt (why does this limit exist? It corresponds to V(1) in our

initial problem. Why does V(1) exist in our initial problem? We have lower and uppers
bounds, and hence, we know it’s finite, if it exists. But how do we know it converges?), and

recalling that k−1 = k, we have

V(k) = lim
T→∞

V0(k; T ) =
log(k)
1 − β

+ v. (25)

5 The Inevitability of Death Spirals

The previous section establishes that when voters have log preferences, the equilibrium prob-

ability with which party L wins does not vary with the level of the capital stock. As a result,

party L’s optimal policy is to propose a constant re-investment strategy. This means that death

spirals either do or do not emerge, depending on parameters; and, in particular, whether they

emerge does not depend on the existing capital stock. In practice, the macroeconomics litera-

ture provides extensive evidence that log preferences do not properly describe the level of risk

aversion observed in consumer preferences, and that levels of relative risk aversion exceed one

(estimates typically range from s = 2 to s = 10). We now show that when voters have CRRA

utility with levels of relative risk aversion that exceed s = 1, then regardless of the other param-

eters describing the economy, given any initial capital stock k, the probability of a death spiral is
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strictly positive, bounded away from zero. We show that these death spirals become inevitable

once capital levels fall too low [explain why bad economic shocks tend to drive more populist

policies, cite Madison example in 1787, French municipalities, etc.]

Characterization of equilibrium behavior becomes far more challenging because the optimal

investment as a share of capital is no longer constant. This reflects that for a given proposed

investment rate policy λ, the utility that voters derive from the two policies now hinges on k,

as u((φ − λ)k) − u(φk) is increasing in k. This means that, ceteris paribus, the larger is the

capital stock, the more likely party R is to win re-election. The value function (and its deriva-

tive if it exists) that recursively describes party R’s expected payoffs now depend in potentially

complicated ways on the properties of the valence density. In particular, there is no reason for

G(u((φ − λ)k) − u(φk)) to be well-behaved. As a result, the standard arguments used to prove

concavity or differentiability of the value function cannot be employed. In turn, this makes

characterizing the optimal investment rate policy λ(k) = i
k difficult.

The key step in our analysis is to identify a lower bound on the derivative of the value func-

tion. In turn, this delivers a lower bound on the marginal value of a positive investment rate.

In particular, let VN(k) denote the value function if investment is zero in every period. We have

VN(k) =
∑∞

t=0 β
tφ1−s(ρ1−s)tk1−s/(1 − s). Then, ks−1VN(k) is finite if and only if βρ1−s < 1. In the

analysis that follows, we maintain the assumption that βρ1−s < 1.

We establish the following bound.

Lemma 3 Let V(k) be the value function for party L. Then VN(k) is differentiable, and

lim inf
k′→k

V(k) − V(k′)
k − k′

≥ V ′N(k). (26)

The proof exploits the fact that were party L’s probability of winning not to vary with k,

then choosing a fixed investment rate λ = i/k would be optimal. In turn, this would imply that

V(αk) = α1−sV(k) for any k and α > 0. But, for a fixed investment rate, the difference in utili-

ties from the two proposed policies is decreasing in k, implying that the winning probability is

increasing in k, and hence α1−sV(k) ≥ V(αk) for any α ∈ (0, 1).

Similar arguments cannot be used to obtain upper bounds on the derivative of V(k). In

particular, even though VP > V(k), it need not be the case that V ′P(k) > V ′(k).6

Party L’s optimization problem can be written recursively as follows:

V(k) = max
λ∈[0,φ]

G(D)
(
u
(
(φ − λ)k

)
+ βV

(
(ρ + λ)k

))
+

(
1 −G(D)

)(
u
(
φk

)
+ βV

(
ρk

))
, (27)

6If the derivative of V does not exist, we can replace it by the lim sup of the difference quotient as in Lemma 3.
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where

D = u
(
(φ − λ)k

)
− u

(
φk

)
.

Differentiating with respect to λ, and then using Lemma 3 to substitute in a lower bound on

the marginal value of increased savings yields:

g(D)k1−s

(φ − λ)s

(
u
(
(φ − λ)k

)
+ βV

(
(ρ + λ)k

)
− u

(
φk

)
− βV

(
ρk

))
≥ G(D)

(
−ku′

(
(φ − λ)k

)
+ kβV ′N

(
(ρ + λ)k

))
.

(28)

Substituting

V ′N(k) =

∞∑
t=0

βt(ρt)1−sφ1−sk−s =
φ1−sk1−s

1 − βρ1−s (29)

reveals that (28) is equivalent to

g(D)
(φ − λ)s

(
u
(
(φ − λ)k

)
+ βV

(
(ρ + λ)k

)
− u

(
φk

)
− βV

(
ρk

))
≥ G(D)

(
−

1
(φ − λ)s + β

φ1−s

1 − βρ1−s

)
.

(30)

Proposition 4 For any capital level k > 0, the optimal investment rate for party L is strictly

positive, i.e., λ(k) > 0.

Proof. Suppose by way of contradiction that λ = 0. Then the right-hand side of (30) is strictly

positive. In particular, cross multiplication yields the requirement that βφ > 1 − βρ1−s, which

holds given our assumption that βφ > 1. The left-hand side is zero at λ = 0, a contradiction.

Proposition 5 Suppose that the support of G is finite with 0 < G(0) < 1. Then limk↓0 λ(k) = 0.

Further, candidate L’s winning probability satisfies 0 < G(D(k)) < G(0) for all k > 0.

Proof. Suppose by way of contradiction that there exists a sequence kn, n ∈ N with limn→∞ kn =

0 and λ(kn) ≥ λ̄ > 0 for all n ∈ N. Then D(kn) → −∞, i.e., there exists n̄ such that the prob-

ability that candidate L wins is zero for all n ≥ n̄. Thus, the payoff to candidate L is the same

as from choosing λ(kn) = 0. However, Proposition 4 established that the optimal λ(k) is strictly

positive, a contradiction.

Now suppose by way of contradiction that there exists a k such that G(D(k)) = 0. But then

choosing λ = 0 provides the same payoff, contradicting the optimality of λ(k) > 0. Further, the

optimality of λ(k) > 0 implies that D(k) < 0, and hence G(D(k)) < G(0).
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We next establish that even if party L has a large ex-ante valence advantage, and the initial

capital stock is very large that the probability of a death spiral is strictly positive, bounded away

from zero. In other words, as with log utility, the mere threat of competition from a demagogue

can have large effects on party L, with severe consequences for the economy.

Proposition 6 There exists a capital level k̄ such that if k ≤ k̄ then a death spiral occurs with

probability 1. Given any capital stock k > k̄, the probability of dropping below k̄ and entering

a death spiral exceeds (1 −G(0))n∗ > 0, where n∗ = d(log(k̄) − log(k))/ log(ρ)e.

Proof. The fact that λ(k) converges to zero as k goes to zero implies that λ(k) < 1 − ρ once k

is sufficiently small. Thus, once k is sufficiently small, capital levels continue to fall even in the

best case scenario in which party L wins.

Candidate L’s winning probability can never exceed G(0) < 1. It follows immediately

that for any k the probability of dropping below k̄ is at least (1 − G(0))n∗ > 0, where n∗ =

d(log(k̄) − log(k))/ log(ρ)e.

6 Investment in Good Times

We next establish how party L’s investment policy choices vary with k when k is large. We show

that the policies chosen are very different: rather than invest less than the replacement rate, as

it does when capital is low, leading to a death spiral, party L now over-invests, choosing to save

more than what it would absent electoral concerns.

Lemma 4 establishes that the amount of capital invested, λk, is uniformly bounded away

from the maximum possible investment level, φk.

Lemma 4 Suppose that the coefficient of relative risk aversion s > 1. Then there exists λ̄ < φ

and k̄ > 0 such that λ(k) < λ̄ for all k ≥ k̄.

The formal proof is in the Appendix. Intuitively, it follows because if λk approaches φk then

current consumption goes to zero, which implies that utility becomes arbitrarily negative. This,

in turn, implies that the net benefit of investment is negative, a contradiction.

Lemma 4 implies that as k gets large, Dk converges uniformly to zero.

Our next step is to show that for large k, solution of Problem (27) are close to solutions of

the following recursive optimization problem.

VL(k) = max
λ∈[0,φ]

G(0)
(
u
(
(φ − λ)k

)
+ βVL

(
(ρ + λ)k

))
+

(
1 −G(0)

)(
u
(
φk

)
+ βVL

(
ρk

))
. (31)
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In this optimization problem, party L’s probability of winning does not depend on its platform

choice—party L wins with probability G(0), regardless of its action. In particular, if we replace

G(0) by 1 in (31) we get the social planner’s problem, whose recursive form is given in (5).

Thus, similar, to proposition 1 the value function takes the form VL(k) = k1−svL/(1 − s), where

vL/(1 − s) = VL(1), i.e., the ex-ante expected utility of starting with one unit of capital. The

investment share λ is again independent of k. Denote this share by λ∗.

To determine this share, note that the first-order condition of (31) is

(φ − λ∗)−sk1−s = βvL(ρ + λ∗)−sk1−s. (32)

Solving this equation for λ∗ yields

λ∗ =
(βvL)1/sφ − ρ

1 + (βvL)1/s . (33)

Lemma 5 shows that for large k, solutions of problem (27) are close to λ∗.

Lemma 5 Let λ∗ be the solution of problem (31) given by (33). Let λ(k) solve problem (27).

Then for every ε > 0 there exists k̂ such that |λ(k) − λ∗| < ε, for all k ≥ k̂.

In view of the lemma, it is sufficient to compare the planner’s problem to (31). Proposi-

tion 1 shows that the value function for the planner’s problem is VP(k) = k1−svP/(1 − s), where

vP/(1 − s) = VP(1). Because ex-ante utility is maximized in the planner’s problem, we get

VP(1) > VL(1). Because 1 − s < 0, it follows that vP < vL. In general, if we have a value

function of the form k1−sv/(1 − s) then the investment share is

λ =
(βv)1/sφ − ρ

1 + (βv)1/s . (34)

Note that λ as defined in (34) is strictly increasing in v. Because vP < vL it follows that the

investment share from problem (31), λL is strictly larger than the social planner’s investment

share, λP. Hence, lemma 5 implies that λ(k) > λP for large k.

The same argument implies that that the solution of problem (31) is decreasing in G(0). In

other words, if the valence distribution becomes more favorable to the demagogue, then candi-

date L will respond by increasing the investment.

We now summarize these results.

Proposition 7 If k is sufficiently large then:

1. Party L invests more than would a social planner who always gets his policy implemented,

i.e., λ(k) > λP.
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Figure 5: Investments and Welfare for µ = −1 (red), µ = −0.5 (black), and Social Optimal

investment (blue), and investment for σ = 0.5, φ = 1.4, β = 0.9, ρ = 0.9, and s = 1.5

2. If party L’s valence decreases (i.e., G(0) decreases), then λ(k) increases.

As k grows very large, the probability that party L loses goes to G(0), becoming insensitive

to party L’s investment choice. This leads party L to ‘over-invest’ to account for the fact that

the investment is only made when it wins, i.e., to insure against capital being depreciated too

much due to a string of wins by party R. In some sense, relative to a scenario with no political

competition, candidate L pursues too much of a austerity policy in good times.

The left panel in figure 5 compares the social optimal investment to the investment chosen

by candidate L. As proposition 7 indicates, candidate L’s investment exceeds that of the planner

when k is sufficiently large. The gap between these investment levels depends on G(0).

7 Additional Notes:

Absent additional structure on G, there is no reason to expect that λ is monotone in k. In partic-

ular, k goes up, local incentives to save (marginal increased win probability) can do anything.

This works for a distribution for which g(D)/G(D) increases sufficiently for some D. This hap-

pens, for example, if g goes to zero on the interior of the distribution before increasing steeply.

For similar reasons, we cannot expect concavity of λ in k. Moreover, while VS (k) > V(k), this

does not imply that λS (k) > λ(k) or that VS (k) varies more with k than V(k). In fact, we will

establish that the opposite holds whenever the level of capital is sufficiently high.

Of course, the probability increases if the capital stock is lower***careful... only establishes

for the upper bound on the probability of a death spiral, and we can have λ′(k) > 1... (implying

that the equilibrium probability of losing can increase in k).
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8 Appendix

Proof of Proposition 1. We showed in the text that the value function is differentiable in k.

We proceed by using Euler equations.

VP(kt) = max
it∈[0,φkt−1]

u(φkt − it+1) + βVP(kt+1)

s.t. kt+1 = ρkt + it+1.

Use the change of variable from i to ct = φkt − it+1 to rewrite the problem as

VP(kt) = max
ct∈[0,φkt]

u(ct) + βVP(kt+1)

s.t. kt+1 = (ρ + φ)kt − ct.

The associated first-order condition yields

u′(ct) = βV ′P(kt+1). (35)

Similarly, for the next period, kt+2 = (ρ + φ)kt+1 − ct+1, we have

u′(ct+1) = βV ′P(kt+2). (36)

By the Envelope Theorem,

V ′P(kt) = β(ρ + φ)V ′P(kt+1). (37)

Thus, for the next period,

V ′P(kt+1) = β(ρ + φ)V ′P(kt+2). (38)

Thus, from equations (35)–(38),

u′(ct+1)
u′(ct)

=
V ′P(kt+2)
V ′P(kt+1)

=
1

β(ρ + φ)
. (39)

The budget constraint for the next period is

kt+2 = (ρ + φ)kt+1 − ct+1 ⇔ kt+1 =
ct+1

ρ + φ
+

kt+2

ρ + φ
.

Next, recursively apply the budget constraint to get

ct = (ρ + φ)kt − kt+1

= (ρ + φ)kt −
ct+1

ρ + φ
−

kt+2

ρ + φ

= (ρ + φ)kt −
ct+1

ρ + φ
−

ct+2

(ρ + φ)2 −
kt+3

(ρ + φ)2

...

= (ρ + φ)kt −
ct+1

ρ + φ
−

ct+2

(ρ + φ)2 −
ct+3

(ρ + φ)3 − · · · . (40)
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Thus, assuming existence, if (39) yields ct+1 ∝ ct, then it follows that ct ∝ kt.

When u(c) = c1−s

1−s , for s , 1, and u(c) = log(c), for s = 1, then (39) yields(
ct

ct+1

)s

=
1

β(ρ + φ)
⇔

ct+1

ct
= [β(ρ + φ)]1/s. (41)

Now, substituting from (41) into (40),

ct = (ρ + φ)kt −
[β(ρ + φ)]1/s

ρ + φ
ct −

([β(ρ + φ)]1/s)2

(ρ + φ)2 ct −
([β(ρ + φ)]1/s)3

(ρ + φ)3 ct − · · · .

Thus,

(ρ + φ)kt = ct +

(
[β(ρ + φ)]1/s

ρ + φ

)
ct +

(
[β(ρ + φ)]1/s

ρ + φ

)2

ct +

(
[β(ρ + φ)]1/s

ρ + φ

)3

ct + · · ·

=
ct

1 − [β(ρ+φ)]1/s

ρ+φ

, assuming β(ρ + φ)1−s < 1, which is true by Assumption 1.

Cross-multiplying, yields that consumption is a linear function of kt.

ct =
(
ρ + φ − [β(ρ + φ)]1/s

)
kt.

Thus, investment is given by

it+1 = φkt − ct =
(
φ − ρ − φ + [β(ρ + φ)]1/s

)
kt =

(
[β(ρ + φ)]1/s − ρ

)
kt.

For the FOC to hold, i.e., for investment to be positive, we need (β(ρ+ φ))1/s > (βφ)1/s > 1 > ρ,

which holds by Assumption 1.

Proof of Lemma 1. Party L’s payoff has an upper bound corresponding to the payoff to the

social planner.

In state ω, let it(ω) be the optimal investment given an initial capital stockk̄, and let ĩt(ω)

be the optimal investment given αk̄, where α > 0. Let k(ω) and k̃(ω) be the associated capital

stocks, and Dt(ω) and D̃t(ω) be the associated valence cutoffs. Finally, let ît(ω) = αit(ω).

Note that the constraints of Problem (8) are satisfied by ît(ω) when the initial capital stock

is αk̄. Moreover, the capital stock is given by k̂t(ω) = αkt(ω). Let D̂t(ω) be the valence cutoff

then D̂t(ω) = Dt(ω). As a consequence, the expectation E[·] is the same under kt, it starting at k̄

and k̂t, ît, starting at αk̄.
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Next, we can factor α out of the objective:

E

 ∞∑
t=0

βt
(
Wt(ω) log(φk̃t−1(ω) − ĩt(ω)) + (1 −Wt(ω)) log(φk̃t−1(ω))

)
; {ĩt(ω), k̃t(ω)}t∈N


≥ E

 ∞∑
t=0

βt
(
Wt(ω) log(φαkt−1(ω) − αit(ω)) + (1 −Wt(ω)) log(φαkt−1(ω))

)
; {αit(ω), αkt(ω)}t∈N


=

log(α)
1 − β

+ E

 ∞∑
t=0

βt
(
Wt(ω) log(φkt−1(ω) − it(ω)) + (1 −Wt(ω)) log(φkt−1(ω))

)
; {it(ω), kt(ω)}t∈N

 .
(42)

Let V(k) denote the expected discounted payoff to party L. Then this argument shows that

V(αk) ≥
log(α)
1 − β

+ V(k). (43)

Because k and α are arbitrary it follows that

V(k) = V
(

1
α

(αk)
)
≥

log
(

1
α

)
1 − β

+ V(αk). (44)

Suppose that the inequality in (43) is strict. Then

V(k) ≥
log

(
1
α

)
1 − β

+ V(αk) >
log

(
1
α

)
1 − β

+
log(α)
1 − β

+ V(k) = V(k),

a contradiction. Similarly, we get a contradiction if (44) is strict. Thus, V(k) = log(k)/(1 − β) +

V(1), which concludes the proof.

Proof of Proposition 2. We first prove that λ(ρ) is always strictly less than the socially optimal

investment. Equation 6 of Proposition 1 show that the social optimum is λ = βφ − (1 − β)ρ.

Inserting this into (11) implies that the left-hand side is zero. We next show that the right-hand

side of (11) which represents the marginal cost of increasing λ, is strictly positive.

(11) implies that λ > 0 in any social optimum. Thus, the dynamic payoff from investing

λ > 0 exceeds the payoff from investing nothing. Thus the cost to party L of losing the election

is given by log((φ − λ)/φ) + β log((ρ + λ)/ρ) > 0. Thus, marginal cost is strictly positive. As a

consequence it is optimal to lower λ from the social optimum, i.e., to set λ(ρ) < βφ − (1 − β)ρ

for all 0 < ρ ≤ 1.

We next show that limρ↓0 λ(ρ) = 0.

Let ρ ↓ 0. Suppose by way of contradiction that λ remains bounded away from zero. Then

there exists a sequence ρn, n ∈ R such that associated levels, λn converge to λ̄ > 0. If n → ∞
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then the left-hand side of (11) converges to G((φ − λ̄)/φ)
(
βφ − λ̄

)
. In contrast, the right-hand

side of (11) goes to∞ because log((ρn+λn)/ρn)→ ∞, while limn→∞ g(D)(ρ+λ) = g((φ−λ̄)/φ)λ̄.

Thus, the right-hand side of (11) exceeds the left-hand side for all sufficiently large n, a con-

tradiction to the assumption that λn satisfies the first order condition for ρn. Thus, λ(ρ) must

converge to zero as ρ ↓ 0.

Next, note that limρ↓0 λ(ρ)/ρ = ∞.

The left-hand side of (11), i.e., the marginal benefit of saving converges to G(0)βφ as ρ ↓ 0,

which is strictly positive. Thus, the right-hand side of (11), i.e., the marginal cost, must also be

non-zero in the limit. Again, note that D converges to 0 as ρ ↓ 0. Next, because limρ↓0 λ(ρ) = 0 it

follows that log((φ−λ(ρ))/φ) goes to zero. Thus, (ρ+λ(ρ)) log((ρ+λ(ρ))/ρ) must be non-zero in

the limit. Given that both ρ and λ(ρ) go to zero, it follows that log((ρ+λ(ρ))/ρ) = log(1+(λ(ρ)/ρ)

goes to infinity. Thus, λ(ρ)/ρ goes to infinity.

We can now conclude that limρ↓0 ρ log((ρ + λ(ρ))/ρ) = 0.

Suppose by way of contradiction that there exists a sequence ρn such that limρ↓0 ρ log((ρn +

λ(ρn))/ρn) = a , 0. Then this and the fact that λ(ρ)/ρ becomes unbounded implies that

λ(ρn) log((ρn + λ(ρn))/ρn) goes to infinity, a contradiction because the left-hand side of (11)

is bounded, as shown above.

This can only be the case if λ(ρ)/ρ goes to infinity if ρ ↓ 0.

Taking the limit on both sides of (11) as ρ ↓ 0 therefore yields

G(0)βφ = g(0)β lim
ρ↓0

λ(ρ) log
(
ρ + λ(ρ)

ρ

)
. (45)

Substituting λ(ρ) = −G(0)φ/(g(0) log(ρ)) into (45) yields

G(0)φ/g(0) = lim
ρ→0

λ(ρ) log
(
ρ + λ(ρ)

ρ

)
= lim

ρ→0
λ(ρ) log

(
λ(ρ)
ρ

)
= lim

ρ→0
λ(ρ) log(λ(ρ)) − lim

ρ→0
λ(ρ) log(ρ) = − lim

ρ→0
λ(ρ) log(ρ),

(46)

where we have used the fact that limx→0 x log x = 0. Thus,

lim
ρ→0

λ(ρ)
(
−
g(0)
G(0)

log(ρ)
φ

)
= 1. (47)

This verifies that λ(ρ) goes to zero at the indicated rate.

Because −G(0)φ/(g(0) log(ρ)) approximates λ(ρ) for small ρ, it follows that λ(ρ) is increas-

ing and convex in ρ (for ρ small).

Proof of Lemma 2. We can assume that ρ + λ > 1, else the result is trivial.
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Let X denote the random variable that assumes the value 1 if L wins, and 0 if R wins. Party

L’s investment as a share of capital, λ, is given by (11), independent of k. Thus, if L wins in a

period n then kn = (ρ + λ)kn−1. In contrast, if L loses, then the capital stock becomes kn = ρki−n.

Let u be the number of times that L wins and t − u the number of times that R wins in t

elections. Then the capital stock at the beginning of period t,

kt−1 = k̄(ρ + λ)uρt−u = k̄
(
(ρ + λ)

u
t ρ1− u

t
)t
, (48)

Let p = G(D) be the probability that party L wins. Note that D is independent of k. Let Xt,

t ∈ N be the stochastic process that assumes the value 1 if L wins, and 0, otherwise. Let a > 0.

Then the weak law of large numbers implies that limt→∞ Prob
({

(1/t)
∑t−1

n=0

∣∣∣Xn − p
∣∣∣∣ > a

})
= 0.

Hence for every δ > 0, there exists t̄ such u/t < p + a for all t ≥ t̄ and 1− u/t > 1− p− a. Thus,

(48) implies

kt−1 ≤ k̄
(
(ρ + λ)p+aρ1−p−a

)t
. (49)

Thus, if (ρ + λ)p+aρ1−p−a < 1 then (49) implies that kt−1 converges to zero. The result follows

because a was arbitrary.

Proof of Proposition 3. Divide equation (18) by ρ + λ to obtain:

β
(
G(D)

φ − λ

ρ + λ
− g(D) log(

ρ + λ

ρ
)
)

+ (1 − β)
(
G(D) − g(D) log(

φ − λ

φ
)
)

= 0.

We now show that the term with weight 1 − β is negative at the value where survival is maxi-

mized, i.e., where the term with weight β is zero. That is, at G(D) = g(D) log(ρ+λ

ρ
) ρ+λ

φ−λ
, we show

that

log
(
ρ + λ

ρ

)
ρ + λ

φ − λ
> log

(
φ − λ

φ

)
.

Multiplying both sides by φ − λ yields

log
(ρ + λ

ρ

)ρ+λ > 0 > log
(φ − λ

φ

)φ−λ
It follows that at the value of λ that maximizes survival, the marginal benefit of increasing

λ is less than the marginal cost, i.e., party L will choose a smaller λ. Letting x(λ) be the term

multiplying β and y(λ) < x(λ) be the term multiplying 1 − β, we have dλ
dβ = −

(x−y)
βx′+(1−β)y′ > 0

Proof of Lemma 3. Without loss of generality, suppose that k′ < k. Let α = k′/k. Suppose that

at capital level k the same proportional investment choices are made as at capital level k′. If the
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winning probabilities are unchanged than this would imply that α1−sV(k) = V(αk). However, in-

creasing k increases Dk and thus, the winning probability. As a consequence, α1−sV(k) ≥ V(αk).

Thus,

lim inf
k′→k

V(k) − V(k′)
k − k′

= lim inf
α→1

V(k) − V(αk)
(1 − α)k

≥ lim inf
α→1

V(k) − α1−sV(k)
(1 − α)k

= lim
α→1

V(k)
k

1 − α1−s

1 − α
=

(1 − s)V(k)
k

.

(50)

Because V(k) ≥ VN(k) equation (50) implies

lim inf
k′→k

V(k) − V(k′)
k − k′

≥
(1 − s)VN(k)

k
. (51)

Next, note that

ks−1VN(k) =

∞∑
t=0

βtφ1−s(ρ1−s)t (52)

converges uniformly if and only if βρ1−s < 1. As a consequence, ks−1VN(k) is differentiable for

k > 0. Thus, VN(k) is differentiable for k > 0. The derivative is given by

V ′N(k) =

∞∑
t=0

βt(ρt)1−sφ1−sk−s =
(1 − s)VN(k)

k
. (53)

This, (50) and (53) imply the result.

Proof of Lemma 4. Suppose by way of contradiction that there exists a sequence kn → ∞

such that limn→∞ λ(kn) = φ. The net benefit of investment contingent on winning the election is

u
(
(φ − λ)kn

)
− u

(
φkn

)
+ β

(
V
(
(ρ + λ)kn

)
− V

(
ρkn

))
< u

(
(φ − λ)kn

)
− u

(
φkn

)
− βVN

(
ρkn

)
, (54)

where the inequality follows because utility is negative for s > 1 and VN is a lower bound on

the continuation utility. Note that

lim
n→∞

u
(
(φ − λ)kn

)
− u

(
φkn

)
− βVN

(
ρkn

)
= lim

n→∞

1
(1 − s)ks−1

n

(
(φ − λ(kn))1−s − φ1−s −

β

1 − βρ1−s

)
< 0,

(55)

because limn→∞ λ(kn) = φ implies limn→∞(φ−λ(kn))1−s = −∞, and the other terms are bounded.

However, this implies that the net benefit from investment given by (54) is strictly negative. By

choosing λ = 0 candidate L can guarantee a higher payoff, contradicting the optimality of λ(kn).
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Proof of Lemma 5. Let WL(k) = ks−1VL(k). Then W(k) solves

WL(k) = max
λ∈[0,φ]

G(0)
(
ks−1u

(
(φ − λ)k

)
+ βWL

(
(ρ + λ)k

))
+

(
1 −G(0)

)(
ks−1u

(
φk

)
+ βWL

(
ρk

))
= max

λ∈[0,φ]
G(0)

(
(φ − λ)1−s + βWL

(
(ρ + λ)k

))
+

(
1 −G(0)

) (
φ1−s + βWL

(
ρk

))
.

(56)

It immediately follows that WL(k) = ks−1VL(k) = vL/(1 − s), is independent of k. Further, the

objective of (56) is strictly concave in λ.

Similarly, we define W(k) = ks−1V(k), where V(k) is the value function for problem (27).

Let λ(k) be be the associated optimal investment share. Then W(k) and λ(k) solve

W(k) = max
λ∈[0,φ]

G(D)
(
ks−1u

(
(φ − λ)k

)
+ βW

(
(ρ + λ)k

))
+

(
1 −G(D)

)(
ks−1u

(
φk

)
+ βW

(
ρk

))
. (57)

Next, assume by way of contradiction that λ(k) does not converge to λ∗ as k → ∞. Then

there exists a sequence kn → ∞ with limn→∞ λ(kn) , λ∗. Without loss of generality, suppose

that λ(kn) < λ̄ < λ∗, for some λ̄ (the analysis when λ̄ > λ∗ is analogous). Recall that λ∗ solves

problem (56) and that the objective is strictly concave in λ, and independent of k. From the

strict concavity, choosing λ(kn) < λ̄ < λ∗, reduces payoffs by an amount that is bounded away

from zero: there exists a δ > 0 such that

G(0)
(
(φ − λ(kn))1−s + βWL

(
(ρ + λ(kn))kn

))
+

(
1 −G(0)

) (
φ1−s + βWL

(
ρkn

))
+ δ

< G(0)
(
(φ − λ∗)1−s + βWL

(
(ρ + λ∗)kn

))
+

(
1 −G(0)

) (
φ1−s + βWL

(
ρkn

))
.

(58)

Recall that the social planner’s value function takes the form VS (k) = vs/(1 − s)k1−s. Similarly,

the value function if no investment takes place takes the form VN(k) = vn/(1− s)k1−s. The value

function of (27) is bounded from above and below by these two value functions. Therefore,

vN

1 − s
= ks−1VN(k) ≤ W(k) ≤ ks−1VS (k) =

vS

1 − s
. (59)

Thus, W(k) is bounded.

Let ε = (1 + /(1 − β)|vs/(1 − s)|) < δ/2. Then Lemma 4 and the argument in the text imply

that there exists a k1 > 0 such that |G(Dk) −G(0)| < ε for all k ≥ k1.

Further, because β < 1, there exists a T ∈ N such that
∣∣∣βT VN(k1)

∣∣∣ < ε. Let k2 = k1/ρ
T . This,

and (59) imply that if we start in period t = 0 with initial capital stock k ≥ k2 then the utility

impact of actions in periods τ > T is less than ε. In addition, in periods τ ≤ T capital k ≥ k1.

Thus, the fact that |G(Dk) −G(0)| < ε and the boundedness of W established in (59) imply that

changing the probabilities from G(0) to G(Dk) impacts utility by less than ε|vs/(1 − s)| in each

period, and hence by less than εβT/(1 − β)|vs/(1 − s)| < ε/(1 − β)|vs/(1 − s)| in the first T + 1

periods. Given the choice of ε it follows that |W(k) −WL(k)| < δ for all k ≥ k2.
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Finally, equation (58) implies that if we replace λ∗ by λ(kn) then utility decreases by more

than δ. Further, we have shown that replacing WL by W changes payoffs by less than δ/2. Thus,

G(0)
(
(φ − λ(kn))1−s + βW

(
(ρ + λ(kn))kn

))
+

(
1 −G(0)

) (
φ1−s + βW

(
ρkn

))
< G(0)

(
(φ − λ∗)1−s + βW

(
(ρ + λ∗)kn

))
+

(
1 −G(0)

) (
φ1−s + βW

(
ρkn

))
,

(60)

which contradicts that λ(kn) is the optimal investment share given kn. This contradiction proves

that limk→∞ λ(kn) = λ∗.
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