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1 Introduction

Traditional finance theory derives rational prices for assets based on arbitrage. Arbi-

trage pushes market prices towards fundamental value (the potential divergence from

fundamental value could be due to private information, irrationality, or market seg-

mentation).1 This pricing mechanism may break down when arbitrageurs are capital-

constrained, which could arise for various reasons. An extensive literature studies how

prices may diverge from fundamental value due to constrained arbitrage capital (e.g.,

Dow and Gorton (1994), Allen and Gale (1994), Shleifer and Vishny (1997), Gromb and

Vayanos (2002), Brunnermeier and Pedersen (2009)). The shortage of arbitrage capital

could be temporary, since there may be surplus capital in other markets that could flow

to exploit arbitrage opportunities in one market, but this reallocation might happen

slowly (e.g., Duffie (2010)). In other words, mispricing may still persist even with plenty

of capital around because capital does not flow to the right markets. So endogenizing

the rate of flow of arbitrage capital is a priority for research, which we seek to address in

this paper. In our analysis, arbitrage capital does not deploy quickly to a market with

trading opportunities because arbitrageurs hold positions in other markets which they

prefer not to unwind, allowing us to model the endogenous allocation of capital across

markets.

As a starting point, we use a canonical framework where prices may be incorrect

because they do not reflect private information (e.g., Grossman and Stiglitz (1980),

Kyle (1985)). In our model, “arbitrageurs” are traders who have this information.

Other agents do not have the information, but can learn from prices. We assume that

uninformed capital is plentiful but informed capital is limited.

In our analysis, there is an important distinction between the stock and the flow

of arbitrage capital. A stock of arbitrage capital does not equate to a capital flow to

arbitrage opportunities. For a capital-constrained trader to invest in a new position, he

or she must close out some existing positions. Unless the new position is more profitable,

the trader will stick to the existing positions in other assets until the prices of those as-

sets revert closer to fundamental value (in line with a common saying among professional

traders: “buy when the market is inefficient, sell when the market is efficient”). Rever-

sion to fundamental value can happen either because of public information or because

of subsequent trades by other privately informed traders. This means that arbitrage

1By arbitrage, we mean a trade which exploits price inefficiencies for profits whether based on public
or private information (e.g., Dow and Gorton (1994), Dow and Han (2018)).
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capital plays a dual role; the mispricing wedge not only decides the profitability of new

investment but also decides the speed at which engaged arbitrage capital is released -

thus deciding the availability of arbitrage capital in the future.

The dual role of arbitrage capital has several important implications. First, markets

may be inefficient because arbitrage capital is “trapped” and efficiency may change over

time as trapped capital is released. Second, there can be “liquidity hysteresis” in the form

of a long-lasting shift in efficiency as a response to temporary shocks. Third, a flight-to-

liquidity arises when a market suffers liquidity hysteresis. As illiquidity reinforces itself,

arbitrage capital flows to more liquid investment opportunities in other markets.

“Liquidity” is a broad concept in financial economics, covering a variety of different

effects. In this paper we use “liquid” to describe a market where an arbitrageur does

not have to wait long before the arbitrageur’s private information is incorporated in

the price, hence can cash in soon at full value. In contrast, in an illiquid market the

arbitrageur can either cash in soon at a poor price, or wait to obtain full value. This

notion of liquidity effectively coincides with price efficiency: a liquid market is a market

where private information is better revealed. Also, this is linked to “funding liquidity”

in the sense that price efficiency is higher when arbitrageurs allocate more capital to a

market.

To formalize these ideas, we study a dynamic model of arbitrage where informed

arbitrageurs freely move between two markets, but are capital-constrained. One market

is populated with short maturity assets (henceforth the “liquid market”), and the other

market is populated with long maturity assets (the “illiquid market”). Arbitrageurs

collect private information on assets, and then trade. We call the short maturity assets

“liquid” and the long maturity assets “illiquid” because, to make profits on an asset

with a long maturity, an arbitrageur who buys a mispriced asset has to wait either until

the cash flows arrive, or the mispricing is corrected. In equilibrium, the two markets

should offer the same expected profits – otherwise arbitrageurs will move across to the

market with higher profits. This means that the illiquid market should have a higher

mispricing wedge than the liquid market (to offset the opportunity cost of the longer

maturity of investment). Lower price efficiency in the illiquid market in turn implies

that more capital is trapped because arbitrageurs hold their positions for longer, since

they choose to hold positions until the information is reflected in the price.

Overall efficiency of the markets is determined by how much arbitrage capital is active

as opposed to trapped. In other words, efficiency depends on the pool of active capital
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as a state variable. This matters because while the total stock of arbitrage capital may

be large, the stock of active capital is smaller. The efficiency of a market may change

over time as trapped capital is released from other markets. Furthermore, there is a

delayed response in efficiency to changes such as shocks to liquidity trading.

Because active (as opposed to trapped) capital is a state variable of the economy,

there is a feedback channel between liquidity and active capital. As more active arbitrage

capital flows to the illiquid market, prices become more informative, so those who are

trapped in the market become active again more quickly, and this in turn creates a

larger capital flow to the illiquid market by increasing the overall size of active capital

in the economy. Conversely if arbitrage capital flows to the liquid market, pricing in the

illiquid market becomes less efficient, leaving locked-in investment in the illiquid market

being trapped for a long time and further reducing available capital.

This feedback channel between active capital and liquidity can lead to multiple

regimes in our model in which a threshold of active capital separates domains of at-

traction for liquidity. A virtuous cycle can lead to high price informativeness, in which

arbitrage capital is redeployed at a faster rate (thus giving rise to higher liquidity). On

the other hand, a vicious cycle may arise, with uninformative prices and low capital

availability. We illustrate our model’s implications for liquidity and capital flow dy-

namics by studying shock responses to a Markov stationary system where (either good

or bad) liquidity shocks randomly hit the illiquid market. With a small adverse shock

to the illiquid market, market liquidity recovers on its own thanks to a virtuous cycle

of liquidity. As more trapped arbitrageurs become active again, they quickly replenish

market liquidity. On the other hand, a large adverse shock can trigger a vicious cycle

of illiquidity with flight-to-liquidity where arbitrage capital flows to the liquid market;

more and more arbitrageurs choose to invest in the liquid market over time because they

expect further deterioration of future liquidity in the illiquid market. This leads to an

illiquidity regime where there is a persistent overall lack of liquidity in the market. We

call this “liquidity hysteresis” because a shock to the system moves the equilibrium to

a different path even after the shock is removed.

We illustrate how the market can move in and out of this illiquidity regime with

numerical simulations of the stochastic equilibrium of the model. A sequence of tempo-

rary bad shocks to the illiquid market can trigger a flight-to-liquidity resulting in the

illiquidity regime, from which the market can recover only after a sequence of shocks

in the opposite direction. Thus, the market features persistent (endogenous) liquidity
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regimes even when (exogenous) liquidity trading is at its normal level most of the time.

These results provide a theoretical explanation of slow-moving capital regarding why

capital moves slowly, how fast (or slowly) it moves, and to which directions it moves.

They further provide interesting empirical and policy implications.

It is worth stressing that our model does not rely on a “coordination failure” story

of multiple equilibria driven by agents’ self-fulfilling beliefs about which equilibrium will

arise. It is not the case that agents could simultaneously all change their minds and

move to the other regime. The level of liquidity at any point in time is determined by

the way arbitrage capital is distributed - specifically, by how much capital is free to

invest. The model has a unique equilibrium time path given the state variable.

The paper is organized as follows. In Section 2, we discuss related literature. In

Section 3, we describe the basic model. In Section 4, we solve for the equilibrium of the

model. In Section 5, we study the model’s implications for liquidity and capital flow

dynamics. In Section 6, we discuss empirical and regulatory implications of our model.

In Section 7, we conclude.

2 Literature Review

There is an existing literature on asset pricing with imperfect information (using a noisy

rational expectation equilibrium setting), and there is also a literature on asset pricing

with limits to arbitrage (mostly in a full-information setting, exceptions are noted below).

In this paper, we combine limits to arbitrage with a noisy REE model of asset prices.

The literature on noisy REE is traditionally based on a linear framework using the

CARA-normal setting.2 Although the setup delivers mathematical tractability, further

extension of the standard framework is limited because the linear structure is difficult to

maintain. Thus, it is hard to use this framework to study several important applications.3

Imposing constraints on how much arbitrageurs can trade, as we do in this paper, makes

their demands inherently non-linear but by assuming a suitable tractable framework, we

are able to study the dynamics of our model. Since the linear framework of standard

2See Grossman and Stiglitz (1980), Hellwig (1980), Diamond and Verrecchia (1981), Kyle (1985),
Admati (1985), Wang (1993), Wang (1994), and Vives (1995).

3Dow and Rahi (2003) study investment response of firms to stock prices (the feedback effect) by
making special assumptions on hedgers’ endowment risk and on the firm’s production function (linking
investment to output) to maintain linearity. Some papers are able to use a noisy REE framework
without linearity, but this imposes a cost in reduced tractability (e.g., Fulghieri and Lukin (2001), Dow,
Goldstein, and Guembel (2017)).
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noisy REE is too simple to deliver rich dynamics, predictions of standard noisy REE

models under multiple asset (or market) environments mostly concern correlations across

fundamentals. In contrast, our model focuses on nonlinear dynamic shock responses by

deviating from the standard setup featuring constrained informed traders. In addition,

the non-linearity in our paper can be further amplified by history-dependent regime shift

with intertemporal dependence of available capital. We make a technical contribution

to the literature by characterizing stationary rational expectations equilibrium under

capital constraint. This allows us to study slow moving capital and flight-to-liquidity

using the dynamics of liquidity responses to temporary liquidity shocks.

A number of papers assume full information (as opposed to private information), but

also study pricing with limited arbitrage. If assets are mispriced because of sentiment

or market segmentation, limited arbitrage capital may be insufficient to fully eliminate

mispricing, but will impose restrictions on price dislocation. Limited arbitrage capital

could be due to cash-in-the-market-pricing (e.g., Allen and Gale (1994)), investors’ fund

flow (e.g., Shleifer and Vishny (1997)), leverage constraints (e.g., Gromb and Vayanos

(2002)), margin constraints (e.g., Brunnermeier and Pedersen (2009)).

There is evidence supporting the relevance of models of limited arbitrage capital.

For example, Mitchell, Pedersen, and Pulvino (2007) show convertible bonds traded at

prices well below the arbitrage price (relative to the stock and a straight bond) during an

extended period when the convertible bond hedge funds (that normally arbitrage these

assets) were short of capital, and multi-strategy hedge funds (that opportunistically re-

deploy capital to wherever returns are high) were slow to enter the market. Duffie (2010)

suggests that institutional impediments such as search frictions, taxes, regulations, and

market segmentation can slow down the flow of capital. Some of the evidence points to

mispricing based on public information, while some points to private information (for

example, Duffie (2010) suggests a suitable extension of the noisy REE model of He and

Wang (1995) as a potential explanation for some episodes).

In the noisy REE approach, all agents observe prices and try to infer what the

arbitrageurs are doing. In equilibrium, these uninformed agents who learn from price

are the marginal buyers. On the other hand, in models without private information, the

non-arbitrageurs’s demands are exogenous and the marginal buyers are the arbitrageurs.

We focus on how the interaction between informed and uninformed capital determines

liquidity in equilibrium. We build on some earlier papers that take a related approach,

but this paper differs in that we study capital movement across multiple markets in a
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dynamic setup. Dow and Gorton (1994) study a multiperiod model of a single asset

market where the cost of carry interacts with short trading horizons of arbitrageurs

to break down the chain of arbitrage. Dow and Han (2018) study a static noisy REE

model with endogenous adverse selection in asset supply where the presence of informed

capital facilitates movement of uninformed capital. This multiplier effect, whereby a

small increase in informed capital induces a large increase in liquidity, contrasts with

prevailing wisdom that informed traders are harmful to uninformed traders.

In the previous literature, a number of papers focus specifically on limited arbitrage

in a dynamic setting. In such models, equilibrium expected returns of new investment

are equalized. For example, the mispricing wedge for long duration assets is higher than

for short duration assets, as discussed in Shleifer and Vishny (1990). In Kondor (2009),

mispricing wedge varies across time because the expected payoff to an arbitrage trade

at any point in time is equalized in equilibrium. In a setting with multiple assets, a

shock in one market tends to create a spillover effect where shocks are transferred to

other markets through the channel of wealth effects (e.g., Kyle and Xiong (2001)) or col-

lateral constraints (e.g., Gromb and Vayanos (2017, Forthcoming)). The literature also

studies the adjustment process of capital after the arrival of a shock. Duffie, Gârleanu

and Pedersen (2005, 2007) find a gradual process of recovery after a shock to investors’

preference in search-based models.4 In Duffie and Strulovici (2012), the speed of capital

flow is governed by the imbalance of capital as well as the level of intermediation com-

petition across markets. In Gromb and Vayanos (Forthcoming), there is a phase with

an immediate increase in the spread where arbitrageurs decrease their positions (thus,

causing a contagion effect), followed by a recovery phase. Our paper differs from this

line of literature because, as previously discussed, we use a private information setting

where all investors learn from prices in noisy REE, generating our hysteresis result.

Finally, the literature studying dynamic information regimes such as Fajgelbaum,

Schaal, and Taschereau-Dumouchel (2017) and Kurlat (2018) also features multiple infor-

mation regimes which arise endogenously through intertemporal links between economic

activity and information externalities.5 However, their models are driven by feedback

4Gârleanu and Pedersen (2007) further highlight a feedback loop between risk management and
liquidity: tighter position limits reduce traders’ position and decrease liquidity, which further reduces
traders’ positions and liquidity in steady state.

5Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) show that self-reinforcing force between
low production activities and high macroeconomic uncertainty can create persistent recessions (or vice
versa for booms). On the other hand, Kurlat (2018) show that self-reinforcing force between low
trading activities and increased lemons problem can create a persistent lack of trades (or vice versa
for a persistent facilitation of trades). In a regime with low investment/trading activity, little data is
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channels purely based on how the lack of data on economic activity affects the beliefs

of short-lived agents. By contrast, our model features long-lived agents and investment

opportunities in financial markets so that we can connect the intertemporal feedback

mechanism with limits to arbitrage through the channel of capital availability.

3 Setup

3.1 Financial Assets

We consider an infinite horizon discrete time economy with a continuum of long-lived

agents. All agents have risk neutral preferences with a discount factor of 𝛽. There exists

a risk-free asset in the economy whose return is equal to 𝑟𝑓 = 1/𝛽 − 1.

There is a continuum of financial securities, each of which is a claim to a single

random liquidation value. There are two classes of securities that differ in their maturity:

(i) “liquid assets” which are short-lived, and (ii) “illiquid assets” which are long-lived.

At this point in the paper, calling the assets “liquid” and “illiquid” is just convenient

terminology, since liquidity is an equilibrium property of an asset and we have not yet

characterized the equilibrium. We will show later that this terminology is justified.

Illiquid assets are traded in market 𝐼, and liquid assets are traded in market 𝐿. It is

important to note that they are not segmented markets because capital can freely move

between the two markets without any friction. An asset in market 𝐿 has a one period

maturity; it pays its liquidation value in the period after issuance.6 On the other hand,

an asset in market 𝐼 has a random maturity; if it has not liquidated in a previous period,

it pays its liquidation value with probability 𝑞 > 0 in each period. At maturity, any

asset 𝑖 in market ℎ ∈ {𝐼, 𝐿} pays 𝑣𝑖 which is either good (𝑣𝑖 = 𝑉 𝐺
ℎ ) or bad (𝑣𝑖 = 𝑉 𝐵

ℎ )

with equal probability where 𝑉 𝐺
ℎ > 𝑉 𝐵

ℎ for all ℎ ∈ {𝐼, 𝐿}.7 We further assume that the

generated and this discourages investment (Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017)) or
trading (Kurlat (2018)). In a regime with high investment/trading activity, more data is generated and
this enables investment/trading.

6For simplicity, we assume that one of the class of assets pays every period (liquid assets). It would
be possible, but considerably more complex, to analyze the case with a payoff probability less than one
for all assets.

7The assumption that payoffs are high or low with equal probabilities simplifies the analysis by
making profits from long and short positions symmetric.
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present value of assets in both markets are identical.8 Asset payoffs are independent

across assets and time.

As discussed later, asset prices either reveal their fundamental value completely,

or not at all. The assets are called “fully-revealed” if prices reflect true fundamental

value, and “unrevealed” if not. Payoffs can become known if the liquidation value is

fully revealed by the trading process and asset prices. For simplicity, we assume that

the mass of unrevealed assets is fixed to one unit in each market at any point of time.

That is, new assets are issued to replace those which either realized payoffs, or become

fully-revealed.9

3.2 Participants

There is a unit mass of capital-constrained “arbitrageurs” who trade to generate spec-

ulative profits. We denote 𝒜 to be the set of arbitrageurs, and index each arbitrageur

by 𝑎 ∈ 𝒜. Each arbitrageur can produce private information about the payoff of one

asset in each period. All arbitrageurs who investigate an asset can perfectly predict its

liquidation value. For tractability, we assume a simple form of capital constraint under

which at any point in time, each arbitrageur can hold only one risky position of at most

one unit (long or short) of unrevealed assets.10 We denote 𝑥𝑎
𝑖 ∈ {−1, 1} to be the market

order of arbitrageur 𝑎 for asset 𝑖.

There is a continuum of competitive risk-neutral market makers who set prices to

clear the market. There are also noise traders who trade for exogenous reasons such as

liquidity needs. In each period, arbitrageurs and noise traders submit market orders to

the market makers. Noise traders submit an aggregate order flow of 𝜁𝑖 for each asset 𝑖

which follows an independent uniform distribution on [−𝑧ℎ, 𝑧ℎ]. The magnitude of 𝑧ℎ

8This is simply for mathematical convenience. Under this assumption, we have

𝛽𝑞

1− 𝛽(1− 𝑞)
𝑉 𝑠
𝐼 = 𝛽𝑉 𝑠

𝐿 , for all 𝑠 ∈ {𝐺,𝐵},

where the LHS and the RHS are the present value of payoff of an asset with quality 𝑠 in market 𝐼 and
𝐿, respectively.

9One can consider that there exists a unit mass of firms which issue new securities to invest in new
projects whenever their existing projects pay liquidation value or become fully-revealed. If we assume,
instead, that unrevealed assets that become fully-revealed are not immediately replaced, the model
would require an additional state variable and would be considerably more complex to analyze.

10Once they have acquired a position in an asset, they hold it until it liquidates or its value is revealed,
and can then open a new position. They also have the option to decide to close out a position early
(before learning it has realized profits), and opening another position next period.
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captures the intensity of noise trading in market ℎ in the current period. We assume

that 𝑧𝐿 is a constant whereas 𝑧𝐼 follows a Markov process with 𝑁 states 𝑧1𝐼 , 𝑧
2
𝐼 , ..., 𝑧

𝑁
𝐼

whose transition matrix between states is given by

Ω =

⎡⎢⎢⎣
𝜔11 . . . 𝜔1𝑁

...
. . .

...

𝜔𝑁1 . . . 𝜔𝑁𝑁

⎤⎥⎥⎦
Note that 𝑧𝐼 is the only exogenous shock to the economy in our model at the aggregate

level, and its realization is publicly observable to all the agents in the economy. We

further assume that there are enough noise trading activities in the market to prevent

the price for every asset from being fully-revealing; the support of aggregate noise trading

is strictly greater than that of arbitrageurs’ aggregate order flow: 𝑧𝑛𝐼 + 𝑧𝐿 > 1 for any

𝑛. Finally, we assume that all the realizations of noise trading intensity and asset payoff

are jointly independent.

3.3 Timing of Events

The timing of events in each period is as follows. At the beginning of the period, asset

payoffs realize and they are distributed among claim holders. Next, new assets are

issued, and noise trading intensity 𝑧𝐼 realizes. After these events, arbitrageurs collect

private information on unrevealed assets, then submit orders to market makers together

with noise traders. At the end of the period, market makers post asset prices and trades

are finalized.

4 Equilibrium

4.1 Active Arbitrage Capital

In each period, an arbitrageur is in either of two situations: “active” or “locked-in”.

An active arbitrageur does not have an existing position in unrevealed assets, thus

has capital available for new investment whereas a locked-in arbitrageur already has a

position in unrevealed assets, thus, does not have capital available for new investment

until this position is liquidated. We denote 𝜉 to be the mass of active arbitrageurs, and

𝜋 to be the mass of locked-in arbitrageurs; thus 𝜉 + 𝜋 = 1.

10



Each active arbitrageur chooses to hold a new position in either market 𝐼 or 𝐿. 𝛿

denotes the portion of those choosing to trade assets in market 𝐼 (so 1−𝛿 is the portion of

those choosing to trade assets in market 𝐿). Each locked-in arbitrageur chooses whether

to hold on to the position one more period or to close it out in the current period. 𝜂

denotes the portion of those choosing to close out early (so 1− 𝜂 is the portion of those

choosing to hold on to the position). Note that 𝜂 is included for completeness, but we

show that in equilibrium in our model early liquidation is never optimal so that 𝜂 is

zero.

Throughout the paper we use the dot notation to denote the value of any variable

in the subsequent period. For example, 𝜉 and 𝜋̇ denote the value of 𝜉 and 𝜋 in the

subsequent period, respectively. We define the vector of state variables to be 𝜃 ≡ (𝜉, 𝑧𝐼),

which is a pair of the current level of active capital and the realization of noise trading

intensity.

4.2 Asset Prices

Asset prices are set by the market makers given the aggregate order flows from informed

arbitrageurs and noise traders as in the standard Kyle (1985) model. Because market

makers are risk neutral, they set the price equal to the expected discounted liquidation

value conditional on the aggregate order flow:

𝑃𝑖 = E
[︀
𝛽𝜏𝑖𝑣𝑖

⃒⃒
𝜃,𝑋𝑖

]︀
, (1)

where 𝜏𝑖 is the (random) maturity of asset 𝑖, and 𝑋𝑖 =
∫︀
𝑎∈𝒜 𝑥𝑎

𝑖 𝑑𝑎 + 𝜁𝑖 is the aggregate

order flow for asset 𝑖. Knowledge of 𝜃 allows market makers to make inference about

informed trading activity from the order flow.

Prices are either fully-revealing or non-revealing due to the uniformly-distributed

noise trading.11 If the order flow is large (in absolute value, buy or sell) then it can only

result from both informed arbitrageurs and noise traders trading in the same direction,

so it is fully revealing. But if the order flow is smaller than this in absolute value, then

it could have resulted from either informed traders buying and uninformed arbitrageurs

selling, or vice versa. Because arbitrageurs are equally likely to buy and sell, noise

trading is uniformly distributed, and the value of the asset is equally likely to be high

or low, these two possibilities are equally likely and therefore the trading volume is

11For technical details, see the proof of Lemma 1 in Appendix A.
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uninformative. We denote 𝑃𝐺 and 𝑃𝐵 to be the fully-revealing price for good and bad

quality, respectively. We also denote 𝑃 0 to be the non-revealing price.12 We denote

the probability of information revelation for asset 𝑖 to be 𝜆𝑖. As it is shown later in

the paper, 𝜆𝑖 plays a dual role of capturing both “price efficiency” (which is inversely

related to the degree of mispricing) and “liquidity” (which is inversely related to the

expectation of investment duration) of asset 𝑖. For notational convenience, we call 𝜆𝑖 as

“price efficiency” of asset 𝑖 henceforth.

4.3 Laws of Motion

We focus on market-wise symmetric rational expectations equilibria under which price

efficiency is symmetric across all the assets in each market, i.e., the measure of price

efficiency 𝜆𝑖 is equal to 𝜆𝐼 for any asset 𝑖 in market 𝐼, and it is equal to 𝜆𝐿 for any asset

𝑖 in market 𝐼.

The laws of motion of the mass of each group of arbitrageurs are given by

𝜉 = (1− 𝛿)𝜉 + (𝛿𝜉 + 𝜋)(𝑞 + (1− 𝑞)𝜆𝐼) + 𝜋𝜂(1− 𝑞)(1− 𝜆𝐼); (2)

𝜋̇ = (𝛿𝜉 + 𝜋 (1− 𝜂))(1− 𝑞)(1− 𝜆𝐼). (3)

The first equation describes the evolution of active capital 𝜉. The RHS of Eq. (2) is

the sum of three terms. The first term is the mass of arbitrageurs invested in market

𝐿 in the current period; this mass becomes entirely active in the subsequent period as

the 𝐿 assets are short-lived. The second and third terms are the mass of arbitrageurs

invested in market 𝐼 in the current period (i.e., 𝛿𝜉 new arbitrageurs from the current

period and 𝜋 arbitrageurs locked-in from the previous period) that become available

for new investment in the subsequent period. This happens either if the asset pays off

or if the market price fully reveals the asset value (in which case the position becomes

risk-free, thus relaxing the portfolio constraint), or if locked-in arbitrageurs close out

the position early (it turns out they choose not to do this in equilibrium). Overall, a

12Because the present values are identical across market 𝐼 and 𝐿, prices given the same type of public
information are also identical across the two markets:

𝑃 𝑠 ≡ 𝛽𝑞

1− 𝛽(1− 𝑞)
𝑉 𝑠
𝐼 = 𝛽𝑉 𝑠

𝐿 , for all 𝑠 ∈ {𝐺,𝐵};

𝑃 0 ≡ 𝛽𝑞

1− 𝛽(1− 𝑞)

(︂
𝑉 𝐺
𝐼 + 𝑉 𝐵

𝐼

2

)︂
= 𝛽

(︂
𝑉 𝐺
𝐿 + 𝑉 𝐵

𝐿

2

)︂
.
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fraction 𝑞 + (1− 𝑞)𝜆𝐼 of the arbitrageurs invested in the 𝐼 market in the current period

becomes free for new investment in the subsequent period because of asset paying off or

information revelation through prices. A fraction 𝜂(1−𝑞)(1−𝜆𝐼) of locked-in arbitrageurs

from the previous period becomes active next period because of the decision to close out

early. Note that Eq. (3) is redundant given that 𝜉 + 𝜋 = 1.

4.4 Dynamic Arbitrage

Given the current state 𝜃, we denote 𝐽𝐼(𝜃) and 𝐽𝐿(𝜃) to be the value of investing in a

new position in market 𝐼 and market 𝐿, respectively. Because any active arbitrageur

can choose between the two markets, the value of being active given 𝜃 equals

𝐽𝑓 (𝜃) = max (𝐽𝐼(𝜃), 𝐽𝐿(𝜃)) . (4)

Associated with these value functions is a capital allocation function 𝛿(𝜃) for active

arbitrageurs such that

𝛿(𝜃) ∈

⎧⎪⎨⎪⎩
{0}, if 𝐽𝐼(𝜃) < 𝐽𝐿(𝜃);

{1}, if 𝐽𝐼(𝜃) > 𝐽𝐿(𝜃);

[0, 1], otherwise,

(5)

where capital allocation 𝛿(𝜃) strikes the balance between the value of investing in market

𝐼 and 𝐿 if 𝐽𝐼(𝜃) = 𝐽𝐿(𝜃).

In case an arbitrageur chooses market 𝐼, he becomes locked in until it liquidates or

its value is revealed (we call it locked in because although he has the option to close out

early, arbitrageurs choose not to in equilibrium). We denote 𝐽𝑙(𝜃) to be the associated

value function given 𝜃. Using the symmetry of trading profits between long and short

positions, we can obtain 𝐽𝐼(𝜃) and 𝐽𝐿(𝜃), whose detailed derivations are relegated to

Appendix A, as follows:

𝐽𝐼(𝜃) = −(𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0) + 𝛽𝑈(𝜃); (6)

𝐽𝐿(𝜃) = −(𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0) + 𝛽
[︁
𝑉 𝐺
𝐿 + E[𝐽𝑓 (𝜃)|𝜃]

]︁
, (7)

where

𝑈(𝜃) ≡ 𝑞𝑉 𝐺
𝐼 + (1− 𝑞)𝜆𝐼𝑃

𝐺 + (1− (1− 𝜆𝐼)(1− 𝑞))E[𝐽𝑓 (𝜃)|𝜃] + (1− 𝜆𝐼)(1− 𝑞)E[𝐽𝑙(𝜃)|𝜃].
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Because any locked-in arbitrageur can choose between exiting the position or staying

with it, the value function of a locked-in arbitrageur given 𝜃 equals

𝐽𝑙(𝜃) = max (𝐽𝐸(𝜃), 𝐽𝑆(𝜃)) , (8)

where 𝐽𝐸(𝜃) is the value of exiting the position and becoming active in the next period,

and 𝐽𝑆(𝜃) is the value of holding the position one more period:

𝐽𝐸(𝜃) = 𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0 + 𝛽E[𝐽𝑓 (𝜃)|𝜃]; (9)

𝐽𝑆(𝜃) = 𝛽𝑈(𝜃). (10)

Similarly as in 𝛿(𝜃), associated with 𝐽𝑙(𝜃) is an exit function 𝜂(𝜃) for locked-in arbi-

trageurs such that

𝜂(𝜃) ∈

⎧⎪⎨⎪⎩
{0}, if 𝐽𝐸(𝜃) < 𝐽𝑆(𝜃);

{1}, if 𝐽𝐸(𝜃) > 𝐽𝑆(𝜃);

[0, 1], otherwise.

(11)

4.5 Stationary Equilibrium

We define equilibrium in a standard manner for stationary equilibrium with stochastic

shocks:13

Definition 1 A stationary equilibrium is a collection of value functions 𝐽𝑓 , 𝐽𝑙, 𝐽𝐼 , 𝐽𝐿,

𝐽𝐸, 𝐽𝑆, capital allocation function 𝛿, exit function 𝜂, price efficiency measures 𝜆𝐼 , 𝜆𝐿,

law of motion for the mass of active arbitrageurs 𝜉 such that

1. 𝐽𝑓 , 𝐽𝑙, 𝐽𝐼 , 𝐽𝐿, 𝐽𝐸, 𝐽𝑆, 𝛿, 𝜂 satisfy Eqs. (4)-(11).

2. 𝜆𝐼 and 𝜆𝐿 correspond to the probability that prices, which are determined by Eq. (1),

reveal true asset values in market 𝐼 and 𝐿, respectively.

3. The law of motion for 𝜉 satisfies Eq. (2).

13As is standard, the equilibrium is called “stationary” because the value functions and the capital
flow function are time invariant; however in general the endogenous variables will change over time.
Note that “stationary” is not the same as the “steady states” which we describe in Section 5.2. While
an equilibrium of our model describes the evolution of the entire system over time as a function of the
state variables, the system may over time end up with the endogenous variables converging close to
certain values - these are called steady states.
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An equilibrium is said to be interior if 𝐽𝐼(𝜃) = 𝐽𝐿(𝜃), so that active arbitrageurs are

indifferent between investing in market 𝐼 and 𝐿. In an interior equilibrium, Eqs. (4),(6),(9)

and (10) imply that early liquidation is strictly dominated by holding the position, i.e.,

𝐽𝐸(𝜃) < 𝐽𝑆(𝜃) (hence 𝐽𝑙(𝜃) = 𝐽𝑆(𝜃)), of which the proof is relegated to Appendix A.

With early liquidation, the position is closed out and then a new position is opened.

But the expected proceeds are offset by the expected cost of acquiring the new posi-

tion afterwards. Consequently, locked-in arbitrageurs stay inactive until either the price

fully reveals the asset value or the asset pays off (i.e., 𝜂 is equal to zero in an interior

equilibrium).14

We can now characterize price efficiency in financial markets as follows:

Lemma 1 In an interior equilibrium, the probability of information revelation in market

𝐼 equals

𝜆𝐼 =
𝛿𝜉

𝑧𝐼
, (12)

and the probability of information revelation in market 𝐿 equals

𝜆𝐿 =
(1− 𝛿)𝜉

𝑧𝐿
. (13)

Proof. See Appendix.

As Lemma 1 shows, for a fixed capital allocation 𝛿, equilibrium price efficiency in

market ℎ ∈ {𝐼, 𝐿} increases in the amount of informed capital 𝜉 and decreases in the

intensity of noise trading 𝑧ℎ. This property is intuitive because 𝜉 and 𝑧ℎ have opposite

effects on the informativeness of order flows in market ℎ. Of course, capital allocation

𝛿 is a function of the state 𝜃, so the overall impact of a shock to 𝑧𝐼 on market price

efficiency can only be determined in equilibrium, to which we turn next.

We can find conditions which are sufficient to ensure existence and uniqueness of

equilibrium as well as monotonicity of equilibrium price efficiency in the amount of

active capital as well as in the intensity of noise trading. The conditions provided in the

appendix are rather lengthy but straightforward. The conditions provided are satisfied

by a wide range of parameter values, including all of our numerical simulations.15

14Even if arbitrageurs are allowed to open a new risky position simultaneously with closing another
one, early liquidation does not dominate staying with the existing position. Furthermore, introducing an
arbitrarily small transaction or information acquisition cost would make early liquidation suboptimal.

15Note that in general it is difficult to show existence and uniqueness of stationary recursive com-
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Proposition 1 Under the conditions stated in Appendix B, there exists a unique station-

ary interior equilibrium in which price efficiency in the illiquid market 𝜆𝐼 is monotone

increasing in active capital 𝜉. Furthermore, 𝜆𝐼 is monotone decreasing in noise trading

intensity 𝑧𝐼 .

Proof. See Appendix.

Proposition 1 shows that price efficiency 𝜆𝐼 decreases in noise trading intensity 𝑧𝐼

when capital allocation 𝛿 is determined endogenously. Such reduction in 𝜆𝐼 slows down

the rate at which the current mass of locked-in capital is released, which reduces the mass

of active capital in subsequent periods. This effect of a current shock to 𝑧𝐼 further impairs

future price efficiency and therefore increases the expected duration of an investment in

market 𝐼. This is in contrast to the contemporaneous effect of a reduction in 𝜆𝐼 which

makes market 𝐼 more attractive to informed arbitrageurs who can benefit from price

inefficiency.

Note that the dynamics of price efficiency in response to a stochastic shock to 𝑧𝐼 is

solely determined by the current level of state variables 𝜉 and 𝑧𝐼 due to its stationary

nature. In the next section, we characterize liquidity hysteresis (or regime shifts) where

the dynamics of price efficiency and its long-run evolutionary path changes as a result

of crossing certain endogenous thresholds of 𝜉.

5 Implications

5.1 Equilibrium Price Efficiency across Two Markets

We start with a preliminary result for the cross-sectional and dynamic properties of

equilibrium price efficiency and liquidity.

Lemma 2 In an interior equilibrium price efficiency satisfies

𝜆𝐿 − 𝜆𝐼 = 𝛽 (1− 𝑞) (1− 𝜆𝐼)
(︁
1− E[𝜆̇𝐼 |𝜃]

)︁
. (14)

petitive equilibrium, and much of the original macroeconomics literature does not do so (e.g. Bewley
(1986), Huggett (1993), Aiyagari (1994)). However, it is preferable to be able to prove existence and
uniqueness in cases where simulation or analytical results are given. See, for example, Acemoglu and
Jensen (2015) and Acikgoz (2018) for more recent debates on the topic.
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Proof. See Appendix.

The LHS of Eq. (14) is the difference in probabilities of trading at fully-revealing

price in market 𝐿 over market 𝐼 in the current period. That is, this difference reflects

how more likely an arbitrageur is to make a speculative profit when trading in market

𝐼 compared to trading in market 𝐿 in the current period.

The RHS of Eq. (14) is the probability (1−𝑞)(1−𝜆𝐼) of remaining locked in a trade in

market 𝐼, weighted by the discount factor 𝛽, and multiplied by expected future illiquidity

in market 𝐼, captured by the term 1 − E[𝜆̇𝐼 |𝜃]. By trading in market 𝐼, a speculator

gives up the certainty of being able to re-trade in the next period; for arbitrageurs

to be indifferent between the two markets, assets in market 𝐼 must compensate this

opportunity cost with a higher probability of trading at non-revealing price in the current

period.

5.2 Liquidity Hysteresis

Our model can display liquidity hysteresis, in other words a transitory shock can move

the system to a different level of liquidity. In a dynamic model, “equilibrium” tells us

the time path of liquidity as a function of the initial level of active capital, the initial

level of noise trade, and the shocks that happen over time. Hence, strictly speaking

there is no “equilibrium level” of liquidity, which is a concept from a static model.

However, in equilibrium, and in the absence of shocks the level of liquidity will converge

to a “steady state value.” This is intuitively similar to the equilibrium level of a static

model. Hysteresis means that there are multiple steady states. To aid intuition, we now

describe these steady state values of liquidity for a simple version of the model without

shocks; we will revert to studying the fully stochastic model in subsequent sections.

We start by considering the special case of the model under the assumption that

noise trading intensity is fixed at a constant level, i.e., 𝑧𝐼 is a constant in every period.

We can then define the steady state equilibria of the model. An equilibrium maps the

current period’s state variable 𝜉 to the next period’s state variable 𝜉, and a steady state

is a fixed point of that mapping. Also (as we show below) the equilibrium law of motion

has the property that the endogenous state variable tends to converge to the steady

state value. The argument for this special case can be carried over to the general case

with stochastic noise trading intensity, but in the case without shocks we can study the

steady state analytically. In the next subsection we will add small shocks and show
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that, when the noise trading intensity is at the “normal” level (no shocks for a while)

the state variable will converge close to a stable point.16

We denote 𝜉* to be the steady-state-level mass of active arbitrageurs, and also denote

𝜆*
𝐿 and 𝜆*

𝐼 to be the steady-state-level price efficiency in market 𝐿 and 𝐼, respectively.

In steady state, the indifference condition in Eq. (14) can be expressed in terms of 𝜆𝐿

and 𝜆𝐼 as follows:

𝜆*
𝐿 − 𝜆*

𝐼 = 𝛽(1− 𝑞)(1− 𝜆*
𝐼)

2. (15)

Eq. (15) reveals that price efficiency plays a dual role. On the one hand, price

efficiency determines the profitability of investment opportunities: higher 𝜆*
𝐼 (and also

𝜆*
𝐿) decreases the probability of acquiring a new position at non-revealing prices. We

term this the “first lambda” effect of price efficiency on speculative profits. On the other

hand, price efficiency determines the maturity of investment opportunities in long lived

assets: higher 𝜆*
𝐼 increases the likelihood of closing out a position with profits earlier.

We term this the “second lambda” effect of price efficiency on speculative profits, which

is closely related to the definition of liquidity in our paper; with higher lambda an

arbitrageur waits less before the arbitrageur’s private information is incorporated in the

price, hence can cash in sooner at full value.17

Substituting Eqs. (12) and (13) into Eq. (15) yields the following steady state rela-

tionship between 𝛿 and 𝜉 implied by arbitrageurs’ indifference condition:

𝑧𝐿 − (1− 𝛿*)𝜉*

𝑧𝐿
=

(︂
𝑧𝐼 − 𝛿*𝜉*

𝑧𝐼

)︂[︂
1− 𝛽(1− 𝑞)

(︂
𝑧𝐼 − 𝛿*𝜉*

𝑧𝐼

)︂]︂
. (IC)

For a fixed 𝛿*, a decrease in active arbitrage capital 𝜉* decreases price efficiency in

both markets. This has a (positive) first lambda effect on speculative profits in both

markets but a (negative) second lambda effect in market 𝐼, which becomes relatively

less attractive. Hence, 𝛿* must decrease to restore arbitrageurs’ indifference condition

across markets.18

16In the literatures on dynamic macroeconomics, and dynamic systems in science, the “steady state
equilibrium” of the version of the model without shocks is also called “steady state”, “deterministic
steady state,” “stable point,” “asymptotically stable point”, and simply “fixed point”. In the version
of the model with shocks it is called “stochastic steady state”, “risky steady state”, “stable point”
“asymptotically stable point”and “fixed point”. We will call them “steady state equilibrium” or simply
“steady state” for the deterministic version and “stable point” in either version. We use “regime” to
refer to the stable point the economy will converge to (in the absence of any further shocks).

17Note that our 𝜆 is a price efficiency measure. The variable lambda in Kyle (1985) is not directly
comparable because in our model 𝜆 does not measure price impact.

18Lemma C.4 in Appendix C provides the sufficient condition for the net benefit of trading in market
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An interior steady state equilibrium is found at the intersection of the indifference

condition (IC) curve and the following capital movement (CM) curve obtained from the

law of motion for active arbitrage capital in Eq. (2) together with Eq. (12) for 𝜆*
𝐼 :

𝜉* = (1− 𝛿*)𝜉* + (𝛿*𝜉* + 1− 𝜉*)

(︂
𝑞 + (1− 𝑞)

𝛿*𝜉*

𝑧𝐼

)︂
. (CM)

Note that an increase in the fraction of active arbitrageurs that invest in market 𝐼

has two opposing effects. On the one hand, as 𝛿* increases, more arbitrageurs remain

trapped in market 𝐼. This tends to reduce steady state value for active capital 𝜉*. On

the other hand, an increase in 𝛿* improves price efficiency in market 𝐼, which increases

the rate at which arbitrage capital is released form this market. This feedback effect

tends to increase 𝜉*. Which effect dominates depends on the model parameters. The

first effect dominates in panels (a)-(c) of Figure 1 for 𝛿 small, while the second effect

dominates for 𝛿 large. Intuitively, increasing the rate at which trapped capital is released

has a bigger effect when the mass of arbitrageurs that are invested in market 𝐼 is larger.

We can show existence of the steady state equilibrium:

Proposition 2 (i) There are either one or two stable steady state equilibria. (ii) There

exist constants 0 < 𝑞 < 𝑞 < 1 and 0 < 𝛽 < 𝛽 < 1 such that the steady state equilibrium

is unique if 𝑞 > 𝑞 and/or if 𝛽 < 𝛽 and there are multiple steady state equilibria if 𝑞 < 𝑞

and 𝛽 > 𝛽 and 1 > 3
4
𝑧𝐿 + 𝑧𝐼 .

Proof. See Appendix.

The sufficient conditions for multiple steady states in the proposition are intuitive.

Because the feedback between price efficiency and active capital is across periods, its

effect is stronger when investors care more about the future and when the duration of

an investment in market 𝐼 is mainly determined by future informed trading.

Figure 1 illustrates the steady state equilibrium values for 𝜉* and 𝛿* determined by

the intersection of the IC and CM curves. The steady state is unique in panels (a) and

(b), whereas there are three steady states in panel (c), of which two are stable and one

(for intermediate values of 𝜉* and 𝛿*) is unstable. Panel (d) illustrates the region of

noise trading intensity in the illiquid market where there is uniqueness or multiplicity.

𝐼 to decrease as 𝛿 increases, for a fixed value of 𝜉.
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Figure 1: Steady State Equilibrium. (non-stochastic model) Parameter values
common across all panels: 𝑞 = .002, 𝑧𝐿 = .2, 𝛽 = .9. Values for 𝑧𝐼 in the unique steady
state equilibrium in panel (a) is 𝑧𝐼 = 0.83 and in panel (b) is 𝑧𝐼 = 0.9; in the multiple
steady state equilibria in panel (c): 𝑧𝐼 = 0.855.

5.3 Shock Response and Liquidity Regimes

Now, we return to analysis of the system in the general case of stochastic shocks, and con-

sider the response to a stochastic shock to noise trading intensity in market 𝐼, whereby

𝑧𝐼 deviates from its normal level to a different value for a short period of time; agents

anticipate the possibility that a change in noise trading in market 𝐼 might occur on the

equilibrium path.

To shed light on the response to this temporary liquidity shock, we rearrange the
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indifference condition in Eq. (14) as follows:

1− 𝜆𝐿 = (1− 𝜆𝐼)(1− 𝛽(1− 𝑞)(1− E[𝜆̇𝐼 ])). (16)

Consider a shock whereby 𝑧𝐼 increases temporarily to a higher value. To aid intuition,

assume 𝛿 does not react to the shock, and consider the effect of the shock to both sides

of Eq. (16). By Eq. (13), the LHS of Eq. (16) is unaffected, while the RHS is affected via

two channels. By Eq. (12), 𝜆𝐼 drops, making investment in market 𝐿more attractive (the

first lambda effect). But, by Eq. (2), lower 𝜆𝐼 implies that 𝜉 also drops because current

locked-in capital is released at a lower rate. This decreases 𝜆̇𝐼 and implies that market 𝐼

is more illiquid in the subsequent period (the second lambda effect). Arbitrageurs who

consider investing in market 𝐼 must trade off the larger probability of a non-revealing

price in the current period against the longer expected duration of the investment and

therefore the larger opportunity cost of being inactive in future periods. When this

second effect is sufficiently strong, a larger fraction of active arbitrageurs flows from

market 𝐼 to market 𝐿. Anticipating such a trade-off arising from the first and the

second lambda effect, capital allocation 𝛿 endogenously readjusts given the arrival of a

shock in equilibrium.

Time

(a) Transition curves for 𝜉 (b) Evolutionary paths of 𝜉

Figure 2: Regimes and Evolution of the Mass of Active Capital (𝜉). (stochastic
model) Panel (a): transition curves for 𝜉 for each of three possible contemporaneous
values of 𝑧𝐼 ∈ {𝑧𝑙𝑜𝑤𝐼 , 𝑧𝑛𝑜𝑟𝑚𝑎𝑙

𝐼 , 𝑧ℎ𝑖𝑔ℎ𝐼 }; circles correspond to stable points in the transition
curve for 𝑧𝐼 = 𝑧𝑛𝑜𝑟𝑚𝑎𝑙

𝐼 . Panel (b): evolutionary paths of 𝜉 under various initial values
and fixing 𝑧𝐼 = 𝑧𝑛𝑜𝑟𝑚𝑎𝑙

𝐼 .
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Figure 2 illustrates regimes and dynamics of the mass of active capital 𝜉. Panel (a)

plots the transition curve for 𝜉 which maps the current state 𝜃 = (𝜉, 𝑧𝐼) into next period

active capital 𝜉, that is,

𝜉 = [1− 𝛿 (𝜃)] 𝜉 + (𝛿 (𝜃) 𝜉 + 1− 𝜉)

(︂
𝑞 + (1− 𝑞)

𝛿(𝜃)𝜉

𝑧𝐼

)︂
.

An intersection with the 45-degree line is a fixed point of the transition curve such that

𝜉 = 𝜉. The intermediate (solid) curve displays three fixed points, with the lowest and the

highest being stable and the middle one unstable. The middle fixed point corresponds

to the threshold value of 𝜉 which separates the two regions of attraction for 𝜉.19

Panel (b) of Figure 2 illustrates these regions of attraction by plotting the evolution,

as implied by the intermediate curve in panel (a), of the mass of active capital for

different initial values. The value of 𝜉 converges to the highest (lowest) stable point for

initial values of 𝜉 above (below) the threshold value. Hence, if the value of active capital

𝜉 is close to a stable point, it converges back to it after experiencing a small deviation

due to shocks. However, once 𝜉 crosses the threshold value, then 𝜉 is set on a different

trajectory and converges to a different stable point. This situation describes a regime

shift in active capital and liquidity in the economy.

Such a regime shift is further illustrated in panel (a) of Figure 2. The arrows show

the effects of shocks to 𝑧𝐼 from its normal level starting from the stable point with high

liquidity (or large mass of active capital). A temporary increase in 𝑧𝐼 pushes 𝜉 downward

in the next periods, but such shock is absorbed in subsequent periods if 𝑧𝐼 goes back to

its normal state. However, the figure illustrates that if the higher level of noise trading

persists for more periods (three periods for the parameters in the figure), then 𝜉 crosses

the threshold value. After this happens, 𝜉 is set on a downward trajectory toward the

stable point characterized by low liquidity even if noise trading intensity 𝑧𝐼 reverts back

to its normal state. The mass of active capital 𝜉 can go back from this low level to

the original high level only after a sequence of favorable shocks to 𝑧𝐼 that push 𝜉 above

the critical threshold which would put the dynamics of active capital on the upward

trajectory. Our numerical simulation in the next subsection shows an example of such

transitions across liquidity regimes.

19In case of a deterministic model described in Section 5.2, this would be the value of 𝜉 corresponding
to the unstable equilibrium in panel (c) of Figure 1 (the middle intersection between the IC and CM
curves).
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5.4 Numerical Examples

In this subsection, we provide some numerical examples of dynamic responses to stochas-

tic shocks to noise trading intensity to illustrate the feedback channel between price effi-

ciency and active capital. In the numerical examples, we consider a temporary deviation

of 𝑧𝐼 from its normal level to a higher level, after which 𝑧𝐼 reverts back to its normal level

(to be clear, all agents in the model understand the Markov process governing changes

in 𝑧𝐼 but the “normal” level is so called because it is more likely than the higher or lower

level). Our examples illustrate how temporary shocks can create long-lasting effects in

both markets by triggering flight-to-liquidity and causing liquidity hysteresis.

Figures 3 shows responses to shocks to 𝑧𝐼 with two different durations. The shock in

the current period (𝑡 = 0) leads to a drop in price efficiency in market 𝐼 and therefore

a decrease in 𝜉 from its initial value starting from the subsequent period. In cases of

both short and long duration shocks, arbitrageurs react by flowing out of market 𝐼 (i.e.,

𝛿 decreases) as they anticipate lower liquidity and a larger opportunity cost of being

locked in this market going forward. Therefore, market 𝐼 suffers further decreases in

price efficiency, thereby triggering further decreases in 𝜉 until the shock is removed.20 In

the case of a short duration shock, market illiquidity is gradually restored once the shock

is removed. This replenishes active capital and the economy converges back to the initial

stable point. By contrast, the response to a longer duration shock, which drags the level

of active capital below the critical threshold, has different dynamics due to liquidity

hysteresis. Instead of reverting back, the flow of arbitrageurs out of market 𝐼 and into

market 𝐿 persists after the shock is removed. This “flight-to-liquidity” continues as the

economy transitions from the liquid regime (or the regime with high price efficiency) to

the illiquidity regime (or the regime with low price efficiency) that features low values

for 𝛿 and 𝜉.

Figure 4 shows the responses to shocks to 𝑧𝐼 at two different initial levels of active

capital 𝜉 (but with an identical duration). As in Figures 3, active capital and price

efficiency in market 𝐼 decrease as a result of shocks and the ensuing capital flow out

of market 𝐼. In addition, Figure 4 shows how the resilience or fragility of the economy

depends on the current level of active capital. Intuitively, a reduction in price efficiency

in market 𝐼 has a stronger feedback effect on future active capital when the mass of

20Price efficiency in market 𝐿, however, may increase or decrease depending on the relative magnitudes
of two confounding effects; price efficiency in market 𝐿 tends to increase as arbitrageurs flow into this
market, but the overall reduction in active capital has the opposite effect. The latter effect dominates
after the short duration shock, while the former effect dominates after the long duration shock.
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(c) Price efficiency in market 𝐼 (d) Price efficiency in market 𝐿

Figure 3: Transitional Dynamics for a Temporary Shock under Different Shock
Durations. A short duration shock (duration of 10 periods, solid line) and a long
duration shock (duration of 20 periods, dashed line) is given at 𝑡 = 0. Parameter values:
𝑞 = .002, 𝑧𝐼 ∈ {.805, .855, .895}, 𝑧𝐿 = .2, 𝛽 = .9. Transition probabilities are given by
𝜔11 = .4, 𝜔12 = .6, 𝜔13 = 0, 𝜔21 = .12, 𝜔22 = .78, 𝜔23 = .1, 𝜔31 = 0, 𝜔32 = .58, 𝜔33 = .42
where states 1,2 and 3 correspond to low, normal and high level of 𝑧𝐼 , respectively.

locked in arbitrageurs is relatively high (equivalently, when active capital is relatively

low). As shown in Panel (a), when the initial level of active capital is high relative to the

critical threshold, the economy is resilient and the level of 𝜉 reverts back to the stable

point with high information. On the other hand, with relatively small initial amount

active capital, the economy is fragile and the outflow of arbitrageurs out of market 𝐼

persists after the shock is removed as active capital crosses the critical threshold and

the economy transitions to the illiquidity regime that features low values for 𝛿 and 𝜉.
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Figure 4: Transitional Dynamics for a Temporary Shock under Different Levels
of the Initial Active Capital. A short duration shock (duration of 10 periods) is
given at 𝑡 = 0 with a higher active capital level (initial value of 𝜉 = .62, solid line) and
a lower active capital level (initial value of 𝜉 = .42, dashed line). Parameter values:
𝑞 = .002, 𝑧𝐼 ∈ {.805, .855, .895}, 𝑧𝐿 = .2, 𝛽 = .9. Transition probabilities are given by
𝜔11 = .4, 𝜔12 = .6, 𝜔13 = 0, 𝜔21 = .12, 𝜔22 = .78, 𝜔23 = .1, 𝜔31 = 0, 𝜔32 = .58, 𝜔33 = .42
where states 1,2 and 3 correspond to low, normal and high level of 𝑧𝐼 , respectively.

With the market experiencing the illiquidity regimes in both examples (as illustrated

in Figure 3 and Figure 4), price efficiency in market 𝐼 deteriorates unambiguously in

the aftermath of the shock because of two effects: (i) reduction in 𝜉 which is the stock

of active capital, and (ii) reduction in 𝛿 which is the flow of active capital to market

𝐼. On the other hand, the two effects move in opposite directions in case of 𝜆𝐿 in

the aftermath of the shock. The shock in market 𝐼 leads to contagion to market 𝐿 by

reducing the capital stock 𝜉, but also leads to flight-to-liquidity by increasing the capital
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flow 1 − 𝛿 to market 𝐿. Therefore, the direction of change in 𝜆𝐿 generally depends on

the magnitude of the two effects. In these numerical examples, the flow effect (increase

in 1 − 𝛿) dominates the stock effect (decrease in 𝜉), thus, increasing price efficiency in

market 𝐿 instead of decreasing it. However, it is possible to find examples where the

shock causes liquidity in both markets to deteriorate.

(a) Active capital (b) Investment in market 𝐼

(c) Price efficiency (d) noise trading intensity in market 𝐼

Figure 5: Simulation. Parameter values: 𝑞 = .002, 𝑧𝐼 ∈ {.805, .855, .895}, 𝑧𝐿 = .2, 𝛽 =
.9. Transition probabilities are given by 𝜔11 = .4, 𝜔12 = .6, 𝜔13 = 0, 𝜔21 = .12, 𝜔22 =
.78, 𝜔23 = .1, 𝜔31 = 0, 𝜔32 = .58, 𝜔33 = .42 where states 1,2 and 3 correspond to low,
normal and high level of 𝑧𝐼 , respectively.

In equilibrium, the market can move in and out of the illiquidity regime. We illustrate

this in Figure 5, which shows a simulation of the stochastic model when there is a

“normal” and persistent level for noise trading intensity in market 𝐼 but with small

probability noise trading intensity can jump up or down from its normal level, and
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these shocks are not persistent. The occurrence of temporary shocks does not have

persistent effects in the first portion of the simulation. It is only when bad shocks occur

for several consecutive periods (around 𝑡 = 250 in the figure) that there is a sustained

flight-to-liquidity and the economy enters a different regime. In the figure, the initial

high liquidity regime for market 𝐼 (white area) is followed by a low liquidity regime for

market 𝐼 (shaded area) after the occurrence of a sequence of bad shocks in this market.

The economy is therefore trapped in this regime for many periods even though noise

trading is in its normal state most of the time during these periods. It takes a sequence

of good shocks in market 𝐼 for the economy to exit this illiquidity regime and revert

back to the high liquidity regime for market 𝐼. Along the transition, capital flows to

market 𝐼 and improves liquidity in this market; as a result locked-in capital is released

at a faster rate, further increasing liquidity.

6 Discussion

In this section, we discuss the empirical implications of our model.

Professional traders have a saying that they want to “buy in an inefficient market,

sell in an efficient market.” This idea is linked to the dual role of price efficiency in our

model: price efficiency determines the mispricing wedge which affects the profitability

of investment opportunities (“first lambda effect”) but also determines the maturity of

new investment (“second lambda effect”). The second lambda measures liquidity in the

sense that it determines the speed at which arbitrageurs can close out their positions at

a profit because subsequent trades by other arbitrageurs make prices efficient.

In equilibrium, the two effects are bound together as shown in Eq. (14); the cross-

sectional difference in mispricing wedges today is related to the expectation of liquidity

in the future. To see this more clearly, we can recursively substitute Eq. (14) into itself

and obtain the following equation:

𝜆𝐿,𝑡 − 𝜆𝐼,𝑡 = E

[︃
∞∑︁
𝜏=1

𝛽𝜏 (1− 𝑞)𝜏
𝜏−1∏︁
𝑗=0

(1− 𝜆𝐼,𝑡+𝑗) (1− 𝜆𝐿,𝑡+𝜏 )

]︃
, (17)

where 𝜆ℎ,𝑡 is price efficiency in market ℎ at time 𝑡. The LHS of Eq. (17) captures the

difference in mispricing across markets in the current period, and the RHS captures

the opportunity cost arising from future illiquidity in market 𝐼, which is the expected

27



loss in future speculative profits because of trapped capital.21 Hence, a large difference

in mispricing predicts illiquidity, as well as slow convergence of price to fundamental

in the future. Furthermore, on the impact of a liquidity shock, the current mispricing

wedge in market 𝐼 should widen relative to that of in market 𝐿 to compensate for the

potentially-foregone trading opportunities in future periods, and this response becomes

particularly persistent and magnified if it involves a regime shift (liquidity hysteresis).

Our model implies that the mass of active capital is the key state variable that

determines market liquidity. Although active capital itself is difficult to measure, the

mispricing wedge (as a proxy for price efficiency) can be measured to some extent.22 Our

theory predicts that empirical measures of price efficiency can be used as a proxy for

the actual state variable–the mass of active capital. In the following, we discuss some

empirical implications of this idea.

There are several well-known episodes of liquidity crises such as the 1987 stock market

crash, the 1998 Long-Term Capital Management crisis, and the subprime mortgage crisis

of 2007-2009. These episodes are often characterized by a delayed recovery of liquidity in

the aftermath (e.g., Mitchell, Pedersen, and Pulvino (2007), Coval and Stafford (2007)).

Existing literature often explains those liquidity crises as a result of shock amplifications

which impair capital itself.23 In our model, a liquidity crisis can happen even in the

absence of any reduction in arbitrage capital itself – what matters is a reduction in

active arbitrage capital.

Our simulations illustrate that all it takes to create a full-blown liquidity crisis is

merely a transient shock which causes arbitrage capital to get redeployed more slowly.

While market liquidity recovers rather quickly after a small shock, a sizable shock (or a

sequence of small shocks) can trigger a change in regime and have long-lasting impact.

Traders may choose to redeploy capital to intrinsically liquid markets (market 𝐿 in our

21Observe that (1− 𝑞)
𝜏
(1− 𝜆𝐼,𝑡) ... (1− 𝜆𝐼,𝑡+𝜏−1) is the probability that an arbitrageur’s capital

invested in market 𝐼 is not available for a new trade in period 𝑡+ 𝜏 , and (1− 𝜆𝐿,𝑡+𝜏 ) is the probability
of realizing a speculative profit in 𝑡+ 𝜏 in market 𝐿.

22There are various empirical price efficiency/mispricing measures in the literature. For example,
there are measures based on anomalies in terms of standard factor models (e.g., Stambaugh and Yuan
(2017)), index future basis (e.g., Roll, Schwartz, and Subrahmanyam (2007)), non-random walk compo-
nent in price (e.g., Hasbrouck (1993)), price delay (e.g., Hou and Moskowitz (2005), Saffi and Sigurdsson
(2011)), return predictability from order imbalances (e.g., Chordia, Roll, and Subrahmanyam (2005)),
price deviation from valuation models (e.g., Doukas, Kim, and Pantzalis (2010)), and violations of par-
ities (e.g., Rosenthal and Young (1990), Lee, Shleifer, and Thaler (1991)). Some of these measures may
be related to mispricing in terms of private or public information although our model is about private
information.

23For example, capital becomes increasingly less available through the channel of tightened collateral
(e.g., Gromb and Vayanos (2002)) or margin constraints (e.g., Brunnermeier and Pedersen (2009)).
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model) in response to a shock. At the core of this argument lies the multiplicity of steady

state equilibria (or stable fixed points); a sufficiently large shock can disturb the system

enough to put the state variable (active capital) on another path.24 This mechanism

allows us to give a distinctive prediction that equilibrium may be shifted toward low

liquidity as a result of shocks. In the case of stochastic shocks, it takes a long time to

have a series of good shocks that are sufficient to push active capital back to the upward

trajectory. This prediction matches empirical observations of long periods of illiquidity

in the market.

Using our model, we show that active arbitrageurs may optimally choose to invest

in the liquid market upon the arrival of liquidity shocks.25 Capital tends to flow out

of a market if this market’s future liquidity is expected to deteriorate. Because lower

future liquidity means longer maturity of new trading positions, the mispricing wedge

would need to increase to compensate arbitrageurs with lower price efficiency in return

for longer maturity. Furthermore, we also show the conditions under which capital flows

in or out of a market hit by a liquidity shock. Acharya, Amihud, and Bharath (2013)

document the existence of two liquidity regimes for corporate bonds. In particular,

they find empirical evidence of flight-to-liquidity: prices of investment-grade bonds rise

while prices of speculative-grade bonds fall. Cao, Chen, Liang, and Lo (2013) find that

hedge fund managers can time market liquidity based on their forecasts of future market

liquidity conditions. Furthermore, Cao, Liang, Lo, and Petrasek (2018) find that hedge

funds contribute to price efficiency by investing in relatively more mispriced stocks, but

those stocks tend to experience large decline in price efficiency during liquidity crises.

As an opposite situation to flight-to-liquidity, traders sometimes seek more risk by

investing in illiquid assets. That is, traders tend to reach for yield during good times

with ample liquidity (e.g., Becker and Ivashina (2015)). The positive feedback between

active capital and liquidity in our model suggests an alternative mechanism of reaching

for yield. As the market starts to have more capital, there is a reinforcement effect

in which more locked-in capital is further released. This will raise price efficiency and

shorten maturities of investment in illiquid assets. Consequently, capital starts flowing

into more illiquid asset classes as active capital expands. This can reduce mispricing

24Even in cases where the system has only one regime (or one steady state), a shock that initially
reduces liquidity may lead to further drops in liquidity and long delays before liquidity is re-established.
But, it may take arbitrarily long time to recover in case of multiple regimes.

25There is indeed ample evidence about flight-to-liquidity in various markets: investors tend to pre-
fer liquid assets during bad times (e.g., Beber, Brandt, and Kavajecz (2007), Acharya, Amihud, and
Bharath (2013), Ben-Rephael (2017)).
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wedge greatly by transferring to a high liquidity equilibrium. While a lower mispricing

wedge is good for price efficiency, it puts pressure on financial institutions to reach

for higher yields. We interpret this situation as reaching-for-yield because arbitrageurs

invest more in riskier assets in that situation.

Our model suggests a role for government interventions (such as direct liquidity

injections or asset purchases) against liquidity crises. One of the key observations is

that a market’s ability to recover from a liquidity shock is determined by the level of

active capital (rather than the total stock of capital) in the market.26 That is, it is

difficult for the market to recover once it transitions to the illiquidity regime even when

the stock of capital itself is plentiful. Therefore, an intervention can be more effective

by exploiting a higher multiplier effect of extra liquidity if it can be implemented before

a complete transition to the illiquidity regime happens;27 it can not only prevent flight-

to-liquidity, but also accelerate the circulation of active capital by releasing inactive

capital more quickly. Furthermore, observable measures such as spreads between liquid

and illiquid asset classes, in line with the LHS of Eq. (17), can serve as an indicator for

decision making regarding market interventions.

7 Conclusion

We study a dynamic stationary model of informed trading with two markets. The

model features endogenous liquidity regimes where temporary shocks to noise trading

can trigger a shift of the regime. We show that upon the arrival of a shock arbitrage

capital may actually flow out of the illiquid market. With some arbitrage capital flowing

out, the remaining capital in the market becomes trapped because it is too illiquid for

arbitrageurs to want to close out their positions. This in turn deepens illiquidity in a

self-reinforcing manner, thereby creating liquidity hysteresis where illiquidity persists

even when the initial cause is removed.

In our model, arbitrage capital plays a dual role; the mispricing wedge not only

decides the profitability of new investment but also decides the speed at which engaged

arbitrage capital is released (thus deciding the availability of arbitrage capital). The

26Notice that this effect is not driven by self-fulfilling expectations, investor “confidence,” sunspots
nor the government “choosing” among multiple equilibria. Our model has a unique equilibrium path in
which active capital is the state variable, so if the government can inject capital, it directly influences
the state variable of the system.

27See, for example, Dow and Han (2018) for further discussion about the multiplier effects of arbitrage
capital.
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dual role of arbitrage capital implies that efficiency depends on the pool of active capital

as a state variable. Furthermore, it creates a feedback channel between active capital

and liquidity which leads to multiple regimes where there is a threshold of active capital

that separates domains of attraction for liquidity. Therefore, a large adverse shock can

trigger a vicious cycle of illiquidity with flight-to-liquidity where arbitrage capital flows

to the market with short-lived assets.

Although the market can move in and out of different regimes, it may take quite

a long time to come back to a liquid regime from an illiquidity regime; it requires a

sequence of good shocks strong enough to push the mass of active capital toward the

path of a liquid regime. This result provides a mechanism for slow moving capital under

which a seemingly temporary liquidity shock creates long lasting illiquidity in the market.

Our results shed light on why capital moves slowly, how fast (or slowly) it moves, and

to which directions it moves. The results further provide interesting implications on

liquidity crises, flight-to-liquidity, and cross-sectional patterns of liquidity.
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Appendix A: Proofs for Section 4

The derivation of the value functions in Section 4.4:

We first derive 𝐽𝐿. Because asset qualities are equally likely, the continuation value of

active arbitrageurs making new investment in market 𝐿 is

𝐽𝐿(𝜃) =
1

2
𝐽𝐿(𝜃;𝐺) +

1

2
𝐽𝐿(𝜃;𝐵), (A.1)

where 𝐽𝐿(𝜃; 𝑠) conditions on the quality of the chosen asset being 𝑠 ∈ {𝐺,𝐵}. We have:

𝐽𝐿(𝜃;𝐺) = −(𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0) + 𝛽
[︁
𝑉 𝐺
𝐿 + E[𝐽𝑓 (𝜃)|𝜃]

]︁
;

𝐽𝐿(𝜃;𝐵) = (𝜆𝐿𝑃
𝐵 + (1− 𝜆𝐿)𝑃

0) + 𝛽
[︁
−𝑉 𝐵

𝐿 + E[𝐽𝑓 (𝜃)|𝜃]
]︁
.

Because −(𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0) + 𝛽𝑉 𝐺
𝐿 = (𝜆𝐿𝑃

𝐵 + (1− 𝜆𝐿)𝑃
0)− 𝛽𝑉 𝐵

𝐿 , it is immediate

that 𝐽𝐿(𝜃;𝐺) = 𝐽𝐿(𝜃;𝐵), thus, we find that 𝐽𝐿(𝜃) in Eq. (A.1) is equivalent to the one

in Eq. (7).

We turn to the derivation of 𝐽𝐼 . In a similar fashion, the continuation value of an

active arbitrageur making a new investment in market 𝐼 is given by

𝐽𝐼(𝜃) =
1

2
𝐽𝐼(𝜃;𝐺) +

1

2
𝐽𝐼(𝜃;𝐵), (A.2)

where

𝐽𝐼(𝜃;𝐺) = −(𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0) + 𝛽𝑈(𝜃;𝐺);

𝐽𝐼(𝜃;𝐵) = (𝜆𝐼𝑃
𝐵 + (1− 𝜆𝐼)𝑃

0) + 𝛽𝑈(𝜃;𝐵),
(A.3)

and

𝑈(𝜃;𝐺) ≡ 𝑞𝑉 𝐺
𝐼 + (1− 𝑞)𝜆𝐼𝑃

𝐺 + (1− (1− 𝜆𝐼)(1− 𝑞))E[𝐽𝑓 (𝜃)|𝜃]

+ (1− 𝜆𝐼)(1− 𝑞)E[𝐽𝑙(𝜃;𝐺)|𝜃];

𝑈(𝜃;𝐵) ≡− 𝑞𝑉 𝐵
𝐼 − (1− 𝑞)𝜆𝐼𝑃

𝐵 + (1− (1− 𝜆𝐼)(1− 𝑞))E[𝐽𝑓 (𝜃)|𝜃]

+ (1− 𝜆𝐼)(1− 𝑞)E[𝐽𝑙(𝜃;𝐵)|𝜃].

(A.4)

We define 𝐽𝑙(𝜃; 𝑠) to be the continuation value of a locked-in arbitrageur holding an

asset with quality 𝑠 in market 𝐼. Because locked-in arbitrageurs can either liquidate or
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keep holding onto their existing positions, we have

𝐽𝑙(𝜃; 𝑠) = max (𝐽𝐸(𝜃; 𝑠), 𝐽𝑆(𝜃; 𝑠)) , (A.5)

where

𝐽𝐸(𝜃;𝐺) = 𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0 + 𝛽E[𝐽𝑓 (𝜃)|𝜃];

𝐽𝐸(𝜃;𝐵) = −𝜆𝐼𝑃
𝐵 − (1− 𝜆𝐼)𝑃

0 + 𝛽E[𝐽𝑓 (𝜃)|𝜃];

𝐽𝑆(𝜃; 𝑠) = 𝛽𝑈(𝜃; 𝑠).

It is immediate that 𝐽𝐸(𝜃;𝐺) = 𝐽𝐸(𝜃;𝐵) + 2𝑃 0. Now, we conjecture that

𝑈(𝜃;𝐺) = 𝑈(𝜃;𝐵) +
2𝑃 0

𝛽
. (A.6)

Then, Eq. (A.6) implies that 𝐽𝑆(𝜃;𝐺) = 𝐽𝑆(𝜃;𝐵) + 2𝑃 0, therefore, using Eq. (A.5) we

have

𝐽𝑙(𝜃;𝐺) = 𝐽𝑙(𝜃;𝐵) + 2𝑃 0. (A.7)

Eqs. (A.4) and (A.7) imply that

𝑈(𝜃;𝐺)− 𝑈(𝜃;𝐵) = 𝑞(𝑉 𝐺
𝐼 + 𝑉 𝐵

𝐼 ) + 2(1− 𝑞)𝑃 0. (A.8)

Because 𝑃 0 = 𝛽𝑞
1−𝛽(1−𝑞)

(︁
𝑉 𝐺
𝐼 +𝑉 𝐵

𝐼

2

)︁
, Eq. (A.8) implies that 𝑈(𝜃;𝐺) = 𝑈(𝜃;𝐵)+ 2𝑃 0

𝛽
, which

proves that the initial conjecture in Eq. (A.6) is indeed true.

Finally, Eq. (A.3) implies that 𝐽𝐼(𝜃;𝐺) − 𝐽𝐼(𝜃;𝐵) = −2𝑃 0 + 𝛽[𝑈(𝜃;𝐺) − 𝑈(𝜃;𝐵)],

which in turn implies that 𝐽𝐼(𝜃;𝐺) = 𝐽𝐼(𝜃;𝐵) due to Eq. (A.6). Therefore, we conclude

that 𝐽𝐼(𝜃) in Eq. (A.2) is equivalent to the one in Eq. (6).

Proof of Lemma 1: Let 𝑋𝑎
𝑖 be the aggregate order flow of arbitrageurs for asset 𝑖.

Suppose that there are 𝜇𝑖 mass of arbitrageurs investing in asset 𝑖. Because arbitrageurs

are risk-neutral and informed, their aggregate order flow is given by 𝑋𝑎
𝑖 = 𝜇𝑖 if 𝑣𝑖 = 𝑉 𝐺

ℎ ,

and 𝑋𝑎
𝑖 = −𝜇𝑖 otherwise. Then, the market makers observe the aggregate order flow

𝑋𝑖 = 𝑋𝑎
𝑖 + 𝜁𝑖. Bayes’ theorem implies that the market makers’ posterior belief that

𝑣𝑖 = 𝑉 𝐺
ℎ is given by

𝑝𝑖(𝑋𝑖, 𝜇𝑖) =
𝑝𝑓 𝑖

𝑋(𝑋𝑖|𝐺)

𝑝𝑓 𝑖
𝑋(𝑋𝑖|𝐺) + (1− 𝑝)𝑓 𝑖

𝑋(𝑋𝑖|𝐵)
, (A.9)
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where 𝑝 = 1
2
is the prior belief and 𝑓 𝑖

𝑋(·|𝐺) and 𝑓 𝑖
𝑋(·|𝐵) are the distribution of 𝑋𝑖 given

𝑣𝑖 = 𝑉 𝐺
ℎ and 𝑣𝑖 = 𝑉 𝐵

ℎ , respectively.

Because 𝜁𝑖 follows a uniform distribution on the interval [−𝑧𝑖, 𝑧𝑖] in each period, 𝑋𝑖

follows a uniform distribution either on the interval [𝜇𝑖 − 𝑧𝑖, 𝜇𝑖 + 𝑧𝑖] if 𝑣𝑖 = 𝑉 𝐺
ℎ , or on

the interval [−𝜇𝑖 − 𝑧𝑖,−𝜇𝑖 + 𝑧𝑖] otherwise. Therefore, Eq. (A.9) implies

𝑝𝑖 =

⎧⎪⎨⎪⎩
0 if −𝜇𝑖 − 𝑧𝑖 ≤ 𝑋𝑖 < 𝜇𝑖 − 𝑧𝑖

𝑝 if 𝜇𝑖 − 𝑧𝑖 ≤ 𝑋𝑖 ≤ −𝜇𝑖 + 𝑧𝑖

1 if −𝜇𝑖 + 𝑧𝑖 < 𝑋𝑖 ≤ 𝜇𝑖 + 𝑧𝑖

Therefore, the probability of revealing the true value of 𝑣𝑖 is given by

𝜆𝑖 = 𝑃𝑟(𝑝𝑖 = 0 or 𝑝𝑖 = 1)

= 𝑃𝑟(−𝜇𝑖 − 𝑧𝑖 ≤ 𝑋𝑖 < 𝜇𝑖 − 𝑧𝑖) + 𝑃𝑟(−𝜇𝑖 + 𝑧𝑖 < 𝑋𝑖 ≤ 𝜇𝑖 + 𝑧𝑖) =
𝜇𝑖

2𝑧𝑖
+

𝜇𝑖

2𝑧𝑖
=

𝜇𝑖

𝑧𝑖
.

In a market-wise symmetric equilibrium, all the future lambdas are equalized across

assets in each market. Then, Eqs. (6) and (7) imply that the continuation value of

arbitrageurs making new investment is identical across all assets except for the cost of

acquiring the position in the current period. Therefore, all arbitrageurs would want to

invest in an asset with the lowest 𝜆𝑖 in the current period until 𝜆𝑖 are equalized across

assets in each market, i.e., 𝜆𝑖 = 𝜆ℎ for all asset 𝑖 in market ℎ. It is immediate that

𝜇𝑖 = 𝛿𝜉 for market 𝐼, and 𝜇𝑖 = (1− 𝛿)𝜉 for market 𝐿. Therefore, we obtain the desired

results in Eqs. (12) and (13). �

Lemma A.3 In an interior equilibrium, it is never optimal to close out the existing

position early, i.e., 𝐽𝑙(𝜃) = 𝐽𝑆(𝜃).

Proof. We can write 𝐽𝑆(𝜃) as

𝐽𝑆(𝜃) = 𝐽𝐼(𝜃) + 𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0.

In an interior equilibrium, 𝐽𝐼(𝜃) = 𝐽𝐿(𝜃) and therefore

𝐽𝑆(𝜃) = 𝐽𝐿(𝜃) + 𝜆𝐼𝑃
𝐺 + (1− 𝜆𝐼)𝑃

0

= −(𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0) + 𝛽𝑉 𝐺
𝐿 + 𝛽E[𝐽𝑓 (𝜃)] + 𝜆𝐼𝑃

𝐺 + (1− 𝜆𝐼)𝑃
0

= −(𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0) + 𝛽𝑉 𝐺
𝐿 + 𝐽𝐸(𝜃).
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Because 𝜆𝐿𝑃
𝐺 + (1− 𝜆𝐿)𝑃

0 < 𝛽𝑉 𝐺
𝐿 , we have 𝐽𝑆(𝜃) > 𝐽𝐸(𝜃).

Proof of Lemma 2: Using 𝑃𝐺 = 𝛽𝑞𝑉 𝐺
𝐼 /(1− 𝛽(1− 𝑞)), we can represent Eq. (6) as

𝐽𝐼(𝜃) =
(︀
𝑃𝐺 − 𝑃 0

)︀
(1− 𝜆𝐼) + 𝛽(1− 𝜆𝐼)(1− 𝑞)

(︁
E[𝐽𝑙(𝜃)|𝜃]− 𝑃𝐺 − E[𝐽𝑓 (𝜃)|𝜃]

)︁
+ 𝛽E[𝐽𝑓 (𝜃)|𝜃].

Because 𝐽𝑙(𝜃) = 𝐽𝑆(𝜃) = 𝐽𝐼(𝜃)+𝜆𝐼𝑃
𝐺+(1−𝜆𝐼)𝑃

0 from Lemma A.3 and 𝐽𝑓 (𝜃) = 𝐽𝐼(𝜃)

in an interior equilibrium, the above equation implies

𝐽𝐼(𝜃) =
(︀
𝑃𝐺 − 𝑃 0

)︀
(1− 𝜆𝐼)

[︁
1− 𝛽(1− 𝑞)

(︁
1− E[𝜆̇𝐼 |𝜃]

)︁]︁
+ 𝛽E[𝐽𝑓 (𝜃)|𝜃]. (A.10)

Similarly, using 𝑃𝐺 = 𝛽𝑉 𝐺
𝐿 , we can represent Eq. (7) as

𝐽𝐿(𝜃) =
(︀
𝑃𝐺 − 𝑃 0

)︀
(1− 𝜆𝐿) + 𝛽E[𝐽𝑓 (𝜃)|𝜃]. (A.11)

Because 𝐽𝐿(𝜃) = 𝐽𝐼(𝜃) in an interior equilibrium, equating Eqs. (A.10) and (A.11)

yields

(1− 𝜆𝐿) = (1− 𝜆𝐼)
[︁
1− 𝛽(1− 𝑞)

(︁
1− E[𝜆̇𝐼 |𝜃]

)︁]︁
,

which in turn implies the desired result in Eq. (14). �

Appendix B: Proof of Proposition 1

In this section, we prove existence and uniqueness of stationary equilibrium of our model

by using the contraction property of equilibrium mapping for price efficiency in the class

of Lipschitz continuous functions.28

Notations

Here we introduce some notations used in the appendices. We let 𝑍 ≡
{︀
𝑧1𝐼 , 𝑧

2
𝐼 , ..., 𝑧

𝑁
𝐼

}︀
be the set of possible values for noise trading intensity in market 𝐼, and let 𝑧𝐼 ≡
max

{︀
𝑧1𝐼 , 𝑧

2
𝐼 , ..., 𝑧

𝑁
𝐼

}︀
and 𝑧𝐼 ≡ min

{︀
𝑧1𝐼 , 𝑧

2
𝐼 , ..., 𝑧

𝑁
𝐼

}︀
. Let 𝑀 be a constant such that

𝑀 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 | ≥ 𝑧𝐼−𝑧𝐼 for all 𝑛,𝑚. We denote 𝜔 (𝑧𝑛𝐼 | 𝑧𝑚𝐼 ) ≡ 𝜔𝑚𝑛 for the transition

28See, for example, Follmer, Horst, and Kirman (2005), Acharya and Viswanathan (2011), and Fa-
jgelbaum, Schaal, and Taschereau-Dumouchel (2017) for similar methods of proof of existence and
uniqueness of stationary equilibrium of different classes of models.
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probability from state 𝑚 to 𝑛. We also let

𝛼 ≡ max
𝑧′𝐼 ,𝑧

𝑛
𝐼 ,𝑧

𝑚
𝐼 ∈𝑍

|𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 )| .

Note that 𝛼 = 0 in case noise trading intensity process 𝑧𝐼 is independently and identically

distributed, in which case 𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 ) = 0 for all 𝑧𝑛𝐼 , 𝑧
𝑚
𝐼 , 𝑧′𝐼 ∈ 𝑍.

We let Ξ =
[︀
𝜉, 1
]︀
be the interval of possible values for 𝜉 where the lower bound

𝜉 = max
{︁
1− 𝑧𝐼

1−√
𝑞

1+
√
𝑞
, 0
}︁

is derived in Lemma D.5. We also let 𝐵 (Ξ× 𝑍) be the

set of bounded, continuous functions 𝜆 : (𝜉, 𝑧𝐼) ∈ Ξ × 𝑍 → R with the sup-norm

‖𝜆‖ = sup𝜉∈Ξ,𝑧𝐼∈𝑍 |𝜆 (𝜉, 𝑧𝐼)| .

Reformulation

We can reformulate the indifference condition 𝐽𝐼 (𝜃) = 𝐽𝐿 (𝜃) in terms of 𝜆𝐼 . Let 𝜆 :

(𝜉, 𝑧𝐼) ∈ Ξ× 𝑍 → R be the level of price efficiency in market 𝐼 given the state variable

𝜃 = (𝜉, 𝑧𝐼). Using Eqs. (12) and (13) to substitute out 𝜆𝐿 in Eq. (14) and rearranging,

we obtain the following functional equation which should be satisfied in an interior

equilibrium:

𝜆(𝜉, 𝑧𝐼) = 𝐴(𝑧𝐼)𝜉 −𝐵(𝑧𝐼)(1− 𝜆(𝜉, 𝑧𝐼))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆(𝐶(𝜉, 𝑧𝐼), 𝑧
′
𝐼)

⎞⎠ , (B.1)

where

𝐴(𝑧𝐼) ≡
1

𝑧𝐿 + 𝑧𝐼
;

𝐵(𝑧𝐼) ≡
𝛽(1− 𝑞)𝑧𝐿
𝑧𝐿 + 𝑧𝐼

;

𝐶(𝜉, 𝑧𝐼) ≡ 𝑞 + (1− 𝑞)𝜉 + (1− 𝑞)(1− 𝜉 − 𝑧𝐼)𝜆(𝜉, 𝑧𝐼) + (1− 𝑞)𝑧𝐼 [𝜆(𝜉, 𝑧𝐼)]
2

= 1− (1− 𝑞) (1− 𝜆(𝜉, 𝑧𝐼)) (1− 𝜉 + 𝑧𝐼𝜆(𝜉, 𝑧𝐼)) .

(B.2)

Note that 𝜉 = 𝐶(𝜉, 𝑧𝐼) follows from the law of motion Eq. (2) and the definition for 𝜆𝐼

in Eq. (12).
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Definitions and Assumptions

Here we introduce some assumptions needed to ensure existence and uniqueness of sta-

tionary equilibrium of our model, and also introduce other definitions related to those

assumptions.

Definition B.2 Define the functions 𝑓, 𝑔 : (𝑢, 𝑧𝐼) ∈ [0, 1]×𝑍 → R and Γ : 𝑧𝐼 ∈ 𝑍 → R
as follows:

𝑓 (𝑢, 𝑧𝐼) ≡ max
{︀
1− 𝑞, (1− 𝑞) (𝑧𝐼𝑢− 1) ,

(︀
1− 𝜉

)︀
𝑢,
(︀
1− 𝜉

)︀
𝑢+ (1− 𝑞) (1− 𝑧𝐼𝑢)

}︀
,

and

𝑔 (𝑢, 𝑧𝐼) ≡ max {𝑓 (𝑢, 𝑧𝐼) , (1− 𝑞) 𝑧𝐼𝑢} ,

and

Γ (𝑧𝐼) ≡

⎧⎨⎩ 𝑧𝐼
4

(︁
1 + 𝑧𝐼

𝑧𝐼

1−√
𝑞

1+
√
𝑞

)︁2
, if 𝑧𝐼

1−√
𝑞

1+
√
𝑞
≤ 𝑧𝐼 ;

𝑧𝐼
1−√

𝑞

1+
√
𝑞
, otherwise.

Definition B.3 Let 𝜆̂𝜉, 𝜆
*
𝜉 be the constant values

𝜆̂𝜉 ≡
1 +

√︁
1 + 4𝑧𝐼

𝛽(1−𝑞)2𝑧𝐿

2𝑧𝐼
, (B.3)

and

𝜆*
𝜉 ≡ min

𝑧𝐼∈𝑍

1/𝐵(𝑧𝐼)− 2

(1− 𝑞)Γ (𝑧𝐼)
. (B.4)

Let Λ𝜉 be the set

Λ𝜉 ≡
{︂
𝜆𝜉 ∈ R+

⃒⃒
𝜆𝜉 ≥ max

𝑧𝐼∈𝑍
𝐴(𝑧𝐼) +𝐵(𝑧𝐼) [1 + 𝑓 (𝜆𝜉, 𝑧𝐼)]𝜆𝜉, 𝜆𝜉 ≤ 𝜆̂𝜉, 𝜆𝜉 < 𝜆*

𝜉

}︂
,

and also let 𝜆̄𝜉 be its infimum

𝜆̄𝜉 ≡ inf Λ𝜉.

Assumption B.4 Parameters are chosen such that Λ𝜉 is non-empty.

Assumption B.5 Parameters are chosen such that 1 > 𝛽 (1− 𝑞) 𝑧𝐿 + 𝑧𝐼
1−√

𝑞

1+
√
𝑞
.
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Definition B.6 Let 𝜆̄𝛾 be the constant value

𝜆̄𝛾 ≡
1− 𝑧𝐼

1−√
𝑞

1+
√
𝑞
− 𝛽 (1− 𝑞) 𝑧𝐿

(𝑧𝐿 + 𝑧𝐼) 𝛽 (1− 𝑞) 𝑧𝐿𝛼𝑀
.

Let Λ𝑧 be the set

Λ𝑧 ≡
{︂
𝜆𝑧 ∈ R+

⃒⃒
𝜆𝑧 ≥ max

𝑧𝑛𝐼 ,𝑧
𝑚
𝐼 ∈𝑍,𝑛̸=𝑚

𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 ) +𝐵(𝑧𝑛𝐼 )

[︀
𝜆𝑧 (1 + 𝛼𝑀) + 𝑔 (𝜆𝑧, 𝑧

𝑛
𝐼 ) 𝜆̄𝜉

]︀
, 𝜆𝑧 ≤ 𝜆̄𝛾

}︂
.

and let 𝜆̄𝑧 be its infimum

𝜆̄𝑧 ≡ inf Λ𝑧.

Assumption B.7 Parameters are chosen such that Λ𝑧 is non-empty and

𝜆̄𝜉 ≤ min

⎧⎨⎩ 1− 𝛼𝑀

(1− 𝑞)𝑧𝐼
2
√
𝑞

1+
√
𝑞

,
1

(1− 𝑞) 𝑧𝐼
2
√
𝑞

1+
√
𝑞

(︂
1

(𝑧𝐿 + 𝑧𝐼) 𝜆̄𝑧

− 𝛼𝑀

)︂
,

1

𝛽 (1− 𝑞)2 𝑧𝐿 (𝑧𝐼 + 𝑧𝐿) 𝜆̄𝑧

⎫⎬⎭ .

It is easy to verify that Assumptions B.4, B.5 and B.7 are jointly satisfied, for exam-

ple, when 𝑞 is large enough, or 𝑧𝐿 is small enough, or 𝛽 is small enough, and when 𝛼 is

small enough.

From Eq. (B.1) we define the following mapping:

Definition B.8 Let 𝒯 : 𝜆 ∈ 𝐵 (Ξ× 𝑍) → 𝐵 (Ξ× 𝑍) be the mapping

𝒯 𝜆(𝜉, 𝑧𝐼) ≡ max

⎧⎨⎩0, 𝐴(𝑧𝐼)𝜉 −𝐵(𝑧𝐼)(1− 𝜆(𝜉, 𝑧𝐼))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆(𝐶(𝜉, 𝑧𝐼), 𝑧
′
𝐼)

⎞⎠⎫⎬⎭ .

Definition B.9 Let ℱ0 ⊂ 𝐵 (Ξ× 𝑍) be the set of bounded continuous functions 𝜆 :

(𝜉, 𝑧𝐼) ∈ Ξ × 𝑍 → R which are bounded below by zero and above by one, monotone

increasing in 𝜉, and Lipschitz continuous of modulus 𝜆̄𝜉 in 𝜉.

Note that if 𝒯 has a strictly positive fixed point in ℱ0, such a fixed point satisfies

Eq. (B.1) by construction.

We define that 𝜆 is decreasing in 𝑧𝐼 if 𝜆(𝜉, 𝑧𝑛𝐼 ) − 𝜆(𝜉, 𝑧𝑚𝐼 ) ≤ 0 for all 𝜉 ∈ Ξ and

𝑧𝑛𝐼 , 𝑧
𝑚
𝐼 ∈ 𝑍 such that 𝑧𝑛𝐼 > 𝑧𝑚𝐼 , and also define that the rate of change in 𝑧𝐼 is bounded
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by some constant 𝜅 if for all 𝑧𝑛𝐼 , 𝑧
𝑚
𝐼 ∈ 𝑍 we have

sup
𝜉∈Ξ

|𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 )| ≤ 𝜅 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 | .

Definition B.10 Let ℱ1 ⊂ ℱ0 be the subset of functions in ℱ0 that are decreasing in 𝑧𝐼

with the rate of change bounded by 𝜆̄𝑧.

Proof of Proposition 1

Recall that 𝜆 denotes an element of the set of bounded continuous functions 𝐵 (Ξ× 𝑍)

whereas 𝜆𝐼 denotes the equilibrium price efficiency function in market 𝐼 which is a fixed

point of the mapping 𝒯 defined in Definition B.8. Now, we restate Proposition 1 with

the full details:

Proposition 1. Under Assumptions B.4 and B.5, there exists a unique stationary inte-

rior equilibrium in which price efficiency in the illiquid market 𝜆𝐼 is monotone increasing

in active capital 𝜉. Furthermore, under Assumption B.7, 𝜆𝐼 is monotone decreasing in

noise trading intensity 𝑧𝐼 .

Proof. The proof is divided in six steps. First, we show that 𝒯 maps ℱ0 into ℱ0.

Second, we prove that ℱ0 is a complete metric space. Third, we prove that 𝒯 is a

contraction on ℱ0. By the contraction mapping theorem (see, for example, Theorem

3.2 in Stokey and Lucas (1996)), 𝒯 has a unique fixed point in ℱ0. We denote this

fixed point 𝜆𝐼 . Fourth, we show that under Assumption B.5, 𝜆𝐼 is strictly positive and

therefore satisfies Eq. (B.1); since 𝜆𝐼 is in ℱ0, then it is increasing in 𝜉. Fifth, we show

that under Assumption B.7, 𝜆𝐼 is decreasing in 𝑧𝐼 . Sixth, we show that all equilibrium

functions in Definition 1 can be uniquely recovered given 𝜆𝐼 .

Step 1: 𝒯 maps ℱ0 into ℱ0.

Let 𝜆 ∈ ℱ0. Then, 𝜆 is bounded between zero and one by assumption. Because 𝐵(𝑧𝐼) > 0

and 𝐴(𝑧𝐼) ∈ (0, 1), then it is immediate from Definition B.8 that 𝒯 𝜆 is bounded between

zero and one. Lemma D.7 shows that under Assumption B.4, 𝒯 𝜆 is Lipschitz continuous

of modulus 𝜆̄𝜉 in 𝜉 for every 𝜆 ∈ ℱ0. Lemma D.8 shows that under Assumption B.4, 𝒯 𝜆

is monotone increasing in 𝜉 for every 𝜆 ∈ ℱ0.

Step 2: ℱ0 is a complete metric space.
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ℱ0 with metric induced by the sup-norm is a metric space. We must show it is complete.

For this, take a Cauchy sequence {𝜆𝑛} of functions in ℱ0. Because ℱ0 is a subset of

𝐵 (Ξ× 𝑍) and 𝐵 (Ξ× 𝑍) is complete (see, for example, Theorem 3.1 in Stokey and

Lucas (1996)), {𝜆𝑛} converges to an element 𝜆* in 𝐵 (Ξ× 𝑍). We must show 𝜆* is in ℱ0.

Because each 𝜆𝑛 is bounded between zero and one, so is the limit. Hence, 𝜆* is bounded

between zero and one. Next, we show 𝜆* is monotone increasing in 𝜉. Take 𝜉2 > 𝜉1 and

𝜀 > 0, and let 𝑛0 be such that |𝜆* (𝜉1, 𝑧𝐼)− 𝜆𝑛 (𝜉1, 𝑧𝐼)| , |𝜆* (𝜉2, 𝑧𝐼)− 𝜆𝑛 (𝜉2, 𝑧𝐼)| < 𝜀/2

for all 𝑛 ≥ 𝑛0. Then,

𝜆𝑛 (𝜉2, 𝑧𝐼)− 𝜆* (𝜉2, 𝑧𝐼) ≤ 𝜀/2

− (𝜆𝑛 (𝜉1, 𝑧𝐼)− 𝜆* (𝜉1, 𝑧𝐼)) ≤ 𝜀/2

and therefore

0 ≤ 𝜆𝑛 (𝜉2, 𝑧𝐼)− 𝜆𝑛 (𝜉1, 𝑧𝐼) ≤ 𝜀+ 𝜆* (𝜉2, 𝑧𝐼)− 𝜆* (𝜉1, 𝑧𝐼) .

Because 𝜀 can be taken to be arbitrarily small, then it must be 0 ≤ 𝜆* (𝜉2, 𝑧𝐼)−𝜆* (𝜉1, 𝑧𝐼).

Finally, we have

|𝜆* (𝜉1, 𝑧𝐼)− 𝜆* (𝜉2, 𝑧𝐼)| = lim
𝑛→∞

|𝜆𝑛 (𝜉1, 𝑧𝐼)− 𝜆𝑛 (𝜉2, 𝑧𝐼)| .

Because each term in the RHS is bounded by 𝜆̄𝜉 |𝜉1 − 𝜉2| by assumption, so is the limit.

Hence, 𝜆* is Lipschitz continuous with modulus 𝜆̄𝜉.

Step 3: 𝒯 is a contraction mapping on ℱ0.

Lemma D.9 shows that under Assumption B.4, the mapping 𝒯 is a contraction on ℱ0.

Then, steps 1-3 and the Contraction Mapping Theorem imply that 𝒯 has a unique fixed

point in ℱ0.

Step 4: 𝜆𝐼 is strictly positive.

It is immediate to verify that Assumption B.5 together with Lemma D.5 implies that

𝐴(𝑧𝐼)𝜉−𝐵(𝑧𝐼) > 0, and therefore 𝒯 𝜆 > 0 for all 𝜆 ∈ ℱ0 and all (𝜉, 𝑧𝐼) ∈ Ξ×𝑍. Because

𝜆𝐼 is a fixed point of the 𝒯 mapping, 𝜆𝐼 must be a strictly positive function and it

satisfies Eq. (B.1) by construction.

Step 5: 𝜆𝐼 is decreasing in 𝑧𝐼 .
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Lemmas D.10 and D.11 imply that under Assumptions B.4 to B.7, 𝒯 maps ℱ1 into ℱ1.

By arguments analogous to Step 2, ℱ1 is a complete metric space. By Step 3, 𝒯 is a

contraction mapping on ℱ1. By Contraction Mapping Theorem, 𝒯 has a unique fixed

point in ℱ1. By construction, this is decreasing in noise trading intensity 𝑧𝐼 .

Step 6: There exists a unique interior stationary equilibrium.

The previous steps prove that in an interior equilibrium there exists a unique function

𝜆𝐼 that satisfies Eq. (B.1). By Lemma 1, given 𝜆𝐼 we can uniquely recover the capital

allocation function 𝛿 as well as market 𝐿 price efficiency 𝜆𝐿. In an in interior equilibrium

𝐽𝑓 (𝜃) = 𝐽𝐿 (𝜃), so Eq. (7) gives a functional equation for 𝐽𝐿. Consider the mapping

𝒯𝐿 : 𝐽 ∈ 𝐵 (Ξ× 𝑍) → 𝐵 (Ξ× 𝑍) given by

𝒯𝐿𝐽(𝜉, 𝑧𝐼)=−(𝜆𝐿(𝜉, 𝑧𝐼)𝑃
𝐺+(1−𝜆𝐿(𝜉, 𝑧𝐼))𝑃

0)+𝛽

⎡⎣𝑉 𝐺
𝐿 +

∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼) 𝐽(𝐶(𝜉, 𝑧𝐼), 𝑧
′
𝐼)

⎤⎦ .

It is immediate that 𝒯𝐿 satisfies Blackwell’s sufficient conditions for a contraction on

𝐵 (Ξ× 𝑍). Hence, given 𝜆𝐿, 𝒯𝐿 has a unique fixed point 𝐽𝐿 ∈ 𝐵 (Ξ× 𝑍) satisfying

Eq. (7). Furthermore, in an interior equilibrium 𝐽𝑓 (𝜃) = 𝐽𝐼 (𝜃) by definition and 𝐽𝑙 (𝜃) =

𝐽𝑆 (𝜃) due to Lemma A.3 and therefore Eqs. (6) and (10) give two functional equations

for 𝐽𝐼 and 𝐽𝑆. Given 𝜆𝐼 and 𝐽𝑓 , the same argument as above shows that Eqs. (6) and

(10) have a unique solution. This uniquely pins down 𝐽𝑓 , 𝐽𝑙, 𝐽𝐼 , 𝐽𝐿, 𝐽𝐸, 𝐽𝑆 in an interior

equilibrium and concludes the proof.

Appendix C: Proof of Proposition 2

Lemma C.4 When 𝑧𝐼
𝑧𝐿
+1 ≥ 2𝛽(1−𝑞), the IC curve implicitly defines 𝛿 as an increasing

function of 𝜉.

Proof. Write the IC curve as 𝐹 (𝛿, 𝜉) = 0, where

𝐹 (𝛿, 𝜉) =
𝑧𝐿 − (1− 𝛿)𝜉

𝑧𝐿
−
(︂
𝑧𝐼 − 𝛿𝜉

𝑧𝐼

)︂[︂
1− 𝛽(1− 𝑞)

(︂
𝑧𝐼 − 𝛿𝜉

𝑧𝐼

)︂]︂
.

We wish to show that 𝜕𝐹 (𝛿,𝜉)
𝜕𝛿

> 0 and 𝜕𝐹 (𝛿,𝜉)
𝜕𝜉

< 0. We have:

𝜕𝐹 (𝛿, 𝜉)

𝜕𝜉
=

(1− 𝛿)

𝑧𝐿
+

𝛿

𝑧𝐼
−2

𝛿

𝑧𝐼
𝛽(1−𝑞)

(︂
𝑧𝐼 − 𝛿𝜉

𝑧𝐼

)︂
=

1

𝜉

(︀
𝜆𝐼 − 𝜆𝐿 − 2𝜆𝐼𝛽(1− 𝑞) (1− 𝜆𝐼)

)︀
.
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Because 𝐹 (𝛿, 𝜉) = 0 requires 𝜆𝐼 < 𝜆𝐿, then
𝜕𝐹 (𝛿,𝜉)

𝜕𝜉
< 0. Furthermore,

𝜕𝐹 (𝛿, 𝜉)

𝜕𝛿
=

𝜉

𝑧𝐿
+

𝜉

𝑧𝐼
− 2

𝜉

𝑧𝐼
𝛽(1− 𝑞)

(︂
𝑧𝐼 − 𝛿𝜉

𝑧𝐼

)︂
=

𝜉

𝑧𝐼

(︂
𝑧𝐼
𝑧𝐿

+ 1− 2𝛽(1− 𝑞) (1− 𝜆𝐼)

)︂
.

Clearly, 𝜕𝐹 (𝛿,𝜉)
𝜕𝛿

> 0 if 𝑧𝐼
𝑧𝐿

+ 1− 2𝛽(1− 𝑞) ≥ 0.

Proof of Proposition 2: Part (i) Suppose that Eq. (IC) is not satisfied. Then, it is

one of the two cases: either everyone chooses market 𝐼 or everyone chooses market 𝐿.

In the former case, 𝛿 = 1 and therefore 𝜆𝐿 = 0 and 𝜆𝐼 ∈ (0, 1]. However, we can show

that there is no such equilibrium that satisfies Eq. (IC) because, for all 𝜆𝐼 ∈ (0, 1]

1 > (1− 𝜆𝐼) (1− 𝛽 (1− 𝜆𝐼) (1− 𝑞)) ,

which implies 𝐽𝐿(𝜉) > 𝐽𝐼(𝜉). In the latter case, we have 𝛿 = 0 and therefore 𝜉 = 1, 𝜆𝐼 = 0

and 𝜆𝐿 = min
{︁
1, 1

𝑧𝐿

}︁
. Hence, 𝛿 = 0 is an equilibrium if 𝐽𝐿(1)

⃒⃒
𝜆𝐿=min

{︁
1, 1

𝑧𝐿

}︁ ≥ 𝐽𝐼(1)
⃒⃒
𝜆𝐼=0

which is equivalent to

1−min

{︂
1,

1

𝑧𝐿

}︂
≥ 1− 𝛽 (1− 𝑞) ⇔ 𝛽 (1− 𝑞) 𝑧𝐿 ≥ 1. (C.1)

Next, we let 𝛽 (1− 𝑞) 𝑧𝐿 < 1, for which there is no corner equilibrium, and proceed to

show that there exist either one or three interior equilibria. We define 𝜉 ≡ 𝛿𝜉 as the

net mass of arbitrageurs who are investing in the illiquid market at time 𝑡. Likewise, we

define 𝛿 ≡ 𝛿𝜉 + 𝜋 as the total mass of investors who are investing in the illiquid market

at time 𝑡. Instead of the original problem stated in terms of 𝛿 and 𝜉, we can solve an

equivalent problem in terms of 𝛿 and 𝜉. Using the definition of 𝜉 and 𝛿, we find

𝜉 = 𝜉 + 1− 𝛿, 𝛿 =
𝜉

𝜉 + 1− 𝛿
, 𝜆𝐼 =

𝜉

𝑧𝐼
, 𝜆𝐿 =

1− 𝛿

𝑧𝐿
. (C.2)

Using Eq. (C.2), Eq. (CM) can be represented as

𝛿 =
𝜉

𝑞 + (1− 𝑞) 𝜉
𝑧𝐼

. (C.3)
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Likewise, Eq. (IC) can be represented as

1− 𝛿

𝑧𝐿
− 𝜉

𝑧𝐼
= 𝛽(1− 𝑞)

(︃
1− 𝜉

𝑧𝐼

)︃2

. (C.4)

By substituting Eq. (C.3) into Eq. (C.4), we obtain

𝑄(𝜉) ≡ 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉
2 + 𝑎3𝜉

3 = 0,

where 𝑄 is a third degree polynomial with coefficients

𝑎0 ≡ 𝑞 (𝑧𝐼)
3 (1− (1− 𝑞) 𝑧𝐿𝛽) ;

𝑎1 ≡ − (𝑧𝐼)
2 (𝑧𝐼 + 𝑞𝑧𝐿 − (1− 𝑞) (1 + (3𝑞 − 1)𝑧𝐿𝛽));

𝑎2 ≡ −𝑧𝐼𝑧𝐿(1− 𝑞)(1 + (3𝑞 − 2)𝛽);

𝑎3 ≡ −(1− 𝑞)2𝑧𝐿𝛽.

Since 𝛽 (1− 𝑞) 𝑧𝐿 < 1, then 𝑎0 > 0 for all 𝑞 > 0 and therefore 𝑄 (0) > 0. Using the

fact that 𝑧𝐼 + 𝑧𝐿 > 1, we can verify that 𝑄 (min{1, 𝑧𝐼}) < 0, which implies that 𝑄 has

either one or three real roots in the open interval of (0,min{1, 𝑧𝐼}). Each of these roots

is an interior steady state equilibrium in which 𝛿 ∈ (0, 1).

Next, we turn to the proof of stability. Proposition 1 implies as a special case that

there exists a unique equilibrium price efficiency function 𝜆𝐼 : [𝜉, 1] → R satisfying

Definition B.8 at the given level of 𝑧𝐼 . For notational convenience, we define 𝐶(𝜉) ≡
𝐶(𝜉, 𝑧𝐼) as the transition equation Eq. (B.2) over the interval [𝜉, 1]. A solution for the

equation 𝜉 = 𝐶(𝜉) is a steady state, and the previous result shows that there can be

at most three such solutions on the interval [𝜉, 1]. We call them 𝜉𝑠, 𝜉𝑚 and 𝜉𝑙 in the

order of size. Lemma D.5 implies that 𝐶(𝜉) ≥ 𝜉. Because 𝐵(𝑧𝐼) > 0 and 𝐴(𝑧𝐼) ∈ (0, 1),

then it is immediate from Definition B.8 that 𝜆𝐼 is strictly less than one, and therefore

𝐶(1) < 1. Because 𝐶 is continuous and 𝐶(𝜉) ≥ 𝜉 and 𝐶(1) < 1, then 𝐶 crosses the

45-degree line from above in [𝜉, 1] at least once and at the largest steady state 𝜉𝑙, so 𝜉𝑙

is a stable point. If 𝐶 crosses the 45-degree twice in [𝜉, 1], then it must cross from below

at 𝜉𝑚, implying 𝜉𝑚 is an unstable point. If 𝐶 crosses the 45-degree three times in [𝜉, 1],

then it must cross from above at 𝜉𝑠, implying that 𝜉𝑠 is also a stable point.

Part (ii) For 𝑞 = 1 we have that 𝑎2 = 𝑎3 = 0, so 𝑄 has a unique root equal to

𝑥* = 𝑧𝐼/(𝑧𝐼 + 𝑧𝐿). For 𝛽 = 0, we have that 𝑎0 > 0, 𝑎2 < 0, 𝑎3 = 0 which implies that 𝑄
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at most one root in the [0, 1] interval. For 𝑞 = 0 we have that 𝑎0 = 0 and 𝑄 has three

roots 𝑥1, 𝑥2, 𝑥3 equal to

𝑥1 = 0

𝑥2 =
𝑧𝐼
2𝛽

(︃
2𝛽 − 1−

√︂
1 +

4𝛽

𝑧𝐿
(1− 𝑧𝐼 − 𝑧𝐿)

)︃

𝑥3 =
𝑧𝐼
2𝛽

(︃
2𝛽 − 1 +

√︂
1 +

4𝛽

𝑧𝐿
(1− 𝑧𝐼 − 𝑧𝐿)

)︃

If 1 > 3
4
𝑧𝐿 + 𝑧𝐼 , then 𝑥2, 𝑥3 are real. It is immediate to see that 0 < 𝑥2 < 𝑥3 < 1

for 𝛽 sufficiently close to one. The claim in the proposition follows by continuity of

the coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3 in 𝑞 and 𝛽 and by continuous dependence of the roots of a

polynomial on its coefficients. �

Appendix D: Auxiliary Lemmas

Lemma D.5 𝜉 is bounded from below by

𝜉 = max

{︂
1− 𝑧𝐼

1−√
𝑞

1 +
√
𝑞
, 0

}︂
.

Proof. Let 𝜉 = 𝑞 + 𝜀 be such that 𝐶(𝜉, 𝑧𝐼) ≥ 𝜉 for all 𝜉 ≥ 𝜉 and 𝑧𝐼 ∈ 𝑍. It is sufficient

that, for all 𝜆 ∈ [0, 1] and 𝑧𝐼 ∈ 𝑍,

1− (1− 𝑞) (1− 𝜆) (1− (𝑞 + 𝜀) + 𝑧𝐼𝜆) ≥ 𝑞 + 𝜀,

or equivalently,

𝜀 ≤ (1− 𝑞)
(1− (1− 𝜆) (1− 𝑞 + 𝑧𝐼𝜆))

1− (1− 𝑞) (1− 𝜆)
.

Notice that the RHS is convex in 𝜆 and minimized at 𝜆 =
√
𝑞

1+
√
𝑞
, so

min
𝜆,𝑧𝐼∈𝑍

𝑞 + (1− 𝑞)
(1− (1− 𝜆) (1− 𝑞 + 𝑧𝐼𝜆))

1− (1− 𝑞) (1− 𝜆)
= min

𝑧𝐼∈𝑍
1− 𝑧𝐼

1−√
𝑞

1 +
√
𝑞
.
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Lemma D.6 We have

| (1− 𝜆(𝜉1, 𝑧𝐼)) (𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼)) | ≤ 𝑓
(︀
𝜆̄𝜉, 𝑧𝐼

)︀
|𝜉2 − 𝜉1| ,

where the function 𝑓 is from Definition B.2.

Proof. We first obtain

𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼) = (1− 𝑞)

⎡⎢⎣ (𝜉2 − 𝜉1) + (1− 𝑞)(1− 𝑧𝐼)(𝜆(𝜉2, 𝑧𝐼)− 𝜆(𝜉1, 𝑧𝐼))

−(𝜉2 − 𝜉1)𝜆(𝜉2, 𝑧𝐼)− 𝜉1(𝜆(𝜉2, 𝑧𝐼)− 𝜆(𝜉1, 𝑧𝐼))

+𝑧𝐼 (𝜆(𝜉2, 𝑧𝐼)
2 − 𝜆(𝜉1, 𝑧𝐼)

2)

⎤⎥⎦
= (1− 𝑞)

[︃
(1− 𝜆(𝜉2, 𝑧𝐼)) (𝜉2 − 𝜉1)+

(𝜆(𝜉2, 𝑧𝐼)− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜉1 − 𝑧𝐼 (1− 𝜆(𝜉1, 𝑧𝐼)− 𝜆(𝜉2, 𝑧𝐼)))

]︃
.

The Lipschitz continuity and monotonicity of 𝜆 in 𝜉 imply that there exists a value

𝜆𝜉 ∈ [0, 𝜆̄
𝜉
] such that

𝜆(𝜉2, 𝑧𝐼)− 𝜆(𝜉1, 𝑧𝐼) = 𝜆𝜉 (𝜉2 − 𝜉1) , (D.1)

and therefore

𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼) = (1− 𝑞)

[︃
(1− 𝜆(𝜉2, 𝑧𝐼))

+𝜆𝜉 (1− 𝜉1 − 𝑧𝐼 (1− 𝜆(𝜉1, 𝑧𝐼)− 𝜆(𝜉2, 𝑧𝐼)))

]︃
(𝜉2 − 𝜉1)

= (1− 𝑞)

[︃
(1− 𝜆(𝜉2, 𝑧𝐼)) (1− 𝜆𝜉𝑧𝐼)

+𝜆𝜉 (1− 𝜉1 + 𝑧𝐼𝜆(𝜉1, 𝑧𝐼))

]︃
(𝜉2 − 𝜉1).

Hence, we can write

(1− 𝜆(𝜉1, 𝑧𝐼)) (𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼))

=

[︃
(1− 𝑞) (1− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜆(𝜉2, 𝑧𝐼)) (1− 𝜆𝜉𝑧𝐼)

+𝜆𝜉(1− 𝑞) (1− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜉1 + 𝑧𝐼𝜆(𝜉1, 𝑧𝐼))

]︃
(𝜉2 − 𝜉1)

= [(1− 𝑞) (1− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜆(𝜉2, 𝑧𝐼)) (1− 𝜆𝜉𝑧𝐼) + 𝜆𝜉 (1− 𝐶(𝜉1, 𝑧𝐼))] (𝜉2 − 𝜉1),

(D.2)

where in the second line we make use of Eq. (B.2). Using the fact that 𝜆𝜉 ∈ [0, 𝜆̄𝜉] and
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𝜆(𝜉, 𝑧𝐼) ∈ [0, 1] and 𝐶(𝜉1, 𝑧𝐼) ∈ [𝜉, 1], it is easy to verify that

|(1− 𝑞) (1− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜆(𝜉2, 𝑧𝐼)) (1− 𝜆𝜉𝑧𝐼) + 𝜆𝜉 (1− 𝐶(𝜉1, 𝑧𝐼)) |

≤ max
{︀
(1− 𝑞) , (1− 𝑞)

(︀
𝑧𝐼 𝜆̄𝜉 − 1

)︀
,
(︀
1− 𝜉

)︀
𝜆̄𝜉,
(︀
1− 𝜉

)︀
𝜆̄𝜉 + (1− 𝑞)

(︀
1− 𝑧𝐼 𝜆̄𝜉

)︀}︀
= 𝑓

(︀
𝜆̄𝜉, 𝑧𝐼

)︀
.

Lemma D.7 Under Assumption B.4, 𝒯 𝜆 is Lipschitz continuous of modulus 𝜆̄𝜉 in 𝜉

for every 𝜆 ∈ ℱ0.

Proof. Take 𝜆 ∈ ℱ0. We decompose

𝒯 𝜆(𝜉2, 𝑧𝐼)− 𝒯 𝜆(𝜉1, 𝑧𝐼) = 𝑇1 + 𝑇2 + 𝑇3,

where

𝑇1 = 𝐴(𝑧𝐼)(𝜉2 − 𝜉1);

𝑇2 = 𝐵(𝑧𝐼) [𝜆(𝜉2, 𝑧𝐼)− 𝜆(𝜉1, 𝑧𝐼)]

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆(𝐶(𝜉2, 𝑧𝐼), 𝑧
′
𝐼)

⎞⎠ ;

𝑇3 = 𝐵(𝑧𝐼)(1− 𝜆(𝜉1, 𝑧𝐼))
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼) (𝜆(𝐶(𝜉2, 𝑧𝐼), 𝑧
′
𝐼)− 𝜆(𝐶(𝜉1, 𝑧𝐼), 𝑧

′
𝐼)) .

First, it is immediate that |𝑇1| ≤ 𝐴(𝑧𝐼)|𝜉2 − 𝜉1|. Second, the Lipschitz continuity and

monotonicity of 𝜆 in 𝜉 imply that there exists 𝜆𝜉0 ∈ [0, 𝜆̄𝜉] such that 𝜆(𝜉2, 𝑧𝐼)−𝜆(𝜉1, 𝑧𝐼) =

𝜆𝜉0 (𝜉2 − 𝜉1). Because
∑︀

𝑧′𝐼∈𝑍
𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆(𝐶(𝜉2, 𝑧𝐼), 𝑧

′
𝐼) ≤ 1, we have

|𝑇2| ≤ 𝐵(𝑧𝐼)𝜆̄𝜉|𝜉2 − 𝜉1|.

Again by the Lipschitz continuity and monotonicity of 𝜆 in 𝜉, there exist 𝜆𝜉1 ∈ [0, 𝜆̄𝜉]

such that

𝑇3 = 𝐵(𝑧𝐼)(1− 𝜆(𝜉1, 𝑧𝐼)) (𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼))𝜆𝜉1 ,

and therefore,

|𝑇3| ≤ 𝐵(𝑧𝐼) |(1− 𝜆(𝜉1, 𝑧𝐼)) (𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼))| 𝜆̄𝜉.
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By Lemma D.6, the previous inequality can be written as

|𝑇3| ≤ 𝐵(𝑧𝐼)𝑓
(︀
𝜆̄𝜉, 𝑧𝐼

)︀
𝜆̄𝜉|𝜉2 − 𝜉1|.

Summing up terms, we get

|𝒯 𝜆(𝜉2, 𝑧𝐼)− 𝒯 𝜆(𝜉1, 𝑧𝐼)| ≤
(︀
𝐴(𝑧𝐼) +𝐵(𝑧𝐼)

[︀
1 + 𝑓

(︀
𝜆̄𝜉, 𝑧𝐼

)︀]︀
𝜆̄𝜉

)︀
|𝜉2 − 𝜉1|.

Taking the maximum of the RHS over 𝑧𝐼 values yields that 𝒯 𝜆 is Lipschitz continuous

of modulus 𝜆̄𝒯 in 𝜉, where

𝜆̄𝒯 = max
𝑧𝐼∈𝑍

𝐴(𝑧𝐼) +𝐵(𝑧𝐼)
[︀
1 + 𝑓

(︀
𝜆̄𝜉, 𝑧𝐼

)︀]︀
𝜆̄𝜉

and the function 𝑓 is as in Definition B.2. Under Assumption B.4, Definition B.3 implies

𝜆̄𝜉 ≥ 𝜆̄𝒯 . This concludes the proof.

Lemma D.8 Under Assumption B.4, 𝒯 𝜆 is monotone increasing in 𝜉 for every 𝜆 ∈ ℱ0.

Proof. Take 𝜆 ∈ ℱ0 and let 𝜉2 > 𝜉1. By the proof of Lemma D.7, there exist 𝜆𝜉0 , 𝜆𝜉1 ∈
[0, 𝜆̄𝜉] such that

𝒯 𝜆(𝜉2, 𝑧𝐼)− 𝒯 𝜆(𝜉1, 𝑧𝐼)

=

⎧⎨⎩𝐴(𝑧𝐼) +𝐵(𝑧𝐼)

⎡⎣ (︁1−∑︀𝑧′𝐼∈𝑍
𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆(𝐶(𝜉2, 𝑧𝐼), 𝑧

′
𝐼)
)︁
𝜆𝜉0

+ (1−𝜆(𝜉1,𝑧𝐼))(𝐶(𝜉2,𝑧𝐼)−𝐶(𝜉1,𝑧𝐼))
(𝜉2−𝜉1)

𝜆𝜉1

⎤⎦⎫⎬⎭ (𝜉2 − 𝜉1) .

Hence, 𝑇𝜆 is increasing in 𝜉 if

𝐴(𝑧𝐼) +𝐵(𝑧𝐼)

[︂
(1− 𝜆(𝜉1, 𝑧𝐼)) (𝐶(𝜉2, 𝑧𝐼)− 𝐶(𝜉1, 𝑧𝐼))

(𝜉2 − 𝜉1)
𝜆̄𝜉

]︂
≥ 0.

Using Eq. (D.2) in the proof of Lemma D.6, there exists some 𝜆𝜉 ∈ [0, 𝜆̄𝜉] such that the

above inequality is equivalent to

𝐴(𝑧𝐼)+𝐵(𝑧𝐼) [(1− 𝑞) (1− 𝜆(𝜉1, 𝑧𝐼)) (1− 𝜆(𝜉2, 𝑧𝐼)) (1− 𝜆𝜉𝑧𝐼) + 𝜆𝜉 (1− 𝐶 (𝜉1, 𝑧𝐼))] 𝜆̄𝜉 ≥ 0,

which is satisfied if

𝐻(𝜆̄𝜉, 𝑧𝐼) ≥ 0,
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where

𝐻(𝜆̄𝜉, 𝑧𝐼) ≡ min
𝜆1,𝜆2∈[0,1],𝑥∈[0,1],𝜆𝜉∈[0,𝜆̄𝜉]

𝐴(𝑧𝐼)+𝐵(𝑧𝐼)

[︃
(1− 𝑞) (1− 𝜆1) (1− 𝜆2) (1− 𝜆𝜉𝑧𝐼)

+𝜆𝜉 (1− 𝑥)

]︃
𝜆̄𝜉.

For 𝜆̄𝜉 ≤ 1/𝑧𝐼 , it is immediate that 𝐻(𝜆̄𝜉, 𝑧𝐼) is positive. For 𝜆̄𝜉 > 1/𝑧𝐼 , 𝐻(𝜆̄𝜉, 𝑧𝐼) is

positive if

𝐴(𝑧𝐼) +𝐵(𝑧𝐼)(1− 𝑞)
(︀
1− 𝜆̄𝜉𝑧𝐼

)︀
𝜆̄𝜉 ≥ 0,

or equivalently, if

𝜆̄𝜉 ≤
1 +

√︁
1 + 4𝑧𝐼

𝛽(1−𝑞)2𝑧𝐿

2𝑧𝐼
.

Taking the minimum of the RHS over 𝑧𝐼 values in 𝑍 yields the expression for 𝜆̂𝜉 in

Definition B.3. Under Assumption B.4, Definition B.3 implies 𝜆̄𝜉 ≤ 𝜆̂𝜉. This concludes

the proof.

Lemma D.9 Under Assumption B.4, the mapping 𝒯 is a contraction on ℱ0.

Proof. Take 𝜆1, 𝜆2 ∈ ℱ0. We decompose

𝒯 𝜆2(𝜉, 𝑧𝐼)− 𝒯 𝜆1(𝜉, 𝑧𝐼) = 𝒯1 + 𝒯2 + 𝒯3,

where

𝒯1 = 𝐵(𝑧𝐼) [𝜆2(𝜉, 𝑧𝐼)− 𝜆1(𝜉, 𝑧𝐼)]

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆2(𝐶2(𝜉, 𝑧𝐼), 𝑧
′
𝐼)

⎞⎠ ;

𝒯2 = 𝐵(𝑧𝐼)(1− 𝜆1(𝜉, 𝑧𝐼))
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼) (𝜆2(𝐶1(𝜉, 𝑧𝐼), 𝑧
′
𝐼)− 𝜆1(𝐶1(𝜉, 𝑧𝐼), 𝑧

′
𝐼)) ;

𝒯3 = 𝐵(𝑧𝐼)(1− 𝜆1(𝜉, 𝑧𝐼))
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼) (𝜆2(𝐶2(𝜉, 𝑧𝐼), 𝑧
′
𝐼)− 𝜆2(𝐶1(𝜉, 𝑧𝐼), 𝑧

′
𝐼)) .

First, we have

|𝒯1| ≤ 𝐵(𝑧𝐼)

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝐼)𝜆2(𝐶(𝜉, 𝑧𝐼), 𝑧
′
𝐼)

⎞⎠ ||𝜆2 − 𝜆1|| ≤ 𝐵(𝑧𝐼)||𝜆2 − 𝜆1||.
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Second, we have

|𝒯2| ≤ 𝐵(𝑧𝐼)||𝜆2 − 𝜆1||.

Third, using Eq. (B.2) we have

𝐶2(𝜉, 𝑧𝐼)−𝐶1(𝜉, 𝑧𝐼) = (1− 𝑞) (𝜆2(𝜉, 𝑧𝐼)− 𝜆1(𝜉, 𝑧𝐼)) [1− 𝜉 − 𝑧𝐼 (1− 𝜆1(𝜉, 𝑧𝐼)− 𝜆2(𝜉, 𝑧𝐼))] ,

and therefore

|𝒯3| ≤ 𝐵(𝑧𝐼)𝜆̄𝜉(1− 𝑞)|(1− 𝜆1(𝜉, 𝑧𝐼)) (1− 𝜉 − 𝑧𝐼(1− 𝜆1(𝜉, 𝑧𝐼)− 𝜆2(𝜉, 𝑧𝐼))) |||𝜆2 − 𝜆1||.

Let Γ (𝑧𝐼) be the value

Γ (𝑧𝐼) = max
𝜆1,𝜆2∈[0,1],𝜉∈[𝜉,1]

|(1− 𝜆1) (1− 𝜉 − 𝑧𝐼(1− 𝜆1 − 𝜆2))| .

It is immediate to verify that Γ (𝑧𝐼) is from Definition B.2. Therefore,

|𝒯3| ≤ 𝐵(𝑧𝐼)𝜆̄𝜉(1− 𝑞)Γ (𝑧𝐼) ||𝜆2 − 𝜆1||.

Summing up terms, we have

|𝒯 𝜆2(𝜉, 𝑧𝐼)− 𝒯 𝜆1(𝜉, 𝑧𝐼)| ≤ 𝐵(𝑧𝐼)(2 + 𝜆̄𝜉(1− 𝑞)Γ (𝑧𝐼))||𝜆2 − 𝜆1||.

Therefore, 𝒯 is a contraction mapping if for all 𝑧𝐼 ∈ 𝑍

𝐵(𝑧𝐼)(2 + 𝜆̄𝜉(1− 𝑞)Γ (𝑧𝐼)) < 1,

or equivalently, if

𝜆̄𝜉 < 𝜆̄*
𝜉 = min

𝑧𝐼∈𝑍

1/𝐵(𝑧𝐼)− 2

(1− 𝑞)Γ (𝑧𝐼)
.

Under Assumption B.4, 𝜆̄𝜉 < 𝜆̄*
𝜉 by Definition B.3. This concludes the proof.

Lemma D.10 Under Assumptions B.4, B.5 and B.7, 𝑇𝜆 is decreasing in 𝑧𝐼 for all

𝜆 ∈ ℱ1.
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Proof. Let 𝑧𝑚𝐼 > 𝑧𝑛𝐼 . The difference of 𝒯 𝜆(𝜉, 𝑧𝐼) with respect to 𝑧𝐼 is given by

𝒯 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝒯 𝜆(𝜉, 𝑧𝑚𝐼 )

= (𝐴(𝑧𝑛𝐼 )− 𝐴(𝑧𝑚𝐼 ))

⎛⎝𝜉 − 𝛽 (1− 𝑞) 𝑧𝐿(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠⎞⎠
+𝐵(𝑧𝑛𝐼 )(𝜆(𝜉, 𝑧

𝑛
𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠
+𝐵(𝑧𝑛𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))

∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 ) [𝜆(𝐶(𝜉, 𝑧𝑛𝐼 ), 𝑧
′
𝐼)− 𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)]

+𝐵(𝑧𝑛𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))
∑︁
𝑧′𝐼∈𝑍

(𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 ))𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼).

We can simplify each line in the expression above as follows. First, using the defini-

tions of 𝐴 and 𝐵 we can write

(𝐴(𝑧𝑛𝐼 )− 𝐴(𝑧𝑚𝐼 ))𝜉 = 𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 )𝜉(𝑧𝑚𝐼 − 𝑧𝑛𝐼 );

(𝐴(𝑧𝑛𝐼 )− 𝐴(𝑧𝑚𝐼 ))𝛽 (1− 𝑞) 𝑧𝐿 = 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )(𝑧𝑚𝐼 − 𝑧𝑛𝐼 ).
(D.3)

Second, since 𝜆 is decreasing in 𝑧𝐼 , then, for any 𝜉 ∈ Ξ, 𝑧𝑚𝐼 , 𝑧𝑛𝐼 ∈ 𝑍 there exists some

𝜆𝑧 ∈
[︀
0, 𝜆̄𝑧

]︀
, which depends on 𝜉, 𝑧𝑛𝐼 , 𝑧

𝑚
𝐼 , such that,

𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ) = 𝜆𝑧 (𝑧
𝑚
𝐼 − 𝑧𝑛𝐼 ) . (D.4)

Third, because 𝜆 is increasing and Lipschitz in 𝜉 with modulus 𝜆̄𝜉, there exists some

𝜆𝜉 ∈
[︀
0, 𝜆̄𝜉

]︀
, which depends on 𝜉, 𝑧𝑛𝐼 , 𝑧

𝑚
𝐼 , 𝑧′𝐼 , such that

𝜆(𝐶(𝜉, 𝑧𝑛𝐼 ), 𝑧
′
𝐼)− 𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼) = 𝜆𝜉 (𝐶(𝜉, 𝑧𝑛𝐼 )− 𝐶(𝜉, 𝑧𝑚𝐼 )) . (D.5)

Fourth, because 𝜆 is decreasing in 𝑧𝐼 , for all 𝜉 ∈ Ξ we have29

𝛼 (𝜆(𝜉, 𝑧𝐼)− 𝜆(𝜉, 𝑧𝐼)) ≤
∑︁
𝑧′𝐼∈𝑍

(𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 ))𝜆(𝜉, 𝑧′𝐼) ≤ 𝛼 (𝜆(𝜉, 𝑧𝐼)− 𝜆(𝜉, 𝑧𝐼)) ,

and furthermore, because the rate of change of 𝜆 in 𝑧𝐼 is bounded by 𝜆̄𝑧 and𝑀 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 | ≥
29Recall the definition 𝛼 ≡ max𝑧𝑛

𝐼 ,𝑧𝑚
𝐼 ,𝑧′

𝐼∈𝑍 |𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 )| .
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𝑧𝐼 − 𝑧𝐼 by definition, then

𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧𝐼)− 𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧𝐼) ≤ 𝜆̄𝑧 (𝑧𝐼 − 𝑧𝐼) ≤ 𝜆̄𝑧𝑀 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 | .

Hence, the above inequalities imply∑︁
𝑧′𝐼∈𝑍

(𝜔 (𝑧′𝐼 | 𝑧𝑛𝐼 )− 𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 ))𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

∈
[︁
−𝛼𝑀𝜆̄𝑧 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 | , 𝛼𝑀𝜆̄𝑧 |𝑧𝑛𝐼 − 𝑧𝑚𝐼 |

]︁
.

(D.6)

Using Eqs. (D.3)-(D.6) we can rewrite the difference of 𝒯 𝜆(𝜉, 𝑧𝐼) with respect to 𝑧𝐼 as

𝒯 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝒯 𝜆(𝜉, 𝑧𝑚𝐼 ) = Π(𝜉, 𝑧𝑛𝐼 , 𝑧
𝑚
𝐼 )(𝑧𝑚𝐼 − 𝑧𝑛𝐼 ) (D.7)

where

Π(𝜉, 𝑧𝑛𝐼 , 𝑧
𝑚
𝐼 ) = 𝐴(𝑧𝑛𝐼 )𝐴(𝑧

𝑚
𝐼 )𝜉 − 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠
+𝐵(𝑧𝑛𝐼 )𝜆𝑧

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠
+𝐵(𝑧𝑛𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))

[︂
𝐶(𝜉, 𝑧𝑛𝐼 )− 𝐶(𝜉, 𝑧𝑚𝐼 )

𝑧𝑚𝐼 − 𝑧𝑛𝐼
𝜆𝜉 + 𝜒

]︂
,

for some 𝜆𝑧 ∈
[︀
0, 𝜆̄𝑧

]︀
, 𝜆𝜉 ∈

[︀
0, 𝜆̄𝜉

]︀
and 𝜒 ∈

[︀
−𝛼𝑀𝜆̄𝑧, 𝛼𝑀𝜆̄𝑧

]︀
.

The difference of 𝐶(𝜉, 𝑧𝐼) with respect to 𝑧𝐼 can be written as

𝐶(𝜉, 𝑧𝑛𝐼 )− 𝐶(𝜉, 𝑧𝑚𝐼 )

=(1− 𝑞)

[︃
(𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))[1− 𝜉 − 𝑧𝑛𝐼 (1− 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))]

+𝜆(𝜉, 𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑚𝐼 )) (𝑧𝑚𝐼 − 𝑧𝑛𝐼 )

]︃

=(1− 𝑞)

[︃
𝜆𝑧[1− 𝜉 − 𝑧𝑛𝐼 (1− 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))]

+𝜆(𝜉, 𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

]︃
(𝑧𝑚𝐼 − 𝑧𝑛𝐼 ) ,

(D.8)

where the second line makes use of Eq. (D.4). Using Eq. (D.8) we can write Eq. (D.7)
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as

𝒯 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝒯 𝜆(𝜉, 𝑧𝑚𝐼 )

= 𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 )𝜉(𝑧𝑚𝐼 − 𝑧𝑛𝐼 )

+ (𝐵(𝑧𝑛𝐼 )𝜆𝑧 − 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑚𝐼 )))

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠ (𝑧𝑚𝐼 − 𝑧𝑛𝐼 )

+𝐵(𝑧𝑛𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))

[︃
(1− 𝑞)

(︃
𝜆𝑧[1− 𝜉 − 𝑧𝑛𝐼 (1− 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))]

+𝜆(𝜉, 𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

)︃
𝜆𝜉 + 𝜒

]︃
(𝑧𝑚𝐼 − 𝑧𝑛𝐼 ).

Hence, we obtain that 𝒯 𝜆 is decreasing in 𝑧𝐼 if for all 𝜆1, 𝜆2, 𝜆3 ∈ [0, 1], 𝜉 ∈ [𝜉, 1], 𝜆𝑧 ∈
[0, 𝜆̄𝑧], 𝜆𝜉 ∈ [0, 𝜆̄𝜉], we have

𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 )𝜉 + (𝐵(𝑧𝑛𝐼 )𝜆𝑧 − 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )(1− 𝜆2)) (1− 𝜆3)

×𝐵(𝑧𝑛𝐼 )(1− 𝜆1)
[︀
(1− 𝑞) [𝜆𝑧[1− 𝜉 − 𝑧𝑛𝐼 (1− 𝜆1 − 𝜆2)] + 𝜆2 (1− 𝜆2)]𝜆𝜉 − 𝛼𝑀𝜆̄𝑧

]︀
≥ 0.

It is easy to verify that the LHS of the above inequality is minimized at 𝜆1 = 𝜆2 = 0 for

all 𝜆3 ∈ [0, 1], 𝜉 ∈ [𝜉, 1], 𝜆𝑧 ∈ [0, 𝜆̄𝑧], 𝜆𝜉 ∈ [0, 𝜆̄𝜉], which leaves

𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 )𝜉 + (𝐵(𝑧𝑛𝐼 )𝜆𝑧 − 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )) (1− 𝜆3)

+𝐵(𝑧𝑛𝐼 )
[︀
(1− 𝑞)𝜆𝑧 (1− 𝜉 − 𝑧𝑛𝐼 )𝜆𝜉 − 𝛼𝑀𝜆̄𝑧

]︀ ≥ 0. (D.9)

Next, it is immediate to check that the LHS of Eq. (D.9) is minimized at 𝜉 = 𝜉 for all

𝜆3 ∈ [0, 1], 𝜆𝑧 ∈ [0, 𝜆̄𝑧], 𝜆𝜉 ∈ [0, 𝜆̄𝜉] if the following condition on 𝜆̄𝜉 holds:

𝜆̄𝜉 ≤
1

(𝑧𝐼 + 𝑧𝐿) 𝛽 (1− 𝑞)2 𝑧𝐿𝜆̄𝑧

. (D.10)

Hence, if Eq. (D.10) holds, Eq. (D.9) is satisfied if

𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 )𝜉 + (𝐵(𝑧𝑛𝐼 )𝜆𝑧 − 𝐴(𝑧𝑛𝐼 )𝐵(𝑧𝑚𝐼 )) (1− 𝜆3)

+𝐵(𝑧𝑛𝐼 )
[︀
(1− 𝑞)

(︀
1− 𝜉 − 𝑧𝑛𝐼

)︀
𝜆𝑧𝜆𝜉 − 𝛼𝑀𝜆̄𝑧

]︀ ≥ 0.

Using the definitions of 𝐴,𝐵 and 𝜉 ≥ 1−𝑧𝐼
1−√

𝑞

1+
√
𝑞
, the above inequality can be rearranged
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as

1

𝑧𝐿 + 𝑧𝑚𝐼

(︂
1− 𝑧𝐼

1−√
𝑞

1 +
√
𝑞

)︂
+ 𝛽 (1− 𝑞) 𝑧𝐿

⎡⎣ (︁
𝜆𝑧 − 1

𝑧𝐿+𝑧𝑚𝐼

)︁
(1− 𝜆3)

−(1− 𝑞)𝜆𝑧𝑧𝐼
2
√
𝑞

1+
√
𝑞
𝜆𝜉 − 𝛼𝑀𝜆̄𝑧

⎤⎦ ≥ 0.

Because the LHS is linear in 𝜆𝑧, it is minimized either at 𝜆𝑧 = 0 or 𝜆𝑧 = 𝜆̄𝑧. At 𝜆𝑧 = 0

the LHS bounded from below by the value

1

𝑧𝐿 + 𝑧𝑚𝐼

(︂
1− 𝑧𝐼

1−√
𝑞

1 +
√
𝑞

)︂
− 𝛽 (1− 𝑞) 𝑧𝐿

(︂
1

𝑧𝐿 + 𝑧𝑚𝐼
+ 𝛼𝑀𝜆̄𝑧

)︂
, (D.11)

and at 𝜆𝑧 = 𝜆̄𝑧 the LHS is equal to

1

𝑧𝐿 + 𝑧𝑚𝐼

(︂
1− 𝑧𝐼

1−√
𝑞

1 +
√
𝑞

)︂
+ 𝛽 (1− 𝑞) 𝑧𝐿

⎡⎣ (︁
𝜆̄𝑧 − 1

𝑧𝐿+𝑧𝑚𝐼

)︁
(1− 𝜆3)

−𝜆̄𝑧

(︁
(1− 𝑞)𝑧𝐼

2
√
𝑞

1+
√
𝑞
𝜆̄𝜉 + 𝛼𝑀

)︁ ⎤⎦ . (D.12)

It is immediate that Eq. (D.11) is positive if

𝜆̄𝑧 ≤
1− 𝑧𝐼

1−√
𝑞

1+
√
𝑞
− 𝛽 (1− 𝑞) 𝑧𝐿

(𝑧𝐿 + 𝑧𝐼) 𝛽 (1− 𝑞) 𝑧𝐿𝛼𝑀
, (D.13)

which is satisfied under Assumptions B.5 and B.7. For (D.12), we see that either 𝜆̄𝑧 ≤
1

𝑧𝐿+𝑧𝑚𝐼
, in which case Eq. (D.12) is minimized at

1

𝑧𝐿 + 𝑧𝑚𝐼

⎡⎣ 1− 𝑧𝐼
1−√

𝑞

1+
√
𝑞
− 𝛽 (1− 𝑞) 𝑧𝐿

+𝛽 (1− 𝑞) 𝑧𝐿

(︁
1−max

{︁
(1− 𝑞)𝑧𝐼

2
√
𝑞

1+
√
𝑞
𝜆̄𝜉 + 𝛼𝑀, 1

}︁)︁ ⎤⎦ , (D.14)

which is positive under Assumption B.5 if

𝜆̄𝜉 ≤
1− 𝛼𝑀

(1− 𝑞)𝑧𝐼
2
√
𝑞

1+
√
𝑞

, (D.15)

or 𝜆̄𝑧 >
1

𝑧𝐿+𝑧𝑚𝐼
, in which case Eq. (D.12) is minimized at

1

𝑧𝐿 + 𝑧𝐼

⎡⎣ 1− 𝑧𝐼
1−√

𝑞

1+
√
𝑞
− 𝛽 (1− 𝑞) 𝑧𝐿

+𝛽 (1− 𝑞) 𝑧𝐿

(︁
1− (𝑧𝐿 + 𝑧𝐼) 𝜆̄𝑧

(︁
(1− 𝑞) 𝑧𝐼

2
√
𝑞

1+
√
𝑞
𝜆̄𝜉 + 𝛼𝑀

)︁)︁ ⎤⎦ . (D.16)
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Under Assumption B.5, Eq. (D.16) is positive if

𝜆̄𝜉 ≤
1

(1− 𝑞) 𝑧𝐼
2
√
𝑞

1+
√
𝑞

(︂
1

(𝑧𝐿 + 𝑧𝐼) 𝜆̄𝑧

− 𝛼𝑀

)︂
. (D.17)

Putting together the bounds in Eqs. (D.10), (D.15) and (D.17) gives the inequality in

Assumption B.7.

Lemma D.11 Under Assumptions B.4, B.5 and B.7, the rate of change of 𝒯 𝜆 in 𝑧𝐼 is

bounded by 𝜆̄𝑧 for all 𝜆 ∈ ℱ1.

Proof. We bound the rate of change of 𝒯 𝜆 in 𝑧. Using Eq. (D.8) and the definition of

𝐶 in Eq. (B.2) we compute

(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(𝐶(𝜉, 𝑧𝑛𝐼 )− 𝐶(𝜉, 𝑧𝑚𝐼 ))

=(1− 𝑞)

[︃
𝜆𝑧(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))[1− 𝜉 − 𝑧𝑛𝐼 (1− 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝜆(𝜉, 𝑧𝑚𝐼 ))]

+𝜆(𝜉, 𝑧𝑚𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

]︃
(𝑧𝑚𝐼 − 𝑧𝑛𝐼 )

=(1− 𝑞)

[︃
𝜆𝑧(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(1− 𝜉 + 𝑧𝑛𝐼 𝜆(𝜉, 𝑧

𝑛
𝐼 ))

+ (𝜆(𝜉, 𝑧𝑚𝐼 )− 𝑧𝑛𝐼 𝜆𝑧) (1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

]︃
(𝑧𝑚𝐼 − 𝑧𝑛𝐼 )

=

[︃
𝜆𝑧(1− 𝐶(𝜉, 𝑧𝑛𝐼 ))

+(1− 𝑞) (𝜆(𝜉, 𝑧𝑚𝐼 )− 𝑧𝑛𝐼 𝜆𝑧) (1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))

]︃
(𝑧𝑚𝐼 − 𝑧𝑛𝐼 ) .

(D.18)

Using Eqs. (D.7) and (D.18), we have:

|𝒯 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝒯 𝜆(𝜉, 𝑧𝑚𝐼 )|

≤ 𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 ) |𝑧𝑚𝐼 − 𝑧𝑛𝐼 |+𝐵(𝑧𝑛𝐼 )𝜆𝑧

⎛⎝1−
∑︁
𝑧′𝐼∈𝑍

𝜔 (𝑧′𝐼 | 𝑧𝑚𝐼 )𝜆(𝐶(𝜉, 𝑧𝑚𝐼 ), 𝑧′𝐼)

⎞⎠ |𝑧𝑚𝐼 − 𝑧𝑛𝐼 |

+𝐵(𝑧𝑛𝐼 )𝐺(𝜉, 𝑧𝑚𝐼 , 𝑧𝑛𝐼 )𝜆𝜉 |𝑧𝑚𝐼 − 𝑧𝑛𝐼 |+𝐵(𝑧𝑛𝐼 )(1− 𝜆(𝜉, 𝑧𝑛𝐼 ))𝜆̄𝑧𝛼𝑀 |𝑧𝑚𝐼 − 𝑧𝑛𝐼 |

≤ 𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 ) |𝑧𝑚𝐼 − 𝑧𝑛𝐼 |+𝐵(𝑧𝑛𝐼 )

[︀
𝜆̄𝑧 (1 + 𝛼𝑀) +𝐺(𝜉, 𝑧𝑚𝐼 , 𝑧𝑛𝐼 )𝜆̄𝜉

]︀
|𝑧𝑚𝐼 − 𝑧𝑛𝐼 | ,

where

𝐺(𝜉, 𝑧𝑚𝐼 , 𝑧𝑛𝐼 ) ≡ |𝜆𝑧(1− 𝐶(𝜉, 𝑧𝑛𝐼 )) + (1− 𝑞) [𝜆(𝜉, 𝑧𝑚𝐼 )− 𝑧𝑛𝐼 𝜆𝑧] (1− 𝜆(𝜉, 𝑧𝑛𝐼 ))(1− 𝜆(𝜉, 𝑧𝑚𝐼 ))| .
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From Definition B.2, we have

𝑔
(︀
𝜆̄𝑧, 𝑧

𝑛
𝐼

)︀
= max

{︀
1− 𝑞, (1− 𝑞) 𝑧𝑛𝐼 𝜆̄𝑧, 𝜆̄𝑧

(︀
1− 𝜉

)︀
, 𝜆̄𝑧

(︀
1− 𝜉

)︀
+ (1− 𝑞)

(︀
1− 𝑧𝑛𝐼 𝜆̄𝑧

)︀}︀
.

Then, it is immediate that

𝐺(𝜉, 𝑧𝑚𝐼 , 𝑧𝑛𝐼 ) ≤ 𝑔
(︀
𝜆̄𝑧, 𝑧

𝑛
𝐼

)︀
.

Therefore, we have

|𝒯 𝜆(𝜉, 𝑧𝑛𝐼 )− 𝒯 𝜆(𝜉, 𝑧𝑚𝐼 )| ≤
[︀
𝐴(𝑧𝑛𝐼 )𝐴(𝑧

𝑚
𝐼 ) +𝐵(𝑧𝑛𝐼 )

(︀
𝜆̄𝑧 (1 + 𝛼𝑀) + 𝑔

(︀
𝜆̄𝑧, 𝑧

𝑛
𝐼

)︀
𝜆̄𝜉

)︀]︀
|𝑧𝑚𝐼 − 𝑧𝑛𝐼 | .

Taking the maximum of this bound, we obtain that the rate of change of 𝒯 𝜆 in 𝑧𝐼 is

bounded by 𝜆̄𝜁 , which we define as

𝜆̄𝜁 = max
𝑧𝑛𝐼 ,𝑧

𝑚
𝐼 ∈𝑍,𝑛̸=𝑚

𝐴(𝑧𝑛𝐼 )𝐴(𝑧
𝑚
𝐼 ) +𝐵(𝑧𝑛𝐼 )

[︀
𝜆̄𝑧 (1 + 𝛼𝑀) + 𝑔

(︀
𝜆̄𝑧, 𝑧

𝑛
𝐼

)︀
𝜆̄𝜉

]︀
.

Under Assumption B.7, Definition B.6 implies 𝜆̄𝑧 ≤ 𝜆̄𝜁 . This concludes the proof.
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