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Abstract

We study electoral competition between two policy motivated candidates, ‘lib-

eral’ versus a ‘conservative’. Each candidate has stochastic valence that is realized

after the candidates choose platforms. Voters receive slanted information about

the candidates’ valences that reflect their ideological preferences. We show how

this selective exposure can reduce platform polarization, relative to a context where

voters all learn the candidates’ valences from a neutral source.
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1 Introduction

In the United states, and elsewhere, voters acquire their political knowledge from infor-

mation sources that reflect their ideological predispositions. Selective exposure manifests

in voters’ choice of partisan media (Iyengar and Hahn, 2009), or their interpersonal and

social networks (Mutz and Martin, 2001). These information sources shape electoral

assessments; for example, a partisan media outlet may buttress its audience’s favorable

perception of one candidate by suppressing news that highlights her weaknesses, while

simultaneously “inflaming negative views” about her opponent (Pierson and Schickler,

2020). As a consequence, liberal and conservative voters may base their electoral choices

on starkly different information.

Our paper studies how voters’ selective exposure shapes the policies candidates pro-

pose in elections. It asks: should selective exposure intensify or instead moderate plat-

∗Our affiliations are Stanford, Harvard, Utah and Yale, and Stanford GSB, respectively. Meirowitz
is the corresponding author. Reach him at adam.meirowitz@eccles.utah.edu.
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form polarization in elections, relative to an environment in which all voters are equally

informed about candidates?

To address this question, we develop a model of two-candidate electoral competi-

tion between policy-motivated candidates—a ‘liberal’ versus a ‘conservative’. After the

candidates simultaneously announce platforms, each candidate realizes a valence shock.

Each voter learns about the candidates’ valences, and then casts his or her ballot for

one of the two candidates. The majority-winning candidate implements her announced

platform.

The critical premise of our framework is that voters with different ideologies learn

different information about the candidates over the course of the election. To capture

this idea in a straightforward way, we assume a liberal voter only learns the liberal

candidate’s valence when it is better than expected (“good news”), and only learns the

conservative candidate’s valence when it worse than expected (“bad news”). Similarly,

conservatives only learn good news about the conservative’s valence, and bad news about

the liberal’s valence. The most natural interpretation is that liberals and conservatives

receive news from different and biased media sources. These sources cannot fabricate

stories, but they can suppress or highlight stories about each of the candidates in ways

that cater to their audiences’ political views.

Our analysis focuses on the consequences of these discrepancies in voter information

for platform polarization: we do not examine the demand-and-supply channels through

which these discrepancies arise. However, Bernhardt, Krasa and Polborn (2008) show

how profit-maximizing media firms slant their reporting by suppressing news stories that

might be seen as unfavorable by their audiences, generating the pattern of information

segmentation by voter ideology that our analysis presumes. Broockman and Kalla (2022)

study ‘partisan coverage filtering’, whereby “a media outlet is more likely to report

information flattering to politicians and causes on their ideological or partisan side, and

not to report information unflattering to the same”. They highlight its consequence for

voters’ knowledge about politics in a novel experimental setting.

We ask how selective information exposure that can arise in these settings shapes

candidate strategies. Our main result shows that selective information exposure may

reduce platform polarization. It highlights that segmentation of voters’ information

according to ideology need not, in and of itself, lead to more polarized elections.

To understand why, consider a full-learning benchmark in which all voters learn both

candidates’ valences. As in Wittman (1983) and Calvert (1985), the candidates adopt

differentiated platforms that trade-off two opposing incentives: moderation increases
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the probability of winning, but extremism increases the value of winning. This trade-off

arises because voters care about both policy and valence. When the realized valence

difference is large policy is less influential in determining the vote count, encouraging

each candidate to locate closer to her ideal policy. Small realized valence differences

make the vote count more dependent on policy, encouraging each candidate to moderate

her platform. Because candidates choose platforms before valences are realized, their

interior platform choices reflect their uncertainty about what valences voters will see

and how they will decide the election.

Conversely, in a no-learning benchmark where no voter ever learns either candidate’s

valence, voters choose between candidates exclusively on policy. This intensifies the

candidates’ incentives to moderate in pursuit of the median voter’s preference: the

unique equilibrium yields full convergence at the median voter’s preferred policy.

Platform shifts weigh most heavily in voters’ assessments when the candidates’ per-

ceived valences are not too far apart. For some valence realizations, selective exposure

narrows the perceived differences between candidates, making voters’ assessments of the

candidates more sensitive to policy platforms than in the full-learning benchmark. For

other valence realizations, the opposite is true: voters may incorrectly surmise that the

gap in candidate qualities is large, and therefore care less about platforms. Our analysis

shows, nonetheless, that the former effect dominates, thereby inducing greater moder-

ation than the full-information benchmark, but not the unfettered convergence of the

no-information context

Glaeser, Ponzetto and Shapiro (2005) and Virág (2008) characterize equilibria in

spatial electoral competition when different voters have different information about the

candidates. Similar to our framework, these papers assume that liberal voters are better-

informed about the liberal candidate and conservatives are better-informed about the

conservative candidate. However, both of these papers predict that platforms are more

polarized under selective information exposure.

These papers differ from ours in two ways: (i) voters are certain about candidates’

common valences but uncertain about their policy choices, and (ii) voters face a cost of

voting and may abstain.1 In our framework, voters know the candidates’ policies, but

are uncertain about their valence, and platforms affect preferences over the candidatres

but not turnout. Despite the differences in what uncertainty is about a common feature

of our papers and these extant papers is that some voters’ choices are more responsive

1In Glaeser, Ponzetto and Shapiro (2005), abstention is driven by an alienation heuristic; in Virág
(2008), abstention is driven by an indifference heuristic.
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to platforms than others. But, the choice by Glaeser, Ponzetto and Shapiro (2005) and

Virág (2008) to model utility as strictly concave and allow abstention due to costs of

voting necessarily introduces a strong force for policy extremism. The reason is that,

amongst those voters who selectively learn a candidate’s platform, more ideologically

extreme voters electorally reward extreme platforms more than moderate voters punish

them. This is not necessarily true in our framework.

Our focus on voter uncertainty about valence rather than policy is similar to Polborn

and Yi (2006) and Bernhardt, Krasa and Polborn (2008). However, politicians’ policy

platforms are fixed in these papers, whereas our explicit focus is on the candidates’

strategic policy choices in the presence of selective exposure.

2 Model

Two candidates, L and R, simultaneously choose campaign platforms, xL and xR, prior

to an election. The policy space is X = [−1, 1].

If candidate j ∈ {L,R} implements platform xj, voter i with preferred policy yi

derives payoff

U j(xj, vj, yi) = vj − |xj − yi|,

where vj is candidate j’s valence. The valences vL and vR are independently and uni-

formly distributed on the interval [0, 1]. There is a unit mass of citizens, and their

ideal points are uniformly distributed on [−1, 1]. Candidates care exclusively about

policy. Like voters, they have linear policy losses. We assume that they have extreme

preferences: L’s ideal policy is −1 and R’s ideal policy is +1.

The interaction proceeds as follows.

1. The candidates simultaneously announce platforms xL and xR.

2. Valences are realized, and revealed according to a process we describe, below.

3. Each voter casts her ballot for her most-preferred candidate. Ties are broken with

a fair coin-toss.

4. The winner implements her policy announcement, and payoffs are realized.

We study Nash equilibria. Without loss of generality, we restrict L to choose xL ∈ [−1, 0],

and R to choose xR ∈ [0, 1].
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3 A Benchmark: Full Learning

We start with a setting in which voters learn the realization of each candidate’s valence

before casting their ballots. A voter with ideal policy yi prefers party R if and only if:

|xL − yi| − |xR − yi|+ vR − vL ≥ 0. (1)

Let y∗(xL, xR, vL, vR) denote the unique voter who is indifferent between the two

candidates, i.e., the voter such that (1) is equal to zero. R wins the election if and only

if y∗ ≤ 0. For xL ≤ 0 ≤ xR, we have

y∗ ≤ 0 ⇐⇒ vR − vL ≥ xR + xL.

Our first proposition characterizes the unique equilibrium, in which the parties partly

differentiate their platforms.

Proposition 1. In a full learning benchmark, there is a unique equilibrium, in which

x∗
L = −1

4
and x∗

R = 1
4
.

In the setting with full learning, each candidate faces a trade-off: moving towards

her ideal policy raises the value of winning, but moving towards the expected ideal point

of the median voter (ideal policy zero) raises the probability of winning.

To illustrate the trade-off, suppose the candidates locate at a symmetric pair xR = +x

and xL = −x, and consider a local deviation by candidate R to x + ∆, for ∆ > 0.

Expression (1) reveals that R wins if and only if vR ≥ vL+∆. Figure 1 plots L’s valence

vL ∈ [0, 1] on the horizontal axis, and R’s valence vR ∈ [0, 1] on the vertical axis. When

∆ = 0, the 45-degree line demarcates the two key events, vR > vL in which case R

wins, and vL > vR in which case L wins. Since the candidates’ valences are uniformly

distributed, R wins with probability one half.

The dashed line in that figure shows the new region in which R wins, after locating

at x + ∆ for ∆ > 0. R’s probability of winning after the shift ∆ > 0 in policy is the

area above the diagonal line in Figure 1. We denote this probability as,

πFL(x,∆) ≡ (1−∆)2

2
. (2)
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Figure 1: Election outcomes for valence pairs (vL, vR) ∈ [0, 1]2, when xL = −x and
xR = x + ∆. The thick diagonal line represents ∆ = 0, and the dashed diagonal line
represents ∆ > 0.

This probability of winning decreases in ∆; however, R’s value from winning increases

in ∆. Leaving out terms that do not depend on ∆, we write R’s objective:

ΠFL
R (∆, x) ≡ πFL(x,∆)(2x+∆),

from which we obtain
∂ΠFL

R (0, x)

∂∆
= 0 ⇐⇒ x =

1

4
.

The trade-off between the probability of winning and the value of winning also ap-

pears in settings with uncertainty about the median voter’s preferred policy (Wittman,

1983, Calvert, 1985). In those contexts, a candidate’s choice of more extreme policy

reflects her gamble that the median voter will align with her on policy grounds. In our

context, instead, a more extreme policy reflects a candidate’s gamble that her net va-

lence advantage will be large enough to sway the known median voter’s preference. The
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consequence in either setting is to soften policy competition, precluding full convergence

on the median (or expected median) voter’s preferred policy.

4 Another Benchmark: No Learning

We next consider a setting in which voters do not learn the realization of each candidates

valence. A voter with ideal policy yi prefers candidate R if and only if

|xL − yi| − |xR − yi|+ E[vR]− E[vL] ≥ 0.

As before, we let y∗i denote the ideal policy of the indifferent voter. Since E[vR] = E[vL],
R wins the election if and only if

|xR| ≤ |xL|.

The immediate consequence is full convergence of platforms to the median voter’s pre-

ferred policy.

Proposition 2. In a no-learning benchmark, there is a unique equilibrium, in which

x∗
L = x∗

R = 0.

Despite their policy motivation, the candidates fully converge. The reason is simple:

a candidate must win in order to implement her policy commitment, and a candidate

wins if and only if she is preferred by the median. With no learning about valence,

valence is strategically irrelevant and we are in the classic case of the median voter

theorem.

5 Main Analysis: Selective Exposure

In reality, different voters receive different information about the candidates over the

course of an election. The most natural explanation is that voters learn about the can-

didates from media sources, and different media sources cover different stories. The deci-

sion of what stories to cover likely derives from the preferences of an outlet’s consumers—

outlets that cater to liberal voters may focus on stories that buttress the liberal candi-

date’s image, while highlighting the conservative’s gaffes or scandals.

To captures these ideas in the simplest possible way, we assume that a voter’s infor-

mation about the candidates’ valences is mediated by her ideology. A liberal voter with
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ideal policy yi ≤ 0 receives a pair of signals slibL ∈ {Ø} × [0, 1] and slibR ∈ {Ø} × [0, 1],

such that

slibL =

vL if vL ≥ E[vL]

Ø if vL < E[vL],
and slibR =

Ø if vR > E[vR]

vR if vR ≤ E[vR].
(3)

In words : a liberal voter learns L’s better-than-expected valence, and learns R’s

worse-than-expected valence. Analogously, a conservative voter learns R’s better-than-

expected valence, and learns L’s worse-than-expected valence. That is, a voter with

ideal policy yi ≥ 0 receives a pair of signals (sconL , sconR ):

sconL =

Ø if vL > E[vL]

vL if vL ≤ E[vL],
and sconR =

vR if vR ≥ E[vR]

Ø if vR < E[vR].
(4)

As the natural starting point we assume that voters are fully rational and understand

this information environment. Our main result characterizes the unique symmetric equi-

librium.

Theorem 1. With selective exposure, there exists a unique symmetric pure strategy Nash

equilibrium, in which x∗
L = −1

6
and xR = 1

6
.

Comparing the theorem with previous lemmas, selective exposure leads to less po-

larization than the full-learning context, and more polarization than the no-learning

context. In the sequel we relax the assumption that voters fully account for the infor-

mational environment by allowing them to have misspecified beliefs about the informa-

tional environment. Here, we focus on intuition by way of local analysis that yields the

platform locations in Theorem 1.2 A voter with preferred policy yi prefers R if and only

if

|xL − yi| − |xR − yi|+ E[vR|sjR]− E[vL|sjL] ≥ 0. (5)

for j ∈ {lib, con}. Conjecture, as before, that xL = −x and xR = x + ∆, for ∆ ≥ 0.

Figure 2 plots L’s valence on the horizontal axis, and R’s valence on the vertical axis.

We begin with the bottom left-hand corner, which corresponds to both candidates

having worse-than-expected valence. This implies that conservatives learn L’s valence,

but do not learn R’s valence, while liberals learn R’s valence, but do not learn L’s

2The proof requires requires separate consideration of small versus large deviations.
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Figure 2: Election outcomes for valence pairs (vL, vR) ∈ [0, 1]2, when xL = −x and
xR = x+∆; the thick lines represent ∆ = 0, and the dashed lines represent ∆ > 0.

valence. Bayesian updating yields:

E[vR|slibR ] = vR; E[vL|slibL ] =
1

4
; E[vR|sconsL ] =

1

4
; E[vL|sconsL ] = vL.

If the liberal’s valence is sufficiently favorable—i.e., if vL > 1
4
−∆—then there exists

an (interior) indifferent conservative ‘swing’ voter with ideal policy:

yR =
∆+ vL − 1

4

2
> 0,

such that conservatives with ideal polices in [0, yR] favor L, while those with ideal policies

in (yR, 1] favor R. Otherwise, all conservatives favor R. Similarly, if the conservative’s

valence is sufficiently favorable—i.e., if vR > 1
4
+ ∆—then there exists an indifferent

liberal swing voter with ideal policy:

yL =
∆− vR + 1

4

2
< 0,
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such that liberals with ideal policies in [−1, yL] favor L, while those with ideal policies

in (yL, 0] favor R. Otherwise, all liberals favor L.

When vR < 1
4
+∆ and vL < 1

4
−∆, liberals uniformly support L and conservatives

uniformly support R, implying that the candidates each win with probability one half.

When vR < 1
4
+∆ and vL > 1

4
−∆, liberals and some conservatives support L, implying

that L wins. Finally, if vR > 1
4
+ ∆ and vL > 1

4
− ∆, there is both an interior liberal

swing voter and an interior conservative swing voter. With uniformly distributed ideal

policies, R wins the election if and only if

0− yL + 1− yR > yL − (−1) + yR − 0 ⇐⇒ vR > vL + 2∆.

Comparing with the previous Figure 1 for the full-information benchmark, Figure 2

shows that R’s shift in platform to x+∆ changes her support by a factor of 2∆ instead

of ∆, since her platform shift affects the location of two swing voters, as opposed to one.

The area between the thick and dashed lines in the bottom left quadrant of Figure

2 shows how the regions of victory and ties (in expectation) shift with ∆. We conclude

that R’s probability of winning when vL, vR < 1/2, when xL = −x and xR = x+∆ for

small ∆ > 0 is

1

2
×

(
1

4
−∆

)
×

(
1

4
+ ∆

)
︸ ︷︷ ︸

Probability of a tie

+

(
1

4
−∆

)2
3

2︸ ︷︷ ︸
Probability R wins

= ∆2 − 3∆

4
+

1

8
. (6)

The top right quadrant in Figure 2 corresponds to the setting where both candidates’

valences are instead above their expectations, i.e., a setting where vR > 1
2
and vL > 1

2
.

It constitutes a symmetric case to the bottom left quadrant, and R’s probability of

winning is again given by (6). The top left-hand quadrant corresponds to vR > 1
2
> vL,

in which case for sufficiently small ∆ > 0 R always wins. Notice that, in this context,

segmentation weakens the responsiveness of R’s victory prospects to small platform

changes. The bottom right-hand panel is the opposite case in which vR < 1
2
< vL, so

that small enough ∆ > 0 ensures L always wins.

Putting all this together, Right’s probability of winning after the small deviation

from x to x+∆ > x is

πSE(x,∆) ≡ 2

(
∆2 − 3∆

4
+

1

8

)
+

1

4
, (7)
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where the first term accounts for the bottom left and top right quadrants in Figure 2,

and the second term of one quarter accounts for the top left quadrant in the Figure.

For ∆ small, πSE
R (x,∆) in expression (7) decreases in ∆ faster than the correspond-

ing probability from the full-learning benchmark, πFL
R (x,∆). In other words: Right’s

winning prospects are more sensitive to local platform choices in the context of selective

exposure than in the benchmark. Right’s choice of ∆ ≥ 0 therefore maximizes:

ΠSE
R (∆, x) = πSE(x,∆)(2x+∆),

and it is easy to verify:
∂ΠSE

R (0, x)

∂∆
= 0 ⇐⇒ x =

1

6
.

As a robustness exercise, our Appendix pursues an extension in which voters are

imperfectly rational. Specifically, when failing to learn a candidate’s valence, a voter’s

conditional expectation of that candidate’s valence is:

Eβ(vj|Ø) = β×“correct” Bayesian expectation + (1− β)× 1

2
,

where “correct” means the expectation computed using Bayes’ rule and the signal func-

tions defined in (3) and (4). Our benchmark with fully rational voters corresponds to

β = 1. Lower β implies voters increasingly fail to account for the circumstances in

which they fail to learn the valences, and instead rely on the unconditional expectation.

While too small β precludes a pure strategy equilibrium, we characterize the unique

symmetric equilibrium with selective exposure when voters do not depart too far from

our benchmark.

Proposition 3. As long as β isn’t too small, there exists a unique symmetric equilibrium,

in which xR = 1
2(2+β)

, and xL = − 1
2(2+β)

.

6 Discussion

Departing from a canonical model of two-party competition with policy-motivated can-

didates and uncertainty about voter preferences, we examine how selective information

exposure shapes candidate incentives. Relative to a full-learning benchmark, we unearth

that selective exposure need not be a force for platform polarization: it can reduce po-

larization. Our result offers a counter-point to a received wisdom that takes the presence
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of echo-chambers and polarized information to voters as a mechanism that necessarily

induces greater elite polarization. It highlights that selective exposure can encourage

voters to behave more sensitively to elite policy choices by reducing their responsiveness

to differences in candidate quality. This intensifies competitive incentives to moderate

platforms.

Our analysis does not preclude political contexts in which selective exposure may

drive elite polarization. On the contrary, comparison of Figures 1 and 2 suggests that

this prospect depends on the joint distribution of candidate valences—in particular,

the probability that these valences are realized in distinct subsets of the state space.

With that important qualification, we hope that our framework complements important

empirical studies of selective exposure’s effects on voter preferences (recently, Broockman

and Kalla, 2022) by offering new insights into its effects on politicians’ strategies.
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Appendix: Proofs of Propositions

Proof of Proposition 1. Given xL ≤ 0, R chooses xR ∈ [0, 1] to maximize

V FL
R (xL, xR) = πFL

R (xL, xR)(xR − xL),

where

πFL
R (xL, xR) ≡

∫ 1−xR−xL

0

(∫ 1

vL+xR+xL

dvR

)
dvL.

An interior best response x̂R(xL) by candidate R satisfies the FONC

∂πFL
R (xL, x̂R(xL))

∂xR

(x̂R(xL)− xL) + πFL
R (xL, x̂R(xL)) = 0. (8)

Substituting primitives into (8) yields two possible solutions: xR = 1 − xL, and xR =
1+xL

3
, and direct computation yields V FL

R (xL,
1+xL

3
) > V FL

R (xL, 1). Finally, the corre-

sponding SOC is

∂2V FL
R (xL, xR)

∂x2
R

=
∂2πFL

R (xL, xR)

∂x2
R

(xR − xL) + 2
∂πFL

R (xL, xR)

∂xR

< 0. (9)

Substituting primitives reveals (9) is strictly negative if and only if xR < 2−xL

3
, which is

true for any xR ∈ [0, 1), for all xL ≤ 0. We conclude that x̂R(xL) =
1+xL

3
is R’s unique

best response to xL ≤ 0. The problem for candidate L is analogous. Solving the mutual

best responses yields the unique pair x∗
R = 1

4
and x∗

L = −1
4
. □

Proof of Proposition 3. We prove a result for a generalized version of our benchmark

model, in which we parameterize voter bias in Bayesian inference by β, and allow the

receipt of a null signal under the functions in (3) and (4) to move a citizen’s prior to

the β-weighted average of the Bayesian correct posterior and the prior. In particular,

we assume:

E[vL|sconL = Ø] = E[vR|slibR = Ø] = β
3

4
+ (1− β)

1

2

E[vR|sconR = Ø] = E[vL|slibL = Ø] = β
1

4
+ (1− β)

1

2
.

Our benchmark model corresponds to the special case of β = 1. All other aspects of the

model are unchanged.
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We obtain that a symmetric pure strategy equilibrium exists only for sufficiently high

values of β, and platform divergence in a symmetric equilibrium decreases in β.

Proposition 3*. There is a threshold β ≈ 0.456612 such that in the generalized model :

1. For all β < β, there is no symmetric pure strategy Nash equilibrium.

2. For all β > β, there is a unique symmetric pure strategy Nash equilibrium with

platforms xL = − 1
2(2+β)

and xR = 1
2(2+β)

.

Proof of Proposition 3*, part 1. For convenience, we work with a re-parameterized

posterior given no news, namely b(β) = β
4
. The posterior is then either 1

2
+ b or 1

2
− b.

Given the media strategies and consumption choices, we can partition realizations

of vL, vR into four qualitatively distinct patterns of inference for citizens on the left and

right halves of the policy space. In particular, each of the following four events occurs

with probability 1
4
.

• Event A: max{vL, vR} < 1
2
so citizens with yi > 0 evaluate the candidates at

expected valences of (vL,
1
2
− b) and citizens with yi < 0 evaluate the candidates

at expected valences of (1
2
− b, vR).

• Event B: min{vL, vR} > 1
2
so citizens with yi > 0 evaluate the candidates at

expected valences of (1
2
+ b, vR) and citizens with yi < 0 evaluate the candidates

at expected valences of (vL,
1
2
+ b).

• Event C: vL < 1
2
< vR so citizens with yi > 0 evaluate the candidates at expected

valences of (vL, vR) and citizens with yi < 0 evaluate the candidates at expected

valences of (1
2
− b, 1

2
+ b).

• Event D: vR < 1
2
< vL so citizens with yi > 0 evaluate the candidates at expected

valences of (1
2
+b, 1

2
−b) and citizens with yi < 0 evaluate the candidates at expected

valences of (vL, vR).

We refer to voters with yi ≤ 0 that are tuning in to the left wing media as L voters and

voters with yi ≥ 0 tuning in to the right wing outlet as R voters.

Suppose that the candidates locate at platforms (−x, x). Fixing xL = −x, we derive

necessary conditions on x for candidate R to not have a profitable deviation to x + ∆

for ∆ ̸= 0. Because the expected utility to R captures different effects to moderating or

becoming more extreme, this step requires considering separately the cases of deviations

with ∆ > 0 and ∆ < 0.
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A sufficient condition for candidate i obtaining a majority is then that both of the

following conditions hold: voters with y = 0 who consume the left outlet prefer candidate

i and those with y = 0 who consume the right outlet also prefer candidate i. Candidate

i can also win if voters with y = 0 who consume the left outlet prefer candidate R and

those with y = 0 who consume the right outlet prefer candidate L and the indifferent

voter consuming i’s outlet is more moderate that the indifferent voter consuming the

other candidate’s outlet.

Right-side deviations: Consider the case of a deviation to x +∆ with ∆ ≥ 0. The

payoffs to R for the three possible outcomes (R wins, L wins, and the vote is tied) are:

VR(R wins) = x+∆− 1, VR(L wins) = −x− 1, VR(tie) = −1 +
∆

2
.

Now consider the four events that partition realizations of v.

Event A: With ∆ ∈ (0, 1
2
−b), R voters with ideal y = 0 vote L if vL−x > 1

2
−b−(x+∆)

which is equivalent to vL > 1
2
− b − ∆ and so the probability that R voters with ideal

y = 0 vote L in Event A is 2(b + ∆). Similarly, L voters with ideal y = 0 vote R if

vR > 1
2
− b + ∆ so the probability of this is 2(b − ∆). Observe that vR and vL are

independent conditional on Event A. If both L and R voters with ideal point y = 0 vote

for the the opposite party (which happens with probability 4(b2 − ∆2) conditional on

Event A) then R wins if vR−vL > 2∆. Otherwise L wins. Thus Conditional on this sub

event the probability that R (resp. L) wins is b−∆
2(b+∆)

(resp. b+3∆
2(b+∆)

). Notice now that if

∆ ∈ [b, 1
2
− b] then R cannot win and L will win as long as an R voter with y = 0 votes

L, which happens with probability 2(b +∆). Finally, if ∆ > 1
2
− b then the probability

of this last event is actually 1 so L wins.

Combining these conclusions we obtain

prob(R wins|A) =

{
2(b−∆)(1− 2(b+∆)) + 2(b−∆)2 ∆ ≤ b

0 b < ∆

prob(L wins|A) =


(1− 2(b−∆))2(b+∆) + 2(b−∆)(b+ 3∆) ∆ ≤ b

2(b+∆) b < ∆ ≤ 1
2
− b

1 1
2
− b < ∆

and the probability of a tie is 1− prob(L wins|A)− prob(R wins|A).
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Event B: R voters with ideal y = 0 vote for L if 1
2
+ b− x > vR − x−∆. This occurs

if vR < 1
2
+ b + ∆ and so the probability that R voters with y = 0 vote for L in Event

B is 2(b+∆). L voters with y = 0 vote for R if vL − x < 1
2
+ b− x−∆. This occurs if

vL < 1
2
+ b−∆ and so the probability that L voters with y = 0 vote for R is 2(b−∆).

We see that the probabilities of the three payoff relevant events conditional on Event B

are identical to the corresponding probabilities conditional on Event A.

Event C: For sufficiently small ∆ > 0 (namely b > ∆ > 0, R always wins. But with

larger deviations, the outcome depends on the realization of vL and vR. Recall that R

voters condition on the realizations of vL, vR and L voters condition on neither taking the

valence advantage for R as 2b. If b < ∆ < 2b, a measure of b− 1
2
∆ (resp. min{0, 1

2
(∆−

(vR−vL))}) of L (resp. R) voters vote for the opposite party, and R’s winning probability

is 8(∆ − b)2. If ∆ > 2b, no L voter will vote for R, so the election will be tied if no R

voter votes for L either (which happens if vR − vL > ∆). Otherwise, L wins. Thus we

obtain:

prob(R wins|C) =


1 ∆ ≤ b

1− 8(∆− b)2 b < ∆ ≤ 2b

0 2b < ∆

prob(L wins|C) =


0 ∆ ≤ b

8(∆− b)2 b < ∆ ≤ 2b

2∆2 2b < ∆ ≤ 1
2

1− 2(1−∆)2 1
2
< ∆

Event D: As long as ∆ > 0, L voters with y = 0 vote for L and because b > 0 R

voters with y = 0 vote for L. Thus the outcome in Event D is a certain L win.

Now, combining the above observations yields an expected utility for R. We normal-

ize the expected utility by multiplying it by 2 in all cases below.

If ∆ < b:

EV +
R ∝ [2(b−∆)(1− 2(b+∆)) + 2(b−∆)2 +

1

2
]︸ ︷︷ ︸

probability that R wins

(x+∆)+

[2(b+∆)(1− 2(b−∆)) + 2(b−∆)(b+ 3∆) +
1

2
]︸ ︷︷ ︸

probability that L wins

(−x)+

[(1− 2(b−∆))(1− 2(b+∆))]︸ ︷︷ ︸
probability of a tie

(
∆

2
) (10)
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If b < ∆ ≤ min{2b, 1
2
− b}:

EV +
R ∝ 1

2
[1− 8(∆− b)2](x+∆) + [2(b+∆) +

1

2
8(∆− b)2 +

1

2
](−x)+

[1− 2(b+∆)](
∆

2
) (11)

Assuming b ≤ 1
6
, if 2b ≤ ∆ < 1

2
− b:

EV +
R ∝ [2(b+∆) +

1

2
2∆2 +

1

2
](−x) + [(1− 2(b+∆)) +

1

2
(1− 2∆2)](

∆

2
) (12)

Assuming b > 1
6
, if 1

2
− b ≤ ∆ < 2b:

EV +
R ∝ 1

2
[1− 8(∆− b)2](x+∆) + [1 +

1

2
8(∆− b)2 +

1

2
](−x) (13)

If max{2b, 1
2
− b} < ∆ ≤ 1

2
:

EV +
R ∝ [1 +

1

2
(2∆2) +

1

2
](−x) + [

1

2
(1− 2∆2)](

∆

2
) (14)

And finally, if 1
2
< ∆:

EV +
R ∝ [1 +

1

2
(1− 2(1−∆)2) +

1

2
](−x) + [

1

2
(2(1−∆)2)](

∆

2
) (15)

Left-side deviations: Consider now the case of a deviation to x + ∆ with ∆ ≤ 0,

and note that the parties’ win probabilities for Events A and B are the same as in the

case of ∆ ≥ 0 as long as ∆ > − b
3
. Thus for either event E = A,B,

prob(R wins|E) =


2(b−∆)(1− 2(b+∆)) + 2(b−∆)2 − b

3
≤ ∆

2(b−∆)(1− 2(b+∆)) + 4(b2 −∆2) −b ≤ ∆ < − b
3

2(b−∆) b− 1
2
≤ ∆ < −b

1 ∆ < b− 1
2

prob(L wins|E) =


(1− 2(b−∆))2(b+∆) + 2(b−∆)(b+ 3∆) − b

3
≤ ∆

(1− 2(b−∆))2(b+∆) −b ≤ ∆ < − b
3

0 ∆ < −b

Event C: As long as ∆ < 0, R voters vote for R and because b > 0, L voters votes

for R. Thus the outcome is that R wins with certainty.
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Event D: For ∆ ≥ −b, L wins for sure. When ∆ < −b, R wins if the valence

difference is small. The winning probabilities are given by:

prob(R wins|A) =


0 −b ≤ ∆

8(∆ + b)2 −b− 1
4
< ∆ ≤ −b

1− 2(1− 2(∆ + b))2 −b− 1
2
≤ ∆ < −b− 1

4

prob(L wins|A) =


1 −b ≤ ∆

1− 8(∆ + b)2 −b− 1
4
< ∆ ≤ −b

2(1− 2(∆ + b))2 −b− 1
2
≤ ∆ < −b− 1

4

prob(R wins|D) = 0, prob(L wins|D) = 1− 2∆2, prob(tie|D) = 2∆2

First Order Conditions: Differentiating the right side of Equation (10) with respect

to ∆ yields the following first-order necessary condition for optimal deviation:

1 + 12∆2 − (4 + 8b)x− (4 + 8b− 16x)∆ = 0 (16)

which holds at ∆ = 0 if and only if x = 1
4(1+2b)

. This conjectured symmetric Nash

equilibrium (− 1
4(1+2b)

, 1
4(1+2b)

) yields 0 expected utility for both parties by symmetry.

Consider a deviation b < ∆ ≤ min{2b, 1
2
− b} and let

∆′ = min{ 1

12
(−1 + 8b− 2−

√
15 + 36b− 12b2 − 48b3 + 64b4

1 + 2b
, 2b,

1

2
− b} (17)

Substituting ∆ = ∆′ into the expression on the right of (11) shows that the value is

strictly positive if and only if b < b̄ ≈ 0.114153 or equivalently β < β̄ = 4b̄ ≈ 0.456612.

Since equation (16) holding at ∆ = 0 is necessary, this profitable deviation implies a

symmetric pure strategy Nash equilibrium does not exist if β < β̄.

Proof of Proposition 3*, part 2. Again, let b = β
4
and assume now that b ≥ b̄ =

β̄
4
≈ 0.114153. Without loss and invoking symmetry, we continue to focus on possible

deviations by R. Fixing x = 1
4(1+2b)

, we argue that R’s expected utility, as expressed in

the proof of Part 1, is weakly negative for any ∆ ̸= 0. (Recall that expected utility is 0

at the conjectured symmetric equilibrium, where ∆ = 0.)
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Right-side deviations: Suppose that ∆ < b, and observe that (10) is cubic in ∆

and ∆ = 0 is a local maximum. To make sure ∆ = 0 is also the global maximum over

[0, b], it suffices to compare ∆ = 0 with ∆ = b. Plugging in x = 1
4(1+2b)

, we see that the

expression on the right of (10) equals 0 at ∆ = 0 and is negative at ∆ = b for b > 0.

Now suppose that ∆ < min{2b, 1− b
2
}, and notice that the expression on the right of

(11) is cubic in ∆ and goes to −∞ as ∆ → ∞. Its first-order condition, after plugging

in x = 1
4(1+2b)

, is:

1− 16b3 − 12∆− 24∆2 + 4b2(−3 + 16∆) + b(10 + 24∆− 48∆2) = 0

The greater root 1
12
(−1 + 8b− 2−

√
15+36b−12b2−48b3+64b4

1+2b
) is the local maximum. Since the

local minimum 1
12
(−1+8b− 2+

√
15+36b−12b2−48b3+64b4

1+2b
) is always less than 2b, it suffices to

check that R’s expected payoff is weakly negative at ∆′ if b > b where ∆′ is defined in

(17). Simple numerical calculations shows that this is the case.

Now suppose that b ≤ 1
6
and 2b ≤ ∆ < 1

2
− b, and note that the expression in (12)

is cubic in ∆ and goes to −∞ as ∆ → ∞. Its first-order condition, after plugging in

x = 1
4(1+2b)

, is:

1− 8b2 − 10∆− 6∆2 + 2b(1− 8∆− 6∆2) = 0

The local maximum (minimum) is the greater (smaller) root and always (never) in

[2b, 1
2
− b] if b ≥ b̄. It thus suffices to check that at the local maximum R’s expected

utility is weakly negative. This is indeed the case.

Now suppose that b > 1
6
and 1

2
− b ≤ ∆ < 2b. Expression (13) is cubic in ∆ and goes

to −∞ as ∆ → ∞. Its first-order condition, after plugging in x = 1
4(1+2b)

, is:

2− 16b3 − 8∆− 24∆2 + 8b2(−1 + 8∆) + 2b(5 + 16∆− 24∆2) = 0

The local minimum is the smaller root and always less than 1
2
− b for any b ∈ [b̄, 1

4
]. It

thus suffices to show the local maximum value is no greater than 0 for any b ∈ [b̄, 1
4
].

Simple calculations show it is weakly negative.

Now suppose max{2b, 1
2
− b} < ∆ ≤ 1

2
. Expression (14) is cubic in ∆, and goes to

−∞ as ∆ → ∞. Its first-order condition, after plugging in x = 1
4(1+2b)

, is:

1

2
− ∆

2 + 4b
− 3∆2 = 0
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Since the interval [max{2b, 1
2
− b}, 1

2
] is always strictly between the two roots of the

first-order condition for any b ∈ [b̄, 1
4
], one only needs to consider R’s expected utility at

the outer limit 1
2
. Simple numerical calculations shows it is negative for any b ∈ [b̄, 1

4
].

Finally, suppose ∆ > 1
2
. Expression (15) is cubic in ∆ and goes to ∞ as ∆ → ∞.

Its first-order condition, after plugging in x = 1
4(1+2b)

, is:

1

2
(−3 + 3∆)∆ + b(1− 4∆ + 3∆2) = 0

The local maximum is always less than 1
2
, and the local minimum exceeds the policy

space. It thus suffices to check the limit of (15) as ∆ → 1
2

+
. Simple numerical calcula-

tions show it is negative for any b ∈ [b̄, 1
4
].

Left-side deviations: First we argue that ∆ < 0 cannot be a profitable deviation.

When x = 1
4(1+2b)

as conjectured, equation (10) is locally maximized at ∆ = 0 and

monotonically increasing in ∆ for ∆ < 0. Inspecting the wining probabilities for ∆ < 0

in the proof of Part 1 shows that for any −b ≤ ∆ < 0, R’s wining (losing) probability

is weakly lower (higher) than the corresponding probability incorporated in (10) given

the same ∆ value. This means such deviations would not be profitable for R.

Since parties cannot move across 0, we can disregard the cases where ∆ < b − 1
2
or

∆ < −b − 1
4
as x = 1

4(1+2b)
≤ 1

4
. So the only case left to consider is −b − 1

4
≤ ∆ < −b.

In this case,

EV −
R ∝ (2(b−∆) +

1

2
8(∆ + b)2)(x+∆) +

1

2
(1− 8(∆ + b)2)(−x)

+(1− 2(b−∆))
∆

2
(18)

This expression is cubic in ∆ and goes to∞ in ∆. Its first-order condition, after plugging

in x = 1
4(1+2b)

, is:

1 + 16b3 + 4∆+ 24∆2 + 4b2(3 + 16∆) + 2b(7 + 12∆ + 24∆2) = 0

The left side has no real root for b ∈ [b̄, 1
4
]. This implies (18) is monotonically increasing

in ∆ for b ∈ [b̄, 1
4
], and it suffices to check its limit as ∆ → −b− 1

4

−
, which is negative.
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Uniqueness: We have so far proved that (− 1
4(1+2b)

, 1
4(1+2b)

) is a symmetric pure strat-

egy Nash equilibrium. To establish uniqueness, observe that (16) holding at ∆ = 0 is

necessary for any symmetric pure strategy Nash equilibrium.
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