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Abstract

Relationship finance features incumbent financiers’ observing interim information

after initial investment but before continuation decision. The entrepreneurs’ endoge-

nous information production and subsequent security issuance to both the incumbent

insider and competitive outsider financiers constitute persuasion games with heteroge-

neous receivers and contingent transfers. Entrepreneurs’ endogenous experimentation

reduces insiders’ information monopoly, but holds up initial relationship formation. In-

siders’ information production and interim investor competition mitigate the hold-up,

and explain empirical links between competition and relational lending. Optimal con-

tracts restore first-best outcomes using convertible securities for insiders and residuals

for outsiders. Our findings are robust under continuum actions and partial commit-

ments.

JEL Classification: D47, D82, D83, G14, G23, G28

Keywords: Information Design, Security Design, Bayesian Persuasion, Relationship

Lending, Hold-up, Experimentation, Venture Capital, Bank Competition, Contracting.

∗The authors are grateful to Doug Diamond and Andy Skrzypacz for detailed feedback and suggestions.
They also thank Ben Brooks, Peter DeMarzo, Darrell Duffie, Piotr Dworczak, Alex Frankel, Lorenzo Gar-
lappi, Matthew Gentzkow, Itay Goldstein, Yingni Guo, Michel Habib, Zhiguo He, Emir Kamenica, Anil
Kashyap, Arthur Korteweg, Robert Marquez, Raghu Rajan, Kyoungwon Seo, Martin Szydlowski, Anjan
Thakor, Lucy White, and conference and seminar participants at Berkeley Haas, Boston University, Chicago
Booth, Chicago Booth Micro-Lunch, Peking Guanghua, Princeton, UBC Sauder, USC Marshall, Washington
University in St. Louis, EFA Meeting, European Summer Symposium in Financial Markets, MFA Meet-
ing, Wharton WINDS, MIT Sloan Junior Finance Conference, and Oxford Financial Intermediation Theory
Conference for helpful comments and discussions. Some results in the paper are circulated under a previous
draft titled “Insider Investor and Information”.
§University of Chicago, Department of Economics and Booth School of Business.
†University of Chicago Booth School of Business. Authors Contact: Will.Cong@ChicagoBooth.edu.



1 Introduction

What is the benefit of raising capital from intermediaries such as banks or venture funds

instead of issuing securities in public markets? A large literature on relationship finance

reveals that intermediaries can mitigate informational asymmetry and moral hazard when

they form relationships with entrepreneurs to become “insider” financiers (e.g., Diamond

(1984, 1991), Fama (1985), Ramakrishnan and Thakor (1984), and Kerr, Nanda, and Rhodes-

Kropf (2014)). Existing literature recognizes how insiders may hold up entrepreneurs due

to information monopoly, but ignores the endogenous nature of information production and

design.1 Yet in reality entrepreneurs’ actions not only shape project cash flows, but also

alter the informational environment.2

Meanwhile, as a confluence of work on Bayes correlated equilibria and Bayesian persua-

sion, information design is arguably the most active area of research in information economics

in recent years (Kamenica (2017)). It has been quickly adopted to address issues in banking

regulation, online advertising, entertainment, etc. Yet its application in corporate finance

has been limited because contingent transfers prevalent in security design and contracting

are typically absent in extant Bayesian-persuasion models, despite the fact that relationship

finance provides a most natural setting for a sender to commit to an information structure.

Several questions naturally arise. Do the source and endogenous production of informa-

tion matter for sequential fund-raising? Do they affect the link between bank orientation

and competition? How would the persuasion game play out in the presence of contingent

transfers? What are their implications for designing securities for sequential investors? How

do heterogeneous financiers as receivers learn and interact?

Motivated by these questions, we model contract and security design and interim exper-

imentation in relationship financing as a Bayesian persuasion game with contingent trans-

fers and heterogeneously-informed receivers. We show that the entrepreneur’s endogenous

information production reduces an insider’s rent from her interim bargaining power, but

1Sharpe (1990) and Rajan (1992) discuss the hold-up issues in the context of relationship banking; Admati
and Pfleiderer (1994) and Ewens, Rhodes-Kropf, and Strebulaev (2016) argue that staged financing in venture
capital can also produce conflicts of interest and hold-ups and give disproportionate bargaining power to the
initial venture capitalist, as shown in Fluck, Garrison, and Myers (2006).

2Pharmaceutical firms can affect FDA’s and investors’ decisions by providing additional information and
tests (e.g., “Guidance for Industry and FDA Staff. Post market Surveillance Under Section 522 of the
Federal Food, Drug and Cosmetic Act” May 16, 2016); Software startups decide on different markets for
beta launches because the media attention generated is different, and thus information communicated to
potential users (“Why Is Canada Such A Good Testing Ground For Game Releases?” Forbes Tech. Nov
27, 2012); entrepreneurs choose the specific prototype or trial market to work on which produces disparate
forms of information; career concerns and managerial choices of projects exhibit similar features.
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inefficiently holds up her initial investment. Relationship investors’ proprietary informa-

tion technology and interim competition mitigate this new form of hold-up, and interact to

produce the empirically observed non-monotone patterns between interim competition and

relationship formation. We then derive a contractual solution to fully restore efficient infor-

mation production: the entrepreneur optimally promises early insider investors the option

to purchase convertible securities in future at a pre-specified price and quantity, and upon

the insider’s continued financing, issues residual securities to outsider investors.

Specifically, our baseline model considers a capital-constrained entrepreneur with a project

that requires two rounds of financing. The first round requires a fixed investment that enables

the entrepreneur to “experiment”—broadly interpreted as conducting early-stage activities

such as hiring key personnel, acquiring initial users, and developing product prototypes—

to produce interim information to persuade investors for continued financing. An investor

becomes an “insider” by providing the initial funding. The entrepreneur lacks ex-ante com-

mitment to any specific production technology of interim information, and hence cannot

contract on experimentation. But by monitoring and having relationship access, the insider

observes interim signals from the experiment informative of the eventual profitability.

After forming the financing relationship, the entrepreneur raises additional capital in a

second round by issuing securities to this insider and potentially outsider investors. The

insider’s informational advantage relative to outsiders gives her bargaining power, and out-

siders may learn from her decisions to continue or terminate the project. Following standard

persuasion games that feature divergent objectives of the sender and the receiver, we as-

sume that the entrepreneur enjoys private benefit of continuing the project that is difficult

to verify or contract upon. The entrepreneur’s limited liability and the security choice also

contributes to the divergence of sender-receiver objectives.

We first show that the entrepreneur follows a threshold strategy for experimentation.

Through designing the informational environment, the entrepreneur makes the insider in-

vestor breaks even and indifferent between termination and continuation. On the one hand,

this reduces the insider’s bargaining power from her information monopoly. On the other

hand, the entrepreneur’s interim information production is inefficient, rendering the insider

incapable of recovering the initial investment in forming the relationship. Projects may not

get initial financing to start with—a phenomenon we call Information Production Hold-

up (IPH). These results are in sharp contrast to existing theories on bank monitoring and

hold-ups on entrepreneurial effort that ignore endogenous information production.

In industries requiring less entrepreneur-specific knowledge, “sophisticated” relationship
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investors can use their own information technology to evaluate projects’ prospect, thus ex-

tracting positive interim rent, partially restoring the feasibility of the initial relationship

investment. Relationship financing also becomes viable with moderate interim competition,

because selling to competitive outsiders encourages more efficient information production by

the entrepreneur. Investor competition (reflected through the insider’s interim bargaining

power) and sophistication (captured by the informativeness of her independent signal) jointly

impact the dependence of relationship financing on competition, which is non-monotone in

general. In particular, for intermediate levels of investor sophistication, the ease of rela-

tionship formation proxied by the initial funding capacity can therefore depend on interim

competition in a U-shaped pattern, consistent with empirical findings that other models

cannot explain (Elsas (2005) and Degryse and Ongena (2007)).

To explore contractual solutions to this general problem of IPH, we recognize that a

designer may not always know the entrepreneur’s private benefit and the investor sophisti-

cation ex ante. As such, we derive the robust optimal design of securities which entails the

entrepreneur optimally giving early insiders warrants to purchase some form of convertible

securities at pre-specified price and quantity, and issuing residual securities such as equities

to outsiders, consistent with the practice in venture financing.

Intuitively, the entrepreneur is biased towards continuation and gets all the ex-ante sur-

plus. At the time of forming a financing relationship, he wants to but cannot commit

to efficient information production in the interim. An optimal security therefore should

facilitate such a commitment, balancing the entrepreneur’s payoff sensitivity to his informa-

tion production either indirectly through the insider’s continuation decision (continuation

channel) or directly through internalizing the cost of inefficient continuation himself (payoff

channel). The problem involves infinitely-dimensional nested optimization, prompting us to

take a novel constructive-proof approach.

Specifically, we propose a set of contracts that restore social efficiency, and show they are

the only optimal contracts. We first note that because the insider cannot fully internalize

the entrepreneur’s private benefit of continuation, the continuation channel is sensitive to

investor sophistication. A robust design thus reserves a large enough proportion of second-

round financing for competitive outsiders, so that the payoff channel dominates. By giving

the insider debt-like securities in bad states of the world, convertible securities maximize the

entrepreneur’s exposure to the cost of inefficient continuation. Internalizing this cost leads

to more efficient information production. Meanwhile, relationship financing is feasible as

long as the contract yields the insider enough interim rent in order to recover the investment
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in the initial round, leaving the security design indeterminate in good states of the world.

Consequently, this optimal design uses warrants that specify both the quantity and terms

for the insider to purchase a large class of convertible securities, consistent with real-life

observations.

Finally, we discuss how our findings remain robust when we allow partial commitment

to information design and scalable investment, among others. We also discuss who should

enjoy the right for experimentation design. The information production hold-up problem

manifests itself under alternative security forms as well, and the economic mechanism apply

even beyond relationship lending and staged venture financing. Our study helps underscore

and formalize this practical issue, and develops potential contractual solutions. From a the-

ory perspective, our study also sheds light on Bayesian Persuasion games with contingent

transfers and sequential heterogeneous receivers, and deepens our understanding of contract-

ing under endogenous information production.

Literature — Our theory foremost contributes to the large literature on relationship financ-

ing. Boot (2000), Gorton and Winton (2003), and Srinivasan et al. (2014) survey relationship

lending. Theoretical studies on relationship banking focus on information production and

control (e.g., Diamond (1984, 1991) and Fama (1985)): while relationship financing can

improve financing efficiency (e.g., Petersen and Rajan (1994)), it naturally induces informa-

tion monopoly (Berger and Udell (1995), Petersen and Rajan (2002), and Rajan (1992)),

holding up the entrepreneur’s effort in relationship lending (e.g., Santos and Winton (2008)

and Schenone (2010)) and venture capital (Burkart, Gromb, and Panunzi (1997) and Ewens,

Rhodes-Kropf, and Strebulaev (2016)). We inform the debate by endogenizing the informa-

tional environment and analyzing the information production hold-up problem.3

Our paper also sheds light on the role of intermediaries and security design in financing

innovation (Da Rin, Hellmann, and Puri (2011) and Kortum and Lerner (2001)). Impor-

tantly, we add to earlier studies on the extensive use and optimality of convertible securities

(e.g., Gompers (1997), Kaplan and Strömberg (2004), and Hellmann (2006)) by endogenizing

information design. Instead of deriving the optimality of convertible securities from ex-ante

3In this regard, our paper relates to hold-up problem in general, e.g., in Hart and Moore (1988). The
contractual solution offered therein and in Aghion, Dewatripont, and Rey (1994), and Nöldeke and Schmidt
(1995) do not induce first-best outcomes in our setting due to limited liability. Von Thadden (1995) and
Nöldeke and Schmidt (1998) use option contracts to resolve hold-up problems under exogenous information
and achieves the first best only under sufficiently low project uncertainty. We endogenize interim information
for general project uncertainties.
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asymmetry between the issuer and investors (e.g., Stein (1992) and Brennan and Schwartz

(1988)), our model features symmetrically informed entrepreneurs and investors and studies

informational issues in staged financing. It therefore closely relates to the seminal paper

of Cornelli and Yosha (2003), with the key distinction that instead of examining hidden

manipulations of non-verifiable signals under an exogenously given information structure,

we emphasize endogenous information production (verifiable to the relationship financier)

and sequential securities for heterogeneous investors. To our best knowledge, we are the

first to show that issuing convertible securities to early insider investors and equities to

later outsider investors is optimal and robust. Moreover, while they show that one design—

convertible securities—can address the issue of window dressing, we characterize all robust

optimal designs under general security and contract space, and demonstrate they all entail

the use of convertible securities.

Empirically, the effect of competition on bank orientation has received significant at-

tention, and Elsas (2005) and Degryse and Ongena (2007) document a puzzling U-shaped

effect of market concentration on relationship lending. Extant theories predict either op-

posing monotone patterns (e.g., Petersen and Rajan (1995) and Dell’Ariccia and Marquez

(2004) versus Boot and Thakor (2000) and Dinc (2000)) or suggest a hump-shaped pattern

(e.g., Yafeh and Yosha (2001) and Anand and Galetovic (2006)). Our theory offers a first

explanation for the empirical findings.

From a theory perspective, our paper contributes to the field of information design (Berge-

mann and Morris (2017) and Hörner and Skrzypacz (2016)), especially Bayesian Persuasion

(Kamenica and Gentzkow (2011) and Ely (2017)). We take a linear programming approach

similar to Bergemann and Morris (2017), but allow infinite payoff-relevant states and pri-

vately informed receivers. We relax the assumption that the sender’s utility from a message

completely depends on the expected state (Kolotilin (2017)), or the sender’s payoff over the

receiver’s actions is independent of the state (Gentzkow and Kamenica (2016)). Our dis-

cussion on investor sophistication also expands our knowledge about persuasion games with

private receiver types.4

Importantly, our paper contributes to the literature by featuring security design that

endogenizes the dependence of the sender and receiver’ payoffs on the state. A closely

4Kolotilin (2017) finds a non-monotone effect of the receiver’s signal informativeness on sender and re-
ceiver’s utilities. We differ in that we do not restrict the insider’s and the entrepreneur’s information
production to be independent. When the receiver’s type can be flexibly correlated with the signal of a
sender’s experiment, we restore the intuitive result that the sender’s and receiver’s utilities are monotone in
the receiver’s signal precision.
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related paper is Szydlowski (2016), which also allows contingent transfers using securities

and derives an irrelevant result of security choice when the entrepreneur jointly designs

disclosure and security. Our paper is the first to apply information design (and jointly with

security design) to relationship financing and contracting under information production hold-

up. We also add to the literature by allowing interaction of multiple asymmetrically informed

receivers in Bayesian persuasion games.

By so doing, our paper advances the emerging applications of information design in fi-

nance. Other recent studies concern topics on capital structure (Trigilia (2017)), government

intervention (Cong, Grenadier, and Hu (2017)), and stress tests (Bouvard, Chaigneau, and

Motta (2015), Goldstein and Leitner (2015), and Orlov, Zryumov, and Skrzypacz (2017)).

One main challenge of the field has been the commitment issue in designing information. We

overcome the challenge both by using dynamic relationship to naturally induce commitment

and by demonstrating the robustness of our findings to partial commitment.

Finally, our discussion on contracting and security design contrasts with seminal studies

such as Holmstrom (1979) and Innes (1990), which concern agents’ actions that alter the dis-

tribution of cash flows only.5 The agent in our setting shapes the informational environment,

and contracting on continuation and eventual outcomes restores the first best information

production—typically unattainable in conventional settings. Our solution approach using a

constructive-proof and robustness argument also differs from earlier studies.

2 Relationship Financing and Information

2.1 Model Set-up

Consider a three-period economy with time index t = 0, 1, 2. A risk-neutral entrepreneur

has a project that requires a fixed investment I ∈ (0, 1) at t = 1, and produces an uncertain

cash-flow X ∈ [0, 1] at t = 2 with a prior distribution denoted by a continuous and atomless

pdf f(X). In the baseline model, the entrepreneur issues an exogenously given security s(X)

at t = 1 to finance the project. We assume double-monotonicity for the security, i.e., both

s(X) and X−s(X) are weakly increasing in X.6 The entrepreneur receives a private benefit

5Although extant studies on the agency issues in costly experimentation such as Hörner and Samuelson
(2013) and Bergemann and Hege (1998) consider information-acquisition effort, the principal cannot isolate
information produced by the agent (hidden effort and hidden information).

6See, for example, Nachman and Noe (1994), DeMarzo and Duffie (1999), DeMarzo, Kremer, and Skrzy-
pacz (2005) and more recently, Cong (2017). If such monotonicity is violated, either the entrepreneur or
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ε ∈ (0, I) if the project is financed at t = 1, which we assume to be non-contractible because

in practice it is hard to quantify or verify (Aghion and Bolton (1992); Dyck and Zingales

(2004)).7 Most of our results are driven by the entrepreneur’s limited liability, but this

assumption constitutes a realistic source of agency conflict and enables us to discuss robust

security design. Moreover, we assume E[s(X)− I|X ≥ I − ε] > 0 to ensure the security can

cover the cost of investment when investment is socially optimal. Finally, there is no time

discounting.

To best illustrate our economic mechanism and match reality for early business startups,

we assume E[X − I + ε] < 0—an innocuous assumption that implies the absence of direct

financing by arms-length investors ex ante, a case for which relationship financing and in-

formational considerations are the most important. That said, with an initial investment

K > 0 at t = 0 the entrepreneur can design an experiment that generates interim informa-

tion about the distribution of the cash-flow. Specifically, using K received from an initial

financier, the entrepreneur (the sender) chooses a finite set of messages Z and a mapping

between the messages and the outcomes, which can be specified as conditional probabilities

π(z|X) for z ∈ Z and X ∈ [0, 1].8

There are competitive investors who can finance the project at t = 0 by paying K and

one is randomly chosen and becomes an “insider”. One may think of K + I as the total

investment needed, but raised in stages whereby early experimentation generates interim

information (Kerr, Nanda, and Rhodes-Kropf (2014)). For simplicity, we assume the seed

investment K generates negligible initial cash flows compared to the final payoff expected by

the investor and the entrepreneur, which is similar to normalizing the liquidation value to

the investor can be better off destroying some surplus for some state X, as pointed out in Hart and Moore
(1995).

7ε could correspond to his utility from the “non-assignable control rent”(Diamond (1993)), or payoff
from assets- or business-in-place (Myers and Majluf (1984)), or perquisites that managers appropriate
(Jensen and Meckling (1976), see also Winton and Yerramilli (2008); Szydlowski (2016)). Regarding its
non-contractibility, for example, the investor cannot promise to pay ε upon terminating the project because
otherwise it would lead to entry of fly-by-night firms. Such an arrangement not only leads to adverse selection
when ε is privately known by the entrepreneur, but also leads to equilibrium multiplicity and indeterminacy
of the informational environment.

8We follow the Bayesian Persuasion literature to assume that (Z, π) can be arbitrarily informative, which
is justified by interpreting X as the most informative signal the entrepreneur can generate while conducting
its usual entrepreneurial activities (Kamenica and Gentzkow (2011)). Furthermore, even though exper-
imentation costs differ significantly across sectors and industries (Nanda and Rhodes-Kropf (2015)), the
dispersion within a product category is much smaller, and the cost of experimentation has declined dramati-
cally, particularly in industries such as software and digital media that have benefited from the development
of the Internet, because fixed investments in infrastructure and hardware are no longer necessary (e.g., Kerr,
Nanda, and Rhodes-Kropf (2014), Palmer (2012), and Blacharski (2013)).
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zero (Diamond (1993)) and can be equivalently interpreted as K representing the investment

net of initial cash flows.

We assume that all investors observe (Z, π), but with probability µ ∈ [0, 1] only the

insider observes the outcome of the experiment, and with probability 1 − µ all investors

publicly observe the outcome. µ essentially indicates the extent of the insider’s informational

advantage through close monitoring and repeated interactions, and we can interpret 1−µ as

a reduced-form measure of the “interim competition” between the insider and the outsider

commonly modeled in the relationship lending literature (e.g., Petersen and Rajan (1995)).

µ = 0 corresponds to perfect interim competition and µ = 1 corresponds to information

monopoly by the insider.

After the realization of z, the insider makes a take-it-or-leave-it offer to purchase a λ

fraction of the security s(·) at a total price pI . The entrepreneur decides whether to accept

and then if he still needs financing, he sells the security to outsiders who offer a competitive

total price pO for the remaining securities. The investment takes place if and only if I is

successfully raised, otherwise the pledged capital is returned to investors.

The players’ interim payoffs after the formation of a financing relationship are as follows:

pO = E[(1− λ)s(X)|FO] (1)

uE(pI , pO;X) =
(
ε+X − s(X) + pI + pO − I

)
I{pI+pO≥I} (2)

uI(pI , pO;X) =
(
λs(X)− pI

)
I{pI+pO≥I}, (3)

where FO denotes the outsiders’ information set after having observed the insider’s contin-

uation or termination action.9 In addition to the informational advantage, we analyze in

Section 3 the case whereby the insider can contract with the entrepreneur at the formation of

the financing relationship, potentially using different securities for the insider and outsiders.

To highlight the stark effect of the information production hold-up (IPH) problem,

we assume that only the entrepreneur has the relevant skill and expertise to design (Z, π)

after raising K. This happens when the lender either has no previous experience on the

project or it is too costly for him to extract information, e.g. the firm is located in a hardly

accessible location, or the investor has no relevant expertise to generate independent signals.

Section 4 relaxes the assumption and allows the insider to produce information too.

9One can interpret the signal being either public or private as the receiver’s private type. Note that the
entrepreneur’s experimentation affects both the insider and the outsiders’ actions, different from Kolotilin,
Mylovanov, Zapechelnyuk, and Li (2017) which studies the case of a single receiver with private types.
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Figure 1: Timeline of the game.

tt = 0

Relationship Formation

↪→ Potential insider decides
on initial financing K

t = 1

Entrepreneur designs
experiment (Z, π).

↪→ Signal z (and other
signals if any) realized

t = 2

Insider financier offers
(followed by outsiders)

↪→ If I financed, investors get
their security payoffs

If the project is not financed, all players receive outside options normalized to zero.

Intuitively, relationship financing is feasible only if the insider can recover in expectation at

least the initial investment K, i.e.,

E[uI(pI , pO;X)] ≥ K. (4)

Finally we assume E[(X − I)I{X ≥ I − ε}] ≥ K, i.e., the project would always be financed

through relationship financing (positive NPV ex ante to the financier) if the interim informa-

tion production is socially efficient. Therefore, the failure to form the financing relationship

is purely driven by the entrepreneur’s endogenous information production, which differs from

the social optimal in general. The timeline of the game is summarized in Figure 1.

2.2 Equilibrium

We work backward by first analyzing the interim persuasion game after the formation of

the financing relationship. We discuss exogenous experimentation as a benchmark in order

to underscore the information production hold-up (IPH) problem under endogenous

information production and the way it drastically alters our understanding of relationship

finance.

Benchmark with Exogenous Information

Consider an exogenously given (Z, π) that earlier studies specialize to. If signal z is pri-

vately observed by the insider, then when E[s(X)|z] ≥ I, the insider offers pI = I to finance

the project entirely (λ = 1 endogenously), assuming any indifference (when E[s(X)|z] = I)

is broken by financing more (λ = 1); else when E[s(X)|z] < I, the insider terminates

the project, leading to the outsiders negatively updating their priors and not investing ei-

ther. The insider’s information monopoly essentially gives her full bargaining power over
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the contractible interim surplus generated, max{E[s(X)− I|z], 0}, which corresponds to the

well-known information hold-up in earlier models such as Rajan (1992).

In the case where z is publicly observable (which happens with probability 1− µ), then

both the insider and the outsiders would offer the competitive pI = pO = E[s(X)|z] when

E[s(X)|z]− I ≥ 0. The entrepreneur extracts the whole interim surplus.

The entrepreneur’s expected payoff is thus

UE(Z, π) = E[uE] = µ

∫ 1

0

∑
z∈Z+

(ε+X − s(X))π(z|X)f(X)dX

+(1− µ)

∫ 1

0

∑
z∈Z+

(ε+X − s(X) + E[s(X)|z]− I)π(z|X)f(X)dX

=

∫ 1

0

∑
z∈Z+

(ε+X − I)π(z|X)f(X)dX − µ
∫ 1

0

∑
z∈Z+

(s(X)− I)π(z|X)f(X)dX(5)

where Z+ = {z|E[s(X)|z] ≥ I} corresponds to the set of signals that justify the investment.

Equation (5) follows from applying the law of iterative expectation to E[E[s(X)|z]|z ∈ Z+].

Similarly, the insider’s payoff is:

U I(Z, π) = E[uI ] = µ

∫ 1

0

∑
z∈Z+

(s(X)− I)π(z|X)dX (6)

Equations (5) and (6) reveal that for a given experiment, the entrepreneur’s expected

payoff is decreasing and the insider’s expected payoff is increasing in µ—a measure of the

level of the insider’s information monopoly, confirming the results in Petersen and Rajan

(1995) that less interim competition leads to higher possibility of financing relationship. By

juxtaposing equations (4) and (6), we see that financing relationship is feasible only when

the interim rent is sufficiently high (e.g., Nanda and Rhodes-Kropf (2013)), i.e., µE[(s(X)−
I)I{E[s(X)|z]≥I}] ≥ K.

We next show that these celebrated results have to be modified once we model the endoge-

nous interim information production and the persuasion game played by the entrepreneur.

Endogenous Experimentation and Information

Here we show that the insider’s payoff is not monotone in µ with endogenous information

production. In particular, when the insider enjoys information monopoly (µ approaches 1),

her initial investment to form the relationship is held-up. This reverse hold-up is in sharp
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contrast with the traditional hold-up under exogenous information in the previous litera-

ture on relationship finance—in the traditional hold-up, the possibility of the relationship

financing is the highest when µ = 1, and the entrepreneur’s effort is held up.

According to (5), the entrepreneur solves the following maximization problem

max
(Z,π)

E[(ε+X − µs(X)− (1− µ)I)I{E[s(X)|z]≥I}] (7)

Proposition 1 (Endogenous Information). An optimal experiment for the entrepreneur

uses two signals, i.e., |Z| = 2. It generates a signal h to induce investment if X ≥
max{X̄, X̂(µ)}, and otherwise generates a signal l to induce termination, where X̄ and

X̂(µ) solves:

E[s(X)|X ≥ X̄]− I = 0 (8)

ε+ X̂(µ)− µs(X̂(µ))− (1− µ)I = 0 if ε− (1− µ)I < 0 (9)

X̂(µ) = 0 if ε− (1− µ)I ≥ 0 (10)

Moreover, all optimal experiments lead to the same investment and payoffs, rendering the

equilibrium essentially unique.

Proposition 1 characterizes the optimal experimentation after relationship formation. (8)

indicates that the continuation based on X ≥ max{X̄, X̂(µ)} makes the insider financier at

least break even; (9) indicates that if the private benefit is small relative to the competi-

tion, the entrepreneur rationally induces the continuation at X if and only if he can break

even; (10) just says that if the private benefit is large relative to interim competition, the

entrepreneur always benefit from the continuation, and the threshold is again pinned down

by X̄ in (8). In equilibrium, while all profitable projects receive continued financing, some

inefficient ones do as well due to the entrepreneur’s persuasion. When the insider privately

observes the experiment outcome, she bears the cost of inefficient continuation and the en-

trepreneur would like to lower the threshold for investment for his private benefit; but as

µ decreases, the entrepreneur’s chance of getting a competitive price is higher, helping him

better internalize the cost of inefficient continuation. These trade-offs determine the optimal

threshold. In the extreme case µ = 0, the entrepreneur sends a high signal for X ≥ I − ε,
which implements the socially efficient outcome; at the other extreme µ = 1, the entrepreneur

decreases the threshold to make the insider indifferent between investment and termination
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(E[s(X)|z] = I).10

Corollary 1 (Information Production Hold-up (IPH)). For a given K and security

s(·), there exist 0 < µl < µh < 1 such that when µ ∈ [0, µl) ∪ (µh, 1], relationship financing

is not feasible.

While it is straightforward that too much interim competition prevents initial investment

from potential insiders, surprisingly with full information monopoly the insider financier

could still be held-up. This is because no interim rent would accrue to her under endogenous

information production by the entrepreneur. As we show in Section 1, IPH is not driven

by the fact that we cannot contract on the verifiable cash flow X, but is driven by the

endogenous nature of information production. Contrasting the Corollary with (5) and (6),

it should also be apparent that taking information as exogenous in relational financing is

not an innocuous assumption—whether information production is endogenous determines

whether the entrepreneur or the investor has interim bargaining power.

3 Contractual Solution for IPH

So far we have assumed that the entrepreneur only issues securities at t = 1. In this

section, we allow long-term contracts at t = 0 that specifies the amount of the securities the

insider can purchase at t = 1 and their payoff.

We assume that the security payoff can depend on X, but not on (Z, π) or the interim

signals, which is standard in the Bayesian persuasion literature. It is also realistic to assume

that contracts can be contingent on verifiable cash flows but cannot be contingent on the

actions that generate information in a particular structure, because the information design

space is rich and complex such that the entrepreneur cannot commit to it ex ante due to

contract incompleteness. For example, an angel investor does not know what kinds of team

members a founder is going to assemble, or what kind of field-specific experiments to conduct.

Moreover, interim signals are often not well-defined and too costly to verify to be useful

for security contracts. For example, in Kaplan and Strömberg (2003), the sample of venture

capital financing contracts involve contingencies only on an IPO taking place and satisfying

certain conditions (e.g. regarding the issue price, proceeds, or market capitalization), but

10In Appendix B4, we show that IPH can also reduce the effort distortion introduced by Rajan (1992).
Here we focus on information production.
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Figure 2: Timeline of the game with optimal security design.

tt = 0

Entrepreneur specifies the
contract {sI(.), sO(.), λ}

↪→ Potential insider decides
on initial financing K

t = 1

Entrepreneur designs
experiment (Z, π).

↪→ Signal z (followed by
others if any) realized

t = 2

Insider investor decides on
continuation financing λI

↪→ Remainder is raised by
selling sO(X) to outsiders

↪→ X realized, investors
get their security payoffs

never on other observable and potentially verifiable interim information such as sales revenue,

market share, or profitability.

3.1 Long-term Contracts

By long-term contracts, we mean that at time 0, the entrepreneur can contract on λ, the

fraction of investment I to be financed from the insider in the second round, and the corre-

sponding payment to the insider sI(·). Outsiders observe the insider’s decision, and finance

the remaining (1−λ)I by purchasing securities sO(·) at a competitive price. Therefore, every

contract can be summarized by the triplet {sI(·), sO(·), λ}. Figure 2 displays the timing of

the interactions.

Before we allow endogenous security design, we first restrict our long-term contracts to

utilize exogenous security type in the next lemma. For example, if the security type is

exogenously restricted to debt contracts, then s(·) is simply pinned down by the face value;

if it is restricted to equity contracts, then s(·) is specified by the number of shares. These

restricted contracts resolve the traditional information hold-up problem (e.g., Von Thadden

(1995)), but not IPH. Therefore, it is really the endogenous security design that helps restore

the first-best outcome.

Lemma 1 (Contracting with Exogenous Security Design).

(a) For any given security s(·), without outsider investors (λ = 1), the equilibrium is

unique and no project is financed at t = 0 unless K = 0.

(b) For any given security s(·), ∃λ ∈ (0, 1) such that the insider receives positive interim

rent under the contract {λs(·), (1− λ)s(·), λ}.
(c) No contract with a single form of security (including debt, equity, or call options) for

both the insider and outsiders implements the first best social outcome.
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Note that contract {λs(·), (1−λ)s(·), λ} allows the insider financier to purchase λ fraction

of the securities issued at t = 1, and sells the remainder to competitive arms-length investors.

Part (a) extends Proposition 1 and Corollary 1 to the case where the entrepreneur commits

to a long-term contract and consequently the insider does not have monopoly power during

the interim about the terms of the contract. This means our results do not rely on the insider

investor’s having information monopoly.

Part (b) reveals that the insider’s interim rent becomes positive for some λ < 1. This

again reflects the importance of “second-sourcing” the investment I (e.g., Farrell and Gallini

(1988)), i.e., committing to λ < 1, because the interim rent is decreasing in λ when λ is big.

Even the insider investor has the incentive to decrease his shares of the surplus somewhat to

enable the entrepreneur to internalize the cost of inefficient continuation, and thus creating

a larger social surplus. Note that although λ here has a similar effect as µ, it is a contract

design parameter rather than an exogenous friction.

Finally, Part (c) reveals that long-term contracting with a single form of security cannot

restore social efficiency. As we show next, only a set of carefully designed securities which

differ for the insider and outsiders can resolve the problem associated with information-

production hold-up.

3.2 Robust Optimal Security Design and Contracting

Now we fully allow endogenous design sI(X) for the insider and sO(X) for the outsiders.

First, consider the designs that result in the outsiders investing only if the insider con-

tinues. We later show that designs outside this set cannot be optimal. Note that the

entrepreneur’s expected payoff from the contract (sI , sO, λ) is then given by:

UE =

∫ 1

0

(ε+X − sI(X)− sO(X) + p− (1− λ)I)I(X)f(X)dX, (11)

where p is the amount raised from the outsiders by selling the security sO(X), and I is

the probability of investment at state X ∈ [0, 1]. The outsiders’ information set contains

the public signal z (if any) they receive with probability 1 − µ, and the inference from the

insider’s action of continuation or termination.

Outsiders, being competitive, pay a “fair price” p, given by

p =
1

E[I(X)]

∫ 1

0

sO(X)I(X)f(X)dX (12)
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Combining (11) and (12) we rewrite

UE =

∫ 1

0

M(X; sI , sO, λ)I(X)f(X)dX,

where

M(X; sI , sO, λ) = ε+X − sI(X)− (1− λ)I. (13)

The entrepreneur’s optimal design then corresponds to the following maximization problem:

max
sI(.),sO(.),λ

E[M(X; sI , sO, λ)I∗(X)]

s.t. E[(sI(X)− λI)I∗(X)] ≥ K and sI(X) + sO(X) ≤ X ∀X ∈ [0, 1],
(14)

where the optimization is over the set of designs and the option to walk away from the

financing relationship, and the constraints are the IC of the insider to form relationship and

the entrepreneur’s limited liability. I∗(·) is the equilibrium investment function under the

optimal experiment (Z∗, π∗), and is given by

I∗(X) =
∑
z∈Z

π∗(z|X)I{E[sI(X)−λI|z]≥0}∩{E[sO(X)−(1−λ)I|FO]≥0}

and the optimal experiment given the contract {sI(·), sO(·), λ} solves the following:

max
(Z,π)

∫ 1

0

M(X; sI , sO, λ)I(X)f(X)dX

where I(X) =
∑
z∈Z

π(z|X)I{E[sI(X)−λI|z]≥0}∩{E[sO(X)−(1−λ)I|FO]≥0}}

(15)

The problem involves infinitely-dimensional nested optimization, and the solution method-

ologies in conventional contracting and security design problems do not easily apply. We

instead take a constructive-proof approach by conjecturing the optimal designs and show

this set of designs uniquely achieve the first-best outcome and are indeed optimal in the

sense that they maximize the entrepreneur’s ex-ante payoff for all ε < I.

Proposition 2. (Robust Optimal Design) Optimal design exists implements the first-

best social outcome. All optimal designs entail experiments that generates continuation if

and only if X ≥ I − ε. Moreover, the set of optimal securities that are independent of the

entrepreneur’s private benefit for continuation all involve the use of convertible securities,
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and are described by {sI(·), sO(·), λ} satisfying the following conditions

λ ∈
[
0,
I − ε̄
I

]
, where E

[
(X − I)I{X≥I−ε̄}

]
= K, (16)

sI(X) = min{λI,X}, ∀X < I (17)

E[(sI(X)− λI)I{X≥I}] = K (18)

sO(X) = X − sI(X), ∀X ∈ [0, 1] (19)

Equation (16) reflects the partial indeterminancy of the optimal design because λ can take

on a range of values. Equation (17) requires that in the bad states of the world, the security

is debt-like. In fact, the shape of the security in the region X < I − ε̄ is indeterminate, but

in terms of payoffs, they are equivalent, thus the word “essentially” in how we characterize

the securities. (18) ensures that the insider breaks even ex ante, but leaves the security

shape indeterminate. Notice when we achieve the first-best social outcome, the insider gets

paid only when the project is continued X ≥ I − ε. But payoff is zero in [I − ε, I) anyway

as ε cannot be contracted upon, therefore the security payment to the insider is essentially

independent of ε. Finally, (19) simply indicates limited liability for outsiders.

Figure 3 provides a concrete illustration using convertible notes for the insider and equities

for the outsiders. The dotted line indicates the threshold for continuation vs termination

signals.11

Because the inefficiency lies in the continuation of bad projects, what matters is how

the security allocates the downside exposure (when X + ε < I) between the insider and

the entrepreneur (partially through outsider investors if they are present). Giving more

exposure to the entrepreneur helps him to internalize the cost of inefficient continuation

through reducing his payoff upon continuation (payoff channel). Moreover, we require that

the design is robust to the entrepreneur’s private benefit from continuation, ε.

Such an optimal design should maximize the entrepreneur’s downside risk relative to the

insider. Therefore the entrepreneur commits to a large enough 1−λ which exposes his payoff

to inefficient continuation. To make his payoff most sensitive to his information production,

the entrepreneur uses debt-like contracts in the flat region in Figure 3 to give all the cash flow

to the insider in the bad states of the world, effectively committing himself to bear the cost

11In Appendix B1, we show equity or debt could be optimal when the entrepreneur is constrained to issue
the same security for the insider and the outsiders (sI(X) = λs(X), sO(X) = (1− λ)s(X), for some s(X))
due to some regularity reasons.

16



Figure 3: The optimal security under flexible security design.

of inefficient continuation as much as possible, which leads to the first-best outcome.12 That

said, the allocation of the upside exposure only needs to ensure the insider earns enough

from the second round to cover the initial investment K. This means the optimal security is

indeterminate, despite that the endogenous experimentation yields a unique informational

environment that is also socially optimal. The optimal security is partially determinate is

a strength rather than a weakness of our model, because it reflects a concept akin to the

Modigliani-Miller Theorem: whatever security design achieves can also be achieved with

information design. At the same time, it clarifies that optimal designs have to entail some

form of convertible securities, consistent with real practice.

Optimal Security and Contract in Practice

Our goal here is not to introduce an alternative mechanism or competing theory for

the use of convertible securities or to claim the information design channel is the most

dominant. Beyond deriving the optimal security under our setting, Proposition 2 indicates

that earlier studies’ conclusions are robust to introducing endogenous and flexible information

production. Moreover, we characterize the joint optimal securities for both initial insider

investors and arms-length outsiders, which extant theories do not discuss, yet is prevalent in

12In Appendix B3, we discuss how our contractual setting relates to the classical literature on contracting
and moral hazard.
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practice.

We can interpret the initial-round optimal contract as warrants to the insider to purchase

convertible securities in the later round. Conditional on the insider’s follow-on investment,

the entrepreneur raises the remaining (1− λ)I from outsiders by issuing residual securities.

Alternatively, we can view the initial round as issuing K
K+λI

fraction of convertible securities

to the insider, together with warrants allowing the insider to purchase the remaining fraction

at a price λI in a later round. One more interpretation is that K+λI is the total amount of

financing at the initial round, but paid out in stages, and (1− λ)I is a separate issuance to

the outsiders. In all these scenarios, although round financing and stage financing in general

differ (Cuny and Talmor (2005)), the effect of the optimal design remains the same.

In addition, setting λ can be viewed as designing a later-stage syndication. While the

lead investor finances λI, the remainder is financed by syndicate members that observe the

leader’s action and are competitive.13

No matter which interpretation we take, as the cost of initial experimentation goes up,

the entrepreneur needs to commit to finance a higher fraction of the follow-on investment

from the insider. Take for example a commonly observed security — convertible notes with

conversion rate 1:I, i.e., a bond with face value λI can be converted to λ share of equity.

One can show that λ is strictly increasing in K.

Finally, we note that the optimal design is partially indeterminate and include most

convertible securities used in real-life practice, which other models often cannot account for.

4 Investor Sophistication

So far the financiers rely solely on the entrepreneur’s experimentation for learning. In

reality, a relationship financier may dictate entrepreneur’s information-production activities,

or receive additional information beside what the entrepreneur produces. For example, the

insider may experiment herself, or use her proprietary business experience and expertise to

predict the market demand or project valuation in future financing rounds. Importantly,

the insider can set milestones in the initial contract, in which the insider conditions the

next round of funding on pre-specified achievements and accomplishments. In fact, we can

13Indeed, with a few exceptions all later-stage venture capital investments are syndicated (Lerner (1994)),
and partnership agreements often pre-commit venture capitalists to syndicate later-stages of investments
(Sahlman (1990)). In this sense, syndication not only can protect the entrepreneur from ex post hold-up by
investors and thereby encourage effort (Fluck, Garrison, and Myers (2006)), it also encourages more efficient
information production.
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interpret the milestones as some “interim signals” that give information about the final cash-

flow. We collectively refer to the ability of a relationship financier to utilize such information

production technology exogenous to the entrepreneur’s design as “investor sophistication”.

In this section, we show investor sophistication mitigates IPH and discuss how its in-

teraction with interim competition helps us rationalize puzzling empirical patterns in the

formation of lending relationships. Then, we show the contractual solution in Proposition 2

is robust to the level of the insider’s sophistication. By doing so, we also develop the solu-

tion for a Bayesian persuasion game involving multiple heterogeneous receivers with private

types.

To incorporate the insider’s information production, we allow her to use an exogenous

technology to produce an interim signal about the final project cash-flow X through the

financing relationship (not observable to the outsiders). In particular, the insider uses exper-

iment (Y , ωq), where Y = {y1, y2, . . . , ym} is a finite set with m signals. ωq(yi|X) represents

conditional distributions. q ∈ [0, 1] is an index that ranks the informativeness of different

experiments, with q = 0 for an uninformative experiment. Specifically, for q > q′ ∈ [0, 1],

the experiment (Y , ωq) is more informative than (Y , ωq′) in the sense of Blackwell (1951).14

Moreover, for every q, we assume the signals in Y can be ranked: for every m ≥ i > i′ ≥ 1,

distribution f(X|yi) dominates distribution f(X|yi′) in the sense of the first order stochastic

dominance, i.e. for every X ∈ (0, 1), we have F (X|yi) < F (X|yi′). This assumption directly

implies that Eq[s(X)|yi, z] > Eq[s(X)|yi′ , z] for every security s(·) and signal z with a non-

degenerate distribution. The following instance is an illustration of the information structure.

Example 1. Suppose the insider’s experiment generates a binary signal, i.e. Y = {h̃, l̃}.
Consider the following information structure for ({h̃, l̃}, ωq):

ωq(h̃|X) =


1+q

2
I ≤ X ≤ 1

1−q
2

0 ≤ X < I.

The investor receives a signal y = h̃ with probability 1+q
2
≥ 1

2
if the project is profitable, and

y = l̃ with probability 1−q
2
≤ 1

2
otherwise. Clearly Eq[s(X)|h̃] ≥ Eq[s(X)|l̃] for every q > 0

14Recall the Blackwell Informativeness Criterion: An experiment provides the decision maker with an
updated set of probabilities over the states of nature. One signal is at least as informative as another if, for
all utility functions, the decision maker’s expected utility from implementing the optimal action (which may
vary with his preferences and with the signal he observes) is at least as high with that signal.
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and security s(·). Moreover, if 1 > q > q′ > 1
2
, then the following inequality also holds:

Eq[s(X)|h̃] > Eq′ [s(X)|h̃] > Eq′ [s(X)|l̃] > Eq[s(X)|l̃]

It means that experiments with higher values of q generate relatively more extreme signals.

Considering the insider’s information production, the entrepreneur now designs an ex-

periment (Z × Y , π), where π(., .|X) : Z × Y → [0, 1] is the joint conditional probability of

observing the signals. Note that the marginal distributions for y ∈ Y must be consistent

with the insider’s experiment, i.e.
∑

z∈Z π(z, y|X) = ωq(y|X) for every X ∈ [0, 1] and y ∈ Y .

Moreover, we allow the signals in Z and Y to be correlated conditional on the true state of

the world.15

4.1 Information Production with Investor Sophistication

In this part, we solve for the optimal experiment and the equilibrium payoffs for the

entrepreneur and the insider for a given q ∈ [0, 1], when long-term contracting is not feasible.

We first derive a simplifying lemma:

Lemma 2. The optimal experiment (Z, π) is at least as informative as (q, ωq), in the Black-

well sense. In other words, the outsiders can perfectly infer y ∈ Y from observing the

realization z ∈ Z.

Lemma 2 essentially says that the entrepreneur optimally discloses the insider’s signal

and when z becomes public, the insider has no information privileges over the outsiders.

Intuitively, the entrepreneur benefits from eliminating the insider’s informational advantage.

A priori, it is not obviously the optimal information structure policy as it could hurt the

entrepreneur’s payoff through decreasing the probability of continuation. However, obfus-

cating the signal is not helpful here because the insider’s action conveys information to the

outsiders anyway and it is harder to hide bad realizations of y.

Denote the signal that X ≥ max{X̂(µ), X̄(yi)} by xH , where X̄(yi) is the solution to

Eq[s(X) − I|yi, X ≥ X̄(yi)] = 0 if a solution exists and is zero otherwise. Denote the

15To think about this correlation, note that the entrepreneur can simply include the results from the
insider’s experiment or a noisy version of them in his experiment report to the investors. Even when the
entrepreneur does not observe y, he can still enable the correlation as long as he knows (Y, ωq). Guo and
Shmaya (2017) and Kolotilin (2017) derive general results for the case that the sender’s and the receiver’s
experiments must generate independent signals conditional on X. In Appendix B2, we illustrate how results
are robust to such a requirement.
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signal for the opposite X < max{X̂(µ), X̄(yi)} by xL. Now we can characterize the optimal

experiment in Proposition 3.

Proposition 3 (Endogenous Information under Investor Sophistication). An opti-

mal experiment exists and requires at most 2|Y| = 2m signals. For every signal yi ∈ Y, the

entrepreneur sends either zhi = {yi, xH} Otherwise, it sends zli = {yi, xL}.

Proposition 3 extends Proposition 1 to allow insider sophistication. Lemma 2 implies

that the entrepreneur can split the information design problem into m separate information

design problem, each following Proposition 1. Since the optimal experiment in Proposition

1 has at most two signals, the optimal experiment in presence of a sophisticated investor has

at most 2m signals.

Before we investigate the impact of investor sophistication on relationship formation,

the following lemma reveals that the first-best outcomes cannot be achieved under investor

sophistication alone.

Corollary 2. For any given (Y , ωq), the equilibrium investment decision is not ex-post so-

cially optimal with a positive probability.

Therefore, initial long-term contracts with the right security design is integral to achieving

the socially optimal investment. To that end, we next discuss whether setting milestones

resolves IPH, before discussing optimal contracting and security design under investor so-

phistication in Section 4.3.

4.2 Setting Milestones

Contracting on interim events is related to “milestones” commonly used in venture fi-

nancing. For example, the entrepreneur can commit to reaching a pre-specified scale of

customer base before seeking continued finance. Would that solve the IPH problem? Per-

haps surprisingly, we show the insider cannot increase her expected payoff by contracting on

the interim events.

First note that contracting on milestones is different from contracting on the experiment

(Z, π). Instead, it is about how continuation is contingent on other information the insider

observes. To proceed, we use Yb ⊂ Y to denote binding signals following which the insider

commits to either continue or terminate financing. We denote the set of non-binding signals

by Ynb = Y \ Yb.
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Corollary 3 (Milestone Futility). The insider cannot gain from setting milestones. In

particular, the insider’s expected payoff is maximized when Yb = Ø.

Corollary 3 shows that the insider cannot resolve IPH by setting milestones. The reason

is that the entrepreneur can flexibly control how the insider updates her prior for every

y ∈ Ynb, regardless of the choice of Yb. Therefore, the insider’s information set following

signals in Ynb does not change, while she potentially makes suboptimal decisions following

signals in Yb.
This also explains why milestones are seldom binding in practice. Besides relying on

projections in early stages that are hard to make or enforce, binding milestones render

endogenous information production irrelevant, and thus do not help the insider in extracting

more interim rent.

4.3 Optimal Contracting and Security Design

The next proposition shows that Proposition 2 is robust to insider sophistication and still

achieves the first-best outcome.

Proposition 4 (Optimal Contracts with Investor Sophistication). Regardless of

(Y , ωq), all robust optimal securities are characterized by (17)-(19).

The intuition behind Proposition 4 is the following: Because of the flat part of the

security, the insider’s security entails no risk when the entrepreneur reveals that X > I − ε.
Therefore, the insider always continues the project following z = h, regardless of her own

signal. Hence the insider’s action only reveals whether X > I − ε or not. Hence, by the

design of the security, the outsiders invest if and only if the insider invests. Note that the

proposition does not concern the optimal experimentation (which Proposition 3 describes) or

require any particular structure of (Y , ωq). The proposition holds as long as the experiment

results in a first-best continuation action.

In contrast to the case without long-term contracts, the entrepreneur’s experiment under

the optimal long-term contract does not depend on the insider’s experiment. In other words,

the entrepreneur might find it optimal to hide some of the insider’s information from the

outsiders. As a result, the model predicts there is indeed some information asymmetry

between the insiders and the outsiders but it does not prevent implementing the socially

optimal outcome, because the contractual solution resolves all inefficiencies.
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4.4 Relationship Formation, Sophistication, and Competition

How does investor sophistication impact relationship formation? Intuitively, the insider

always benefits from having a more informative experiment, as the next corollary shows.

Corollary 4 (Relationpship and Sophistication). For every µ ∈ [0, 1], the insider’s

expected payoff U I(µ; q) is weakly increasing in q.

This result is in contrast to Kolotilin (2017) that shows that the receiver’s expected payoff

is non-monotone in the informativeness of her private signal. Because the insider’s expected

interim payoff U I(µ; q) is higher with higher q, insider sophistication directly facilitates

relationship formation.

Furthermore, investor sophistication interacts with interim competition, which can help

us rationalize an empirical observation in relationship banking. Prior theoretical predictions

on the effect of competition on bank orientation so far has been ambiguous. The investment

theory (e.g., Petersen and Rajan (1995) and Dell’Ariccia and Marquez (2004)) argues that

as the credit market concentration decreases, the firms’ borrowing options expand, rendering

banks less capable to recoup in the course of the lending relationship the initial investments

in building relationship, which hinders relationship banking; the strategic theory (e.g., Boot

and Thakor (2000) and Dinc (2000)) says fiercer interbank competition drives local lenders to

take advantage of their competitive edge and reorient lending activities towards relational-

based lending to small, local firms, which strengthens relationship banking. Others (e.g.,

Yafeh and Yosha (2001) and Anand and Galetovic (2006)) suggest that competition can

have ambiguous effects on lending relationships, but typically predict an inverted U-shape

pattern.

Yet empirically Elsas (2005) and Degryse and Ongena (2007) document a U-shape rela-

tionship between likelihood of the lending relationship and the level of competition in the

credit market. These two studies stand out because they measure relationship banking di-

rectly in terms of duration and scope of interactions, thus improve upon and complement

indirect measures such as loan rate (Petersen and Rajan (1995)) or credit availability over

firms’ life time (Black and Strahan (2002)), for which the impact of competition could be

ambiguous in equilibrium (Boot and Thakor (2000)). Our theory offers an explanation.

Proposition 5 (Relationship and Competition). ∃ µ(q) ∈ (0, 1) such that for µ ∈
[µ(q), 1], the insider’s payoff from the relationship financing, U I(µ; q), is increasing in the

level of interim competition (1 − µ) for unsophisticated investors (q = 0), decreasing for
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sophisticated investors (sufficiently large q), and U-shaped for investors with intermediate

sophistication.

(a) The “U-shaped” relationship between U I

and 1− µ (b) Non-monotone relationship be-
tween U I(µ; q) and 1− µ

Figure 4: Illustration of the equilibrium capacity of the financing in the initial round as a
function of the level of ex-post competition

Figure 4(a) illustrates the relationship between U I(µ; q) and µ, the inverse measure of

competition in our model. In particular, when q takes intermediate values and µ is exogenous,

our model thus helps rationalize the findings of Elsas (2005) and Degryse and Ongena (2007).

On the one hand, for a fixed level of private benefit of continuation, lower levels of com-

petition increases the insider’s share of the surplus, and is preferred by more sophisticated

investors who can produce her own information. On the other hand, higher levels of com-

petition can encourage more efficient information production from the entrepreneur which

increases total surplus, thus is preferred by the less sophisticated investors who have no

other means to obtain information rent. For intermediate values of sophistication, competi-

tion hurts the insider’s profit until it replaces the investor’s independent information as her

main source of interim rent, leading to the local U-shape.

To the extent that small banks are able to collect and act on soft information whereas

large banks rely on hard information produced by credit bureaus and alternative sources(e.g.,

Berger, Miller, Petersen, Rajan, and Stein (2005))—higher q in our model, our theory pre-

dicts that competition would reduce relationship formation in regions where large and out-of-

market banks are pre-dominant, and the opposite holds for regions with mostly small banks
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and mutual banks, consistent with empirical evidence in Presbitero and Zazzaro (2011).

Finally, our model reveals that while low levels of interim competition means an insider

can recoup the initial cost of forming the relationship, the ease of forming the relationship

involves a more complex non-monotonicity: in addition to the U-shape, when the market

becomes extremely competitive (µ gets much closer to 0), relationship formation eventually

decreases in competition, as seen in Figure 4(b).

5 Discussion and Extension

5.1 Scalable Investment and Continuum Range of Actions

So far, we have assumed a binary investment decision for the project. In this section, we

enlarge the set of investment opportunities by allowing scalable investment at t = 1 after

observing the experimentation outcome.

Specifically, we assume that investing αI generates a stochastic cash flow r(α)X, where

r(·) : [0, 1] → [0, 1] is weakly increasing. For consistency with the baseline model, we

assume r(0) = 0 and r(1) = 1; our baseline model corresponds to r(α) = 0 for α < 1 and

r(1) = 1. Without any interim competition (µ = 1), the final payoffs following investment

level α and realization of cashflow r(α)X are uE = r(α)X − s(α, r(α)X) + r(α)ε and uI =

s(α, r(α)X)−αI respectively, where s(·, ·) is a security payment that is generally contingent

both on the project scale (or equivalently, level of investment) and the final cash flow, and

private benefit of continuation depends on project scale.

In this section, we allow the entrepreneur to choose experiments with infinitely many

signals. In particular, we show there are situations that the entrepreneur perfectly discloses

X to the investors, since their action set is not finite anymore.

First note that if r(α)
α

is weakly increasing in α ∈ (0, 1], namely if the project has the

full benefit of scale, the investment decision reduces to a binary decision and apparently all

previous results apply. As such, we focus on diminishing return to scale (DRS). Proposition

6 extends our main results to this case.

Proposition 6 (Scalable Investment).

(a) The social welfare of investment, E[r(α)(ε+X)−αI], is increasing in interim competi-

tion 1− µ. In particular, when the entrepreneur issues equities, i.e., s(α, r(α)X) = βr(α)X

for some β ∈ (0, 1) and r(α) = αγ for some γ ∈ (0, 1), the informativeness of the en-

trepreneur’s experiment weakly decreases in the Blackwell sense, as µ increases.
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(b) Suppose α∗(X; ε) is the optimal level of investment for X and ε, i.e. it is the solution

of maxα r(α)(X+ε)−αI. If r(α∗(X; ε))X−α∗(X; ε)I ≥ 0 with probability one for all values

of ε, then a convertible security for insiders and the residual claim for outsiders implement

the first best outcome, the entrepreneur chooses the security after the realization of signal z

to achieve the desirable level of investment, and fully discloses information.

Proposition 6(a) extends the main result in Section 2.2 that the insider’s interim rent is

not increasing in her information monopoly, to continuous (non-binary) investment decisions.

More information monopoly (higher µ) means less alignment of the entrepreneur’s payoff with

the social planner’s, which leads to inefficient information production. However, the scalable

investment helps the insider to recover some interim rent, even if she fully holds up the

entrepreneur (µ = 1). When the insider chooses the scale of investment from a continuous

set, she should get zero expected rent from the marginal level of investment. The DRS

assumption implies she gets positive interim rent overall, if the investment takes place.

Proposition 6(b) extends Proposition 2. To implement the first best outcome under

DRS, the security should not only encourage the entrepreneur to experiment efficiently but

also incentivize the insider to efficiently scale the project. We thus choose the insider’s

security to perfectly align the insider’s and the social planner’s utilities over different scales

of investment. We describe the security in greater detail in the appendix.

The key takeaway is that with DRS and a continuum of investment levels, investment

decisions are no longer binary (investing I or terminating), and the insider derives partial rent

from her informational monopoly. Endogenous information production still leads to reduced

rent which potentially renders relationship financing infeasible, consistent with Lemma 1.

Moreover, similar to the case of binary investments levels, a contractual solution entailing

giving convertible securities to initial investors still achieves the first best outcome, and is

robust to investor sophistication.

5.2 Commitment to Information Design and Partial Observation

Ex-ante Commitment to Experimentation

Commitment issues are common in applications of information design and Bayesian per-

suasion. Our setup relaxes this strong assumption that the entrepreneur can commit in

the initial round. To see this, note that the insider has limited ability in dictating the

entrepreneur’s experimentation at the time of initial financing, but can observe it after be-
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coming an insider. In other words, the entrepreneur cannot commit to an experimentation

when raising K. Otherwise, the insider can extract rent (as seen in Section 4), and the prob-

lem in Section 3 becomes a joint optimization problem on security design and information

disclosure for a total issuance of K + I, which Szydlowski (2016) addresses. He shows that

both equity and debt can implement the optimal design, and the optimal security is inde-

terminate. In essence, the lack of commitment and contractibility of the experimentation

at t = 0 in our setting (partially) breaks the indeterminacy in Szydlowski (2016) which has

only one round of financing by fully competitive investors.

For illustration, suppose we use debt security to finance the project without investor

sophistication, the insider investor receives less reward from high realizations. Therefore,

the entrepreneur promises a larger λ to the insider in the second round to compensate for

her initial investment K. The entrepreneur, less exposed to the downside (smaller 1 − λ),

then chooses less informative signals ex post, which decreases the financing capacity in the

first round. Clearly, the choice of security ex ante affects the choice of information design ex

post.

Partial Observation of Experimentation

Another assumption we have had thus far is that the insider perfectly observes the en-

trepreneur’s experiment and its signal realization, before making the continuation decision.

In other words, we have assumed that not only the investor’s monitoring technology rules out

misreporting, but the investor also commits to perfectly monitor the entrepreneur’s exper-

iment, while she might be better off randomizing between monitoring and not monitoring.

We now show that while the first best outcome becomes infeasible, our results on IPH and

optimal contracting and security design still hold.

To incorporate the partial observation, we here allow the possibility of the entrepreneur’s

misreporting and the investor’s partial commitment to monitoring:

1. With probability α ∈ [0, 1], the entrepreneur can misreport the signal z without getting

caught even when monitored by the investor.

2. At time t = 0, the investor commits to verifying the experiment and its signal realiza-

tion with probability β ∈ [0, 1].16

16Note that if the investor monitors the experiment, she makes the continuation decision based on both
the reported and the monitored signal. In this case, we allow the investor to commit to punishing the
entrepreneur by not investing in the case of misreporting.
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Note that our baseline model corresponds to α = 0 and β = 1. In general, the following

variant of Corollary 1 and Proposition 2 holds.

Proposition 7 (Partial Observation and Commitment).

(a) The insider receives no interim rent for extreme values of µ and for any values of

α, β ∈ [0, 1].

(b) For α > 0 and β < 1, there exists no contractual solution that implements the first

best outcome. For small enough values of α and large enough values of β, the convertible

securities are still optimal and robust to ε. Relationship financing is infeasible for large

enough values of α and low enough values of β.

Proposition 7 validates our prior knowledge that the investor’s monitoring is essential to

relationship financing. But part (a) shows it is insufficient. In fact, a contractual solution

involving the outsiders is also required to make optimal investment decisions. Furthermore,

note that in contrast to costly state verification models that the investor optimally random-

izes between monitoring and not monitoring, Proposition 7(b) shows that the full observation

of the investor is required to implement the socially optimal outcome. The main difference is

that the investor has no way to punish the entrepreneur for misreporting, as he is protected

by his limited liability. Therefore, the entrepreneur always benefit from ex-post misreporting.

5.3 Security Design Right

Section 3 mainly focuses on the entrepreneur’s optimal security design problem. In what

follows, we show that the insider investor designs optimal security differently from what the

entrepreneur does, and in a less socially efficient manner.

Proposition 8 (Security Design Right). Under both investor sophistication and un-

sophistication, it is more socially efficient that the entrepreneur designs the security.

The intuition for Proposition 8 is the following: In order to raise the initial K, the

entrepreneur understands he has to provide at least a minimum amount of expected cash

flow to the insider investor. Therefore among all designs that generate this amount, he

chooses the one that makes him commit to the most informative disclosure policy, which

maximizes the total surplus. In other words, ex ante he is the residual claimant and his

incentives are more aligned with a social planner. Moreover, if the insider has the security

design right, she would choose a less socially optimal security, as she does not consider the

private benefit of the entrepreneur from the investment.
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6 Conclusion

We model the dynamic financing of innovative projects by relationship and arms-length

investors as a mechanism design problem with an embedded Bayesian persuasion game

whereby the entrepreneur endogenously produces interim information to seek continued fi-

nancing. We show that the entrepreneur’s (sender’s) endogenous experimentation typically

reduces the insider’s (receiver) informational-monopoly rent, holding up the insider’s initial

investment to form the relationship in the first place. Investor sophistication (receiver’s

type) and interim competition can mitigate the problem, and they interact to produce non-

monotone patterns of relationship formation and interim competition. Importantly, we derive

optimal sequential securities to resolve the information production hold-up: the entrepreneur

contracts with investors in the initial round to allow them to purchase convertible securities

in a later round, and issue residual claims to competitive outsiders later. The optimal secu-

rity choice and contracting terms are robust to the entrepreneur’s continuation bias, investor

sophistication, and scalable investment, and can be applied to similar hold-up problems in

persuasion games with contingent transfers and heterogeneous receivers.

Our theory immediately applies to at least two major areas of finance. First, it under-

scores the impact of endogenous information production and clarifies its interactions with

investor sophistication and competition, rationalizing the U-shaped link between relationship

lending and competition documented in relationship lending that extant theories could not

account for. Second, it demonstrates the robustness of convertible securities in the venture

capital, and derives the optimal contract that is consistent with real-life practice. Given that

the solutions to many of the world’s biggest problems such as Alzheimer’s disease, global

warming, and fossil-fuel depletion require large initial funding, reliable financing relation-

ships, and long-term experimentation (Nanda and Rhodes-Kropf (2013) and Hull, Lo, and

Stein (2017)), the cost of inefficient information production could be tremendous. Our study

helps underscore and formalize this practical issue, and develops potential contractual solu-

tions.
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Appendix A: Proofs of Lemmas and Propositions

A1. A Technical Lemma

The entrepreneur endogenously designs the experiment to maximize his payoff, subject to the insider

investors’ second-round participation constraint. With finite state space, the signal space as the range of

a deterministic mapping from the state space is necessarily finite. Consequently, we can apply the method

of Lagrange multipliers directly. But alas, we are dealing with infinite dimensional state space, and in

unrestricted signal generation space, we cannot always apply the method of Lagrange multipliers.

That said, the optimal experimentation function is given by the characteristic function of a countable

sup-level set of payoff densities, for some cutoff value “multiplier”. In other words, the experimentation we

look at are conditional probabilities and therefore their space is a Banach space. With this insight, we first

prove the following mathematical lemma that allows us to use the method of Lagrange multipliers in the

proofs of our lemmas and propositions (see also Ito (2016) for an abstract generalization).

Lemma (A1). Suppose wi(x),mi(x) : [0, 1] → R (1 ≤ i ≤ N) are continuous and bounded functions.

Suppose the following maximization problem has a solution:

max
αi(.)∈A

∫ 1

0

N∑
i=1

wi(x)αi(x)dx

s.t.

∫ 1

0

mi(x)αi(x)dx ≥ 0 ∀ 1 ≤ i ≤ N, and

N∑
i=1

αi(x) ≤ 1 ∀x ∈ [0, 1],

(20)

where A is the set of all measurable functions over [0, 1] that take value from [0, 1]. Then, there exist non-

negative real numbers {µi}Ni=1, such that the solution to (20) is a solution to the following maximization

problem:

max
αi(.)∈A

∫ 1

0

N∑
i=1

(wi(x) + µimi(x))αi(x)dx s.t.

N∑
i=1

αi(x) ≤ 1 ∀x ∈ [0, 1] (21)

Proof. Let ÃN be the set of all N−tuples of functions (α1(.), . . . , αN (.)) in A that satisfy
∑N
i=1 αi(x) ≤ 1.

Since all functions are bounded and measurable, then it is easy to check that ÃN constitutes a closed

set in L1N . Therefore, the following maximization problem is well-defined.

max
(α1(.),...,αN (.))∈ÃN

∫ 1

0

N∑
i=1

wi(x)αi(x)dx s.t.

∫ 1

0

mi(x)αi(x)dx ≥ 0 ∀ 1 ≤ i ≤ N (22)

Suppose a∗ ∈ ÃN is the solution to the problems (20) and (22). It is easy to see that Slater condition,

and correspondingly, strong duality holds. Therefore, there exists a vector of non-negative real numbers

{µi}Ni=1 such that a∗ solves the following maximization problem as well:

max
(α1(.),...,αN (.))∈ÃN

∫ 1

0

N∑
i=1

wi(x)αi(x)dx+

N∑
i=1

µi

∫ 1

0

mi(x)αi(x)dx (23)

Note that (21) is equivalent to (23).
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In fact, for most Bayesian persuasion settings studied in the literature, the signal generation function

corresponds to mapping to probability space that is bounded, and therefore lies in a Banach space. This

allows us to apply the approach in Bergemann and Morris (2017) beyond finite-state-space settings.

A2. Proof of Proposition 1

First, we show that two signals are enough to implement the optimal information design. In particular,

there is an optimal experiment that induces investment when the outcome exceeds some threshold. Then,

we show all optimal experiments induce the same investment decisions. Hence, the equilibrium is unique in

terms of equilibrium payoffs and investment decisions.

Optimality of a Binary Experiment. According to (5), the entrepreneur is indifferent between ex-

periment (Z, π̃) and a binary experiment ({h, l}, π) that pools all signals in Z+ in h and all signals in

Z− = Z \Z+ in l. In other words, we can always let π(h|X) =
∑
z∈Z+ π(z|X) and π(l|X) =

∑
z∈Z− π(z|X).

It is easy to see that the insider’s expected payoff and the conditional probability of investment is not affected

by changing the experiment from (Z, π̃) to ({h, l}, π).

Optimality of Threshold Scheme. Given the experiment generates a binary signal, the entrepreneur

solves the following optimization problem.

max
π(h|X)

∫ 1

0

[ε+X − µs(X)− (1− µ)I]π(h|X)f(X)dX (24)

s.t.

∫ 1

0

(s(X)− I)π(h|X)f(X)dX ≥ 0, and π(h|X) ∈ [0, 1]

In (24), the entrepreneur maximizes his expected payoff with the participation constraint for the in-

vestors. Note that s(X) ≥ I, with positive probability and the set of measurable functions satisfying the

constraint in (24) is a closed and bounded subset of L1. Therefore, (24) has a solution.

When the constraint in (24) is not binding, the optimal experiment sets π∗(h|X) = 1 for all values of

X for which the value in the bracket is non-negative. It corresponds to the set {X ≥ X̂(µ)}. When the

constraint in (24) is binding, we apply Lemma A1 with N = 1. Let λ̂ be the corresponding multiplier. Then

the optimal experiment π∗(h|X) solves maxπ(h|X)

∫ 1

0
[ε+X − I + (λ̂− µ)(s(X)− I)]π(h|X)f(X)dX

Note that the term in the bracket is strictly increasing in X, because

d+

d+X
[ε+X − I + (λ̂− µ)(s(X)− I)] = 1 + (λ̂− µ)

d+

d+X
s(X) > 1− µ d+

d+X
s(X) ≥ 1− µ ≥ 0,

where d+
d+X

denotes the right derivative. Therefore, the optimal experiment has a threshold scheme, where

the threshold X̄ satisfies
∫ 1

X̄
(s(X)− I)f(X)dX = 0. Since the constraint in this case is binding, X̂(µ) ≤ X̄

whereas the opposite holds in the first case. The entrepreneur thus always follows a threshold strategy where

the threshold is given by max{X̄, X̂(µ)}.

Uniqueness of Investments and Payoffs. Finally, we show the payoffs and investment decisions in

equilibrium is essentially unique. The optimal experiments in general are not unique, as the entrepreneur

can split each one of the signals h and l in the optimal experiment ({h, l}, π∗) into more signals and imple-
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ment the same outcome. Suppose there is another optimal experiment (Z ′, π′) that induces investment with

probability I ′(X) for state X ∈ [0, 1]. As discussed earlier, the entrepreneur can replace the experiment

with a binary experiment. It implies that the optimization problem in (24) has two different solutions. It

is a contradiction. Therefore, I(X) = I{X≥max{X̄,X̂(µ)}}. Consequently, the entrepreneur’s and the insider’s

payoffs are the same over equivalent choices of optimal experiment.

Uniqueness of Investments and Payoffs In Mixed Strategies. So far, we have assumed that the

insider follows a pure strategy. Even if the insider is allowed to randomize between investment and not

investment following a signal, the equilibrium payoffs and investments are unique.

To see this, we show that there exists no mixed-strategy Nash Equilibrium in which the investor ter-

minates the project with positive probability when she is indifferent between continuation and termination.

Suppose the contrary that the entrepreneur uses experiment (Z ′, π′) and the investor uses the investment

function i′(.) : ∆([0, 1])→ [0, 1]. To induce randomization, there exists a signal that makes the insider indif-

ferent between investment and not investment, i.e. ∃z ∈ Z ′ : E[s(X) − I|z] = 0. If z appears with positive

probability, the entrepreneur can increase his payoff by splitting z to z+ and z− such that E[s(X)−I|z+] > 0.

This profitable deviation leads to a contradiction.

A3. Proof of Corollary 1

We remind the readers that the corollary does not assert that relationship financing is feasible in [µl, µh].

The key message is that there are regions in which relationship financing breaks down.

To show the insider can recover K only for intermediate values of µ, we show that the insider’s payoff is

single-peaked in µ. The insider’s equilibrium interim payoff is as follows:

U I({h, l}, π∗(µ);µ) = µE[(s(X)− I)I{X≥max{X̄,X̂(µ)}}], (25)

where π∗(µ) denotes the optimal experiment for µ. By taking the derivative with respect to µ, we get:

∂

∂µ
U I({h, l}, π∗(µ);µ) = E[(s(X)− I)I{X≥max{X̄,X̂(µ)}}] + µ(s(X̂(µ))− I)f(X̂(µ)) (26)

Both terms in the right hand side of (26) are weakly decreasing in µ. Moreover, it is easy to see that

the insider’s payoff is zero for µ = 0 and µ = 1. Given that U I is continuous and differentiable, the insider’s

expected payoff is single-peaked with respect to µ. The corollary follows.

A4. Proof of Lemma 1

Proof for Part (a)

When λ = 1, the outsiders cannot make any offer to the entrepreneur by the design of the contract.

Therefore, the insider can fully squeeze the entrepreneur, which is equivalent to the case of µ = 1 in Propo-

sition 1. As is shown in Corollary 1, the relationship financing is infeasible in this case.

Proof for Part (b)

We first show that λ enters into the entrepreneur’s payoff in a way similar to that of µ in (5). We then

simply apply the result of Corollary 1 to show there are intermediate values of λ for which the insider receives
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a positive expected payoff after the initial investment.

The entrepreneur’s payoff from experiment (Z, π) can be derived as follows: Note that following signal

z ∈ Z, the insider chooses to invest by paying pI = λI if and only if λE[s(X) − I|z] ≥ 0. Following the

insider’s action, the outsiders realize whether the signal is favorable for investment, z ∈ Z+. Consequently,

following the insider’s investment, the outsiders pay the entrepreneur pI = (1−λ)E[s(X)|z ∈ Z+]. Therefore,

the entrepreneur’s payoff from experiment (Z, π) is given by:

UEλ (Z, π;λ) =
∑
z∈Z+

∫ 1

0

(ε+X − I − s(X) + pI + pO)π(z|X)f(X)dX

=
∑
z∈Z+

∫ 1

0

(ε+X − I − s(X) + λI + E[s(X)|z ∈ Z+])π(z|X)f(X)dX

=

∫ 1

0

∑
z∈Z+

(ε+X − I)π(z|X)f(X)dX − λ
∫ 1

0

∑
z∈Z+

(s(X)− I)π(z|X)f(X)dX

From this, we see that the entrepreneur’s preference over different experiments exactly coincides with (5), if

we replace µ with λ. The result follows.

For a given security s(X), suppose the entrepreneur uses the threshold X̄s for sending high signals

whenλ = 1. Then, similar to the argument given in Lemma 4, the insider receives positive interim payoff if:

ε+ X̄s − (sI(X̄s) + sO(X̄s)) + (1− λ)(sO(X̄s)− I) < 0 (27)

In short, condition (27) shows that the entrepreneur’s gain from the continuation at X = X̄s does not

cover the marginal drop in the price of the security due to inefficient continuation, (1− λ)(sO(X̄s)− I). We

conclude that the insider can get positive interim rent.

Proof for Part (c)

The investment is socially efficient if and only if X ≥ I − ε. However, for contracts of the form

{λs(·), (1 − λ)s(·), λ}, investment takes place if X ≥ max{X̄, X̂(λ)}. Since both X̄ and X̂(λ) are less than

I − ε for λ > 0, investment is inefficient with a positive probability.

A5. Proof of Proposition 2

An optimal design implements the socially optimal outcome when the investment takes place iffX ≥ I−ε.
We first show that condition (??) is necessary for implementing the socially optimal outcome. Then, we

introduce a security that maximizes the entrepreneur’s expected payoff and implements the socially optimal

outcome. Finally, we characterize the set of optimal designs that are robust to ε.

The necessity of (??) for the existence of socially efficient design. Note that both the insider and the

outsiders should at least break-even in expectation. Because the insiders and the outsiders cover all the invest-

ments and do not gain any private benefit, their total expected payoff cannot exceed E[(X−I)I{X≥I−ε}]−K.

Therefore, condition (??) is necessary.

Social optimality of optimal designs. Note that the social surplus from the relationship financing is

A-4



bounded by

UEFB = E[(ε+X − I)I{ε+X−I≥0}]−K (28)

We now show that this surplus is achievable for a contract that satisfies the constraints in (14). Note that

(17) implies that M(X; sI , sO, λ) = ε + X − I for all X ∈ [λI, I], where M(·) is defined in (13). Since

M(·) is increasing in X and M(I − ε; sI , sO, λ) = 0, the entrepreneur sends a high signal for X ≥ I − ε,
provided the security can cover the investment cost for the insiders and outsiders. Conditions (18) and (19)

ensure that is the case. As a result, the entrepreneur receives expected payoff UεFB and the socially optimal

outcome is implemented. It suffices to show that all optimal designs implement the socially optimal outcome.

The set of robust designs. We now argue that the set of contracts specified in (17)-(19) are the only

designs that are robust to ε. It is clear that these securities are not specified in terms of ε. To be robust

to ε, we need to have M(I − ε; sI , sO, λ) = 0 for all ε > 0 that satisfy (??). Therefore, we should have

sI(I − ε) = λI for all ε that satisfy (??). We denote the highest value of such ε by ε̄, and show that no

investment takes place for X ≤ I − ε̄, and thus the specification of contract is irrelevant for these values.

Note that according to the solution to (15), the investment function has a threshold scheme for any given

contract. Therefore, the participation constraints for the insider and the outsiders imply that the threshold

cannot be less than I − ε̄. As such, there would be no investment for X ∈ [0, I − ε̄). It shows the contingent

transfers for these states are irrelevant.

A6. Proof of Lemma 2

We show the entrepreneur designs the experiment in a way that the realized signal z fully reveals the

insider’s signal y. In other words, for a given signal z ∈ Z in the optimal experiment, there exists signal

y ∈ Y such that P (y|z) =
∫ 1
0
π(z,y|X)f(X)dX∑

z∈Z
∫ 1
0
π(z,y|X)f(X)dX

= 1.

Consider experiment (Z, π) and signal z ∈ Z. Suppose there are m ≥ 2 distinct signals Ỹ(z) =

{y1, y2, . . . , yl} ⊂ Y such that P (yi|z) > 0 for all 1 ≤ i ≤ l. We show the entrepreneur can increase his payoff

by splitting signal z into signals z1, z2, . . . , zl, where π(zi, yj |X) = π(z, yj |X)Ii=j .
Let us examine the entrepreneur’s expected payoff in these two scenarios. It should be apparent that the

insider either chooses λ = 1 or λ = 0 because her expected payoff is linear in her amount of investment. In

the first scenario that the signals are pooled, suppose the insider makes the investment for y ∈ Ỹ+(z) ⊂ Ỹ(z),

following signal z. When the signal z is public, the outsiders offer pO = E[s(X)|z, y ∈ Ỹ(z) \ Ỹ+(z)] if it

exceeds the cost of investment I, otherwise they do not make any offer.

Meanwhile, the insider does not pay more than max{pO, I} even if her valuation given her private signal

y ∈ Ỹ(z)+ exceeds max{pO, I}. As a result, the price of the security increases if the entrepreneur shares the

insider’s signal with the outsiders. The entrepreneur would indeed be better off by splitting the signal into

z1, z2, . . . , zl in the way discussed.

A7. Proof of Proposition 3

Lemma 2 reveals that the entrepreneur essentially conveys the insider’s information to outsiders. T

is an information set that nests that of the insider’s. As such, the insider’s signal alters the problem as

if all investors have a different prior belief. Consequently, the entrepreneur essentially faces m different

experiment design problems, specified in (7), with the priors f(X|yi). Proposition 1 then leads us to the
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optimal experiments under investor sophistication.

The only exception are the cases that either P (s(X) ≥ I|yi) = 0 or E[X|yi] > 0, where X̄(yi) does not

exist. In the first case, there would be no investment by the insider, and consequently the outsiders (according

to Lemma 2), regardless of the entrepreneur’s choice of signals. For the second case, the entrepreneur

optimally induces invest only for the event X ≥ X̂(µ).

A8. Proof of Corollary 2

Suppose the contrary that there exists an insider’s experiment (Y, ωq) that leads to the socially optimal

investment decisions. To implement the socially optimal outcome, the threshold for all m signals should be

I − ε. We thus need to have max{X̂(µ), X̄(y)} = I − ε for all y ∈ Y. Since X̂(µ) < I − ε for all µ > 0, then

we need to have X̄(y) = I − ε for all signals in Y. It implies E[s(X)− I|zhi ] = 0 for 1 ≤ i ≤ m. Therefore,

the insider receives zero interim expected payoff, failing to recover the initial cost K. Then the insider would

not start the relationship financing in the first place, contradicting the outcome being socially optimal.

A9. Proof of Corollary 3

It is easy to show that Lemma 2 still holds: the entrepreneur chooses an experiment strictly more

informative than (Y, ωq). It means the entrepreneur still solves m independent information design problem

for every signal in Y to determine the additional information to reveal.

This independence implies that the entrepreneur does not choose a more informative experiment for

signals in Ynb, compared to the benchmark case without setting milestone. Moreover, the insider’s action

following signals in Yb is weakly dominated by that without the commitment, as she does not respond to

the additional information that the entrepreneur provides for these states. Therefore, the insider does not

gain from setting milestones.

A10. Proof of Proposition 4

For every insider’s experiment (Y, ωq), (17)-(19) characterize the set of optimal long-term contracts. In

particular, we show that under these conditions the entrepreneur optimally designs a binary experiment that

sends a high signal if X ≥ I − ε, which induces investment. First, suppose the entrepreneur chooses this

experiment. (17) implies that the insider always invests if she learns that X ≥ I − ε. (18) and (19) together

imply that the outsiders also invest if and only if the entrepreneur’s experiment sends a high signal. The

reason is that the insider’s action is binary and only reveals the signal of the entrepreneur’s experiment.

Therefore, the project is invested if and only if X ≥ I − ε. Moreover, by an argument similar to the proof of

Proposition 2, it is the optimal experiment for the entrepreneur and these contracts give the entrepreneur the

entire social surplus. Now to show that the optimal design has to satisfy (17)-(19), we can use the argument

almost verbatim in the proof of Proposition 2.

A11. Proof of Corollary 4

As follows, we show the insider earns higher expected payoff from a more informative experiment.

Consider two experiments (Y, ωq) and (Y, ωq′) with q′ > q. Therefore, there exists an m × m Markovian
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matrix T such that fq(X|yi) =
∑m
j=1 Tijfq′(X|yj). Moreover, we can write the insider’s expected payoff

from experiment (Y, ωq) as:

U I(µ; q) = µ
∑
y∈Y

Pq(yi)E
[
(s(X)− I)I{X≥max{X̂(µ),X̄(y)}}

]
. (29)

According to the definition of X̄(y) introduced in Proposition 3, if X̄(y) > 0 then E[(s(X)− I)I{X≥X̄}] = 0.

Therefore, we can rewrite (25) as

U I(µ; q) = µ

m∑
i=1

Pq(yi) max{
∫ 1

X̂(µ)

(s(X)− I)fq(X|yi)dX, 0} (30)

Substituting fq(X|yi) by
∑m
j=1 Tijfq′(X|yj), we have

U I(µ; q) = µ

m∑
i=1

Pq(yi) max{
∫ 1

X̂(µ)

(s(X)− I)

m∑
j=1

Tijfq′(X|yj)dX, 0}

≤ µ
m∑
i=1

Pq(yi)

m∑
j=1

Tij max{
∫ 1

X̂(µ)

(s(X)− I)fq′(X|yj)dX, 0}

= µ

m∑
i=1

Pq′(yi) max{
∫ 1

X̂(µ)

(s(X)− I)fq′(X|yj)dX, 0} = U I(µ; q′)

where the last inequality follows from the identity Pq′(yj) =
∑m
i=1 TijPq(yi).

A12. Proof of Proposition 5

The derivative of (29) with respect to µ (when it exists) is

d

dµ
U I(µ; q) =

∑
y∈Y

Pq(y)E[(s(X)− I)I{X≥max{X̂(µ),X̄q(y)}}]+

µ
∑
y∈Y

Pq(y)(s(X̂(µ))− I)f(X̂(µ)|y)I{X̂(µ)>X̄q(y)}

(31)

To derive the relation between the insider’s expected payoff and µ, fix q and consider the following two

cases:

1. Suppose µ ≥ 1 − ε
I , which implies X̂(µ) = 0. Then (25) implies that U I(·; q) is weakly increasing in

µ for µ ∈ [1− ε
I , 1].

2. Suppose µ < 1 − ε
I , then X̂(µ) > 0. In this range of values of µ, if X̄q(y) < X̂(µ) for some y ∈ Y,

then the first term in the right hand side of (31) is positive and the second term is negative. For small

enough values of µ the derivative is strictly positive, since the first term dominates the second term.

Moreover, the derivative is weakly decreasing, since both of the terms are decreasing in µ. It implies

the insider’s expected payoff is concave in µ for µ ∈ [0, 1− ε
I ].

Denote µ̄ ∈ [0, 1− ε
I ] the maximizer of U I(·; q). If µ̄ < 1− ε

I , then the insider’s expected payoff is U-shape

in µ for µ ∈ [µ̄, 1], which completes the proof.
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A13. Proof of Proposition 6

Proof for Part (a)

We first characterize the entrepreneur’s information design problem and show how the optimal experi-

ment changes with µ. For a given security s(α, r(α)X) and the entrepreneur’s experiment (Z, π), let Fπ(dz)

denote the implied measure of unconditional probabilities over signals z ∈ Z. We further denote the insider’s

optimal and the socially optimal action given the signal z by αI(z) and αS(z) respectively. In other words,

αI(z) ∈ argmaxα∈[0,1] E[s(α, r(α)X)− αI|z],

αS(z) ∈ argmaxα∈[0,1] E[r(α)(X + ε)− αI|z] s.t. E[s(α, r(α)X)− αI|z] ≥ 0.
(32)

When the signal is privately observed by the insider, she chooses αI(z). When the signal is publicly

observed, all investors invest at the welfare-maximizing level, provided the security covers the investment

cost. Thus, the entrepreneur solves the following optimization problem

max
(Z,π)

µ

∫
z∈Z

E[r(αI(z))(X + ε)− s(αI(z), r(αI(z))X)|z]Fπ(dz)

+(1− µ)

∫
z∈Z

E[r(αS(z))(X + ε)− αI|z]Fπ(dz)

(33)

Equation (33) shows that the entrepreneur faces a trade-off between gaining more rent when the signal is

private (the first term) and increasing the efficiency of investment (the second term). As µ increases, the

entrepreneur puts smaller weight on the social efficiency of investment, which clearly leads to experiments

that implement less socially efficient outcomes.

Now, we characterize the optimal experiment when the entrepreneur uses equities (s(α, r(α)X) =

βr(α)X) and r(α) = αγ . First we find the investors’ optimal level of investment given a posterior f(X|z).
Following the definition of αI(·) and αS(·) provided in (32), we can easily see:

αI(z) =

(
γβE[X|z]

I

) 1
1−γ

αS(z) = min

{(
γE[X + ε|z]

I

) 1
1−γ

,

(
βE[X|z]

I

) 1
1−γ
}

Moreover, since the scale of the investment only depends on the expected state E[X|z], we can WLOG

assume that the signal only has information about the expected state. We can then denote the distribution

of signals by G(X), where F (X) is a mean-preserving spread of G(X). As a result, we can rewrite the

entrepreneur’s problem as follows:

max
G(X)≺2F (X)

∫ 1

0

uµ(X)dG(X), (34)
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where
uµ(X) = µaI(X) + (1− µ)aS(X)

aI(X) = (
γβ

I
)

γ
1−γX

γ
1−γ ((1− β)X + ε)

aS(X) =


(
β
I

) γ
1−γ

X
γ

1−γ ((1− β)X + ε) if βX ≤ γ(X + ε)

I−
γ

1−γ (γ
γ

1−γ − γ
1

1−γ )(X + ε)
1

1−γ if βX > γ(X + ε)

The following lemma is useful when we show that G(·) becomes less informative in the Blackwell sense

as µ increases.

Lemma (A2). For every µ ∈ [0, 1], there exists X∗(µ) such that the optimal experiment entails pooling all

the types below X∗(µ) and separating all the types above X∗(µ).

Proof. First we show that there exists a threshold value T (µ) such that u′′µ(X) > 0 for X > T (µ) and

u′′µ(X) < 0 for X < T (µ). Then, the proof follows from Theorem 1 in Dworczack and Martini (2017).

By taking the second order derivative of aI(·) and aS(·), we get:

a′′I (X) =

(
γβ

I

) γ
1−γ

(
((1− β)

(
(2X2 +

γ(2γ − 1)

(1− γ)2

)
X +

γ(2γ − 1)

(1− γ)2
ε

)
X

3γ−2
1−γ

aS(X) =

(βI )
γ

1−γ

(
((1− β)

(
(2X2 + γ(2γ−1)

(1−γ)2

)
X + γ(2γ−1)

(1−γ)2 ε
)
X

3γ−2
1−γ if βX ≤ γ(X + ε)

I−
γ

1−γ

(
( γ

(1−γ)2

)(
γ

γ
1−γ − γ

1
1−γ

)
(X + ε)

2γ−1
1−γ if βX > γ(X + ε)

(35)

For γ ≥ 1
2 , uµ(·) is convex and full-disclosure is optimal. Moreover, if γ(1 + ε) ≥ β, uµ(X) just scales

with the change of µ, hence the optimal information disclosure is independent of µ. For γ < min{ 1
2 ,

β
1+ε ,

there is T (µ) such that
(

2X2 + γ(2γ−1)
(1−γ)2

)
X+ γ(2γ−1)

(1−γ)2 ε < 0 if and only if X < T ′ over the range of X ∈ [0, 1].

Therefore, there is a threshold T (µ) ∈ [ γε
β−γ , T

′], for which u′′µ(X) < 0 if and only if X < T (µ). Q.E.D.

This characterization of optimal disclosure implies that we only need to show X∗(µ) is weakly increas-

ing in µ. For γ ≥ 1
2 , X∗(µ) = 0, hence the statement is straightforward. For γ < 1

2 , X∗(µ) ∈ [T (µ), 1],

since u′′µ(X) < 0 for X < T (µ) and they should be pooled. Moreover, note that X∗(µ) is the solution

to E[uµ(X)|X ≤ X∗(µ)] = uµ(E[X|X ≤ X∗(µ)]). If such a solution does not exist, then X∗(µ) = 1, i.e.

no-disclosure is optimal. Finally, it is easy to check that ∂
∂µ∂X2uµ(X) < 0 for X ∈ [ γε

β−γ , T (µ)]. Therefore,

E[uµ2
(X)|X ≤ X∗(µ1)] ≤ uµ2

(E[X|X ≤ X∗(µ1)]) for any µ2 > µ1. Consequently, X∗(µ2) ≥ X∗(µ1). Q.E.D.

Proof for Part (b)

Consider sI(α, r(α)X) = λmax{r(α)X,αI}, where λ is defined such that E[r(α)X−αI] = K
λ . Moreover,

suppose the outsiders receive the residue sO(α, r(α)X) = r(α)X−sI(α, r(α)X). We want to show that if the

entrepreneur fully discloses X and chooses the optimal level of investment α∗(X; ε), then both the insider

and the outsiders are willing to invest their share of investment, which are λα∗I and (1−λ)α∗I, respectively.

The insider is always willing to invest α∗ as sI(α, r(α)X) − λαI ≥ 0 for all values of α. Moreover, the

assumption in the proposition implies that r(α∗)X ≥ α∗I with probability one. Therefore, the outsiders are

also willing to participate because

sO(α∗, r(α∗)X)− (1− λ)α∗I = r(α∗)X − λmax{r(α∗)X,α∗I} − (1− λ)α∗I = (1− λ)(r(α∗)X − α∗I) ≥ 0
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It is easy to see the solution is robust to ε and the insider’s private experimentation.

A14. Proof of Proposition 7

Proof for Part (a)

Since the insider’s payoff is continuous in µ, we only need to prove the insider receives zero expected payoff

for µ = 0 and µ = 1. For µ = 0, the insider has no information rent and clearly gets zero expected payoff.

We now discuss the case of µ = 1.

Secret Manipulation. First suppose the entrepreneur can secretly change the signal realization with

probability α > 0. Similar to Proposition 1, the entrepreneur follows a threshold strategy, i.e., there exists

X̄α ∈ [0, 1] such that the experiment generates a high signal for X ≥ X̄α. The high signal induces investment

if the investor receives non-negative expected payoff from the investment following the high signal, which is

equivalent to

α

∫ X̄α

0

(s(X)− I)f(X)dX +

∫ 1

X̄α

(s(X)− I)f(X)dX ≥ 0. (36)

The first term in (36) shows the probability that the experiment generates a low signal, but the en-

trepreneur sends a high signal. Note that for α = 1, the inequality does not hold for any threshold value.

Therefore, there exists ᾱ ∈ [0, 1] above which the investment is not feasible. However, for α ≤ ᾱ, the en-

trepreneur chooses X̄α such that the inequality (36) binds, which implies the investor becomes indifferent

between investment and not investment after receiving the high signal. As a result, the investor receives zero

interim rent for all values of α ∈ [0, 1].

Random Monitoring. Now consider the case that the insider investor verifies the signal realization with

probability β < 1. This case involves two subcases:

First, the investor cannot commit to punish the entrepreneur for misreporting. In this subcase, there

is no signal such as h that always induces investment, because otherwise the entrepreneur would optimally

always report h, which leads to negative expected payoff for the investor when she does not monitor. As such,

the investor only invests when she monitors, which makes the entrepreneur’s reporting strategy irrelevant.

Hence the entrepreneur would follow the threshold strategy at X̄, in which the investor does not get interim

rent.

Now consider the subcase that the investor commits to punish misreporting. in this case, the entrepreneur

might use 4 different kinds of signals in his experiment: 1. low signals, such as l0, that never induce

investment. 2. Low signals, such as l1, that only induce investment when the investor does not monitor. 3.

high signals, such as h0, that only induce investment if they are verified. 4. High signals, such as h1, that

always induce investment. The probability of investment is (1− β)P (l1) + βP (h0) + P (h1). We next check

the IC constraints for truthful reporting for the entrepreneur.

In particular, we show there is no equilibrium that the insider invests without monitoring. Consider the

contrary. If β < 1
2 , then types l0 and h0 prefer to report h1 instead of truthful reporting. Therefore, we

should have P (l0) = P (h0) = 0, which implies that the investor always invests when she is not monitoring.

Thus, she would be better off by not investing at all when she does not monitor. It implies P (l1) = P (h1) = 0

as well. It is a contradiction. For β ≥ 1
2 , P (l0) = 0, because he would be strictly better off by reporting

h1. Therefore, the investor without monitoring h1 ∪ l1 realizes. If the investor receives positive payoff from
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investment following h1∪l1, she should make a loss by investing following h0, since P (h0)+P (l1)+P (h1) = 1.

Therefore, the investor would be better off by not investing following h0, which is a contradiction. Therefore,

the investor never invests without monitoring.

Proof for Part (b)

Secret Manipulation. First, we show that the socially optimal outcome cannot be implemented for α > 0,

then we show the optimal contracts involve using convertible securities, i.e. Condition (17) holds.

Note that once the entrepreneur raises K, he always wants to continue the project, since he receives

strictly positive payoff from continuation. Consequently, the entrepreneur misreports the bad signals when-

ever it is possible, which leads to inefficient continuation. Therefore, the socially optimal outcome is not

implementable for α > 0.

Now we solve for the optimal contract. If the project is invested with positive probability, then the

expected payoff of the entrepreneur from the contract {sI(.), sO(.), λ} is

UEα (sI(·), sO(·), λ) = E[M(X; sI , sO, λ)(α+ (1− α)I(X))],

where I(·) is the investment function for the case that the entrepreneur cannot secretly manipulate the

signal. If E[max{X − I + ε, 0}] > K, then with an argument similar to the proof of Proposition 2, the

following set of convertible securities are optimal and robust to ε, for small enough values of α:

λI ≤ I − ε̄, sI(X) = min{λI,X} ∀ X < I, E[(sI(X)− λI)(α+ (1− α)I{X≥I−ε})] = K, (37)

E[(sO(X)− (1− λ)I)(α+ (1− α)I{X≥I−ε})] = K, 0 ≤ sO(X) ≤ X − sI(X) ∀ X ∈ [0, 1] (38)

Note that the design might not be robust to the insider’s experiment (Y, ωq) because the insider’s payoff

becomes sensitive to the downside realization of the final cash-flow. However, it is still robust to the value

of ε, for the insider’s ex-post payoff does not depend on ε. Moreover, for big enough values of α, no security

can satisfy condition (37). Therefore, relationship financing is infeasible for such big values of α.

Random Monitoring. Consider the case that the investor cannot credibly threaten the entrepreneur to

terminate the project when he misreports. The argument for the other case is similar. As it is discussed

earlier, in equilibrium, the entrepreneur always reports a high signal and the investor invests if and only if

she verifies the signal is truthfully reported. Therefore, the socially optimal outcome cannot be implemented

when β < 1. Moreover, the following convertible securities are optimal and robust to the values of ε.

λI ≤ I − ε̄, sI(X) = min{λI,X} ∀ X < I, βE[(sI(X)− λI)I{X≥I−ε}] = K,

E[(sO(X)− (1− λ)I)(α+ (1− α)I{X≥I−ε})] = K, 0 ≤ sO(X) ≤ X − sI(X) ∀ X ∈ [0, 1]

Clearly, these securities are implementable for large enough values of β. For the case of credible punish-

ments, a robust design might not exist, as the optimal experimentation involves three signals for large values

of ε, while it involves two signals for the smaller values. However, for smaller values of ε, the convertible

securities specified above are optimal and the equilibrium outcomes are similar.
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A15. Proof of Proposition 8

According to Propositions 2 and 4, the entrepreneur’s design implements the first best outcome. It is

easy to show that the insider receives E[(X − I)I{X≥I}] in her optimal design, which implements investment

only for X ≥ I. Therefore, the insider’s optimal design does not incorporate the entrepreneur’s private

benefit of investment, resulting in a lower social welfare.
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Appendix B: Extended Discussions

B1. Optimal Design of a Single Security

Due to regulatory concerns, issuance costs, or high cost of communicating with outsiders in the later

rounds, the entrepreneur often can only issue one single form of security to both insiders and outsiders. For

example, in venture financing the right of first refusal gives its holder the contractual rights but not the

obligation to purchase new security issuance before others can purchase that same security with the same

terms; banks by regulation can only use debt contracts.

As follows, we show that if the entrepreneur can commit to financing λI from the outsider, the unique

optimal security is equity. In the absence of such commitment, the optimal security is indeterminate.

However, the set of optimal securities include debt contracts, but not necessarily equity contracts.

Specifically, the entrepreneur issues security contract s(X) and determines the fraction to the insiders λ,

i.e., sI(X) = λs(X) and sO(X) = (1−λ)s(X). Proposition 9 characterizes the equilibrium security, optimal

level of commitment to outsider competition, and the optimal information production.

Proposition 9 (Optimality of Equity). Under the single-security constraint and for a given insider’s exper-

iment (Y, ωq), the entrepreneur optimally issues equities to both the insider and the outsiders. In particular,

s(X) = X, hence sI(X) = λ∗X and sO(X) = (1−λ∗)X for some λ∗ ∈ (0, 1). The optimal security is unique

and it does not implement the first best outcome if K > 0.

Figure 5: The optimal securities for the entrepreneur under one-security condition; specific
example of without investor sophistication.

Proof. We prove the proposition for the case of unsophisticated insider, where she has no proprietary infor-

mation about the outcome, other than what is provided by the entrepreneur’s experiment. The proof for

the case of sophisticated investors is similar. The single-security constraint implies that the entrepreneur

chooses from contracts in the form of {λs(X), (1− λ)s(X), λ}. Therefore, every contract can be represented

by the pair of {s(X), λ}.
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Denote the entrepreneur’s indirect utility from investment at X by Ms(s, λ), where:

Ms(X; s, λ) = ε+X − λs(X)− (1− λ)I = M(X;λs(.), (1− λ)s(.), λ) (39)

The entrepreneur then solves the following maximization problem:

max
s(.),λ,Xc

E[Ms(X; s, λ)I{Ms(X;s,λ)≥0}]

s.t. λE[(s(X)− I)I{Ms(X;s,λ)≥0}] ≥ K
(40)

Note that the objective function in (40) is bounded by E[max{ε+X−I, 0}] and the constraint constitutes

a closed and bounded subset in a L1 × [0, 1] space that contains all combination of regular securities and λ.

Therefore, the optimal contract exists. We denote the security s(X) = X, by si(·).

Definition 1. Consider the contract {s(.), λ}. If Ms(0; s, λ) < 0, then X̂(s(.), λ) is defined to be the solution

to Ms(X̂(s(.), λ); s, λ) = 0; otherwise, we define X̂(s(.), λ) = 0.

The next lemma follows immediately from the expression (39) and Definition 1.

Lemma (B1). Suppose s1(.) and s2(.) are two regular securities such that s1(X) ≥ s2(X) ∀ X ∈ [0, 1].

a) X̂(s1, λ) is weakly decreasing in λ.

b) X̂(s1, λ) ≥ X̂(s2, λ), for every λ ∈ [0, 1].

Now, we are ready to prove the optimality of equity for implementing the payoff channel. Consider a

contract {s1, λ1} that satisfies the constraint in (40). Part (b) in Lemma B1 implies:

λ1E[(s1(X)− I)I{X≥X̂(s1(.),λ1)}] ≤ λ1E[(X − I)I{X≥X̂(si(.),λ1)}] (41)

Then there exists λi ≤ λ1 such that λiE[(X − I)I{X≥X̂(si(.),λi)}] = K. Next, we show that the en-

trepreneur prefers the contract {si(.), λi} to {s1, λ1} :

E[M(X; si, λi)I{X≥X̂(si(.),λi)}] = E[(ε+ (1− λi)(X − I))I{X≥X̂(si,λi)}] = E[(ε+X − I)I{X≥X̂(si,λi)}]−K
≥ E[(ε+X − I)I{X≥X̂(s1(.),µ1)}]− λ1E[(s1(X)− I)I{X≥X̂(s1(.),λ1)}] = E[M(X; s1, λ1)I{X≥X̂(s1(.),λ1)}]

Therefore, the optimal contract under the single security constraint is equity. For the case with sophis-

ticated investors, λ∗ depends on the insider’s experiment, although an equity is still uniquely optimal.

Proposition 9 shows that the optimal single security is equity when commitment in λ is feasible. Recall

that the entrepreneur uses the security to best commit himself to efficient interim information production.

With a single security, the entrepreneur cannot fully allocate the downside exposure to himself because both

insiders and outsiders get the same security, and the outsiders are just a pass-through of interim surplus

to the entrepreneur. However, by reducing λ, we naturally reduce the insider’s exposure relative to the

entrepreneur. Equity is thus optimal when λ is endogenous because it gives the insider the largest upside,

allowing her to get enough rent to cover K with the smallest λ. Figure 5 displays the optimal security for

the entrepreneur.

Proposition 10 (Optimality of Debt Contracts). Under the single security-constraint and when committing

to raising λI from the insider is not feasible, the optimal security is indeterminate but the set of optimal

securities includes debt.
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Proof. When the entrepreneur cannot commit to the way he finances I, the insider gets positive rent only

if the signal is private. Therefore, she demands all issues when the signal is good. To give the insider lower

rent, the entrepreneur use securities that make the insider break even, i.e.

U I(s(·)) = µE
[
(s(X)− I)I{X≥X̂(µ;s(·))}

]
= K (42)

The entrepreneur’s expected payoff for a given choice of s(·) from this set of securities is

UE(s(·)) = E
[
(ε+X − µs(X)− (1− µ)I)IX≥X̂(µ;s(·))

]
= E

[
(ε+X − I)I{X≥X̂(µ;s(·))}

]
−K. (43)

To maximize (43), the entrepreneur chooses a security that maximizes X̂(µ; s(·)). Note that X̂(µ; s(·))
is the solution to the following equality:

X̂(µ; s(·)) : ε+ X̂(µ)− µs(X̂(µ))− (1− µ)I = 0⇒ X̂(µ) ≤ I − ε

1− µ

and equality holds if and only if s(X) = X for X ≤ [I − ε
1−µ ]. Therefore, all double-monotone securities

with E
[
(s(X)− I)I{X≥I− ε

1−µ}

]
= K and s(X) = X for X ≤ I − ε

1−µ implement the optimal design for the

entrepreneur. Clearly, a debt or a convertible security can implement these two conditions, but equity or

call options cannot.

In Proposition 10, we study the case that the entrepreneur can only commit to the single security

he issues in future. For example, the entrepreneur might commit to the form of security by choosing his

institutional investor (Banks, Private Equities, Venture Capitalist, etc). In this case, if the commitment to

the future round of investments is not feasible, then debt contracts become optimal. The intuition is the

following: The security should be the most sensitive to the losses to discipline the entrepreneur the most.

Since a debt contract is the most sensitive security in the down-side, it always can implement the optimal

security and it is regardless of µ and the insider’s experiment.

B2. Insider’s Independent Experimentation

We revisit the entrepreneur’s optimal information design, the entrepreneur and the insiders’ equilibrium

expected payoff and our contractual solution to IPH for the case that the signals of the entrepreneur’s

experiment are restricted to be independent of the insider’s experiment, conditional on the outcome X. In

Proposition 11, we show that the U-shape pattern in the insider’s payoff as a function of µ still persists. In

Corollary 5, consistent with Proposition 5 in Kolotilin (2017), we show the insider’s payoff is not increasing

in the informativeness of her signal. In Proposition 12, we examine the effect of interim competition on the

efficiency of investment decisions and the insider’s interim payoff for q ∈ [ 1
2 , 1].

The results are provided for the specific case that the information structure of the insider’s signal follows

the one introduced in Example 1, with the only difference that q represents the probability of receiving

signal h̃q (l̃q) when X − I ≥ 0 (X − I < 0). As a reminder, we repeat the structure of the insider’s private

information:

Assumption 1. The insider’s experiment generates a binary signal, i.e. Y = {h̃, l̃}, of the following

information structure:

ωq(h̃|X) =

{
q I ≤ X ≤ 1

1− q 0 ≤ X < I.
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Proposition 11 (General IPH). Suppose X̄(q) is the solution to the following equation:

q

∫ I

0

(s(X)− I)f(X)dX + (1− q)
∫ 1

I

(s(X)− I)f(X)dX = 0 (44)

Moreover, assume q ≥ q̄, where q̄ is the solution to equation q̄2 + q̄ = 1. (a) The entrepreneur chooses

an experiment that sends a high signal if X ≥ max{X̄(q), X̂(µ)} and sends a low signal, otherwise.

(b) Denote K̄ε
C(µ, q) ≡ µE[(s(X) − I)IX≥max{X̄(q),X̂(µ)}] as the capacity of relationship formation for

given q and µ. Then, there exists level of sophistication q1 such that for every q ∈ ( 1
2 , q1), K̄ε

C(µ, q) is

U-shaped in [µ̂(q), 1] for some µ̂(q) ∈ (0, 1),. K̄ε
C(µ, q) is decreasing in µ for q ∈ [q1, q̄].

(c) As ε→ 0, function K̄ε
C(µ; q) converges to K̄0

C(µ; q), which is increasing in µ.

Proof. Similar to the proof of Lemma 1, we prove the lemma for regular securities s(X). First we note that

if E[s(X) − I|X > I] ≤ 0, then X̄ ≥ I, where X̄s is the threshold introduced in Proposition 1. In this

case, the investor’s signal y is not used and the equilibrium experiments, investment functions and payoffs

are the same as the ones provided in Proposition 1. As such, the remaining proof is centered on the case

E[s(X)− I|X > I] > 0 for simplicity in exposition.

Proof for Part (a)

Similar to the proof of Proposition 1, first we show that for every experiment, there is another experiment

with bounded number of signals that gives the entrepreneur the same expected payoff. It helps us to prove the

existence of optimal experiments and then characterize them. We refer to the private information (broadly

defined) the insider has as investor type.

Lemma (B2). Denote T as the set of investor type and A the set of actions. As long as A and T are

finite, for every experiment (Z, π), there exists experiment (Z ′, π′) such that |Z ′| ≤ |A||T | and UE(Z ′, π′) =

UE(Z, π).

Proof. For every pure strategy of the investor, such as a(·) : T → A, define Z(a) as the set of signals in

Z, such as z, that the investor chooses a(t) when her type is t and she receives z. Note that if Z(a) is

non-empty, then:

E[uI(a(t), X)|t, z] ≥ E[uI(a′, X)|t, z] ∀t ∈ T, z ∈ Z(a)

⇒E[uI(a(t), X)|t,Z(a)] ≥ E[uI(a′, X)|t,Z(a)] ∀t ∈ T

where uI(a,X) is the final payoff of the investor from the action a in state X. Now define the experiment

(Z ′, π′) as follows: Z ′ = {za}a∈AT , for all a that Z(a) is non-empty. Moreover, define

π′(za|X) =
∑

z∈Z(a)

π(z|X) if Z(a, t) is non-empty

Note that by definition, za is the signal in Z ′ that induces the strategy profile a(t). We only need to show

that UE(Z ′, π′) = UE(Z, π). To see this,

UE(Z ′, π′) =

∫ 1

0

∑
t∈T

∑
za∈Z′

uE(a(t), X)π′(za|X)g(t|X)f(X)dX

=

∫ 1

0

∑
t∈T

[∫
z∈Z

uE(a(z, t), X)π(z|X)dz

]
g(t|X)f(X)dX = UE(Z, π)
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where a(z, t) is the investor’s action for type t upon receiving signal z.

Building from the above result, the next lemma proves the existence of an optimal experiment and

characterizes it.

Lemma (B3). (a) Suppose the investor’s action is binary (A = {0, 1}) and investor types are ordered by

T = {t1, t2, . . . , t|T |} such that posteriors uI(1, X)−uI(0, X)|ti are ranked by first-order stochastic dominance.

Then for every experiment, there is an experiment that implements the same expected payoffs and uses at

most |T |+ 1 signals. (b) Under these conditions, an optimal experiment exists.

Proof.

Proof of Lemma B3 Part (a)

Note that under single-property condition, a(z, t) is weakly increasing in t. Therefore, there are at most

|T |+ 1 functions of the form a : T → A that Z(a) is non-empty. With a similar argument as the one in the

proof of the lemma, one can construct an experiment with at most |T |+ 1 signals that implements the same

expected payoffs.

Proof of Lemma B3 Part (b)

To show the existence of the optimal experiment, we only need to look at experiments with at most |T |+1

signals. In particular, we only need to show that the conditional distributions π(z|X), z ∈ Z, constitute a

closed bounded set in L1|T |+1
.

For an experiment (Z, π), we can assume it has at most one signal zi ∈ Z such that the entrepreneur

chooses a = 1 only if her types is ti or above. z|T |+1 is the signal following which no types would in-

vest. Therefore, the part (a) shows that every experiment implements the same expected payoffs with an

experiment with following conditions:

∫ 1

0

(uI(1, X)− uI(0, X))π(zi|X)g(tj |X)f(X) ≥ 0 iff j ≥ i, ∀1 ≤ i ≤ |T |+ 1

|T |+1∑
i=1

π(zi|X) = 1 ∀X ∈ [0, 1], and π(zi|X) ≥ 0 ∀X ∈ [0, 1], zi ∈ Z
(45)

It is easy to check that the set of experiments satisfying (45) is closed and bounded. Therefore, an

optimal experiment exists.

As a result of the lemma and the corollary, the optimal experiment exists and has at most three signals.

An exhaustive list of candidate signal ranges for such an optimal experiment is {m, l}, {h, l} or {m,h, l},
where the investor only invests if she receives (m, h̃), (h, l̃) or (h, h̃). We show that for q ≤ q̄, the optimal

experiment is essentially unique and it is of the second form.

Lemma (B4). No two-signal experiment in the form of ({l,m}, π), where the investor invests iff she receives

(m, h̃), is optimal.

Proof. Suppose the contrary and suppose that there exists an optimal experiment ({m, l}, π∗M ). Therefore,

π∗M solves the following maximization problem:

max
π(m|X)

(1− q)
∫ I

0

(ε+X − s(X))π(m|X)f(X)dX + q

∫ 1

I

(ε+X − s(X))π(m|X)f(X)dX
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s.t. (1− q)
∫ I

0

(s(X)− I)π(m|X)f(X)dX + q

∫ 1

I

(s(X)− I)π(m|X)f(X)dX ≥ 0

π(m|X) ∈ [0, 1] ∀X ∈ [0, 1]

Let κ be the multiplier corresponding to the constraint. π∗M then maximizes the following objective

function, given the constraint π∗M (m|.) ∈ [0, 1].

max
π(m|X)

(1− q)
∫ I

0

[ε+X − s(X) + κ(s(X)− I)]π(m|X)f(X)dX

+q

∫ 1

I

[ε+X − s(X) + κ(s(X)− I)]π(m|X)f(X)dX

Since both X−s(X) and s(X)− I are weakly increasing functions, there is a threshold value Xm ∈ [0, 1]

such that for all X ≥ Xm, the expression in the bracket is non-negative. According to lemma A1, the optimal

experiment among those that only implement signals m and l has a threshold scheme, where the threshold

Xm satisfies the following:

(1− q)
∫ I

Xm

(s(X)− I)f(X)dX + q

∫ 1

I

(s(X)− I)f(X)dX = 0

In this case, the expected utility of the entrepreneur from ({m, l}, π∗M ) is:

UE({m, l}, π∗M ) = (1− q)
∫ I

Xm

(ε+X − s(X))f(X)dX + q

∫ 1

I

(ε+X − s(X))f(X)dX (46)

By comparing the recent equality with (44), it is easy to see that Xm < X̄(q). Now, we show how the

entrepreneur can improve upon π∗M by introducing signal h (a signal that induces investment regardless of

the signal the investor receives). To show this, we consider two cases:

• s(I) < I: In this case, we can find a subset A ⊂ [I, 1] such that
∫
A

(s(X)− I)f(X)dX = 0. Then an

experiment that sends h for the members of A (π(h|X) = 1 iff X ∈ A) and sends m for [Xm, 1] \ A
implements higher payoff for the entrepreneur by (1− q)

∫
A

(ε+X − s(X))f(X)dX.

• s(I) = I: Since X − s(X) is a weakly increasing function, it implies that s(X) = X for all X ≤ I.

Consider small positive values η1, η2, η3 ≥ 0 that satisfy the following:

(1− q)
∫ I−η2

Xm+η1

(s(X)− I)f(X)dX + q

∫ 1

I+η3

(s(X)− I)f(X)dX ≥ 0

q

∫ I

I−η2
(s(X)− I)f(X)dX + (1− q)

∫ 1

I+η3

(s(X)− I)f(X)dX ≥ 0

and introduce the following alternative experiment ({l,m, h}, π̃M ):

π̃M (h|X) =

{
1 X ∈ [I − η2, I + η3)

0 X ∈ [0, I − η2) ∪ [I + η3, 1]
π̃M (m|X) =

{
1 X ∈ [Xm + η1, I − η2) ∪ [I + η3, 1]

0 X ∈ [0, Xm + η1) ∪ [I − η2, I + η3)

It is easy to verify that the experiment π̃M is designed in a way that the investor invests iff she receives
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one of (m, l̃), (h, l̃) or (h, h̃). Now, the difference in expected payoffs for the entrepreneur is given by:

UE({m, l}, π̃M )− UE({m, l}, π∗M ) = −(1− q)
∫ Xm+η1

Xm

(ε+X − s(X))f(X)dX

+ q

∫ I

I−η2
(ε+X − s(X))f(X)dX + (1− q)

∫ I+η3

I

(ε+X − s(X))f(X)dX

Now consider the contrary, that the introduced experiment is an optimal experiment. Then η∗1 =

η∗2 = η∗3 = 0 should satisfy the first order conditions for the following maximization problem:

max
η1,η2,η3

−(1− q)
∫ Xm+η1

Xm

(ε+X − s(X))f(X)dX + q

∫ I

I−η2
(ε+X − s(X))f(X)dX

+(1− q)
∫ I+η3

I

(ε+X − s(X))f(X)dX

s.t. η1, η2 ≥ 0, q

∫ I

I−η2
(s(X)− I)f(X)dX + (1− q)

∫ I+η3

I

(s(X)− I)f(X)dX ≥ 0, and

(1− q)

[∫ Xm+η1

Xm

(s(X)− I)f(X)dX +

∫ I

I−η2
(s(X)− I)f(X)dX

]
+ q

∫ I+η3

I

(s(X)− I)f(X)dX ≤ 0

Let κ1 and κ2 be the multipliers for the first constraints, respectively. Since s(I) = I, the FOC for η2

is positive at η2 = 0: [η2]|η2=0 : qεf(I).

Similarly, the FOC for η3 is positive at η3 = 0. Therefore, the optimal values are non-zero. It shows

that the experiment ({m, l}, π∗M ) cannot be optimal for any q ∈ ( 1
2 , 1).

Lemma (B5). No three-signal experiment in the form of ({l,m, h}, π), whereby signals m and h are both

sent with positive probability, is optimal.

Proof. First note we are considering the parameter range q ∈ ( 1
2 , q̄]. Suppose the contrary and there exists

a three-signal optimal experiment ({l,m, h}, π∗HM ), where the investor invests iff she receives one of (m, l̃),

(h, l̃) and (h, h̃). Then π∗HM (m|X) and π∗HM (h|X) solve the following optimization problem.

max
π(h|X),π(m|X)

∫ I

0

(ε+X − s(X))(π(h|X) + (1− q)π(m|X))f(X)dX

+

∫ 1

I

(ε+X − s(X))(π(h|X) + qπ(m|X))f(X)dX

(47)

s.t. q

∫ I

0

(s(X)− I)π(h|X)f(X)dX + (1− q)
∫ 1

I

(s(X)− I)π(h|X)f(X)dX ≥ 0

(1− q)
∫ I

0

(s(X)− I)π(m|X)f(X)dX + q

∫ 1

I

(s(X)− I)π(m|X)f(X)dX ≥ 0

π(h|X), π(m|X) ∈ [0, 1]

Let λh and λm be the multipliers for the first two restrictions, respectively. Define cm(X) and ch(X) as

follows:

ch(X) =

{
ε+X − s(X) + qλh(s(X)− I) 0 ≤ X < I

ε+X − s(X) + (1− q)λh(s(X)− I) I ≤ X ≤ 1
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cm(X) =

{
(1− q)(ε+X − s(X) + λm(s(X)− I)) 0 ≤ X < I

q(ε+X − s(X) + λm(s(X)− I)) I ≤ X ≤ 1

Then π(h|X) and π(m|X) solves the following optimization problem subject to 0 ≤ π(h|X), π(m|X) ≤ 1

max
π(h|X),π(m|X)∈[0,1]

∫ 1

0

[ch(X)π(h|X) + cm(X)π(m|X)]f(X)dX (48)

Now, we appeal to lemma A1. Note that the optimization problem (48) is linear in π(h|X) and π(m|X).

Moreover, it is easy to see that their multipliers are equal at most in a measure-zero subset of [0, 1]. Therefore,

π(h|X), π(m|X) ∈ {0, 1} almost surely. Therefore, there are two subsets M,H ∈ [0, 1] such that the

signals m and h are sent for the members in M and H, respectively. Moreover, define M1 = M ∩ [0, I),

M2 = [I, 1] ∩ [I, 1] and define H1 and H2, correspondingly.

If M1 is empty, then signal m is just sent for a subset of X ∈ [I, 1]. In this case, the investor invests

even if she receives (m, l̃), which is in contrast with the definition of signal m. Therefore, suppose M1 is

non-empty. For X ∈ M1 we have cm(X) ≥ max{ch(X), 0}. Rearranging the expressions of ch(X) and

cm(X), we have
qλh − (1− q)λm

q
≥ ε+X − s(X)

I − s(X)
≥ λm ⇒ qλh ≥ λm (49)

Moreover, note that if M2 is empty, then the investor does not ever invest when she receives m, which

is a contradiction with the definition of m. Therefore, M2 is not empty and there exists X ∈ M2. For X,

we have:

cm(X) ≥ ch(X) ⇒ (qλm − (1− q)λh)(s(X)− I) ≥ (1− q)(ε+X − s(X))

⇒ qλm − (1− q)λh > 0 (50)

Combining (49) and (50), we get qλh > 1−q
q λh ⇒ q(1 + q) > 1, which contradicts our assumption about

the value of q.

Lemmas B4 and B5 imply that the a two-signal experiment with {h, l} must be optimal. In this ex-

periment, the investor completely disregards her own signal. It is easy to see that the optimal two-signal

experiment has a threshold scheme, where the threshold X̄(q) should satisfy (44). The rest of the results for

this part are similar to Lemma 1.

Proof for Part (b) We can rewrite K̄ε
C(µ; q) = µE[(s(X)− I)I{X≥max{X̄(q),X̂(µ)}}], and define

µl = sup
{
µ|K̄ε

S is increasing over [0, µ]
}

µh = inf

{
µ|K̄ε

S is decreasing over

[
µ, 1− ε

I − X̄

]}
(51)

where K̄ε
S(µ) = E

[
(s(X)− I)I{X≥X̂(µ)}

]
. Since X̄(q) < I−ε, there exists µ̂(q) such that X̄(q) = X̂(m̂u(q)).

Because X̄(q) is strictly increasing in q in [ 1
2 , q̄], µ̂(q) is strictly decreasing in q. If µ̂(q) < µl , then K̄ε

C(µ; q)

is increasing over [0, 1]. If that is not the case, then the function is U-shape over [µh, 1].

Proof for Part (c) Note that as ε goes to zero, K̄ε
S(µ) becomes strictly increasing in [0, 1]. Therefore, µl

converges to one as ε goes to zero.
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In Proposition 11, the assumption q ≤ q̄ substantially simplifies the analysis, as the entrepreneur still

follows a threshold scheme for disclosure. It is not generally the case, as we show in Lemma B6. In particular,

the equilibrium experimentation has a nested-interval structure, consistent with Guo and Shmaya (2017) that

finds similar structures under more general settings. For illustration, we take µ = 1 in the next lemma and

corollary, the case with interim competition or when µ < 1 are similar.

Lemma (B6). For q > q̄, there exists q∗ > q̄ such that for q ≥ q∗, the entrepreneur optimally uses three

signals {l,m, h}. The investor continues the project iff she observes (m, h̃), (h, l̃) or (h, h̃). Specifically,

there are XL
m(q), XL

h (q), XH
h (q) ∈ (0, 1) such that the entrepreneur sends h in [XL

h (q), XH
h (q)] and m in

[XL
m(q), XL

h (q)) ∪ (XH
h (q), 1].

Proof. First, we show that the two-signal experiment introduced in Proposition 11(a) is not optimal for

big enough values of q. Then, we show that when a three-signal experiment is optimal, a nested interval

structure is used for providing endogenous information.

Non-optimality of two-signal experiments

Suppose the contrary holds that a threshold scheme, with threshold X̄(q) (as introduced in (44)) is

optimal. Then Lemma A1 says it is the optimal experiment among all two-signal experiments that the high

signal always induces investment. Now consider η1, η2 and η3 that satisfy the following conditions:

q

∫ X̄(q)+η2

X̄(q)

(s(X)− I)f(X)dX + (1− q)
∫ 1

1−η3
(s(X)− I)f(X)dX ≤ 0

(1− q)
∫ X̄(q)+η2

X̄(q)−η1
(s(X)− I)f(X)dX + q

∫ 1

1−η3
(s(X)− I)f(X)dX ≥ 0

If the two-signal experiment is optimal, then the following three-signal experiment should implement a

suboptimal investment function for the entrepreneur.

π̃(h|X) =

{
1 X ∈ [X̄(q) + η2, 1− η3)

0 X ∈ [0, X̄(q) + η2) ∪ [I − η3, 1]
π̃(m|X) =

{
1 X ∈ [X̄(q)− η1, X̄(q) + η2) ∪ [1− η3, 1]

0 X ∈ [0, X̄(q)− η1) ∪ [X̄(q) + η2, 1− η3)

Therefore, η1 = η2 = η3 = 0 should be the solution to the following optimization problem:

max
η1,η2,η3

(1−q)
∫ X̄(q)

X̄(q)−η1
(ε+X−s(X))f(X)dX−(1−q)

∫ X̄(q)+η2

X̄(q)

(ε+X−s(X))f(X)dX−q
∫ 1

1−η3
(ε+X−s(X))f(X)dX

s.t. q

∫ X̄(q)+η2

X̄(q)

(s(X)− I)f(X)dX + (1− q)
∫ 1

1−η3
(s(X)− I)f(X)dX ≤ 0

(1− q)
∫ X̄(q)+η2

X̄(q)−η1
(s(X)− I)f(X)dX + q

∫ 1

1−η3
(s(X)− I)f(X)dX ≥ 0

Suppose κ1 and κ2 are the Lagrange multipliers for the above constraints. The FOCs at η1 = η2 = η3 = 0

are as follows:

[η1]|η1=0 = 0⇒f(X̄(q))[(1− q)(ε+ X̄(q)− s(X̄(q)) + κ2(s(X̄(q))− I))] = 0

⇒κ2 =
ε+ X̄(q)− s(X̄(q))

I − s(X̄(q))

(52)
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Figure 6: The nested interval structure of the entrepreneur’s experimentation

[η2]|η2=0 = 0⇒f(X̄(q))[−q(ε+ X̄(q)− s(X̄(q))) + qκ1(s(X̄(q))− I) + (1− q)κ2(s(X̄(q))− I)] = 0

⇒− κ1 =
2q − 1

q

ε+ X̄(q)− s(X̄(q))

I − s(X̄(q))
=

2q − 1

q
κ2

(53)

[η3]|η3=0 = 0⇒f(1)[−(1− q)(ε+ 1− s(1)) + (κ1(1− q) + κ2q)(s(1)− I)] = 0

⇒ε+ 1− s(1)

s(1)− I
=
κ1(1− q) + κ2q

1− q
=

3q2 − 3q + 1

q(1− q)
ε+ X̄(q)− s(X̄(q))

I − s(X̄(q))

(54)

Note that:
ε+ X̄(q)− s(X̄(q))

I − s(X̄(q))
≥ ε

I

Therefore, (54) implies that for every q ∈ [ 1
2 , 1], the following inequality holds:

I

ε

ε+ 1− s(1)

s(1)− I
≥ 3q2 − 3q + 1

q(1− q)
(55)

The RHS in (55) goes to infinity as q → 1, while the LHS is constant. It is the contradiction with the earlier

assumption that the two-signal experiment is optimal. Therefore, a three-signal experiment is optimal for

large enough values of q.

Nested Interval Structure

Guo and Shmaya (2017) prove the second part of the lemma in their Theorem 3.1 and Discussion 6.3, for

securities s(X) such that s(X)−I
ε+X−s(X) is increasing in X. Note that this condition holds for si(X) = X.

Corollary 5. For q ≥ q∗, Iq(X) < 1 for a positive measure of X ∈ [I, 1], implying a positive probability

of inefficient termination. Moreover the investor’s interim rent, K̄ε
C(q, 1), is non-monotone over the region

(q̄, 1].

Corollary 5 provides a counter-intuitive result that the investor’s payoff is not globally increasing in

investor sophistication. In fact, if the information the investor receives is very accurate, then the entrepreneur

adopts a less informative experiment to increase the chance of inefficient continuations with the cost of

positive probability of inefficient terminations. Similar to Proposition 5 in Kolotilin (2017), Lemma B6

highlights a “crowding-out effect” of higher levels of the investor’s sophistication on the entrepreneur’s
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information production. This effect implies that the investor might be better off by committing to ignoring

some part of her independent information, which constitutes an interesting topic for future research.

In the following proposition, we show that while interim competition (µ < 1) can improve the efficiency

of investment decisions, it monotonically decreases the insider’s interim rent for reasonably sophisticated

investors, consistent with Petersen and Rajan (1995).

Proposition 12 (Impact of Competition (extended)).

(a) For a given security with interim renegotiation, the equilibrium investment function becomes more

socially optimal as interim competition increases (µ decreases).

(b) There exists qH < 1 such that for q ∈ (qH , 1), the insider’s interim rent is monotone in µ. Therefore,

the insider never benefits from interim competition for very high levels of sophistication.

Proof. Proof for Part (a)

Suppose µ2 > µ1 and the equilibrium investment functions are respectively I2(X) and I1(X). We show

that:

E[(ε+X − I)I1(X)] ≥ E[(ε+X − I)I2(X)] (56)

Suppose the contrary. Note that both I1(X) and I2(X) are implementable for the entrepreneur tThere

are experiments that implement these investment functions), since q is fixed. The optimality of the investment

functions implies:

E[(ε+ (1− µ1)(X − I)I1(X)] ≥ E[(ε+ (1− µ1)(X − I)I2(X)] (57)

Therefore, if (56) does not hold, (57) implies:

E[(X − I)I2(X)] > E[(X − I)I1(X)] (58)

Furthermore, the fact that the investor receives positive interim payoff for q > 1
2 and optimality of I2(X)

for µ2 implies:

E[(ε+ (1− µ1)(X − I)I2(X)] > E[(ε+ (1− µ2)(X − I)I2(X)] ≥ E[(ε+ (1− µ2)(X − I)I1(X)] (59)

Therefore, (57) and (59) result in:

E[(ε+ (1− µ1)(X − I)I1(X)]− E[(ε+ (1− µ2)(X − I)I1(X)]

≥E[(ε+ (1− µ1)(X − I)I2(X)]− E[(ε+ (1− µ2)(X − I)I2(X)]

⇒E[(X − I)I1(X)] ≥ E[(X − I)I2(X)]

(60)

which contradicts (58). Therefore, (56) holds. It shows the equilibrium investment function become more

socially efficient as µ decreases.

Proof for Part (b)

As it is shown in Lemma B6, there exists q∗ such that for q > q∗, a three-signal experiment is optimal. Fix a

level of sophistication in the range q. Therefore, there are functions Ml(µ), Hl(µ) and Hh(µ) such that the

entrepreneur sends a high signal for X ∈ [Hl(µ), Hh(µ)] and a medium signal in [Ml(µ), Hl(µ)] ∪ [Hh(µ), 1].

Moreover, interim competition does not affect the entrepreneur’s experimentation if ε+(1−µ)(Ml(1)−I) ≥ 0.

Therefore, without loss of generality, we assume µ is small enough that Ml(µ) = I − ε
1−µ .

Moreover, as discussed earlier, the insider does not get any interim rent conditional on realization of a

medium signal. Therefore, the insider’s interim rent is as follows:

KC(µ; q) = µ

∫ Hh(µ)

Hl(µ)

(X − I)f(X)dX =
(2q − 1)µ

q

∫ Hh(µ)

I

(X − I)f(X)dX (61)
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where the last equality comes from the fact that the constraint for sending a high signal is binding. The

following lemma characterizes the derivative with respect to µ when Ml(µ) = I − ε
1−µ .

Lemma (B7). If ε+ (1− µ)(Ml(1)− I) < 0, then

∂

∂µ
KC(µ; q) =

2q − 1

q

[∫ Hh

I

(X − I)f(X)dX − q(1− q)
2q − 1

µε2

(1− µ)3
f(I − ε

1− µ
)

]
(62)

Proof. By taking derivative from (61) with respect to µ, we get:

∂

∂µ
KC(µ; q) =

(2q − 1)

q

∫ Hh(µ)

I

(X − I)f(X)dX +H ′h(µ)
(2q − 1)µ

q
(Hh(µ)− I)f(Hh(µ)) (63)

We know that the conditions for sending high and medium signal binds for all values of µ. Therefore:

∂

∂µ

{
(1− q)

∫ Hl

I− ε
1−µ

(X − I)f(X)dX + q

∫ 1

Hh

(X − I)f(X)dX

}
= 0

⇒− (1− q)ε2

(1− µ)3
f(I − ε

1− µ
) + (1− q)H ′l(Hl − I)f(Hl)− qH ′h(Hh − I)f(Hh) = 0

(64)

∂

∂µ

{
q

∫ I

Hl

(X − I)f(X)dX + (1− q)
∫ Hh

I

(X − I)f(X)dX

}
= 0

⇒(1− q)H ′h(Hh − I)f(Hh) + qH ′l(Hl − I)f(Hl) = 0

(65)

By combining (64) and (65), we get:

H ′h(Hh − I)f(Hh) = −q(1− q)
2q − 1

ε2

(1− µ)3
f(I − ε

1− µ
)

We get (62) by substituting the last equality in (63).

Note that Hh and Hl are the solution to the following maximization problem, where Ml = I − ε
1−µ :

max
Hl,Hh

(1− q)
∫ Hl

Ml

(ε+ (1− µ)(X − I))f(X)dX +

∫ Hh

Hl

(ε+ (1− µ)(X − I))f(X)dX + q

∫ 1

Hh

(ε+ (1− µ)(X − I))f(X)dX

s.t. (1− q)
∫ Hl

Ml

(X − I)f(X)dX + q

∫ 1

Hh

(X − I)f(X)dX ≥ 0

q

∫ I

Hl

(X − I)f(X)dX + (1− q)
∫ Hh

I

(X − I)f(X)dX ≥ 0

According to Lemma B6, we know that both constraints bind. It implies Hl → I and Hh → 1, as q → 1.

Since f(.) and µ
(1−µ)3 are bounded (µ < 1− ε

I ), then the result follows from Lemma B7.

B3. Contracting under IPH

When λ is close to 1, payoff channel is not playing a big role, and we can compare IPH to traditional

moral hazards of effort provision. The “efficient effort” in our case is to produce continuation only when
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X + ε > I, the cost of that effort is the loss of private benefit when we terminate projects. The “action”

in our setup is the experimentation, and the outcomes of the experiments correspond to noisy signals of the

action.

It is a well-known result that for risk-neutral agents, the optimal security is debt (Innes (1990)). More-

over, even when we can contract on noisy signals of an agent’s action, the outcome is generally not first best

(e.g., Holmstrom (1979)). Yet the optimal design is partially indeterminate in our model and restores social

efficiency. This result only relies on the contractibility of actions the interim information leads to, namely

continuation or termination. Our findings point to the key difference between MIP and those in conventional

models.

This contrast derives from two subtle differences between our setting and the ones in Holmstrom (1979)

and Innes (1990). First, the principal takes an action based on the information produced by the agent, which

implies that the agent’s effort can affect his final payoff through affecting the principal’s continuation decision.

In fact, we show in Section A15. that by designing a security that makes the principal’s continuation decision,

and thus the agent’s payoff more sensitive to the agent’s effort, we can also align the agent’s incentives.

Second, which is more important, the agent’s effort in our model affects information production, but not the

final output X, therefore allowing the principle to know exactly how the entrepreneur’s action has affected

the final payoff. In other words, upon seeing the cash flow X, everyone knows if the continuation decision is

socially optimal or not, hence the entrepreneur ex ante can design the security and contract contingent on

the continuation payoff to perfectly incentivize the entrepreneur during the interim to take the right action.

In some sense, the noise in the entrepreneur’s action — signal to continue or terminate – is orthogonal to the

continuation payoff, and making the agent’s payoff contingent on both fully solves the agency problem. It is

also worth pointing out that unlike the literature on costly experimentation and learning (e.g., Bergemann

and Hege (1998) and Hörner and Samuelson (2013)) with hidden effort and hidden information, the principal

in our setting observes perfectly the signal the agent produces, which is important for attaining the first best

outcome with the optimal contract.

B4. Conventional Effort Distortion

We have emphasized the entrepreneur’s role as an information provider, whereas earlier studies concern

the entrepreneur’s costly effort to improve project cash flows. We now discuss how these two actions interact.

To model effort, we assume the entrepreneur can choose from a set of conditional distributions f(X|e),
where e ∈ E is the set of available levels of effort. Function c(·) : E → R shows the cost associated with each

level of effort. First, suppose I(X; e) is the equilibrium investment function when effort level e is chosen.

Then, e∗ ∈ E is constrained first best if it solves the following maximization problem:

e∗ ∈ argmax E[(X − I + ε)I(X; e)|e]− c(e) (66)

It is straight-forward to show that absent investor sophistication and interim competition, there is no

effort distortion: given the equilibrium information structure for each level of effort, the entrepreneur chooses

the one that is socially preferred. Neither the insider’s information monopoly nor IPH distorts entrepreneurial

effort. The reason is that when the insider investor gets no rent, the entrepreneur fully internalizes the benefit

and the cost of effort. Naturally, in presence of a sophisticated investor and interim competition, the investor

may get positive interim rent that distorts effort provision, but still to a lesser extent compared to the case

where information production is exogenous and the insider enjoys full monopoly rent.
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