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Abstract
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of illiquidity: trading (or search) frictions, which imply that market-makers have some amount of mar-
ket power; and information frictions, which imply that market-makers face some degree of adverse
selection. We use this model to study the effects of various technological innovations and regulatory
initiatives that have reduced trading frictions in over-the-counter markets. Our main result is that re-
ducing trading frictions can lead to less liquidity, as measured by bid-ask spreads. The key insight is
that more frequent trading—or more competition among dealers—makes traders’ behavior less depen-
dent on asset quality. As a result, dealers learn about asset quality more slowly and set wider bid-ask
spreads to compensate for this increase in uncertainty.
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1 Introduction

Many assets trade in decentralized, dealer-intermediated, over-the-counter (OTC) markets, such as cor-

porate bonds, municipal bonds, and various types of derivatives (such as interest rate and credit default

swaps). These markets have undergone significant changes in recent years as a result of both technologi-

cal innovations and regulatory initiatives. One of the primary consequences of these changes has been a

reduction in trading frictions: investors have gained the opportunity to trade more quickly with a wider

set of dealers. For example, in the corporate bond market, there has been a sizable shift away from voice-

based trading—where investors contact dealers sequentially via telephone to get a quote—to electronic

trading platforms—where investors can instantaneously submit a request for quotes that is received by

many dealers.1 Similar developments have taken place in the markets for swaps, where regulatory man-

dates have forced trading activity from decentralized, OTC markets onto more centralized exchanges.2

As these changes continue—and, in some cases, accelerate—a natural question arises: What is the effect

of reducing trading frictions on market liquidity?

The literature that uses search and matching models of trade to study OTC markets offers a stark

prediction: enabling investors to contact dealers more easily erodes the dealers’ market power, causing

bid-ask spreads to fall and thus market liquidity to rise.3 However, this literature typically abstracts

from a second, canonical source of illiquidity: asymmetric information. Since the seminal work of Glosten

and Milgrom (1985), the contribution of information asymmetries to market liquidity has been studied

extensively and documented empirically in a variety of financial markets.4 Recognizing the potentially

important role played by asymmetric information raises additional questions: Do changes in trading fric-

tions mitigate or exacerbate the effects of information frictions? Do the stark predictions that come from

models with only trading frictions remain true in settings with both trading and information frictions?

The goal of this paper is to provide some answers to these questions. To do so, we develop a unified

framework that incorporates both trading and information frictions. We characterize equilibrium prices,

1For instance, according to The Securities Industry and Financial Markets Association, the fraction of total volume (for in-
vestment grade corporate bonds) traded on electronic exchanges increased from 8% in 2013 to 20% in 2015, as the total number
of electronic platforms more than doubled. For a detailed description of the transition of several markets from dealer-based
platforms to electronic platforms, and ever-increasing execution speeds, see Appendix A of Pagnotta and Philippon (2015).

2In the U.S., for example, the Dodd-Frank Wall Street Reform and Consumer Protection Act has called for the introduction
of Swap Execution Facilities in the market for interest rate swaps. In addition to moving trading from an OTC market to a
centralized setting, it also requires an investor’s request for price quotes to be circulated to at least three dealers before the trade
can be executed. Similar regulatory requirements have been implemented in European markets as a consequence of MiFID II.

3See, for example, the large body of work following Duffie et al. (2005).
4For example, several papers, including Goldstein et al. (2006) and Edwards et al. (2007), analyze the role of adverse selection

in the corporate bond market. The effects of asymmetric information on liquidity and spreads have also been studied in the
over-the-counter markets for futures (Ma et al., 1992), foreign exchange swaps (Bollerslev and Melvin, 1994), and municipal
bonds (Harris and Piwowar, 2006; Brancaccio et al., 2017), to name just a few.
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trading decisions, and the corresponding evolution of beliefs, and then perform comparative statics to

understand how the underlying frictions in the model determine market liquidity. We focus much of

our attention on one particular measure of market liquidity, the bid-ask spread, though we also discuss

implications for other measures, such as trading volume and price impact.

Our main result is that the stark predictions that arise from models with only trading frictions are no

longer necessarily true when both trading and information frictions are present. In particular, we show

that reducing trading frictions has two, opposing effects. On the one hand, as in traditional models, it

generates more competition among dealers, leading to tighter spreads and more liquid markets. On the

other hand, however, we show that it also slows down the process by which dealers learn about the

quality of the assets being traded. Over time, this exacerbates the effects of asymmetric information and

leads to wider bid-ask spreads. Hence, we show that a one-time decrease in trading frictions typically

leads to an immediate fall in spreads, relative to the baseline, but wider spreads in the long run.

To understand the intuition behind our results, it’s helpful to describe a few key features of the model.

There are two types of agents—traders and dealers—who trade a homogeneous asset that is either high

or low quality. We introduce information frictions by assuming that traders know the quality of the asset

but dealers do not. We introduce trading frictions by assuming that, in each period, traders are matched

with a stochastic number of dealers. In particular, a given trader might not match with any dealers, in

which case she can’t trade; the trader might be matched with a single dealer, in which case the dealer

has some degree of market power; or the trader might be matched with two or more dealers, in which

case the dealers compete a la Bertrand. After a dealer is matched with a trader, and observes whether the

trader has matched with any other dealers, he offers bid and ask prices at which he’s willing to buy or

sell, respectively. The trader then decides whether or not to trade based on her reservation value for the

asset, along with the realization of contemporaneous (aggregate and idiosyncratic) preference shocks. At

the end of each period, dealers observe aggregate trading volume, which depends on the true quality of

the asset and the (uncorrelated, unobserved) aggregate preference shock. Hence, volume is a noisy signal

of asset quality, and dealers update their beliefs accordingly.

Our main result then follows from a sequence of intermediate results. First, we show that dealers learn

more quickly when traders’ behavior—which is summarized by their reservation values—is more distinct

in different states of the world (i.e., under different asset qualities). Second, and most important, we

show that reducing trading frictions implies that traders’ reservation values are more similar across asset

qualities. Lastly, we show that dealers set wider bid-ask spreads when they are more uncertain about asset
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quality. Taken together, these results imply that reducing trading frictions slows down dealers’ learning,

and can actually reduce market liquidity (as measured by the bid-ask spread) in the long run.

But why do traders’ reservation values become less dependent on asset quality as trading frictions

become less severe? Reservation values can be decomposed into two pieces: one that depends on the

fundamental value of the asset and another that depends on the option value of trading the asset in the

future. When traders’ contact dealers more easily, their reservation values depend less on the former

and more on the latter. This is intuitive, since the option value of trading an asset obviously relies on

the frequency with which a trader has the opportunity to trade it when his preferences dictate a desire

to do so. Moreover, the option value of trading is larger when the asset quality is low than it is when

the asset quality is high. This is because a trader is more likely to want to exercise the option of selling

a low quality asset, relative to a high quality asset.5 Hence, reducing trading frictions puts less weight

on the component that makes reservation values more distinct, and more weight on the component that

diminishes the difference between reservation values in the high and low quality states of the world.

We think our analysis constitutes a contribution to the literature for several reasons. First, it pro-

vides a single, unified framework that incorporates three ingredients that have been identified as crucial

factors in financial markets: trading frictions, which have been studied extensively in search-based mod-

els of OTC markets; adverse selection, which lies at the heart of information-based models of market

microstructure and the bid-ask spread; and learning, which is the focal point of dynamic models of in-

formation revelation. Second, despite the complex nature of the (dynamic, non-stationary) equilibrium

in this environment, we are able to identify a special case of our model that allows for a full analytical

characterization. Exploiting the tractability of this special case reveals a number of novel interactions be-

tween the three key ingredients described above, and the resulting implications for observable outcomes.

Finally, given these implications, our model offers a framework to interpret existing empirical results that

are hard to rationalize in models with only one of these frictions, such as a positive relationship between

spreads and trading speed (as documented in, e.g., Hendershott and Moulton, 2011) or a positive rela-

tionship between spreads and trading volume (as documented in, e.g., Lin et al., 1995; Chordia et al.,

2001). Moreover, if our model can help us understand the affects of trading frictions and information fric-

tions in the past, it may also prove helpful for anticipating the effects of future changes to OTC markets,

as a number of current regulatory proposals are aimed at either eliminating trading frictions or reducing

information asymmetries in financial markets.

5By a similar logic, a trader is more likely to want to exercise the option to buy a high quality asset, relative to a low quality
asset, which similarly reduces the option value of acquiring a high quality asset relative to a low quality asset.
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The rest of the paper is organized as follows. After reviewing the related literature below, we intro-

duce the model in Section 2, characterize optimal behavior, and define an equilibrium. In Section 3, we

consider a special case of the model that admits an analytical solution, and use this special case to illus-

trate the key results. Then, in Section 4, we consider a more flexible specification of the model, assign

parameter values that are roughly consistent with those in the existing literature and/or the data, and

solve the model numerically. This section is intended to serve two main purposes. First, it provides some

assurance that the forces we identify using the special case of our model are not a byproduct of the specific

assumptions we impose in Section 3, and are relevant in a plausible region of the parameter space. Sec-

ond, it allows us to derive additional insights and results that cannot be derived analytically. In Section 5,

we consider a stationary version of the model and discuss the welfare ramifications of reducing trading

frictions. Interestingly, we show that a deterioration in market liquidity—as measured by a widening

bid-ask spread—need not correspond to a decline in welfare. Section 6 concludes.

1.1 Related Literature

This paper is related to several strands of the literature. First, it is closely related to the large body of

work that uses search frictions to model decentralized trading. Duffie et al. (2005), Lagos and Rocheteau

(2009), and Hugonnier et al. (2014) focus on bid-ask spreads in full information settings.6 Gehrig (1993),

Spulber (1996), and, more recently, Lester et al. (2015) analyze pricing under asymmetric information

about preferences, i.e., about traders’ private values of holding the asset.7 In our paper, the traders are

privately informed both about their preferences and about a common value component of the asset, which

leads to adverse selection. Moreover, since the common component is an aggregate one, there is a role for

learning over time by the uninformed market-makers.8

Second, our paper contributes to several strands of the voluminous literature that focuses on the ef-

fects of asymmetric information in settings without trading and/or search frictions. Perhaps the most

obvious is the strand that focuses on the effects of asymmetric information on the bid-ask spread, fol-

lowing the seminal contributions of Copeland and Galai (1983), Glosten and Milgrom (1985), and Kyle

6A few papers in this literature also find that easing trading frictions can have counter-intuitive effects on liquidity, even under
full information. For example, in Lagos and Rocheteau (2009), changing trading frictions affects the endogenous distribution of
asset holdings, which leads to non-monotonic effects on spreads. In Afonso (2011), the presence of congestion externalities plays
a crucial role. In our paper, the counter-intuitive effects stem from the interaction with asymmetric information and learning—
channels which are not present in these papers.

7Another, more recent, example is Bethune et al. (2016).
8This latter feature distinguishes our work from papers that study adverse selection stemming from private information

about the idiosyncratic quality of an asset; a non-exhaustive list of papers in this tradition includes Camargo and Lester (2014),
Guerrieri and Shimer (2014), Kaya and Kim (2015), Fuchs and Skrzypacz (2015), Chiu and Koeppl (2016), Choi (2016), and Kim
(2017). In these papers, information revealed from a particular trade is asset-specific and, therefore, is typically not useful in
future trades involving other assets.
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(1985). In addition, our focus on the informational content of endogenous market signals is shared by the

strand of this literature that studies information aggregation in rational expectations equilibrium (REE)

models, pioneered by Grossman and Stiglitz (1980) and Hellwig (1980). Our analysis highlights novel in-

teractions between asymmetric information and search frictions, and shows how they lead to surprising

and counter-intuitive implications for liquidity and prices.9

The combination of trading frictions, adverse selection, and learning in our model is also present in

papers such as Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), Duffie et al. (2009),

Golosov et al. (2014), Lauermann and Wolinsky (2016), and Lauermann et al. (2017). The key difference

between these papers and our own is the source of learning: in these papers, agents learn only from their

own trading experiences, while in our paper, learning occurs from observing market-wide outcomes,

which we feel is a realistic feature of many financial markets.10

Finally, by analyzing the effects of reducing trading frictions, our analysis also makes contact with

the literature that studies the effects of high frequency trading, such as Biais et al. (2015), Pagnotta and

Philippon (2015), Menkveld and Zoican (2017), and Du and Zhu (2017). A key distinction between our

work and these papers—in addition to the many different modeling assumptions—is the crucial role that

is assigned to learning over time in our framework.

2 Model

2.1 Environment

Agents, Assets, and Preferences. Time is discrete and indexed by t. There are two types of risk neutral,

infinitely-lived agents: a measure N of “traders” and a mass D of “dealers.” Neither traders nor dealers

discount future payoffs. There is a single asset of quality j ∈ {l,h}. Traders can hold either zero or one

unit of the asset, while dealers’ positions are unrestricted, i.e., they can take on arbitrarily large long or

short positions.

At the beginning of each period, the asset matures with probability 1− δ, in which case the game ends.

A trader who owns a unit of the asset receives a payoff cj if the asset matures, with cl < ch.11 If the asset

9A related point appears in Rostek and Weretka (2015), who show that increasing trader participation—and hence making
markets larger—can lead to a decrease in liquidity. Asriyan et al. (2017) study information aggregation in a dynamic setting, and
find that sellers’ incentives to delay trade could lead to failure of information aggregation, even with a large number of traders.
In contrast, in our paper, trading frictions affect the extent to which trading decisions—and, therefore, the informational content
of the endogenous signal—depend on the fundamental (common) value of the asset.

10A related literature also studies learning and information diffusion in network settings; see, e.g., Babus and Kondor (2016).
11There are several alternative interpretations of what it means for an asset to “mature” in period t. For example, one inter-

pretation is that a trader stops actively trading the asset in period t, i.e., he stops checking current bid and ask prices, and simply
retains his current position (owner or non-owner) until the asset actually matures (or uncertainty about the asset’s payoffs are
resolved) at some future date t ′ > t.

6



does not mature in period t, a trader who owns a unit of the asset receives a flow payoff ωt + εi,t, which

we interpret as a liquidity shock. The aggregate portion of the shock, ωt, is an i.i.d. draw each period

from a distribution F(·). The idiosyncratic portion of the liquidity shock, εi,t, is an i.i.d. draw for each

trader in each period from a distribution G(·). We assume that F(·) and G(·) have mean zero and full

support over the real line.12

Dealers receive a payoff vj when the asset matures, with vh > vl, but they do not receive any flow

payoff from the asset before it matures. Given our assumption that dealers can take unrestricted positions,

it follows that the payoff to a dealer from buying or selling a unit of the asset of quality j ∈ {l,h} is vj and

−vj, respectively.

Trading and Frictions. There are two key frictions in the model. The first is an information friction: we

assume that traders know more about the quality of the asset than dealers. For the sake of simplicity,

we make the extreme assumption that all traders are perfectly informed about the quality of the asset,

j ∈ {l,h}, while dealers only know the ex-ante probability that the asset is of quality h at t = 0, which we

denote by µ0. The liquidity shocks are also privately observed by the traders.

The second key friction in the model is a trading friction: in every period, each trader meets with a

stochastic number of dealers. In particular, let pn denote the probability that a trader meets n ∈ {0, 1, ...}

dealers. As we describe below, any meeting with n > 2 dealers will have the same outcome. Hence,

the trading frictions can be succinctly summarized by two sufficient statistics, say p0 and p1. However,

for the purpose of our analysis, it will be convenient to summarize the trading frictions instead by the

probability that a trader meets with at least one dealer,

π ≡ 1 − p0,

and the probability of meeting with one dealer (a “monopolist” meeting), conditional on meeting with

n > 1 dealers,

αm =
p1

π
.

We define the probability of meeting with n > 2 dealers (a “competitive” meeting), conditional on meet-

ing with at least one dealer, by αc = 1 −αm.13

12This assumption is made only for simplicity and is not essential for our results. In Section 3, we analyze a version where
these distributions have bounded support.

13This convenient transformation allows us to separate the effects of more frequent meetings (say, from an increase in trading
speed) and the effects of more competition in each meeting (say, from an increase in pre-trade price transparency).
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After meetings occur, each dealer quotes a bid and an ask price, i.e., prices at which he’s willing to buy

and sell a unit of the asset, respectively. Importantly, we assume that the number of dealers that a trader

meets is common knowledge when dealers choose prices.14 Hence, the dealer in a monopolist meeting

can extract rents, whereas the dealers in a competitive meeting drive the bid price up and the ask price

down until the expected profits from trade are zero. We denote the prices quoted by a monopolist dealer

by (Bmt ,Amt ), and the prices quoted by competing dealers by (Bct ,Act).

Information and Learning. We assume that dealers observe the aggregate volume of trade at the end

of each trading round. As we describe in detail below, this will turn out to be a noisy signal about asset

quality, which the dealers will use to update their beliefs over time. This assumption will play a crucial

role in making our analysis tractable. In particular, as we will show, it implies that (i) all dealers have

identical beliefs at the beginning of each period and (ii) the actions of an individual trader and/or dealer

will not alter the evolution of future beliefs. In what follows, we let µt denote the beliefs of (all) dealers

that the asset is of quality h at the beginning of trading at time t .

2.2 Traders’ Optimal Behavior

Let Wq
j,t denote the expected discounted value of a trader who owns q ∈ {0, 1} unit of the asset at the

beginning of period twhen the asset is of quality j ∈ {l,h}. Then, for a trader who does not own the asset,

we have

W0
j,t = δ Eω,ε

π ∑
k=c,m

αkmax
(
−Akt +ωt + εi,t +W

1
j,t+1,W0

j,t+1
)
+ (1 − π)W0

j,t+1

 (1)

= δ Eω,ε
[
W0
j,t+1

]
+ δπ Eω,ε

 ∑
k=c,m

αkmax
(
−Akt +ωt + εi,t +W

1
j,t+1 −W

0
j,t+1, 0

) .

Note that the expectation is taken over ωt and εi,t, which are drawn from F(ω) and G(ε), respectively.

All objects inside the brackets—including the current ask prices Akt and future payoffs Wq
j,t+1—can be

calculated using the information available to a trader at time t, which includes the true quality of the asset

as well as the current beliefs of dealers. We describe in detail below how the trader uses this information

to formulate beliefs.

In words, the first expression inside the brackets in equation (1) represents the expected payoff if the

asset does not mature and the trader meets at least one dealer, whereupon he may either purchase a unit

14This is in contrast to the assumption in Burdett and Judd (1983) or, more recently, Lester et al. (2017), where offers are made
under uncertainty about the number of other offers being received
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of the asset at price Akt or reject the offer and continue searching in period t+ 1. The second expression

represents the expected payoff if the asset does not mature but the trader fails to meet a dealer. Recall that

a trader with q = 0 assets receives zero payoff if the asset matures, which occurs with probability 1 − δ.

Similar logic can be used to derive the expected payoff of a trader who owns one unit of the asset,

W1
j,t = (1 − δ)cj + δEω,ε

[
W1
j,t+1

]
+ δπEω,ε

 ∑
k=c,m

αkmax
(
Bkt +W

0
j,t+1 −W

1
j,t+1 −ωt − εi,t, 0

) .

Note that, when the asset matures, a trader who owns one unit receives a payoff cj.

We conjecture, and later confirm, that an individual trader’s decision to accept or reject an offer has

no effect on dealers’ beliefs, and hence no effect on the path of future prices. An immediate consequence

is that traders’ decisions to buy or sell follow simple cutoff rules: given asset quality j ∈ {l,h}, a trader

who does not own the asset will buy in a meeting of type k ∈ {m, c} if εi,t > εkj,t, while a trader who owns

the asset will sell if εi,t 6 εkj,t, where these cutoffs satisfy

−Akt +ωt + ε
k
j,t +W

1
j,t+1 = W0

j,t+1

ωt + ε
k
j,t +W

1
j,t+1 = Bkt +W

0
j,t+1.

Let us denote the reservation value of a trader at time t given asset quality j ∈ {l,h} by

Rj,t ≡W1
j,t −W

0
j,t.

Then, the optimal behavior of traders is succinctly summarized by the cutoffs, for k ∈ {m, c},

εkj,t = Bkt −ωt − Rj,t+1 , (2)

εkj,t = Akt −ωt − Rj,t+1 , (3)

along with reservation values

Rj,t = (1 − δ)cj + δEω,ε
[
Rj,t+1

]
+ δπ

∑
k=c,m

αkΩ
k
j,t , (4)

where the term

Ωj,t = Eω,ε
[
max

(
Bkt − Rj,t+1 −ωt − εi,t, 0

)
− max

(
−Akt +ωt + εi,t + Rj,t+1, 0

)]
= Eω

{[
BktG(ε

k
j,t) +

∫εkj,t
εkj,t

[
ωt + εi,t + Rj,t+1

]
dG (εi,t) +A

k
t

[
1 −G(εkj,t)

]]
− Rj,t+1

}
(5)

is the net option value of holding an asset of quality j in a meeting of type k. In words, by acquiring a unit

of the asset, a trader gains the option of selling it at a later date but, since holdings are restricted to {0, 1},
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she gives up the option of buying it later at a different (potentially better) price. The trader’s reservation

value, Rj,t, includes the difference between the expected value of these two options, multiplied by the

probability of a trading opportunity, δπ. The representation in (5) is obtained by using the cutoff rules

described above. The expectation is taken over the aggregate shock, ωt, as well as the prices and future

payoffs, which we describe below.

Demographics. Given the trading rules described above, we can now describe the evolution of the

distribution of asset holdings across traders over time. To do so, let Nqt denote the measure of traders

who have asset holdings q ∈ {0, 1} at time t. When the asset is of quality j ∈ {l,h}, we have

N1
j,t+1 = N1

t

1 − π+ π

1 −
∑
k=c,m

αkG(ε
k
j,t)

+N0
tπ

1 −
∑
k=c,m

αkG(ε
k
j,t)


N0
j,t+1 = N1

tπ
∑
k=c,m

αkG(ε
k
j,t) +N

0
t

1 − π+ π
∑
k=c,m

αkG(ε
k
j,t)

 .

Naturally, the measure of traders that own an asset in period t + 1 is equal to the measures of traders

that owned an asset in period t and did not sell, plus the measure of traders that did not own an asset

but chose to buy. The law of motion for the measure of traders that don’t own an asset follows the same

logic. We assume that the initial distribution of owners and non-owners, (N0
0,N1

0 = N−N0
0), is common

knowledge. Hence, as we describe below, dealers will know (N0
t,N

1
t) at the beginning of each period, but

they will not be able to perfectly infer j ∈ {l,h}.

2.3 Dealers’ Optimal Behavior

Monopolist Pricing. We first consider the optimal price offered in a meeting between a trader and a

single dealer. When formulating this offer, the dealer takes as given the trader’s optimal behavior derived

above. We will show that, under our assumptions, the dealer’s pricing problem is static: neither the price

that he sets nor the trader’s response affects payoffs in future periods (e.g., through beliefs). We treat this

as a conjecture, for now, and verify it later.

Under this conjecture, a monopolist dealer’s optimal prices (Amt ,Bmt ) solve

max
A,B

Ej,ω
[
N0
t

[
1 −G

(
εj,t
)]

(A− vj) +N
1
tG
(
εj,t
)
(vj −B)

]
,

where the expectations operator is taken over the quality j ∈ {l,h} of the asset—using the dealer’s current

beliefs, µt—as well as the aggregate liquidity shock, ωt, and future reservation values, Rj,t+1, that deter-

mine the thresholds εj,t and εj,t. Again, we postpone the derivation of how these latter expectations are

formed until Section 2.4, below.
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The optimal prices can be summarized by the two first-order conditions:

0 = Ej,ω
[
1 −G

(
εmj,t
)
− g

(
εmj,t
)
(Amt − vj)

]
(6)

0 = Ej,ω
[
−G

(
εmj,t
)
+ g

(
εmj,t
)
(vj −B

m
t )
]

. (7)

Re-arranging equation (6), we can write the optimal ask price as

Amt = µtvh + (1 − µt)vl +
1 − Ej,ω

[
G
(
εmj,t

)]
Ej,ω

[
g
(
εmj,t

)]
︸ ︷︷ ︸

market power

+ µt(1 − µt)(vh − vl)
Eω

[
g
(
εmh,t

)
− g

(
εml,t
)]

Ej,ω

[
g
(
εmj,t

)]
︸ ︷︷ ︸

asymmetric information

. (8)

This equation expresses the ask price as the sum of the expected fundamental value of the asset and two

additional components. The first component derives from the dealer’s market power and is the inverse

of the semi-elasticity of expected demand, akin to the standard markup in a monopolist’s optimal price.

The second component is a premium that dealers charge to compensate for the presence of asymmetric

information. Note that this second component can be re-written as

µt(1 − µt)(vh − vl)
Eω

[
g
(
εmh,t

)
− g

(
εml,t
)]

Ej,ω

[
g
(
εmj,t

)] =
Covj

(
Eω

[
g
(
εmj,t

)]
, vj

)
Ej,ω

[
g
(
εmj,t

)] .

Hence, the asymmetric information component is essentially an adjustment that accounts for the relation-

ship between the density of marginal buyers and the dealer’s valuation of the asset; it implies that dealers

will adjust their asking price upward if the density of marginal buyers is relatively large when the asset

is of high quality.15 Also note that this component disappears if there is no uncertainty over the quality

of the asset, i.e., if µt = 0, µt = 1, or vh = vl.

Similar logic reveals that the bid price is equal to the expected fundamental value of the asset, adjusted

downwards by the two components discussed above:

Bmt = µtvh + (1 − µt)vl −
Ej,ω

[
G
(
εmj,t

)]
Ej,ω

[
g
(
εmj,t

)] − µt(1 − µt)(vh − vl)
Eω

[
g
(
εml,t

)
− g

(
εmh,t

)]
Ej,ω

[
g
(
εmj,t

)]
)

. (9)

Competitive Pricing. Next, we solve for equilibrium prices when a trader meets two or more dealers.

This situation corresponds almost exactly to the pricing problem in the canonical setting of Glosten and

Milgrom (1985), where equilibrium bid and ask prices are set so that expected (static) profits are zero. In

other words, when two or more dealers compete, the bid price Bct (ask price Act ) is equal to the expected

15Note that this asymmetric information component can be positive or negative.
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value of the asset conditional on a trader selling (buying) at that price. Formally, this zero profit condition

can be written

0 = Act −
Ej,ω

[
vj

(
1 −G(εcj,t)

)]
Ej,ω

[(
1 −G(εcj,t)

)]
0 = Bct −

Ej,ω

[
vjG(ε

c
j,t)
]

Ej,ω

[
G(εcj,t)

] .

Re-arranging yields

Act = µtvh + (1 − µt)vl + µt(1 − µt)(vh − vl)
Eω

[
G
(
εcl,t
)
−G

(
εch,t

)]
Ej,ω

[
1 −G

(
εcj,t

)] (10)

Bct = µtvh + (1 − µt)vl − µt(1 − µt)(vh − vl)
Eω

[
G
(
εcl,t

)
−G

(
εch,t

)]
Ej,ω

[
G
(
εcj,t

)] . (11)

Again, it is worth noting that, e.g.,

µt(1 − µt)(vh − vl)
Eω

[
G
(
εcl,t
)
−G

(
εch,t

)]
Ej,ω

[
1 −G

(
εcj,t

)] =
Covj

(
Eω

[
1 −G

(
εcj,t

)]
, vj

)
Ej,ω

[
1 −G

(
εcj,t

)] .

These expressions show that, under competition, bid and ask prices are equal to the expected value of

the asset to the dealer, adjusted for adverse selection. This adjustment depends on the covariance between

the probability of trade and the value of the asset. For example, the ask (bid) price is higher (lower) than

the expected value since traders are more (less) likely to buy (sell) when the state is high. This creates a

positive bid-ask spread, exactly as in Glosten and Milgrom (1985).

Comparing equations (8)-(9) and (10)-(11) reveals that prices under competition and monopoly are

similar, with two key differences. First, as one might expect, competitive prices do not contain the markup

component found in monopoly prices. Second, the adjustment for asymmetric information in (8)-(9)

depends on the mass of traders at the appropriate thresholds in the two states (i.e., the pdf), while the

corresponding adjustment in (10)-(11) depends on the difference between the probability of trade in the

two states (i.e., the cdf). Intuitively, this occurs because the monopolist’s optimal price is a function of the

expected profit from the marginal trader, whereas competitive pricing is pinned down by the requirement

that dealers earn zero profits on average.

2.4 Learning

We now explain how dealers update their beliefs about the quality of the asset, and how traders form

expectations about dealers’ beliefs—and hence the prices they offer—in future periods.

12



As noted above, we assume that dealers learn by observing aggregate trading activity in each period.

Notice immediately that this is equivalent to observing the thresholds
(
εmj,t, ε

c
j,t, ε

m
j,t, ε

c
j,t

)
. Moreover, since

dealers know which prices have been offered in equilibrium, each of these thresholds ultimately contains

the same information. Consider, for example, εmj,t, which depends on the ask price Amt , which dealers

know, along with the reservation value of the trader Rj,t+1 and the aggregate shock ωt, both of which

the dealers do not observe. The reservation value clearly depends on the quality of the asset, while the

aggregate liquidity shock is orthogonal to quality (by assumption). Hence, the volume of asset purchases

in monopoly meetings—which dealers can perfectly infer from the total volume of asset purchases given

αc and αm—is a noisy signal about asset quality, and the informational content can be summarized by

St ≡ Rt+1 +ωt , (12)

where Rt+1 = Rj,t+1 when the true state of the world is j ∈ {l,h}.

Let us conjecture, for now, that traders’ reservation values depend only on dealers’ beliefs, along with

the true state j. Then, given current beliefs µt and the observed signal St, a dealer’s updated belief µt+1

depends on the likelihood of observing that signal when the asset quality is h relative to that when it is l.

To arrive at this likelihood, we first calculate the value of the aggregate shock, ωt, that is consistent with

the observed signal St. Formally, define

ω?
ι,t = St − Rι,t+1(µt+1), (13)

where we’ve made explicit that traders’ reservation values at t+ 1 depend on the evolution of dealers’

beliefs. In words, ω?
ι,t is the value of ωt consistent with the signal St and traders’ optimal behavior—

summarized by reservation values—when the asset is of quality ι ∈ {l,h}. Since both ω?
l,t and ω?

h,t are

consistent with the signal St, by construction, both Rl,t+1 and Rh,t+1 in (13) are calculated under the same

information sets, i.e., they both correspond to the same future beliefs, µt+1.

Figure 1 illustrates the dealers’ learning process graphically. The left panel plots the density over

signals in the two states of the world, and illustrates how a dealer uses the signal to infer the two possible

aggregate shocks. The right panel plots the density f(ω), which the dealer uses to update his beliefs.
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Figure 1: Dealer learning.

In particular, by Bayes Rule, the dealers’ updated beliefs are µt+1 =
µtf(ω?

h,t)
µtf(ω?

h,t)+(1−µt)f(ω?
l,t)

. Sinceω?
l,t

and ω?
h,t themselves depend on future beliefs, the law of motion for µt is a function µt+1(µt,St) that

solves the fixed point problem:

µt+1 =
µt

µt + (1 − µt)
f(ω?

l,t)
f(ω?

h,t)

=
µt

µt + (1 − µt)
f(St−Rl,t+1(µt+1))
f(St−Rh,t+1(µt+1))

. (14)

Now, even though dealers’ future beliefs cannot depend directly on the true quality of the asset (since

they do not observe it), traders (who know the true quality) can certainly use this information to formulate

expectations about dealers’ beliefs. In particular, it will be helpful to define the function µ̃j,t+1(µt,ωt) as the

solution to the fixed point problem

µt+1 =
µt

µt + (1 − µt)
f(ωt+Rj,t+1(µt+1)−Rl,t+1(µt+1)))
f(ωt+Rj,t+1(µt+1)−Rh,t+1(µt+1)))

. (15)

In words, given current beliefs µt, the true quality of the asset j ∈ {l,h}, and the aggregate liquidity shock

ωt , traders (correctly) anticipate that dealers’ beliefs in period t+ 1 will be µ̃j,t+1(µt,ωt).

This recursive law of motion validates our earlier conjectures about the formation of beliefs in equi-

librium. First, since future beliefs (and therefore, future prices) only depend on current beliefs and the

realization of the aggregate liquidity shock ωt, it follows that traders’ reservation values Rt+1 depend

only on beliefs µt+1 and the true quality of the asset. Second, since future beliefs are independent of the

actions of any one dealer or trader, both can formulate optimal behavior—prices for dealers and buy, sell,

or don’t trade decisions for traders— without affecting future beliefs.

This verifies the conjecture that the dealers’ pricing problem is a static one. In particular, dealers do

not have an incentive to deviate from the optimal prices derived above in order to experiment, i.e., to

acquire information about the quality of the asset. To see why, note that an individual trader’s action
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is measurable with respect to the sum of her reservation value Rt+1 and the combined liquidity shock

ωt + εi,t. Therefore, at any quoted price, her action can reveal at most Rt+1 +ωt + εi,t. For example, if

the dealer quotes a bid B ′ and the trader sells, the dealer learns that Rt+1 +ωt + εi,t 6 B ′. However, at

the end of the period, the dealer perfectly learns Rt+1 +ωt by observing market-wide volume.16 Since the

idiosyncratic liquidity shock εi,t is independent from the quality of the asset, j, the information contained

in this signal about Rt+1 (and therefore, about asset quality) dominates that contained in an individual

trader’s actions. Thus, deviating from the static optimal price involves giving up current profits but

generates no additional benefit.

2.5 Definition of Equilibrium

We now define a Markov equilibrium, where the strategies of all agents are functions of (at most) current

dealer beliefs, µ, and realizations of the aggregate liquidity shock, ωt. Such an equilibrium can be rep-

resented recursively as a collection of functions
{
εkj , εkj ,Rj,Ak,Bk,µ+, µ̃+j ,N0,+

j ,N1,+
j

}
for j ∈ {l,h} and

k ∈ {m, c} such that:

1. Taking as given the pricing and belief updating functions, traders’ decisions to buy or sell are deter-

mined by:

εkj (µ,ω) = Bk(µ) −ω− Rj

(
µ̃+j (µ,ω)

)
(16)

εkj (µ,ω) = Ak(µ) −ω− Rj

(
µ̃+j (µ,ω)

)
(17)

Rj(µ) = (1 − δ)cj + δ(1 − π)

∫
ω

Rj

(
µ̃+j (µ,ω)

)
dF(ω) + δπ

∫
ω

 ∑
k∈{m,c}

αk
[
Bk(µ)G

(
εkj (µ,ω)

)
+

∫εkj (µ,ω)

εkj (µ,ω)

[
ω+ ε+ Rj

(
µ̃+j (µ,ω)

)]
dG (ε) +Ak(µ)

[
1 −G

(
εkj (µ,ω)

)]]}
dF(ω). (18)

2. Given traders’ behavior and expectations about future beliefs, prices are consistent with optimal

behavior and, in the competitive case, zero profits. That is, Am ≡ Am(µ) and Bm ≡ Bm(µ) satisfy:

0 =
∑
j∈{l,h}

µj

∫
ω

[
1 −G

(
εmj (µ,ω)

)
− g

(
εmj (µ,ω)

) (
Am − vj

)]
dF(ω) (19)

0 =
∑
j∈{l,h}

µj

∫
ω

[
−G

(
εmj (µ,ω)

)
+ g

(
εmj (µ,ω)

) (
vj −B

m
)]
dF(ω) (20)

16This follows from the assumption that liquidity shocks have full support, which guarantees non-zero volumes for every
state/price. However, as we will show in Section 3, even if shocks are drawn from a finite support, dealers do not have an
incentive to experiment.
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where µh ≡ µ and µl ≡ 1 − µ, while Ac ≡ Ac(µ) and Bc ≡ Bc(µ) satisfy:

0 = Ac −

∑
j∈{l,h} µjvj

∫ [
1 −G

(
εcj (µ,ω)

)]
dF(ω)∑

j∈{l,h} µj
∫ [

1 −G
(
εcj (µ,ω)

)]
dF(ω)

(21)

0 = Bc −

∑
j∈{l,h} µjvj

∫ [
G
(
εcj (µ,ω)

)]
dF(ω)∑

j∈{l,h} µj
∫ [
G
(
εcj (µ,ω)

)]
dF(ω)

. (22)

3. For any S ∈ R, dealers’ beliefs evolve according to µ+(µ,S), which is a solution to:

µ+ =
µ

µ+ (1 − µ) f
(S−Rl(µ+))
f(S−Rh(µ+))

. (23)

Given the true asset quality j ∈ {l,h} and aggregate shockω, traders’ expectations of dealers’ beliefs

evolve according to µ̃+j (µ,ω), which is a solution to

µ+ =
µ

µ+ (1 − µ)
f(ω+Rj(µ+)−Rl(µ+))
f(ω+Rj(µ+)−Rh(µ+))

. (24)

Moreover, traders’ expectations are consistent with the evolution of dealers’ beliefs conditional on

observing signal S = Rj

(
µ̃+j (µ,ω)

)
+ω, i.e.,

µ̃+j (µ,ω) = µ+
(
µ,Rj

(
µ̃+j (µ,ω)

)
+ω

)
for j ∈ {l,h}. (25)

4. Given true asset quality j ∈ {l,h}, beliefs µ, and an aggregate shock ω, the population evolves

according to:

N1,+
j (µ,ω) = N1

j

1 − π+ π

1 −
∑

k∈{m,c}

G
(
εkj (µ,ω)

)+N0
jπ

1 −
∑

k∈{m,c}

G
(
εkj (µ,ω)

) (26)

N0,+
j (µ,ω) = N1

jπ
∑

k∈{m,c}

G
(
εkj (µ,ω)

)
+N0

j

1 − π+ π
∑

k∈{m,c}

G
(
εkj (µ,ω)

) . (27)

Note that the laws of motion for N1
j and N0

j depend only on the thresholds
{
εkj , εkj

}
, for j ∈ {l,h} and

k ∈ {m, c}. Hence, dealers can always infer the distribution of assets across traders, even though they

can’t directly observe asset quality.17

17Intuitively, by construction,ω?
l andω?

h rationalize the aggregate trading volume that dealers observe, and hence the implied
thresholds. As a result, the evolution of N0 and N1 when the asset quality is l and the aggregate shock is ω?

l are identical to the
evolution of these variables when the asset quality is h and the aggregate shock isω?

h.
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3 Frictions, Learning, and Prices: A Tractable Case

From the definition above, one can see that there is a fairly complicated fixed point problem at the heart

of the equilibrium: the law of motion for dealers’ beliefs is a convolution of both exogenous parameters

(ω) and endogenous variables (Rj), which themselves depend on future prices and beliefs. This makes it

difficult to derive analytical results for arbitrary distributions of liquidity shocks. In this section, we make

a few parametric assumptions that allow for a full characterization of the equilibrium.18

We then use this characterization to explore how trading and information frictions affect traders’ reser-

vation values, the evolution of dealers’ beliefs, and, ultimately, equilibrium bid and ask prices. We show

that, in isolation, each of these frictions has the expected effect: holding beliefs fixed, a reduction in trading

frictions causes bid-ask spreads to narrow; and holding trading frictions constant, increasing uncertainty

over the quality of the asset causes bid-ask spreads to widen. However, the interaction between these two

frictions generates novel predictions.

First, we establish that reducing trading frictions slows down learning. Intuitively, when traders have

the opportunity to trade more frequently, their behavior in the two states of the world is more similar,

which implies that the endogenous signal in the model—aggregate volume—is less informative. Second,

since slower learning implies more uncertainty, and more uncertainty implies wider spreads, we show

that a reduction in trading frictions can ultimately lead to an increase in the bid-ask spread.

3.1 Parametric Assumptions

We make three key assumptions.

Assumption 1 (Uniform Shocks). The aggregate liquidity shock, ω, is uniformly distributed over the interval

[−m,m] for some 0 < m < ∞, and the idiosyncratic liquidity shock, ε, is uniformly distributed over the interval

[−e, e] for some 0 < e <∞.

As we will show below, the assumption that ω is uniformly distributed simplifies the dealers’ learning

process, while the assumption that ε is uniformly distributed simplifies the dealers’ pricing problem.

Note, however, that these distributions violate our maintained assumption that F(·) and G(·) have full

support. One might be concerned that having finite bounds would open up the possibility that dealers

would like to experiment when setting prices, e.g., that they would choose to set a (statically sub-optimal)

price that would reveal to them the state of the world. We show in Appendix B.1 that this is not the case.

18In the next section, we consider a more flexible specification, describe how to solve the model numerically, and confirm that
our key results are preserved in a plausible region of the parameter space.
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Assumption 2 (Interior Thresholds). The bounds on the distributions of liquidity shocks are sufficiently large:

m >
1
2
(vh − vl)max

{
1,

δ

1 − δ

}
and

e

2
> vh − vl +m.

This second assumption ensures that, for all prices offered in equilibrium and all realizations of ω, the

thresholds εkt,j, ε
k
t,j lie in the interior of [−e, e] for j ∈ {l,h} and k ∈ {m, c}, i.e., that some traders always

buy/sell in equilibrium.

Assumption 3 (Equal Valuations). On average, dealers and traders have the same valuation for an asset, i.e.,

vj = cj for j ∈ {l,h}.

This last assumption allows for a more direct comparison with many existing models (such as Glosten

and Milgrom, 1985), and also simplifies the analysis.

3.2 Learning

The assumption that ω is uniformly distributed greatly simplifies the dealers’ learning process. To see

why, note from (14) that the updating process depends on current beliefs, µ, and the likelihood ratio

f (S− Rl(µ
+))

f (S− Rh(µ+))
.

When ω is uniformly distributed, f(ω) = 1
2m for ω ∈ [−m,m] and f(ω) = 0 for ω /∈ [−m,m]. Hence,

either the signal that dealers observe is uninformative or it is fully revealing about the state j ∈ {l,h}.

Formally, let Σj(µ) denote the set of signals (i.e., the values of aggregate trading volume) that are only

feasible when the asset is of quality j, given current beliefs µ, and let Σb denote the set of signals that are

feasible in both states, l and h, so that

µ+(µ,S) =


0 if S ∈ Σl(µ)
µ if S ∈ Σb(µ)
1 if S ∈ Σh(µ).

We conjecture, and later confirm, that

Σl(µ) = [−m+ Rl(0),−m+ Rh(µ)) (28)

Σb(µ) = [−m+ Rh(µ),m+ Rl(µ)] (29)

Σh(µ) = (m+ Rl(µ),m+ Rh(1)] . (30)

In words, suppose the true asset quality is j = h. If the signal does not reveal the true asset quality, then

µ+ = µ. Moreover, we will show below that reservation values are increasing in µ, so that Rh(µ) 6 Rh(1).

Therefore, under the candidate equilibrium, the minimum realization for S = ω + Rj when j = h is
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−m + Rh(µ); any S < −m + Rh(µ) is only feasible if j = l. Similar reasoning can be used to explain

(29)–(30). Note that

Σb(µ) 6= ∅ ⇔ Rh(µ) − Rl(µ) < 2m.

Assumption 2 ensures that valuations always satisfy this condition.

Let p(µ) denote the probability that the signal S = ω+ R(µ) ∈ Σl ∪ Σh, i.e., the probability that the

quality of the asset is fully revealed to the dealers. When ω is uniformly distributed over the support

[−m,m], we have

p (µ) =
Rh (µ) − Rl (µ)

2m
. (31)

Since the expected number of periods before the quality is revealed is the inverse of p(µ), the following

insight follows immediately.

Remark 1. The expected speed of learning depends positively on Rh(µ) − Rl(µ).

Intuitively, learning occurs quickly when traders behave very differently when the asset is of high or

low quality, i.e., when Rh(µ) −Rl(µ) is relatively large. When traders’ behavior is less dependent on asset

quality, and Rh(µ) − Rl(µ) is relatively small, it is more difficult for dealers to extract information from

trading volume, and learning occurs more slowly.

3.3 Prices

We now derive equilibrium bid and ask prices in matches when a trader meets a single, monopolist

dealer, and in matches when a trader meets competing dealers. Two aspects of our parametric specifi-

cation make it possible to derive relatively simple pricing equations. First, the extreme learning process

described above, which followed from the uniform distribution of ω, implies a straightforward relation-

ship between current prices and future beliefs: beliefs are stationary until the state of the world is known

with certainty. Second, given the uniform distribution over ε, the demand and supply functions that the

dealers face are linear.

To start, it is helpful to define the expected continuation value of a trader when the asset quality is

j ∈ {l,h} and current beliefs are µ:

rj(µ) = Eω
[
Rj
(
µ+
)]

= (1 − p (µ))Rj (µ) + p (µ)Rj (1 [j = h]) . (32)

Given this notation, it is straightforward to establish (see Appendix A.1) that the optimal price that a
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dealer offers when she is a monopolist is given by

Bm(µ) =
Ejrj (µ) + Ejvj − e

2

Am(µ) =
Ejrj (µ) + Ejvj + e

2
.

In words, the bid and ask prices are simply the average of the expected value of the dealer and the trader,

adjusted by a markup term e
2 . Importantly, with uniformly distributed ε, the density of marginal traders

is the same in both states of the world, so that the covariance between, e.g., g
(
εj
)

or g
(
εj
)

and asset

quality vj is zero. From the optimal pricing equations, (8) and (9), this implies that the adverse selection

term disappears when a dealer is a monopolist. Moreover, in this case, the bid-ask spread is equal to e for

all values of beliefs.

When a trader meets with two dealers, the bid and ask price consistent with zero profits are given by

Bc (µ) =
Ejrj + Ejvj − e

2
+

1
2

√(
e+ Ej

(
vj − rj

))2
− 4Covj

(
rj, vj

)
Ac (µ) =

Ejrj + Ejvj + e

2
−

1
2

√(
e− Ej

(
vj − rj

))2
− 4Covj

(
rj, vj

)
.

In the Appendix, we prove that, under Assumptions 1–3,

Ejrj (µ) = Ejvj. (33)

Using this property, the expressions for bid and ask prices simplify to:19

Bm = Ejvj −
e

2
(34)

Am = Ejvj +
e

2
(35)

Bc = Ejvj −
e

2
+

√(e
2

)2
−Covj

(
rj, vj

)
(36)

Ac = Ejvj +
e

2
−

√(e
2

)2
−Covj

(
rj, vj

)
. (37)

Equations (34)–(37) illustrate that the model with uniformly distributed shocks and two types of meet-

ings (monopolist and competitive) is tractable enough to admit analytical solutions, and yet rich enough

to capture the key economic mechanisms at work. On the one hand, the markup term in Bm and Am

reflects that dealers earn rents unrelated to asymmetric information, as in, e.g., Duffie et al. (2005). On

the other hand, the adverse selection term in Bc and Ac captures the portion of the bid-ask spread that is

attributed to asymmetric information, as in, e.g., Glosten and Milgrom (1985).

19This property also implies that Rj (1 [j = h]) = vj, i.e., that reservation values under full information are equal to the value
of owning the asset and not trading it.
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3.4 Reservation Values

Using the optimal bid and ask prices derived above, we show in Appendix A.2 that the reservation value

of a trader, given current beliefs µ ∈ (0, 1) and asset quality j, can be written as

Rj(µ) = (1 − δ)vj + δrj (µ) + δπ
∑
k=c,m

αkΩ
k
j (µ), (38)

where rj (µ) is as defined in (32) andΩkj (µ) is the net option value of holding a quality j asset in a type k

meeting, i.e., the option value of selling the asset at a later date less the option value of buying it. Under

Assumptions 1–3, this reduces to

Ωkj (µ) =
Bk −Ak + 2e

2e

(
Bk − rj (µ) −

(
rj (µ) −A

k
)

2

)
=
Bk −Ak + 2e

2e
(
Ejvj − rj (µ)

)
. (39)

The first term in this expression is the ex ante probability (before ε andω are realized) that the trader will

optimally choose to trade in a type k meeting, given prices Ak and Bk. The second term is the expected

difference between the surplus the trader will earn from selling the asset at a later date and the surplus

he could have earned from buying an asset at a later date.

Since the bid and ask prices are independent of asset quality (conditional on beliefs µ), the net option

value is decreasing in the expected continuation value, rj. Moreover, one can show that rh (µ) > rl (µ).

Hence, equation (39) directly implies the that the net option value is smaller when the asset is of quality

h. We highlight this property in the remark below, as it will play a key role in the ensuing results.

Remark 2. The net option value is decreasing in vj, so thatΩkh(µ) < Ωkl (µ) for all k ∈ {m, c} and µ ∈ [0, 1].

Intuitively, the net option value is decreasing in vj because the high quality asset is less likely to be

sold and more likely to be bought in equilibrium, while the low quality asset is more likely to be sold and

less likely to be bought. Hence, the option to buy (sell) is worth relatively more when the asset quality is

h (l).

3.5 Equilibrium Characterization

To characterize the equilibrium, we can use (38)–(39) to write

Rh (µ) − Rl (µ) = (1 − δ) (vh − vl) + δ (rh (µ) − rl (µ)) + δπ
∑
k=c,m

αk
[
Ωkh(µ) −Ω

k
l (µ)

]
. (40)
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Then, using (31)–(32) and (34)–(37), we can rewrite (40) as an equation in a single unknown, p, for any

given belief µ:20

2mp = (1 − δ) (vh − vl) + δ (1 − π) (p (vh − vl) + 2mp (1 − p)) (41)

−
δπαc

2

√
1 −

4
e2 (vh − vl)µ (1 − µ) [2m (1 − p)p+ p (vh − vl)] (p (vh − vl) + 2mp (1 − p)) .

Proposition 1. Under assumptions 1–3, there exists a unique p?(µ) that solves (41).

Importantly, solving for p?(µ) is sufficient for a full characterization of the model: one can use it to

construct reservation values
{
Rj (µ)

}
j∈{l,h} and equilibrium prices

{
Ak,Bk

}
k∈{m,c} using (34)-(39). In the

next subsection, we exploit this characterization to understand how the key frictions in the model affect

equilibrium outcomes.

3.6 Comparative Statics

In this section, we explore how bid-ask spreads change in response to changes in the underlying economic

environment, with a focus on understanding the interaction between search frictions, asymmetric infor-

mation, and learning. We proceed in two steps. We start by examining how reservation values, the speed

of learning, and the bid-ask spread depend on the dealers’ beliefs, µ. The results we derive are informa-

tive for our next step, where we explore the effects of changing the degree of search frictions in our model,

either by changing the frequency of trading opportunities (π) or the fraction of trading opportunities that

are competitive (αc).

The Effect of Beliefs

Recall that spreads in monopolist meetings are constant, Am − Bm = e for all µ, so beliefs only affect

bid-ask spreads in competitive meetings. In the Appendix, we establish the following results.

Lemma 1. The following objects are all hump-shaped in µ with a maximum at µ = 0.5: (i) the bid-ask spread in

competitive meetings, Ac − Bc; (ii) the difference in reservation values, Rh − Rl; and (iii) the probability that the

true asset quality is revealed, p.

Recall from the pricing equations (36)–(37) that the bid-ask spread in competitive meetings is increas-

ing in the covariance between reservation values and asset quality. At the core of the result in Lemma 1

is the observation that this covariance is maximized when uncertainty is maximal (i.e., when µ = 0.5). To

20We provide a more detailed derivation in the proof of Proposition 1, in the Appendix.
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see why, we establish in the Appendix that

Covj(rj, vj) = µ(1 − µ)(vh − vl)
2
[

1 − (1 − p(µ))

(
1 −

Rh(µ) − Rl(µ)

vh − vl

)]
. (42)

The first term on the right-hand side of (42) captures the direct effect of µ on the bid-ask spread: this term

is simply the prior variance about the asset’s quality, and is clearly maximized at µ = 0.5. The second

term captures the indirect effects of µ on the bid-ask spread. Understanding this term requires under-

standing the equilibrium interaction between spreads, reservation values, and learning.21 In particular,

when dealers are uncertain (µ ≈ 0.5), the wider spreads from the direct effect makes traders less likely to

trade, as a larger fraction of idiosyncratic liquidity shocks lie in the “inaction region.” As the likelihood

of trade falls, the difference in the net option values (across the two states) narrows. Intuitively, a decline

in the probability of trading causes a disproportionate decline in the option value to sell when the asset

quality is l, and in the option value of buying when the asset quality is h, causing Ωh −Ωl to be less

negative. This leads to an increase in Rh − Rl and p = (Rh − Rl)/2m, i.e., the gap between reservation

values widens and thus learning speeds up. As a result, Cov(rj, vj) increases, leading to a further increase

in spreads.

The Effect of Trading frictions

Now, consider a decrease in the severity of search frictions. In what follows, we focus on the effect of

changing the frequency of trading opportunities, π, and show later that the effects of changing the fraction

of competitive meetings, αc, are similar. Our first result states that an increase in π unambiguously slows

down learning.

Proposition 2. For any µ ∈ (0, 1), ∂p
?(µ)
∂π < 0.

To understand the intuition, recall from (31) that p is proportional to Rh − Rl. From (40), we have

d(Rh − Rl)

dπ
= δ

[∑
k

αk
(
Ωkh −Ωkl

)
+
d(rh − rl)

dπ
+ π
∑
k

αk
d
(
Ωkh −Ωkl

)
dπ

]
(43)

Again, the first term in this expression represents the direct effect of increasing π: it places more weight

on the difference in net option values,Ωkh−Ω
k
l , which are negative. As a result, the direct effect of raising

π is to attenuate the difference in reservation values, Rh−Rl. The remaining two terms in (43) capture the

indirect effects of a change in trading frictions, which operate through the expected reservation values rj.

These effects are similar to the feedback channel described in the discussion of Lemma 1: an increase in
21Indeed, if the traders did not account for the option value of future trading—i.e., if Rj = vj—then the second term would

drop out and beliefs would only affect spreads through the typical, direct effect captured in the first term.
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π raises the likelihood of trading, making the difference in net option values more negative. Hence, these

indirect effects further reduce the difference in reservation values.

We now turn to the ultimate effect of trading frictions on bid-ask spreads. There are two, opposing

effects of increasing π. The first, which we call the static effect, has the usual sign: holding beliefs constant,

an increase in π causes spreads to shrink. As discussed above, an increase in π causes the difference in

reservation values to narrow, which implies a decrease in Cov(rj, vj). Recall from (34)–(37), the bid-ask

spread in competitive meetings is given by

Ac −Bc = e−
√
e2 − 4Covj

(
rj, vj

)
.

Hence, holding beliefs fixed, a decline in trading frictions leads to a lower spread. Intuitively, since

the increase in π makes traders behave more similarly in the two states of the world—i.e., the likelihood

of a trader buying or selling at a given price becomes more similar for j ∈ {l,h}—the problem of adverse

selection is diminished and spreads fall.

However, even though an increase in π causes bid-ask spreads to fall for a given level of beliefs, in

equilibrium it also influences how beliefs change over time. We refer to this as the dynamic effect: an

increase in π implies that dealers will remain uncertain about the true asset quality for longer (Lemma 2).

Since bid-ask spreads are larger when dealers are more uncertain (Lemma 1), this dynamic effect implies

that an increase in π puts upward pressure on spreads. We will show that this dynamic effect eventually

dominates, implying that more frequent trading opportunities leads to wider spreads in the long run.

To state this formally, we let Ycj,t denote the expected competitive spread in period t when the asset is

of quality j ∈ {l,h}. Formally,

Yct,j ≡ Eωt [(A
c
t −B

c
t) | j] .

Plugging in the expressions for equilibrium bid and ask prices yields

Yct,j = (1 − p (µ0))
t︸ ︷︷ ︸

Prob(No revelation)

[
e−

√
e2 − 4Covj

(
rj, vj

)]
,

where µ0 is the dealers’ initial beliefs. Thus, Ycj,t is the product of probability that the state has not yet

been revealed by time t and the bid-ask spread when dealers remain uncertain of the asset quality (note

that the competitive spread after quality is revealed falls to 0). The former is determined by the speed of
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learning, p(·). Differentiating with respect to π yields

∂Yct,j

∂π
=

2 (1 − p (µ0))
t√

e2 − 4Covj
(
rj, vj

)︸ ︷︷ ︸
> 0

∂Covj(rj, vj)
∂π︸ ︷︷ ︸
< 0

+ −t (1 − p (µ0))
t−1︸ ︷︷ ︸

< 0

∂p

∂π︸︷︷︸
< 0

[
e−

√
e2 − 4Covj

(
rj, vj

)]
︸ ︷︷ ︸

> 0

(44)

The first term in (44) reflects the static effect: holding beliefs fixed, an increase in π reduces the covari-

ance between the quality of the asset and reservation values, reducing adverse selection and, therefore,

spreads. The second term captures the dynamic effect: an increase in π reduces the probability that the

state is revealed
(
∂p
∂π < 0

)
, which puts upward pressure on the spread. As t grows and (1 − p(µ))t → 0,

the first term shrinks relative to the second term, and thus the dynamic effect eventually dominates. That

is, an increase in π pushes the spread wider for sufficiently large t.

Proposition 3. There exists a τ <∞ such that
∂Yct,j
∂π > 0 for all t > τ.

Since the monopoly spread is constant for all µ, the average quoted spread is also eventually larger

when π goes up. Defining the expected average spread, conditional on state j, by

Yt,j ≡ Eωt

 ∑
k=c,m

αk
(
Akt −B

k
t

)
| j

 ,

the next result follows immediately.

Corollary 1. There exists a τ <∞ such that ∂Yt,j∂π > 0 for all t > τ.

The Effect of Competition

Finally, we note that the effects of changing the fraction of competitive trading opportunities (αc) are

similar to those from changing the frequency of overall trading opportunities (π). First, the following

result establishes that a rise in αc unambiguously slows down the learning process.

Proposition 4. For any µ ∈ (0, 1), ∂p
?(µ)
∂αc

< 0.

Intuitively, since spreads are smaller in competitive meetings (compared to monopolist meetings), an

increase in αc implies a relatively higher likelihood of trading. As before, this amplifies the difference in

the net option values, i.e., Ωch −Ωcl < Ω
m
h −Ωml < 0.22 As a result, a rise in the fraction of competitive

meetings attenuates Rh−Rl, which slows down learning. The effect on bid-ask spreads then follows from

the same logic as Proposition 3: the dynamic effect from slower learning eventually causes spreads (in

competitive meetings) to widen.

22This follows from (39) and the fact that Ac −Bc < Am −Bm.
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Proposition 5. There exists a τ <∞ such that
∂Yct,j
∂αc

> 0 for all t > τ.

However, increasing αc has slightly different effects on the average quoted spread than increasing

π. In particular, since spreads in competitive meetings are smaller than those in monopoly meetings,

an increase in αc has an additional, compositional effect that puts downward pressure on the average

spread. As a result, though it’s still possible that the average spread is increasing in αc for some t, one

can also show that this compositional effect dominates as t→∞.

4 Numerical Analysis

In Section 3, we established a sequence of analytical results under several assumptions, most notably that

aggregate and idiosyncratic liquidity shocks were drawn from uniform distributions. In this section, we

relax these assumptions. This complicates the analysis considerably, as the interaction between optimal

bid and ask prices, reservation values, and future prices and beliefs introduce additional effects that were

absent from our analysis with uniform distributions. However, while these complications make analytical

results harder to derive, it is straightforward to solve the model numerically. In what follows, we param-

eterize the model, solve for the equilibrium numerically, and confirm that the key results established in

the model with uniform shocks—which afforded us tractability—are relevant in an empirically plausible

region of the parameter space in the model with a more flexible specification.

4.1 Solving the model

Before specifying our parametric assumptions, we briefly describe the iterative process by which one can

solve the general model. First, given a grid for the state variables µ and ω, we start with an initial guess

for the reservation values, Rj(µ), for j ∈ {l,h}. Then, given Rj(µ), traders’ expectations of dealer beliefs

µ+ for each ω are obtained by solving (15). Using these updating equations, we compute optimal prices

for any beliefs µ. The processes for beliefs and prices can then be combined to yield an updated guess for

the reservation value functions Rj(µ), using (4). We use this to update the original guess, and repeat until

convergence.

4.2 Parameterization

We assume that both aggregate and idiosyncratic liquidity shocks are drawn from a mean-zero normal

distribution, i.e., that ω ∼ N(0,σ2
ω) and ε ∼ N(0,σ2

ε). The normality of idiosyncratic liquidity shocks

implies that bid and ask prices in monopoly meetings are no longer constant (as in Section 3), since both
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the market power and asymmetric components described in equations (8) and (9) now depend on beliefs,

µt. Moreover, the normality of aggregate liquidity shocks implies that learning occurs gradually, unlike

the stark form it took under a uniform distribution.

To assign parameter values, we choose a widely studied over-the-counter market as a guide: the

market for US corporate bonds. To start, we interpret differences in asset quality as stemming from

changes in credit ratings. Consider a bond that is rated AAA at some initial point in time. Conditional

on not being downgraded, we interpret vh as the expected payoff of the bond upon maturity. If it is

downgraded (most likely, to AA), we assume that the expected payoff drops to vl. Since bid-ask spreads

and beliefs are only a function of the relative payoff in the two states (i.e., vh − vl), we can normalize

vl = 0. Then, we map the relative payoff to the drop in the market price of the bond in the event of a

downgrade. Feldhütter (2012) reports that average spreads on AA bonds are about 20 bps higher than

spreads on AAA-rated bonds.23 For a 5-year par bond with face value $100 and a coupon of 2%, this

difference in spread translates into a price change of $0.95. Hence, we set vh = 0.95.

Next, we choose the initial belief µ0 to match the unconditional probability of a rating transition. Ac-

cording to the 2016 Annual Global Corporate Default Study and Rating Transitions published by Standard

& Poor’s, the likelihood of a AAA-rated US corporate bond retaining that rating over a 5-year horizon is

0.50. Accordingly, we set µ0 = 0.50.

To pin down the parameters governing the distribution of liquidity shocks and the meeting probabili-

ties, we again rely on estimates from Feldhutter (2012). He estimates the parameters of a continuous time

model of over-the-counter trading along the lines of Duffie et al. (2005), using data on secondary market

transactions in US corporate bonds. We map his estimate of holding costs, the sole source of gains from

trade in his environment, to the magnitude of liquidity shocks in our model.24 Assuming that aggregate

and idiosyncratic components are of equal magnitude, this procedure yields σ2
ω = σ2

ε = 0.16.25

Feldhutter (2012) also provides estimates for the arrival rate of meetings with dealers from the per-

spective of traders in the market. We map his estimate—which is an annualized rate of 40—into the

parameters governing our meeting technology: the probability of meeting at least 1 dealer (π) and the

conditional probability of meeting more than 1 dealer (αc).26 Interpreting a period in our model as 5

23See Table 1 of that paper. The average spread on a AAA bond is 5 bps (for trades greater than USD 100,000 in size), while
the corresponding spread for AA bonds is 25 bps.

24Specifically, he estimates a flow holding cost of 2.91, which lasts for an average of 0.31 years or equivalently, a total expected
cost of (2.91)(0.31) = 0.90. We interpret this as the average difference in valuations between agents receiving positive liquidity
shocks and those receiving negative shocks. With normally distributed shocks, this translates into a variance of 0.32.

25In the Appendix, we repeat the analysis under alternative assumptions and show that they produce similar results.
26Feldhutter (2012) estimates arrival rates separately for different trade sizes. We use the one for the smallest trade size.
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business days or 0.02 years (since a year is assumed to have 250 business days) yields our baselines val-

ues (π,αc) = (0.55, 0.25).27

This leaves δ. As we discussed in Section 2.1, this parameter can be interpreted in several ways. In

particular, one could interpret it as the likelihood of the asset not maturing in each period, so that 1/(1− δ)

represents an asset’s expected maturity. Alternatively, one could interpret δ as the probability that an

individual trader remains active in the market, so that 1/(1− δ) represents the expected amount of time a

trader devotes to actively buying or selling assets, before holding his current position until maturity. We

adopt the latter interpretation and adopt a baseline value of δ = 0.9, which implies that a trader remains

in the market for about 10 weeks.

Parameter Value Description
Payoffs:
vh 0.95 Payoff of h−quality asset
vl 0 Payoff of l−quality asset
σ2
ω 0.16 Variance of aggregate liquidity shock
σ2
ε 0.16 Variance of idiosyncratic liquidity shock

Meeting technology:
1 − δ 0.10 Pr(asset maturing)
π 0.55 Pr(meeting at least 1 dealer)
αc 0.35 (Conditional) Pr(meeting > 1 dealer)
Beliefs:
µ0 0.50 Initial dealer belief

Table 1: Parameters

Table 1 summarizes our parameter choices. Figure 2 plots the two key equilibrium objects—reservation

values and spreads—as a function of dealers’ beliefs, µ. The red solid line plots these objects under our

baseline parameterization with π = 0.55. To illustrate the effects of trading frictions, we repeat the plots

when frictions become more severe (π = 0.35, the dashed line) and less severe (π = 0.75, the dotted line).

The plots confirm our key findings from Section 3. The top left panel, which plots Rh(µ) − Rl(µ), con-

firms that reservation values in the two states become closer to each other as π increases. The remaining

panels plot spreads in monopoly meetings, competitive meetings, and on average. These plots confirm

that spreads are hump-shaped in µ, as the effects of asymmetric information are most pronounced when

uncertainty is highest (i.e., for intermediate values of µ). The figure also confirms that spreads are de-

creasing in π for any given µ, i.e., that more frequent trading opportunities reduces spreads for any fixed

set of beliefs. Intuitively, as noted above, increasing π reduces Rh−Rl for any given µ. As a result, traders

behave more similarly in the two states of the world, so that dealers’ optimal prices require a smaller

27Note that this frequency of trade is also consistent with the estimates in He and Milbradt (2014).
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Figure 2: Effect of π on reservation values and spreads.

adjustment for asymmetric information.

However, note that the plots in Figure 2 illustrate only the static effects of varying π, i.e., holding

beliefs fixed. Figure 3 illustrates the dynamic effects by plotting the evolution of beliefs and spreads

over time for different values of π, given the true quality of the asset is h. The panels plot the average

values across 40,000 sample paths—recall that the realized path of beliefs (and thus prices) depend on the

realized sequence ofωt. Dealers’ beliefs (top left panel) start at µ0 = 0.5 and drift upwards. Since the true

state is h, beliefs in all three cases eventually converge to 1. However, the pace is clearly slower when π

is higher; more frequent trading opportunities leads to slower learning, exactly as in the model in Section

3. Spreads are initially tighter in the high π case, but eventually end up wider. This is because, initially,

beliefs are very similar in both cases (since they both start at the same level, by assumption), so the static

effect dominates and spreads narrow with higher π. Over time, however, the differential pace of learning

kicks in, keeping uncertainty high and spreads wide. This is true both for monopoly and competitive

spreads, as the bottom two panels show.

So far, we have focused on bid-ask spreads. In Figure 4, we plot two other metrics for liquidity that

are commonly used in the literature. The left panel plots average trading volume, defined as the sum of
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Figure 3: Effect of π on beliefs and spreads over time.

buys and sells by traders, averaged across meetings and sample paths. The second plots price impact,

defined as the elasticity of the change in prices with respect to net volume.28 The figure highlights that

different measures of liquidity need not move together in markets where both information and trading

frictions are present. In particular, the left panel illustrates that trading volume increases monotonically

with the frequency of trading opportunities; even when spreads widen, the direct effect of more meetings

dominates the indirect effect of fewer trades per meeting. Hence, unlike many traditional models, our

framework can rationalize a positive relationship between spreads and trading volume, as documented

in, e.g., Lin et al. (1995) and Chordia et al. (2001).29 Price impact, on the other hand, displays a pattern

similar to that of bid-ask spreads: higher values of π lead to smaller price impact initially, but larger

price impact in later periods. Intuitively, when π is high, dealers learn more slowly. For fixed beliefs,

28Formally, price changes and net volume are defined as follows:

PrcChgt = log
∑
k=c,m

αk

(
Akt +B

k
t

2

)
− log

∑
k=c,m

αk

(
Akt−1 +B

k
t−1

2

)

NetVolt−1 = log(Buyst−1) − log(Sellst−1) = log

N0
t−1π

∑
k=c,m

αk(1 −G(ε̄kt−1))

− log

N1
t−1π

∑
k=c,m

αkG(ε
k
t−1)


We regress (separately for each t) PrcChgt on NetVolt−1 and a constant. The graph plots the coefficient on NetVolt−1.

29Also see Liu and Wang (2016).

30



5 10 15 20 25 30 35 40

Time

0.5

0.6

0.7

0.8

0.9

1
Beliefs

 =0.35

 =0.55

 =0.95

5 10 15 20 25 30 35 40

Time

0.6

0.7

0.8

0.9

1

1.1
Spreads (Average)

0 5 10 15 20 25 30 35 40

Time

0.05

0.1

0.15

0.2

0.25

0.3
Volume (Buys+Sells)

0 5 10 15 20 25 30 35 40

Time

0

1

2

3

4

5

6
10

-4 Price Impact

Figure 4: Effect of π on volume and price impact over time.

this manifests itself as a reduced impact of trading activity on prices. However, this also implies that

uncertainty is greater in later rounds, which increases the scope for learning from volume. As with bid-

ask spreads, this dynamic effect eventually dominates and so, price impact goes up in later rounds.

On a final note, our results point to a more general insight: the conventional predictions from models

with only one friction do not necessarily extend to setting with multiple frictions. While we have focused

exclusively on the effect of reducing trading frictions, our framework can also be used to investigate the

implications of mitigating asymmetric information. For example, it is possible to show that, for certain

parameter values, bid-ask spreads are convex in dealer beliefs, µ. This implies that additional information,

which induces a mean-preserving spread in beliefs, can lead to lower liquidity in the form of wider bid-

ask spreads. We demonstrate this using a numerical example in Appendix C.2, and leave a more formal

analysis for future work.

5 A Stationary Version

In this section, we modify our baseline framework to allow the asset quality to change over time. This

implies that the equilibrium, conditional on the asset not maturing, can be characterized in terms of prices,

allocations, and the distribution of beliefs that prevail in the stochastic steady state.

5.1 Characterizing the Stochastic Steady State Equilibrium

We assume that the asset quality changes in each period with probability ρ. Otherwise, the model remains

unchanged. The equations characterizing the equilibrium change only slightly relative to the baseline,

non-stationary version. Dealers’ beliefs about asset quality at the end of each period are still given by

equation (24). However, to obtain beliefs in the following period, we need to adjust for the possibility
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that asset quality has changed. In particular, if dealers’ beliefs at the end of a period are given by µ, then

beliefs in the following period (before pricing decisions are made) can be written

M(µ) = µ(1 − ρ) + (1 − µ)ρ. (45)

Similarly, the expressions for traders’ reservation values also must be adjusted to reflect the possibility

of the asset quality changing. Given asset quality j ∈ {l,h}, let ρj ≡ ρ and ρ−j ≡ 1 − ρ. Then we have

Rj(µ) = (1 − δ)cj + δ(1 − π)
∑

j′∈{j,−j}

ρj′

∫
ω

Rj′

(
µ̃+j′ (M(µ),ω)

)
dF(ω)

+ δπ
∑

j′∈{j,−j}

ρj′

∫
ω

 ∑
k∈{m,c}

αk
[
Bk(M(µ))G

(
εkj′(M(µ),ω)

)
+

∫εkj′(M(µ),ω)

εkj′(M(µ),ω)

[
ω+ ε+ Rj′

(
µ̃+j′ (M(µ),ω)

)]
dG (ε) +Ak(M(µ))

[
1 −G

(
εkj′(M(µ),ω)

)]]}
dF(ω).

The dealers’ valuation of the asset in the two states, (ṽh, ṽl), solve the following linear system

ṽh = (1 − δ)vh + δ(1 − ρ)ṽh + δρṽl

ṽl = (1 − δ)vl + δ(1 − ρ)ṽl + δρṽh.

The pricing equations take the same form as in the baseline, non-stationary version, with (ṽh, ṽl) replacing

(vh, vl). The iterative algorithm described in Section 4 can then be applied to this modified system of

equations to solve for the laws of motion for beliefs, reservation values, and prices. The stochastic steady

state is then obtained by simulation.

5.2 Comparative Statics

We now turn to the effects of varying trading frictions on the stochastic steady state. We set the switching

probability ρ to 0.5% and hold all other parameters fixed at their baseline values. Figure 5 shows the

results for three different values of π. The top left panel plots the distribution of beliefs in the long run

(again, conditional on the asset not maturing). It shows that higher π shifts the mass of the distribution

towards the center, where dealers are more uncertain about asset quality. As in the non-stationary model,

more frequent trading opportunities reduces the speed of learning and keeps uncertainty high.

The effect on average spreads—illustrated in the remaining 3 panels—is more complicated. As in the

non-stationary version, there are two opposing forces. On the one hand, increasing π reduces adverse

selection and, therefore, pushes spreads down for any level of beliefs, µ. However, increasing π also

pushes the long-run distribution of beliefs towards intermediate values of µ, which are associated with
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Figure 5: Effect of π in stationary version.

higher spreads. Whether average spreads are wider or narrower in the stochastic steady state depends on

which of these two effects dominates. For example, when spreads rise from 0.35 to 0.55, the latter effect

dominates and average spreads widen. However, when π rises, further from 0.55 to 0.95, the former effect

dominates and spreads narrow.

Welfare Next, we explore implications for welfare, defined as the sum of the payoffs of all agents

(traders and dealers) in the economy. As payments between traders and dealers cancel out, welfare only

depends on the extent to which gains from trade (arising from the aggregate and idiosyncratic liquidity

shocks) are exploited. This, in turn, depends on the thresholds that govern trading. Formally, let

Qjt ≡ N1
tQ

1
j(µt,ωt) +N

0
tQ

0
j(µt,ωt),
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where

Q1
j(µ,ω) = (1 − π)

[∫∞
−∞ (ω+ ε)dG (ε)

]
+ π

∑
k=c,m

αk

[∫∞
εkj

(ω+ ε)dG (ε)

]

= (1 − π)ω+ π

ω ∑
k=c,m

αk
(
1 −G

(
εkj
))

+
∑
k=c,m

αk

∫∞
εkj

εdG (ε)

 ,

Q0
j(µ,ω) = π

∑
k=c,m

αk

∫∞
ε̄kj

(ω+ ε)dG (ε)

= π

ω ∑
k=c,m

αk
(
1 −G

(
ε̄kj
))

+
∑
k=c,m

αk

∫∞
εkj

εdG (ε)

 .

In words, Qjt represents the gains from trade that are realized in period t when the asset is of quality j.

The first component of Qjt is the gains from trade that are realized by those traders who enter period t

owning a unit of the asset: there areN1
t such agents, and the average gains from trade that accrue to these

agents, Q1
j , is the average liquidity shock, adjusted for the fact that those with idiosyncratic realizations

below εj sell their asset if they have the opportunity to do so. The second component is the gains from

trade that are realized by those traders who enter period t not owning a unit of the asset.

The expressions above illustrate the two channels through which reducing trading frictions affects

welfare. The first channel is standard: more meetings per period imply more opportunities for exploiting

gains from trade. The second channel acts through the thresholds ε̄j and εj, which depend on prices and,

therefore, beliefs. Again, an increase in π slows down learning, causing spreads to widen and thus fewer

trades per meeting.

In the left panel of Figure 6, we plot the average value of Qjt in the stochastic steady for the three

values of π analyzed earlier. It shows that, under our calibration, the first channel dominates, i.e., welfare

increases with π, even though bid-ask spreads are hump-shaped (as shown in the right panel, which is

reproduced from Figure 5).

6 Conclusion

Many assets have traditionally traded in markets with frictions: the process of finding a counterparty,

receiving price quotes, and executing trades was costly and/or took significant amounts of time. As a

result of both technological innovations and regulatory mandates, these frictions have been reduced in

recent years. What are the expected effects of these changes on observable outcomes like prices, spreads,

and trading volume?

In order to answer to this question, we develop a framework that incorporates two canonical sources
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of illiquidity: search frictions and information frictions. Our analysis reveals novel interactions between

these two frictions, which can overturn the conventional wisdom that derives from studying them in iso-

lation. In particular, we show that reducing search frictions can slow down the process of information

revelation, thus exacerbating the effects of asymmetric information and causing a deterioration in (stan-

dard measures of) market liquidity. These results can help us understand existing empirical evidence,

and evaluate the effects of future reforms. In addition, our analysis highlights that various measures of

liquidity need not respond to shocks in the same direction, nor are these measures of liquidity necessarily

informative about welfare.

Our framework opens up a variety of opportunities for future research. For one, our results suggest

that reducing information frictions—say, through regulations that promote transparency or require more

disclosure—can also have counter-intuitive effects on liquidity and welfare. While we touch on this in

the current paper (see Appendix C.2), a more careful exploration is left for future work. Second, our

equilibrium analysis offers a structural framework to disentangle the effects of search and information

frictions on empirical measures of liquidity such as bid-ask spreads, price impact, or trading volume that

are reported in recent, transaction-level data sets from OTC markets. Lastly, our model is amenable to a

variety of extensions, including other sources of market illiquidity (e.g., inventory costs).
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Appendix

A Omitted Proofs from Section 3

A.1 Optimal Prices

In this section, we derive the optimal prices set by dealers in type k ∈ {m, c} meetings given current

beliefs µ ∈ (0, 1).30 In what follows, we will conjecture—and later confirm—that the trading thresholds

are interior, i.e., that {εk, εk} always lie in the interior of the support [−e, e].

A.1.1 Monopoly Meetings

Consider the problem of a dealer with beliefs µ ∈ (0, 1) in a monopoly meeting. Given the uniform

distribution, the expected profits of the dealer can be written as

∑
j∈{l,h}

µj

∫m
−m

B−ω− Rj

(
µ̃+j (µ,ω)

)
+ e

2e
dω

2m

(vj −B) ,

where

µ̃+l (µ,ω) =

{
0 ifω < −m+ Rh(µ) − Rl(µ)
µ else

and

µ̃+h (µ,ω) =

{
1 ifω > m− [Rh(µ) − Rl(µ)]
µ else .

In words, the expected profits are the product of the probability of selling at price B (the first term in

brackets) and the payoff conditional on selling (the second term). Since p(µ) = [Rh(µ) − Rl(µ)]/2m and

E[ω] = 0, straightforward algebra reveals that expected profits can be re-written as∑
j∈{l,h}

µj
B− rj (µ) + e

2e
(
vj −B

)
,

where µh ≡ µ, µl ≡ 1 − µ, and

rj (µ) = (1 − p (µ))Rj (µ) + p (µ)Rj (1 [j = h]) .

The first-order condition of the dealer’s expected profit with respect to the bid price B is then given by

Ejvj −B

2e
− Ej

B− rj + e

2e
= 0,

where we’ve suppressed the argument of rj for convenience. This yields the optimal bid price in a mo-

nopolist meeting,

Bm =
Ejvj + Ejrj − e

2
.

The optimal ask price in a monopolist meeting is constructed in an identical manner.
30Optimal prices under full information are standard, and hence we omit the explicit derivation here.
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A.1.2 Competitive Meetings

In competitive meetings, dealers’ expected profits must equal zero, so that the bid price must satisfy

−B2 +
(
Ejrj + Ejvj − e

)
B−

(
Ejvj

(
rj − e

))
= 0.

While this equation has two solutions, only the larger solution is consistent with Bertrand competition.

To see why, let B1 < B2 denote the roots of this equation and suppose that the equilibrium bid price is B1.

We claim that a dealer could deviate to B2 − ε, for some ε > 0, and achieve strictly positive profits. To

see why, note that profits are negative for all B > B2. Since the equation above has only two roots, profits

must be positive for some value of B ∈ (B1,B2). Therefore, the equilibrium bid in competitive meetings

must be the larger of the two roots, i.e.,

Bc =
Ejrj + Ejvj − e+

√(
Ejrj + Ejvj − e

)2
− 4Ejvj

(
rj − e

)
2

. (46)

Using straightforward algebra, (46) can be re-written as

Bc =
Ej
(
vj + rj

)
− e+

√(
Ej
(
vj − rj

)
+ e
)2

− 4Covj
(
rj, vj

)
2

.

In order for Bc to be a valid (i.e., real) solution, we require the discriminant to be positive, or e +

Ej
(
vj − rj

)
> 2

√
Covj

(
vj, rj

)
. We will verify below that, in the equilibrium we characterize, this con-

dition is indeed satisfied under Assumptions 1-3.

A similar derivation reveals that the ask price in competitive meetings must be

Ac =
Ej
(
rj + vj

)
+ e−

√(
Ej
(
rj − vj

)
+ e
)2

− 4Covj
(
vj, rj

)
2

.

For this solution to be valid, we require

e+ Ej
(
rj − vj

)
> 2
√
Covj

(
vj, rj

)
which we also verify is satisfied in the equilibrium we characterize under Assumptions 1-3.

A.2 Valuations of traders and dealers are equal in expectation

Here we establish (33) from the main text, which states that in expectation—given dealers’ beliefs—the

valuations of dealers and traders are equal, i.e. Ejrj = Ejvj. We first show this when dealers are fully
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informed about asset quality. For example, when µ = 1, Covj
(
rj, vj

)
= 0 and thus

Bc (1) =
rh (1) + vh − e

2
+

1
2

√
(e+ vh − rh (1))

2 = vh,

Ac (1) =
rh (1) + vh + e

2
−

1
2

√
(e+ vh − rh (1))

2 = vh,

Bm (1) =
rh (1) + vh − e

2
,

Am (1) =
rh (1) + vh + e

2
.

Since rh (1) = Rh (1), the expected reservation values may be written as

rh (1) = (1 − δ) vh + δrh (1) + δπ
∑
k=c,m

αk

(
Bk −Ak + 2e

)
2e

(
Ak +Bk

2
− rh (1)

)
or, equivalently,

(1 − δ) rh (1) = (1 − δ) vh + δπαc (vh − rh (1)) + δπαm
1
2
vh − rh (1)

2
.

The unique solution is clearly rh (1) = vh. It is equally straightforward to show that rl (0) = vl.

As a result, for any µ,

rj (µ) = (1 − p (µ))Rj (µ) + p (µ) vj

and, in expectation,

Ejrj (µ) = (1 − p (µ))EjRj (µ) + p (µ)Ejvj.

Now, suppose by way of contradiction that Ejrj > Ejvj, so that EjRj (µ) > Ejvj. Recall that the traders’

reservation values are given by

Rj (µ) = (1 − δ) vj + δrj (µ) + δπ
∑
k=c,m

αk

(
Bk −Ak + 2e

)
2e

(
Ak +Bk

2
− rj (µ)

)
.

Using the expressions for prices, we have

Ac (µ) = Am (µ) −Ψ (µ) ,

Bc (µ) = Bm (µ) +Φ (µ) ,

where

Ψ (µ) =
1
2

√(
Ej
(
rj − vj

)
+ e
)2

− 4Covj
(
rj, vj

)
Φ (µ) =

1
2

√(
Ej
(
vj − rj

)
+ e
)2

− 4Covj
(
rj, vj

)
.
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Note that Ejrj > Ejvj implies Ψ (µ) > Φ (µ). Using the relationships between monopoly and competitive

prices, we can write traders’ reservation values as

Rj (µ) = (1 − δ) vj + δrj (µ) + δπαm
1
2
vj − rj (µ)

2

+ δπαc
Φ (µ) +Ψ (µ) + e

2

(
vj − rj (µ) +Φ (µ) −Ψ (µ)

2

)
.

Taking expectation with respect to j yields have

EjRj =(1 − δ)Ejvj + δEjrj + δπαm
Ejvj − Ejrj

4

+ δπαc

(
Φ (µ) +Ψ (µ) + e

2

)
Ejvj − Ejrj +Φ (µ) −Ψ (µ)

2
.

Since Φ (µ) < Ψ (µ) and Ejvj < Ejrj, the last two terms on the right-hand side are negative. Hence,

EjRj < (1 − δ)Ejvj + δEjrj = (1 − δ+ δ (1 − p (µ)))Ejvj + δp (µ)EjRj,

which implies

(1 − δp (µ))EjRj (µ) < (1 − δp (µ))Ejvj.

This inequality contradicts the initial assumption that Ejrj > Ejvj. A symmetric argument can be used

to show that Ejrj < Ejvj cannot hold. Hence, we must have Ejrj = Ejvj and EjRj = Ejvj.

A.3 Proof of Proposition 1

To prove that the equilibrium is characterized by a unique value, p∗(µ), consider first the difference in

traders’ reservations values. From (39)–(40), the difference in reservation values can be written

Rh − Rl =(1 − δ) (vh − vl) + δ (rh − rl) − δπ
∑
k

αk
Bk −Ak + 2e

2e
(rh − rl) (47)

where, for ease of notation, we have suppressed the dependence of Rj, rj, and p on µ. Next, we will show

that the right-hand side of (47) can be expressed as a function of p, Rh−Rl, and the exogenous primitives,

which we denote Ξ. Since p = (Rh − Rl)/2m, this is sufficient to establish that (47) is an equation in a

single variable, p. Finally, we prove that for any µ, there is a unique p∗(µ) which satisfies (47).

From (34)–(37), we can write the difference in traders’ reservation values as

Rh − Rl =(1 − δ) (vh − vl) + δ (rh − rl) − δπαm
rh − rl

2
− δπαc

rh − rl
2

e+
√
e2 − 4Cov

(
rj, vj

)
e

. (48)

Since rj = (1 − p)Rj + pvj,

Covj
(
rj, vj

)
= (1 − p)Covj

(
Rj, vj

)
+ pVarj

(
vj
)

= (1 − p)Covj
(
Rj, vj

)
+ pµ (1 − µ) (vh − vl)

2 .
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Moreover, since EjRj = Ejvj, tedious but straightforward algebra can be used to show that

Covj
(
Rj, vj

)
= µ (1 − µ) (vh − vl) (Rh − Rl) .

Substituting into the earlier expression for Covj(rj, vj) yields

Covj
(
rj, vj

)
= (1 − p)µ (1 − µ) (vh − vl) (Rh − Rl) + pµ (1 − µ) (vh − vl)

2

= µ (1 − µ) (vh − vl)
2
[
(1 − p)

(Rh − Rl)

(vh − vl)
+ p

]
.

Re-arranging yields (42) in the main text.

Finally, we note that rh − rl = (1 − p) (Rh − Rl) + p (vh − vl). The above expressions allow us to write

(47) as an equation in p given by

2mp =(1 − δ) (vh − vl) + δ [(1 − p) 2mp+ (vh − vl)p]

− δπαm [(1 − p) 2mp+ (vh − vl)p]

− δπαc

√
e2 − 4µ (1 − µ) (vh − vl) [2mp (1 − p) + p (vh − vl)] + e

2e
[(1 − p) 2mp+ (vh − vl)p]

Substituting αc +αm = 1 and re-arranging yields (41) in the main text.

Let Z (p,µ;Ξ) denote the right-hand side of (41). We now show that Z (p,µ;Ξ) has a unique solution

on the interval p ∈ [0, vh−vl2m ].31 To see this, note that

Z (0,µ;Ξ) = (1 − δ) (vh − vl) > 0

and

Z

(
vh − vl

2m
,µ;Ξ

)
=− (vh − vl) + (1 − δ) (vh − vl) + δ

(
1 −

π

2

)
(vh − vl)

−
δπαc

2

√
1 −

4
e2µ (1 − µ) (vh − vl)

2 (vh − vl)

=−
π

2
δ (vh − vl)

[
1 +αc

√
1 −

4
e2µ (1 − µ) (vh − vl)

2

]
< 0

Hence, there exists a p∗ ∈
[
0, vh−vl2m

]
that solves(41). Defining the auxiliary function

g (p) = p (2m (1 − p) + vh − vl) , (49)

31Since p = (Rh − Rl)/2m, a solution to Z(p,µ;Ξ) = 0 with p > (vh − vl)/2m would imply Rh − Rl > vh − vl which is a
contradiction.
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the derivative of Z with respect to p is

Zp =− 2m+ δ
(

1 −
π

2

)
g ′ (p)

−
δπαc

2

√
1 −

4
e2µ (1 − µ) (vh − vl)g (p)g

′ (p) +
δπαc

4
g (p) 4

e2µ (1 − µ) (vh − vl)g
′ (p)√

1 − 4
e2µ (1 − µ) (vh − vl)g (p)

=− 2m+ δ
(

1 −
π

2

)
g ′ (p)

− δπαc
2g ′ (p)

[
1 − 4

e2µ (1 − µ) (vh − vl)g (p)
]
− g (p) 4

e2µ (1 − µ) (vh − vl)g
′ (p)

4
√

1 − 4
e2µ (1 − µ) (vh − vl)g (p)

=− 2m+ g ′ (p) δ
(

1 −
π

2

)
− δπαc

g ′ (p)
[
2 − 12

e2µ (1 − µ) (vh − vl)g (p)
]

4
√

1 − 4
e2µ (1 − µ) (vh − vl)g (p)

(50)

Note that

g ′ (p) = 2m (1 − 2p) + vh − vl .

From Assumption 2, we know that

−2m+ (vh − vl)
δ

1 − δ
< 0⇒ −2m+ (vh − vl)

δ
(
1 − π

2

)
1 − δ

(
1 − π

2

) < 0

⇒ −2m+ (vh − vl + 2m) δ
(

1 −
π

2

)
< 0

Since vh − vl + 2m = g ′(0) and g ′′(p) < 0, it follows that, for all p ∈
[
0, vh−vl2w

]
,

−2m+ g ′ (p) δ
(

1 −
π

2

)
< 0.

Assumption 2 also implies32

12µ (1 − µ)

e2 (vh − vl)g (p) 6
3
e2 (vh − vl)

2 < 2

and g ′ (p) > 0 for all p ∈
[
0, vh−vl2m

]
. Hence, the last term in (50) is negative and, therefore, Zp (p,µ;Ξ) < 0

for all p ∈
[
0, vh−vl2m

]
. We conclude that Z (p∗,µ;Ξ) = 0 has a unique solution in

[
0, vh−vl2m

]
. Note that since

Rj (µ) is increasing in µ for j ∈ {l,h}, Rh (µ) 6 vh and Rl (µ) > vl. This implies that Rh (µ) − Rl (µ) 6

vh − vl, which then implies that p 6 vh−vl
2m .

A.4 Verification of Equilibrium

First, we verify that the solutions to the quadratic equation that defines p∗(µ) are indeed real numbers.

Notice,

e2 − 4Covj(rj, vj) = e2 − 4µ(1 − µ)(vh − vl)[2mp(1 − p) + p(vh − vl)].

32Notice, since e > 2(vh − vl) + 2m andm > (vh − vl)/2, Assumption 2 implies e > 3(vh − vl). Hence, e2 > (3/2)(vh − vl)
2.

45



Since the negative expression is maximized at µ = 1/2, e2 − 4Covj(rj, vj) > 0 as long as

e2 − (vh − vl)[2mp(1 − p) + p(vh − vl)] > 0.

Since p 6 (vh − vl)/2m, this inequality holds as long as

e2 − (vh − vl)
2 > 0

which is satisfied by Assumption 2.

Next, we verify our conjecture that traders’ thresholds implied by the equilibrium bid and ask prices

are interior, which fully verifies our earlier conjectures about the nature of the equilibrium. That is, we

show that, for all j ∈ {l,h}, k ∈ {m, c}, andω ∈ [−m,m],

Ak −ω− Rj(µ
′
j(µ,ω)) ∈ [−e, e]

and

Bk −ω− Rj(µ
′
j(µ,ω)) ∈ [−e, e].

Consider first the ask price and suppose j = l. Given the definition of µ̃+l (µ,ω), above, it is sufficient

to prove that Ak −ω− Rl(0) ∈ [−e, e] for all ω 6 −m+ Rh(µ) − Rl(µ), and Ak −ω− Rl(µ) ∈ [−e, e] for

allω > −m+ Rh(µ) − Rl(µ). Since Rl(0) 6 Rl(µ), it suffices to prove

Ak −ω− Rl(0) 6 e (51)

and

− e 6 Ak −ω− Rl(µ). (52)

We first verify these inequalities for the monopoly price. Since EjRj = Ejvj, we can write

Am = EjRj +
e

2
.

Since Am is increasing in µ and Am = Rh(1) + e/2, (51) holds if

Rh(1) +
e

2
+m− Rl(0) 6 e.

Since Rh(1) = vh and Rl(0) = vl, this condition reduces to

vh − vl +m 6
e

2
,

which is guaranteed by Assumption 2.
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To see that (52) holds, we first re-write this inequality using the ask price:

EjRj +
e

2
−m− Rl(µ) = µ(Rh(µ) − Rl(µ)) −m+

e

2
> −e.

Hence, (52) holds if

µ(Rh(µ) − Rl(µ)) > m− 3
e

2
.

Under Assumption 2,

m− 3
e

2
6 −2m− 3(vh − vl) 6 0.

Since Rh(µ) > Rl(µ), Assumption 2 then also ensures (52) is satisfied.

We now verify (51) and (52) for the competitive price. Recall that the competitive price can be written

as

Ac = Am −Ψ(µ)

where Ψ(µ) = 1
2

√
e2 − 4Covj(rj, vj). Since Ac < Am, (51) necessarily holds. Substituting for the ask price

in inequality (52) yields

µ(Rh(µ) − Rl(µ)) −Ψ(µ) > m− 3
e

2
.

Since Ψ(µ) 6 e/2, it suffices to prove that µ(Rh(µ) − Rl(µ)) > m− e. This result follows since m− e <

m− e/2 and, under Assumption 2,m− e/2 < 0.

Consider next the ask price when j = h. Much like when j = l, to verify that traders’ thresholds are

interior in equilibrium, it suffices to prove that

Ak −ω− Rh(µ) 6 e (53)

and

− e 6 Ak −ω− Rh(1). (54)

Substituting the monopoly ask price, (53) requires

−(1 − µ)(Rh(µ) − Rl(µ)) +
e

2
−m 6 e

or

−
e

2
−m 6 (1 − µ)(Rh(µ) − Rl(µ))

which is necessarily satisfied since Rh(µ) > Rl(µ). Since Am is smallest when µ = 0, to verify (54) it

suffices to prove that

vl +
e

2
−ω− vh > −e
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or

3
e

2
> vh − vl +m,

which is implied by Assumption 2. As for the competitive price, (53) is satisfied because Ac < Am. Since

the competitive price is minimized at µ = 0 and equal to vl, to verify (54) it suffices to prove that

vl −m− vh > −e

which is also implied by Assumption 2. A symmetric argument applies to the bid price, so we omit the

proof.

A.5 Proof of Lemma 1

From (41), one can see that Z (p,µ;Ξ) depends on µ only through µ (1 − µ). Moreover, Z (p,µ;Ξ) is in-

creasing in µ (1 − µ). Therefore, Zµ > 0 when µ < 1/2 and Zµ < 0 when µ > 1/2.

From the proof of Proposition 1 we know that Zp < 0. Therefore, dp
∗

dµ = −
Zµ
Zp
> 0 when µ < 1/2 and

< 0 when µ > 1/2. Moreover, bid-ask spreads are given by

Ac −Bc = e−
√
e2 − 4µ (1 − µ) (vh − vl) [(1 − p∗) 2mp∗ + (vh − vl)p∗]

The right-hand side is increasing in µ (1 − µ) and p∗. Since both of these are hump-shaped in µ with

maximum at µ = 1/2, so too is the bid-ask spread.

Finally, recall that

Rh − Rl = 2mp∗ ,

and hence Rh − Rl is also hump-shaped in µ and maxed at µ = 1/2. This concludes the proof.

A.6 Proof of Proposition 2

We have

Zπ =−
δ

2
[(1 − p) 2mp+ (vh − vl)]

−
δαc

2

√
1 −

4
e2µ (1 − µ) (vh − vl) [(1 − p) 2mp+ (vh − vl)p] [(1 − p) 2mp+ (vh − vl)p]

< 0 .

Hence, dp
∗

dπ = −ZπZp < 0.
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A.7 Proof of Proposition 3

From the text, we have

∂

∂π
Yct,j =− t (1 − p∗)t−1 ∂p

∗

∂π

(
1 −

√
1 −

4
e2 (vh − vl)µ (1 − µ)g (p∗)

)

+ (1 − p∗)t
4
e2 (vh − vl)µ (1 − µ)g ′ (p∗) ∂p

∗

∂π√
1 − 4

e2 (vh − vl)µ (1 − µ)g (p∗)

= (1 − p∗)t
∂p∗

∂π

 4
e2 (vh − vl)µ (1 − µ)g ′ (p∗)√
1 − 4

e2 (vh − vl)µ (1 − µ)g (p∗)
−

t

1 − p∗

(
1 −

√
1 −

4
e2 (vh − vl)µ (1 − µ)g (p∗)

)
The expression in the brackets is negative for sufficiently large values of t. Hence, since ∂p

∗

∂π < 0, ∂∂πY
c
t,j >

0, is also negative for sufficiently large values of t.

A.8 The Effect of Changes in αc.

A.8.1 Proof of Proposition 4

Since Zp < 0 and

Zαc = −
δπ

2

√
1 −

4
e2µ (1 − µ) (vh − vl) [(1 − p) 2mp+ (vh − vl)p] [(1 − p) 2mp+ (vh − vl)p] < 0,

it follows that dp
∗

dαc
= −

Zαc
Zp

< 0.

A.8.2 Proof of Proposition 5

Using the results derived above, along with the function g(p) introduced in (49), we can write the com-

petitive spread as

Yct,j = (1 − p(µ0))
t

[
e−αc

√
e2 − 4(vh − vl)µ0(1 − µ0)g(p(µ0))

]
.

Differentiating with respect to αc, we have

∂

∂αc
Yct,j =− t(1 − p(µ0))

t−1dp(µ0)

dαc

[
e−αc

√
e2 − 4(vh − vl)µ0(1 − µ0)g(p(µ0))

]
− (1 − p(µ0))

t

[√
e2 − 4(vh − vl)µ0(1 − µ0)g(p(µ0)) +

1
2
αc

−4(vh − vl)µ0(1 − µ0)g
′(p(µ0))

dp(µ0)
dαc√

e2 − 4(vh − vl)µ0(1 − µ0)g(p(µ0))

]
.

Since dp(µ0)/dαc < 0, the first term is strictly positive. Thus, as in the proof of Proposition 3, the first

term dominates and ensures ∂Yct,j/∂π > 0 for sufficiently large t.
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A.8.3 The Effect of αc on Average Spreads

Before proceeding, we consider the effect of an increase in αc on the average quoted spread. This spread

satisfies

Yt,j ≡ e(1 −αc) +αc (1 − p (µ0))
t

[
e−αc

√
e2 − 4Cov

(
rj, vj

)]
.

Differentiating with respect to αc yields

∂Yt,j

∂αc
=− e+ (1 − p (µ0))

t

[
e−αc

√
e2 − 4Cov

(
rj, vj

)]
−αct (1 − p (µ0))

t−1 ∂p

∂αc

[
e−αc

√
e2 − 4Cov

(
rj, vj

)]
−αc (1 − p (µ0))

t
√
e2 − 4Cov

(
rj, vj

)
+ 2α2

c (1 − p (µ0))
t [e2 − 4Cov

(
rj, vj

)]− 1
2 ∂Cov(rj, vj)

∂αc
.

Since t(1 − p(µ0))
t−1 → 0 as t → ∞, spreads are necessarily decreasing as t → ∞. We then have an

opposite result of Corollary 1 with respect to αc. That is, there exists a τ <∞ such that dYt,j/dαc < 0 for

all t > τ.

B Additional Results for the Special Case

B.1 Dealers have no incentive to experiment with prices

Here we establish that dealers have no incentive to set statically sub-optimal prices that might reveal to

them the state of the world. To see why, note that the set of bids that could potentially reveal the state of

the world lie in the set Ξ1 = (Rl(µ) −m− e,Rh(µ) −m− e) or Ξ2 = (Rl(µ) +m+ e,Rh(µ) +m+ e).33 For

any bid in the first interval, observing a trader with an asset accept the offer would reveal that the state

is l. For any bid in the second interval, observing a trader with an asset reject the offer would reveal that

the state is h.

Now, suppose the dealer sets a bid B̂ ∈ Ξ2; the argument for a bid in Ξ1 is symmetric. An optimal offer

would never generate zero trades in both states of the world. Hence, after observing the volume of sells,

there are three possibilities for the corresponding signal S:

1. S ∈ Σl(µ) ≡ [−m+ Rl(0),−m+ Rh(µ)). In this case, the state of the world was revealed anyway, so

there are no benefits to experimentation.

33The argument for the ask price is symmetric.
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2. S ∈ Σh(µ) ≡ (m+ Rl(µ),m+ Rh(1)]. Again, in this case the state of the world was revealed anyway,

so there are no benefits to experimentation.

3. S ∈ Σb(µ) ≡ [−m+ Rh(µ),m+ Rl(µ)]. In this case, all traders accept the offer B̂, and the state of the

world is not revealed to the dealer.

C Additional Numerical Results
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Figure 7: Effect of π, high σ2
ω.

C.1 Robustness

In our baseline results, we assumed that aggregate and idiosyncratic liquidity shocks were of equal mag-

nitude. Here, we present results under two alternative assumptions. In the first, we assume that the

variance of aggregate liquidity shocks is twice as high as that of the idiosyncratic component. Holding

the total variance fixed at its baseline value of 0.32, this implies σ2
ω = 0.21 and σ2

ε = 0.11. The results

for the stationary version of the model are plotted in Figure 7. It shows the same patterns as in Figure 5.

Namely, higher values of π slow down learning, resulting in greater likelihood of intermediate beliefs in

the stochastic steady state. Spreads are non-monotonic in π.
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Figure 8 repeats the analysis under the assumption that the variance of the idiosyncratic component is

twice as large as that of the aggregate one, i.e., σ2
ω = 0.11 and σ2

ε = 0.21. Now, spreads in the competitive

meetings are hump-shaped but those under monopoly (as well as the average spread) are increasing.
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Figure 8: Effect of π, low σ2
ω.

C.2 The Effect of Additional Information

Here, we demonstrate, by way of numerical example, that reducing asymmetric information could also

have counter-intuitive predictions in our environment. In particular, we retain the parameters from our

baseline calibration with one exception: we set vh to a slightly higher number, namely 1.28.34 Figure 9

plots bid-ask spreads, both average (left panel) and in monopolist dealer meetings (right panel).

Importantly, note that bid-ask spreads are convex in µ in some regions of the parameter space. In these

regions, providing dealers with additional information—through the form of a noisy public signal about

asset quality—would induce a mean-preserving spread in µ. As a result, by Jensen’s inequality, average

bid-ask spreads would widen. Hence, in these regions of the parameter space, providing dealers with

additional information leads to wider spreads, on average, even though it mitigates adverse selection.

34This corresponds to the price change on a 7-year par bond with a coupon of 2%, when the issuer is downgraded from AAA
to AA (recall that the downgrade raises the yield on the bond by 25 bps).
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Figure 9: Spreads as a function of beliefs, vh = 1.28.
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