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Abstract

I study distributed knowledge, which is what a group of privately informed agents

can possibly know if they communicate freely with one another. Contrary to the ex-

tant literature, I study differently introspective agents. Three categories of agents are

considered: non-introspective, positively introspective, and fully introspective. When

a non-introspective agent knows something, she may fail to know that she knows it.

On the contrary, when a fully introspective agent knows something, she always knows

that she knows it. A fully introspective agent is positively introspective and, when she

does not know something, she also knows that she does not know it. I give two equiv-

alent characterizations of distributed knowledge: one in terms of knowledge operators

and the other in terms of possibility relations, i.e., binary relations. I study distributed

knowledge by modelling explicitly the communication and inference making process

behind it. I show that there are two significantly different cases to consider. In the first,

distributed knowledge is driven by the group member who is sophisticated enough to

replicate all the inferences that anyone else in the group can make. In the second case,

no member is sophisticated enough to replicate what anyone else in the group can infer.

As a result, distributed knowledge is determined by a two-person subgroup who can

jointly replicate what others infer. The latter case depicts a wisdom-of-the-crowd effect,

in which the group knows more than what any of its members could possibly know by

having access to all the information available within the group.
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1 Introduction

The goal of this paper is to explore the relationship between individual and aggregate knowl-

edge. Broadly speaking, the question we are interested in is: What do groups know? As it is

often the case with group properties, the answer depends on the criterion by which individual

knowledge is aggregated. There are two limiting cases. On the one hand, we have common

knowledge. A fact is common knowledge when it is public: Everyone in the group knows

that fact, everyone knows that everyone knows it, and so on. On the other hand, we have

distributed knowledge. A fact is distributed knowledge if it can be known by merging what

each group member knows. For example, if a group member, say A, knows a fact p and

another member B knows that p implies q, then knowledge of q is distributed between A and

B. As Fagin et al. (1995) incisively put it, common knowledge is “what every fool knows”;

distributed knowledge is “what a wise man would know”. Taken together, these two no-

tions circumscribe all feasible configurations of group knowledge. To wit, a group cannot

know less than what is common knowledge, and cannot know more than what is distributed

knowledge. While much effort has been devoted to understanding common knowledge, both

in economics and neighboring disciplines, less attention has been paid to distributed knowl-

edge. In this paper, we concentrate on the latter concept.

Why focusing on distributed knowledge? First, since we know a great deal about com-

mon knowledge, we want to get an equally clear picture of the other limiting case. In more

practical terms, a better understanding of distributed knowledge would enable us to assess

what groups such as juries, parliaments, and committees, can potentially know and, as a

consequence, what decisions they could or could not make. Second, and more substantially,

the very concept of distributed knowledge is not as straightforward as it may seem, and the

extant literature has overlooked a crucial aspect of it: individual inference making. More

specifically, distributed knowledge presupposes some form of communication in order for

group members to share what they know, and knowledge sharing calls for individual infer-

ence making. If B says to A that p implies q, then A has to infer that knowledge of q follows

by combining her knowledge of p with the new piece of knowledge learned from B. Without

the latter inference, we cannot truly say that knowledge of q is distributed between A and

B. The point we want to make here is that distributed knowledge crucially depends on how

people assess what they learn from others. We now give an elementary, motivating exam-

ple to show how the standard treatment of distributed knowledge may fail to accommodate

individual inference making, so leading to unsatisfactory results.

Consider a situation of incomplete information with two possible states of the world, ω1
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and ω2. There are two persons, Ann (a) and Bob (b), whose knowledge is represented by the

possibility relations and, equivalently, by the knowledge operators in the table below.

Events Ka Kb

/0 /0 /0

{ω1} /0 {ω1}
{ω2} /0 /0

{ω1,ω2} {ω1,ω2} {ω1,ω2}

States Pa Pb

ω1 {ω1,ω2} {ω1}
ω2 {ω1,ω2} {ω1,ω2}

Table 1: Knowledge operators (left) and possibility relations (right)

The knowledge we are referring to is about events, which are subsets of the set of possible

states {ω1,ω2}. For each state ω , a person’s possibility relation tells us the states that that

person considers possible when ω occurs. For a given event, a person’s knowledge operator

tells us the states at which that person knows that the given event holds. A person knows an

event at a state ω if that event holds at all the states that he or she considers possible at ω .

Thus we can see that Bob knows the following: that {ω1} holds only when ω1 is true, and that

{ω1,ω2} always holds. As for Ann, she just knows that {ω1,ω2} holds in both states. Now,

what is distributed knowledge between Ann and Bob? As per the standard characterization

(see, e.g., Fagin et al. (1995)), distributed knowledge can be found by taking the intersection

of the individual possibility relations. In our case, distributed knowledge would coincide

with what Bob knows. We claim that this is not always satisfactory, especially when people

are not equally rational. In the example, Bob is not fully rational because he fails to make

the following inference: “There are two states. In one of them I know that {ω1} holds,

in the other I do not. Therefore, when I do not know whether {ω1} holds, the true state

must be ω2. In sum, I always know the true state.” In other words, Bob is not negatively

introspective and, as a consequence, his possibility relation does not induce a partition of

the set of possible states. As for Ann, let us assume she is fully rational, which is consistent

with her having a partitional possibility relation. If B shares all his knowledge with Ann, the

latter will make the inference that Bob failed to make on his own. Thus Ann will always

know the true state. Subsequently, if Ann shares her revised, perfect knowledge with Bob,

he will be able to learn the true state also at ω2 in spite of his lack of negative introspection.

In sum, perfect knowledge of the prevailing state is distributed between Ann and Bob. The

standard characterization is of no avail in our case because it implicitly assumes that all

group members are equally rational.

The main questions we ask in this paper are: How to find distributed knowledge in groups

where people need not be equally rational? How do individual reasoning skills affect what a
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group can possibly know? More specifically, we want to characterize distributed knowledge

in groups where people are more or less rational depending on how introspective they are.

We consider three kinds of persons. Fully rational people are fully introspective. Not only do

they know everything they know, they also know everything they do not know. Less rational

are people who are just positively introspective. As Bob in the example above, they know

everything they know, but they may fail to know something they do not know. Finally, we

have non-introspective people, who may fail to know something they do or do not know.

Contrary to existing models, we choose to formalize explicitly the communication and

inference making processes that lead to distributed knowledge. As (Rubinstein, 1998, p. 43)

aptly remarks in his discussion of the standard set-theoretic model of interactive knowledge,

“the model has to be thought of as a reduced form derived from a more complete model,

one that captures the decision maker’s inference process.” Thus we can say that our strategy

in this paper is to develop such a more complete model in order to characterize distributed

knowledge. We assume that communication is honest, non-strategic, and truthful. As for

inference making, we introduce three revision operators to pinpoint what inferences a per-

son can make upon learning a new piece of knowledge. Each revision operator maps any

knowledge operator to a revised knowledge operator. One revision operator captures pos-

itive introspection. In particular, it encapsulates the cognitive process by which one infers

higher-order knowledge of an event (“I know that I know p”) from first-order knowledge of

it (“I know p”). Similarly, the second revision operator describes full introspection. This is

a process by which not only can one infer higher-order knowledge of an event, but one can

also infer higher-order knowledge about the lack of knowledge of an event: “If I do not know

p, then I know that I do not know p.” The third and final revision operator, called distributive

closure, is a logical closure and is not related to introspection. It captures the fact that one is

able to make all inferences based on logical deductions, but not necessarily those based on

introspection about one’s knowledge. The three revision operators enable us to keep track

of how people at different levels of rationality process what they learn from others. A fully

introspective person makes inferences that are represented by the full introspection operator

and the distributive closure; a positively introspection person bases all her inferences on the

positive introspection operator and the distributive closure; a non-introspective person uses

only the distributive closure.

We make the following contributions. First, we provide a general, set-theoretic frame-

work for the study of knowledge revision. The framework is general enough to accommodate

agents who are fully introspective, positively introspective, or not introspective at all. Our
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main innovation is the introduction of revision operators, which enable us to link knowledge

revision to inference making skills with relative ease. While our overarching goal is to char-

acterize distributed knowledge, the framework we offer is of independent interest and can be

thought of as a foundation for standard models of interactive knowledge. As the quote from

A. Rubinstein above emphasizes, knowledge is usually taken as given in those models. With

our framework, it is possible to examine how people reason and how they arrive at knowing

what they do. Second, we give a full characterization of distributed knowledge for groups

whose members may have different levels of introspection. The characterization relies on

the revision operators mentioned above, so linking individual reasoning skills to aggregate

knowledge. The standard treatment of distributed knowledge reduces to a particular instance

of our model, in which all group members share the same level of introspection. Third, we

offer an equivalent characterization of distributed knowledge in terms of possibility relations.

In order to establish a part of this characterization, we introduce a new generalization of the

left trace for binary relations, which we call left n-ary trace. All in all, finding distributed

knowledge through revision operators is intuitive but might be rather laborious; using possi-

bility relations is perhaps less intuitive but computationally less demanding.

Here are our main findings. First, inference making is order dependent. Consider a fully

or positively introspective agent who learns what another person knows. Being introspective,

our agent processes this influx of knowledge by making inferences based on the appropriate

introspection revision operator and the distributive closure. We find that, in general, each

of the introspection revision operators and the distributive closure do not commute. Conse-

quently, what an agent ultimately knows depends both on her degree of introspection and the

order in which she makes inferences. It may well be the case that two equally introspective

agents process the very same body of knowledge but reach different conclusions just because

of the order in which they reason. We keep track of such order dependence by introducing

types, each of which tells us how introspective an agent is and what order she follows in

making inferences. Second, distributed knowledge is type dependent. For a given profile of

knowledge operators or possibility relations, different profiles of individual types give rise to

possibly different configurations of distributed knowledge. The latter result highlights how

distributed knowledge depends on the distribution of inference skills within a group. Finally,

our main result is contained in Proposition 7. There are two conceptually different cases.

In the first, there is a group member who is able to make all the inferences that everyone

else in the group can make. We can think of such a member as the “wise man” mentioned

in the first paragraph above. Distributed knowledge can easily be found by letting everyone
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communicate everything they know to the wise man. This result is essentially analogous

to the standard characterizations of distributed knowledge for homogeneous groups. In the

second case, there is not a wise man in the group. That is, no group member can replicate all

the inferences that everyone else can make. However, there must be at least two agents who

can jointly infer what everyone else in group can. We find that these two agents can jointly

act as the “wise man”. As a consequence, distributed knowledge can be found in a two-step

procedure. First, everyone communicates her knowledge operator to everyone else. Then,

distributed knowledge can be attained in the second step by letting just the two agents who

act as wise man talk to each other. Remarkably, distributed knowledge in this case coincides

with what we would get if we added a single wise man to the group, i.e., someone who can

replicate all the inferences in the group. In sum, the second case depicts a wisdom-of-the-

crowd effect, in which the group knows more than what each of its members could possibly

do alone.

The rest of the paper is organized as follows. We review the related literature in the

next section. In Section 3, we introduce the baseline model, which consists of knowledge

operators and possibility relations on a fixed state space. Then in Section 4 we introduce

revision operators in order to formalize inference making and study their properties. We

put revision operators into use in Section 5, where we define types and see how differently

introspective agents revise knowledge. Finally, we give a full characterization of distributed

knowledge in Section 6.

2 Related Literature

This paper touches upon different literatures on the epistemic foundations of game theory

and learning. The concept of distributed knowledge was introduced by Halpern and Moses

(1990). Since then, it has been studied mostly in computer science and epistemic logic.

Relevant contributions include van der Hoek et al. (1999), from which we borrow the prin-

ciple of full communication, Roelofsen (2012), and Ågotnes and Wáng (2017). There are at

least two crucial differences between this literature, which is rooted in computer science and

logic, and our paper. First, we do not use any formalism from epistemic logic. As is standard

in economics and game theory, we study our problem within the framework of knowledge

operators and possibility relations à la Aumann. The classical sources are Aumann (1976)

and Aumann (1999). Differently put, we study distributed knowledge in a purely semantic

model. Second, and more substantially, while distributed knowledge is commonly studied
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for a fixed modal system, we cover cases where different agents in the same group may

satisfy different modal systems. Our three categories of agents, namely fully introspective,

positively introspective, and non-introspective, correspond to the three modal systems S5,

S4, and T, respectively.

To the best of our knowledge, the closest paper is Fukuda (2019). He studies distributed

knowledge in a set-theoretic, semantic framework. He allows agents to hold false beliefs. In

other words, he dispenses with the veridicality axiom. In this regard, his analysis is more

general than ours. On the other hand, Fukuda (2019) does not model the communication and

learning process that leads to distributed knowledge. We do provide such a model and show

that it is crucial in order to obtain the wisdom-of-the-crowd effect in part (b) of Proposition

7; namely, the fact that the group can know more than what any of its members can possibly

know by herself. Thus the two characterizations of distributed knowledge are not equivalent:

in Fukuda (2019), the characterization is axiomatic, whereas ours is based on communication

and learning. All in all, the two papers overlap but are not nested into each other.

Our work is also related to the AGM belief revision theory of Alchourrón et al. (1985).

As in their framework, we model how agents revise knowledge upon receiving new informa-

tion. There is a crucial difference though. In AGM theory, new information is in the form of

a single proposition; in our paper, new information is given by a knowledge operator, which

describes what an agent knows at every possible state and not just at the prevailing one. This

means that agents in our model revise both their actual and their counterfactual knowledge.

The learning process in our model is also close to Basu (2019) and Sadler (2021). While

Basu (2019) studies probabilistic beliefs in an AGM framework, we study non-probabilistic

beliefs and allow for revision of counterfactual knowledge. As for Sadler (2021), his model

is set-theoretic as it is ours. However, he does not consider counterfactual knowledge. In ad-

dition, his learning axioms are rooted in behavioral economics while our revision operators

mirror the introspection axioms from standard models of interactive knowledge and beliefs.

Some of our results are analogous to those of Mueller-Frank (2014). In the context of ob-

servational learning, and in a population in which not everyone is Bayesian, Mueller-Frank

(2014) shows that belief aggregation is driven by the Bayesian members of the group. Even

though the context is different, this result is conceptually close to the first part of our Propo-

sition 7, in which we show that distributed knowledge is determined by the highest type in

the group, provided that such highest type exists.
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3 Knowledge operators and possibility relations

Fix a non-empty, finite set of states of the world Ω and a finite set of agents I = {1,2, . . . ,N},

with N ≥ 2. Subsets of Ω are called events. Agents’ knowledge about events can be repre-

sented by knowledge operators (Subsection 3.1) or possibility relations (Subsection 3.2). I

confine myself to the case in which the two representations are equivalent (Subsection 3.3).

3.1 Knowledge operators

A knowledge operator K is a function K : 2Ω → 2Ω. An event A ⊆ Ω holds at a state ω ∈ Ω

if ω ∈ A. If Ki is agent i’s knowledge operator, then Ki(A) is the event “i knows that A”. To

wit, Ki(A) is the set of states in which i knows that A holds.

A knowledge operator K satisfies:

• distributivity if for all A,B ⊆ Ω,

K(A∩B) = K(A)∩K(B); (K0)

• necessitation if

K(Ω) = Ω; (K0′)

• veridicality if for all A ⊆ Ω,

K(A)⊆ A; (K1)

• positive introspection if for all A ⊆ Ω,

K(A)⊆ K(K(A)); (K2)

• negative introspection if for all A ⊆ Ω,

¬K(A)⊆ K(¬K(A)), (K3)

where ¬ denotes the set complement operation.

The five axioms above are standard and have been studied extensively—see, among many

others, Fagin et al. (1995), Morris (1996), Rubinstein (1998), and Samet (1990). Recall that

8



negative introspection implies positive introspection and that distributivity implies mono-

tonicity, which is defined as follows. An operator K is monotone if for all A,B ⊆ Ω,

A ⊆ B =⇒ K(A)⊆ K(B). (1)

Call K the set of all knowledge operators on Ω. The following subsets of K will be

used later on:

• K v is the set of all knowledge operators that satisfy (K1);

• K 0 is the set of all knowledge operators that satisfy (K0) and (K0′);

• K 1 is the set of all knowledge operators that satisfy (K0), (K0′), and (K1);

• K 2 is the set of all knowledge operators that satisfy (K0), (K0′), (K1), and (K2);

• K
3 is the set of all knowledge operators that satisfy (K0), (K0′), (K1), (K2), and (K3).

It is clear that K 3 ⊆ K 2 ⊆ K 1 ⊆ K 0 ⊆ K .

3.2 Possibility relations

A possibility relation P is a binary relation over Ω, i.e., P ⊆ Ω×Ω. If (ω,ω ′) is in agent

i’s possibility relation, then i considers ω
′ possible when ω occurs. It is often convenient to

describe a possibility relation with its lower contour sets. Formally, the lower contour set of

P at ω is the set P(ω) := {ω
′ ∈ Ω : (ω,ω ′) ∈ P}. In words, P(ω) is the set of states that,

according to P, are considered possible when ω occurs.

A possibility relation P is:

• reflexive if for all ω ∈ Ω,

(ω,ω) ∈ P;

• transitive if for all ω,ω ′,ω ′′ ∈ Ω,

(ω,ω ′) ∈ P and (ω ′,ω ′′) ∈ P =⇒ (ω,ω ′′) ∈ P;

• Euclidean if for all ω,ω ′,ω ′′ ∈ Ω,

(ω,ω ′) ∈ P and (ω,ω ′′) ∈ P =⇒ (ω ′,ω ′′) ∈ P;
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• symmetric if for all ω,ω ′ ∈ Ω,

(ω,ω ′) ∈ P =⇒ (ω ′,ω) ∈ P.

Call P the set of all possibility relations on Ω. The following subsets of P will be used

later on:

• P1 is the set of all reflexive relations on Ω;

• P2 is the set of all reflexive and transitive relations on Ω;

• P3 is the set of all reflexive, transitive and Euclidean relations on Ω.

It is clear that P3 ⊆ P2 ⊆ P1 ⊆ P . It is also easy to check that P ∈ P3 if and

only if P is an equivalence relation, i.e., a reflexive, symmetric and transitive relation. A

similar taxonomy of possibility relations with a discussion of their properties can be found

in Geanakoplos (2021).

Some of the results in Section 5 involve two specific types of binary relations: the left

trace and the left n-ary trace. Following (Aleskerov et al., 2007, p. 69), the left trace of

P ∈ P is the binary relation TP constructed as follows:

For all ω,ω ′ ∈ Ω, (ω,ω ′) ∈ TP ⇐⇒ P(ω ′)⊆ P(ω).

It is easy to check that TP is reflexive and transitive. The symmetric part of TP is the

binary relation EP obtained as:

For all ω,ω ′ ∈ Ω, (ω,ω ′) ∈ EP ⇐⇒ (ω,ω ′) ∈ TP and (ω ′,ω) ∈ TP.

It is clear that (ω,ω ′) ∈ EP if and only if P(ω ′) = P(ω).

The left n-ary trace is a generalization of the left trace. To the best of my knowledge, this

is the first paper where the left n-ary trace is introduced. For a given n-tuple P = (P1, . . . ,Pn)

of relations in P , the left n-ary trace of P is the binary relation TP constructed as follows:

For all ω,ω ′ ∈ Ω, (ω,ω ′) ∈ TP ⇐⇒ for all i ∈ {1, . . . ,n} there exists a j ∈ {1, . . . ,n}

such that Pj(ω
′)⊆ Pi(ω).

The left n-ary trace TP is reflexive and transitive. Clearly, n = 1 and TP = TP when
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P = (P). The symmetric part of TP is denoted EP and defined in the obvious way:

For all ω,ω ′ ∈ Ω, (ω,ω ′) ∈ EP ⇐⇒ (ω,ω ′) ∈ TP and (ω ′,ω) ∈ TP.

Table 2 contains an example with two possibility relations P1 and P2 on Ω= {ω1, . . . ,ω4},

the corresponding left traces TP1
and TP2

, and the left binary trace TP, where P = (P1,P2).

ω P1(ω) P2(ω) TP1
(ω) TP2

(ω) TP(ω)
ω1 {ω1,ω2} {ω1,ω2} {ω1} {ω1,ω2} {ω1,ω2}
ω2 {ω2,ω3} {ω2} {ω2} {ω2} {ω2}
ω3 {ω2,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3} {ω2,ω3,ω4}
ω4 {ω4} {ω1,ω4} {ω4} {ω4} {ω4}

Table 2: The left traces and the left binary trace of P1 and P2.

This subsection concludes with a characterization of EP in terms of minimal sets. Such a

characterization is often helpful because it enables us to find EP without having to compute

TP before. Given P, the minimal set of P at ω is the set Min(ω) of minimal elements of

{Pi(ω) : i ∈ {1, . . . ,n}}. More formally,

Min(ω) := {Pi(ω) : i∈{1, . . .,n} and Pj(ω)⊆Pi(ω) =⇒ Pj(ω)=Pi(ω) for all j ∈{1, . . . ,n}}.

Claim 1. Given an n-tuple P = (P1, . . . ,Pn) of binary relations in P , we have that for all

ω,ω ′ ∈ Ω,

(ω,ω ′) ∈ EP ⇐⇒ Min(ω) =Min(ω ′).

Proof. It is immediate that Min(ω) = Min(ω ′) implies (ω,ω ′) ∈ EP. To show the other

direction, suppose (ω,ω ′) ∈ EP. Take any Pi(ω) ∈ Min(ω). Since (ω,ω ′) ∈ TP, there is a

j such that Pj(ω
′) ⊆ Pi(ω). Furthermore, there exists a k such that Pk(ω

′) ∈ Min(ω ′) and

Pk(ω
′) ⊆ Pj(ω

′). Thus Pk(ω
′) ⊆ Pi(ω). Analogously, since (ω ′,ω) ∈ TP we can find a

Pℓ(ω) ∈Min(ω) such that Pℓ(ω)⊆ Pk(ω
′). Since Pi(ω) is a minimal element, we must have

Pℓ(ω) = Pk(ω
′) = Pi(ω). Therefore, Min(ω) ⊆ Min(ω ′). The reverse set inclusion can be

proved analogously.

3.3 The duality between knowledge operators and possibility relations

Throughout this paper, I confine myself to knowledge operators that can be represented

by a possibility relation. More generally, it is well-known that every possibility relation
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represents a knowledge operator, but only certain knowledge operators can be represented

by a possibility relation.

A possibility relation P represents a knowledge operator K if for all events A ⊆ Ω,

K(A) = {ω ∈ Ω : P(ω)⊆ A} . (2)

In words, an agent knows A at ω if A holds at every state that the agent considers possible

when ω occurs. Notice that the operator K in (2) always satisfies both distributivity (K0) and

necessitation (K0′).

Consider the function f : P → K
0 that associates to each relation P the knowledge

operator f (P) defined as per (2). Proposition 1 below shows that f is a dual isomorphism1,

i.e., an order-reversing bijection. As for the underlying order structure, P is partially ordered

by set inclusion. In addition, K , and consequently its subset K 0, is partially ordered by

pointwise set inclusion. Specifically, for any K,K′ ∈ K ,

K ≤ K′ ⇐⇒ K(A)⊆ K′(A) for all A ⊆ Ω.

In words, when K ≤ K′ a person with knowledge K′ knows at least as much as someone

with knowledge K does.

Proposition 1. The function f : P → K 0 is a dual isomorphism. That is, f is a bijection

such that

P ⊆ P′ ⇐⇒ f (P′)≤ f (P)

for all P,P′ ∈ P .

Proof. I split the argument in four independent parts.

• f is injective. Suppose P 6= P′. This means that there exists a state ω such that P(ω) 6=

P′(ω). The latter is equivalent to saying that P′(ω) \P(ω) 6= /0 or P(ω) \P′(ω) 6= /0.

Suppose P′(ω)\P(ω) 6= /0. Call K := f (P) and K′ := f (P′). Take the event A = P(ω).

We have ω ∈ K(A) but ω /∈ K′(A). The case P(ω)\P′(ω) 6= /0 is analogous.

• f is surjective. For every K ∈K
0, one needs to find a P∈P such that K is represented

by P according to (2). Suppose K ∈ K 0. Construct the binary relation P ∈ P as

follows. For all ω ∈ Ω,

P(ω) :=
⋂

{A ⊆ Ω : ω ∈ K(A)} . (3)

1The terminology is borrowed from Monjardet (2007).
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One can show that K is represented by P. Take any B ⊆ Ω. Suppose ω ∈ K(B).

It follows immediately by (3) that P(ω) ⊆ B. Now suppose that P(ω) ⊆ B for some

ω ∈Ω. Since ω ∈Ω=K(Ω) by necessitation, it follows by (3) that P(ω) is always the

intersection of a non-empty family of events A1, . . . ,Am, with m≥ 1. By definition, ω ∈

∩m
i=1K(Ai). By distributivity, we have that ∩m

i=1K(Ai) = K(∩m
i=1Ai). Since ∩m

i=1Ai =

P(ω) ⊆ B, it follows by monotonicity (1) that K(∩m
i=1Ai) ⊆ K(B). Therefore, ω ∈

K(B).

• P ⊆ P′ =⇒ f (P′)≤ f (P). Suppose P ⊆ P′, which is equivalent to P(ω)⊆ P′(ω) for

all states ω . Call K := f (P) and K′ := f (P′). Thus for all events A we have

K′(A) = {ω : P′(ω)⊆ A} ⊆ {ω : P(ω)⊆ A}= K(A).

• f (P′)≤ f (P) =⇒ P ⊆ P′. Call K := f (P) and K′ := f (P′). By way of contradiction,

suppose K′ ≤ K but P 6⊆ P′. The latter is equivalent to P(ω) \P′(ω) 6= /0 for some ω .

Choose B = P′(ω). Clearly, ω ∈ K′(B). Since P(ω) 6⊆ P′(ω), we also have ω 6∈ K(B).

This contradicts the assumption that K′(A)⊆ K(A) for all events A.

In light of Proposition 1, knowledge operators and possibility relations are interchange-

able provided that the former satisfy distributivity and necessitation. This implies that one

can use (2) to find the knowledge operator represented by a given possibility relation P. Con-

versely, one can use (3) to retrieve the possibility relation that represents a given knowledge

operator K. Equivalently, one can also use the relation P̂ employed by Morris (1996) in the

proof of his Theorem 1 and defined as follows. For all ω ∈ Ω,

P̂(ω) :=
{

ω
′ ∈ Ω : ω 6∈ K(¬{ω

′})
}

. (4)

In words, ω
′ is in P̂(ω) if the agent does not know at ω that ¬{ω

′} holds; thus, she thinks

that ω
′ is possible. One can show that P̂ in (4) is equal to P in (3).

Finally, the dual isomorphism between K and P implies that each property of the former

corresponds to a specific property of the latter, and vice versa.

Proposition 2. Let K be a knowledge operator in K 0 and let P ∈ P be the possibility

relation that represents K. Then the following hold.

(i) K ∈ K 1 if and only if P ∈ P1.
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(ii) K ∈ K
2 if and only if P ∈ P

2.

(iii) K ∈ K 3 if and only if P ∈ P3.

Proof. The proposition is an immediate corollary of Lemma 2 in Morris (1996).

4 Revision operators

The notion of distributed knowledge I adopt in this paper presupposes a process of com-

munication and inference making. I introduce three revision operators in order to model

inference making. A revision operator captures a specific set of inferences that an agent may

possibly make upon learning another agent’s knowledge operator. The first revision operator

describes inferences based on positive introspection (K2). The second operator is based on

both positive (K2) and negative introspection (K3), and the last one captures distributivity

(K0). The exact set of inferences that an agent actually makes depends on the agent’s level

of introspection and is represented by revision types, which are introduced in Section 5.

A few definitions before getting to revision operators. Given a knowledge operator K ∈

K , the image of K is

Img(K) := {K(A) : A ⊆ Ω} ,

and the set of complements of the elements of Img(K) is

Img(¬K) := {¬K(A) : A ⊆ Ω} .

Finally, the set of fixed points of K is

Fix(K) := {A ⊆ Ω : A = K(A)} .

4.1 Positive Introspection

The positive introspection operator represents inferences based on the positive introspection

axiom (K2). Formally, the positive introspection operator is a function (.)+ : K v → K v

that maps each K to the revised knowledge operator K+ constructed as follows. For all

A ⊆ Ω,

K+(A) =







A if A ∈ Img(K)

K(A) if A /∈ Img(K).
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In words, if A = K(B) for some event B, then knowledge of B is equivalent to A. Thus,

a positively introspective agent realizes that her knowing B is equivalent to knowing A. As a

result, her revised knowledge about A is K+(A) = A. If A 6= K(B) for all B ⊆ Ω, then there

is no event K(B) equivalent to A. Hence the agent’s knowledge of A is left unchanged and

K+(A) = K(A).

As an example of the reasoning behind the positive introspection operator, consider a

non-introspective agent whose knowledge at a certain point in time is described by K in

Table 3. The state space is Ω = {ω1,ω2,ω3}. If the agent were positively introspective, she

would pause a moment to reflect upon her knowledge and reason along the following lines.

“I never know when {ω2} holds. But I know that {ω1,ω2} holds at ω2, and only at ω2.

Therefore, when I am at a state in which I know that {ω1,ω2} holds, I can conclude that the

state must be ω2. Thus I know when {ω2} holds.” A positively introspective agent could

follow such a line of reasoning either before or after the true state of the world has occurred.

In the former case, the agent ponders what she would know at every possible state of the

world, so thinking about her future knowledge. In the other case, the agent reflects both on

her factual and counterfactual knowledge. Assuming ω2 has occurred, the realization that

K+({ω2}) = {ω2} is a piece of factual knowledge. On the contrary, the realization that

K+({ω3}) = {ω3} refers to what the agent would have known if ω3 had occurred.

A K(A) K+(A) K±(A)
/0 /0 /0 /0

{ω1} /0 /0 /0

{ω2} /0 {ω2} {ω2}
{ω3} /0 {ω3} {ω3}

{ω1,ω2} {ω2} {ω2} {ω1,ω2}
{ω1,ω3} /0 /0 {ω1,ω3}
{ω2,ω3} {ω3} {ω3} {ω3}

{ω1,ω2,ω3} {ω1,ω2,ω3} {ω1,ω2,ω3} {ω1,ω2,ω3}

Table 3: A knowledge operator K and the corresponding revised operators K+ and K±.

One can also interpret the positive introspection operator in terms of self-evident events.

Recall that an event is self-evident if A ⊆ K(A). Assuming veridicality, self-evident events

are nothing other than the fixed points of the knowledge operator in hand. It is easy to check

that K+ preserves the fixed points of K. That is, if A is self-evident according to K, then it is

self-evident according to K+ as well. More generally, we have that that Img(K) = Fix(K+).

This means that (.)+ turns all the elements in the image of K into self-evident events. The

following claim says that K+ is the least knowledge operator to accomplish that.
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Claim 2. Let K ∈ K
v. For all J ∈ K , if K ≤ J and Img(K)⊆ Fix(J), then K+ ≤ J.

Proof. Suppose K ≤ J and Img(K)⊆ Fix(J). If A ∈ Img(K), then K+(A) = A = J(A). Oth-

erwise, K+(A) = K(A)⊆ J(A).

The following proposition lists the main properties of the positive introspection operator.

Proposition 3. For all K ∈ K v, the following are true.

(i) K+ satisfies (a) veridicality and (b) positive introspection.

(ii) K+ = K if and only if K satisfies positive introspection.

(iii) K ≤ K+, i.e., the positive introspection operator (.)+ is extensive.

(iv) K++ = K+, i.e., the positive introspection operator (.)+ is idempotent.

Proof. See Appendix A.1.

The extensivity of (.)+ says that no piece of knowledge is lost or forgotten when chang-

ing K into K+. Idempotence says that K+ cannot be further refined through inferences

rooted in the positive introspection axiom.

The positive introspection operator (.)+ is not a closure operator in that it fails to be

monotone2, i.e., it is not the case that K ≤ J implies K+ ≤ J+ for all K,J ∈ K v. An

example is given in Table 4, where the underlying state space is Ω = {ω1,ω2}.

A K(A) J(A) K+(A) J+(A) K±(A) J±(A)
/0 /0 /0 /0 /0 /0 /0

{ω1} /0 /0 {ω1} /0 {ω1} /0

{ω2} /0 /0 /0 /0 {ω2} /0

{ω1,ω2} {ω1} {ω1,ω2} {ω1} {ω1,ω2} {ω1,ω2} {ω1,ω2}

Table 4: An example where K ≤ J but K+ 6≤ J+ and K± 6≤ J±.

2The monotonicity mentioned here should not be confused with the monotonicity in (1). The former refers

to an operator that maps knowledge operators to knowledge operators. The latter refers to a single knowledge

operator that maps events to events.
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4.2 Full Introspection

The full introspection operator describes inferences rooted in negative introspection (K3)

and, consequently, positive introspection (K2). Formally, the full introspection operator

is a function (.)± : K v → K v that maps each K to the revised knowledge operator K±

constructed as follows. For all A ⊆ Ω,

K±(A) =







A if A ∈ Img(K)∪ Img(¬K)

K(A) otherwise.

It is clear that (.)± subsumes (.)+. The difference between the two is that the full in-

trospection operator also takes the following into account. If A = ¬K(B) for some event B,

then lack of knowledge of B is equivalent to A. Thus, a fully introspective agent realizes

that her not knowing B is equivalent to knowing A. Hence, her revised knowledge about A is

K±(A) = A.

As an example, consider again an agent with knowledge K in Table 3. If the agent were

fully introspective, she would think through her knowledge as follows. “I know that {ω1,ω2}

holds at ω2, and only at ω2. This means that I do not know {ω1,ω2} when either ω1 or ω3

occurs. Therefore, when I am at a state in which I do not know {ω1,ω2}, I can conclude that

the state must be either ω1 or ω3. So I know when {ω1,ω3} occurs.”

In terms of self-evident events, it is easy to check that Img(K)∪ Img(¬K) = Fix(K±).

Thus (.)± turns all the events in the image of K and their complements into self-evident

events. In addition, K± is the least knowledge operator to perform such a transformation.

Claim 3. Let K ∈ K
v. For all J ∈ K , if K ≤ J and Img(K)∪ Img(¬K) ⊆ Fix(J), then

K± ≤ J.

Proof. Suppose K ≤ J and Img(K)∪ Img(¬K) ⊆ Fix(J). If A ∈ Img(K)∪ Img(¬K), then

K±(A) = A = J(A). Otherwise, K±(A) = K(A)⊆ J(A).

The following proposition lists the main properties of the positive introspection operator.

Notice that (.)± is not a closure operator in that it fails to be monotone.

Proposition 4. For all K ∈ K v, the following are true.

(i) K± satisfies (a) veridicality, (b) necessitation, (c) positive introspection, and (d) neg-

ative introspection.

(ii) K± = K if and only if K satisfies negative introspection.
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(iii) K ≤ K±, i.e., the full introspection operator (.)± is extensive.

(iv) K±± = K±, i.e., the full introspection operator (.)± is idempotent.

Proof. See Appendix A.2.

Notice that, just like (.)+, the full introspection operator (.)± is not a closure operator in

that it fails to be monotone (see Table 4).

At this juncture, one might wonder why I do not consider a revision operator for negative

introspection alone. The reason is that such an operator would eventually coincide with the

full introspection operator. More specifically, one can show the following. Suppose (.)− is

the revision operator that maps each K in K
v to the knowledge operator K− constructed as

follows. For all A ⊆ Ω,

K−(A) =







A if A ∈ Img(¬K)

K(A) otherwise.

It is easy to check that (.)− is not idempotent. However, applying (.)− twice gives exactly

the full introspection operator, i.e., K−− = K±.

4.3 Distributive closure

The distributive closure represents inferences based on the distributivity axiom (K0). For-

mally, the distributive closure is a function (.)d : K v →K v that maps each K to the revised

knowledge operator Kd constructed as follows. For all A ⊆ Ω,

Kd(A) =
⋃

{∩n
i=1K(Bi) : B1, . . . ,Bn ⊆ Ω, ∩n

i=1Bi ⊆ A, n ≥ 1} .

In words, if A is jointly implied by a sequence of events B1, . . . ,Bn, then simultaneous

knowledge of all those n events implies knowledge of A.

As an example of the reasoning behind the distributive closure, consider a case with five

states of the world ω1, . . . ,ω5. Suppose an agent’s knowledge is represented by K in Table 5.

The agent always knows the state space but never knows any other event that is not reported

in the first column of the table. If her knowledge satisfied distributivity, the agent would

be able to draw the following inferences. “I never know the event {ω2,ω5}. But this event

holds if and only if the three events {ω1,ω2,ω3,ω5}, {ω2,ω3,ω4,ω5} and {ω1,ω2,ω4,ω5}

simultaneously hold. Now, when ω2 occurs, and only in that case, I know that all the three
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events above hold. Therefore, I can conclude that also {ω2,ω5} holds at ω2. And if I know

that {ω2,ω5} holds, I can infer that every superset of it holds as well.”

A K(A) Kd(A)
{ω2,ω5} /0 {ω2}

{ω1,ω2,ω3,ω5} {ω1,ω2,ω3} {ω1,ω2,ω3}
{ω2,ω3,ω4,ω5} {ω2,ω3,ω4} {ω2,ω3,ω4}
{ω1,ω2,ω4,ω5} {ω1,ω2,ω4} {ω1,ω2,ω4}

. . . . . . . . .

Table 5: A portion of a knowledge operator K and of its distributive closure Kd.

The following proposition lists the main properties of the distributive closure.

Proposition 5. For all K,J ∈ K v, the following are true.

(i) Kd satisfies (a) veridicality and (b) distributivity.

(ii) Kd = K if and only if K satisfies distributivity.

(iii) K ≤ Kd, i.e., the distributive closure (.)d is extensive.

(iv) Kdd = Kd, i.e., the distributive closure (.)d is idempotent.

(v) K ≤ J implies Kd ≤ Jd, i.e., the distributive closure (.)d is monotone.

Proof. See Appendix A.3.

Parts (3)-(5) above say that the distributive closure (.)d is a closure operator. As the

lemma below shows, the distributive closure also preserves positive and negative introspec-

tion. On the other hand, it is easy to check that neither of the two introspection operators

preserves distributivity. This difference between the distributive closure and the two intro-

spection operators plays an important role in defining revision types in Section 5.

Lemma 1. Let K ∈ K v.

(i) If K satisfies positive introspection, so does Kd.

(ii) If K satisfies negative introspection, so does Kd.

Proof. See Appendix A.3.
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5 Knowledge revision

In this section I formalize how differently introspective agents revise their knowledge upon

learning what others know. Consider an agent, say 1, whose knowledge at a certain point in

time is represented by an operator K1 ∈ K 1. One can think of K1 as knowledge acquired

by 1 on her own. Suppose 1 learns the knowledge operators K2, . . . ,Kn ∈ K 1 of n−1 other

agents. For example, those n− 1 agents communicate their operators directly to agent 1,

as they are assumed to do in Section 6. How would 1 process the influx of knowledge she

faces? I assume that agent 1 carries out her revision process in two steps. First, she merges

K1 with all the other n− 1 knowledge operators. Formally, this amounts to forming a new

knowledge operator ∪n
i=1Ki through pointwise union. For all events A, the value of ∪n

i=1Ki at

A is

∪n
i=1Ki(A) := K1(A)∪· · ·∪Kn(A).

To simplify notation, from now on I write ∪i and ∩i when the index set is clear from

the context. In the second stage, agent 1 thinks through ∪iKi using some of the revision

operators introduced in the preceding section, depending on how introspective she is. More

specifically, I model levels of introspection by introducing revision types. An agent’s revision

type indicates (a) which revision operators the agent uses, and (b) the order in which she uses

them.

5.1 Revision types

For any given agent, there are three possible levels of introspection: non-introspection, pos-

itive introspection, and full introspection. A non-introspective agent revises knowledge only

through the distributive closure (.)d. If agent 1 in the scenario above is non-introspective,

she will complete her revision process by forming the knowledge operator (∪iKi)
d. Since the

distributive closure is idempotent, the agent cannot refine her knowledge by further iterations

of (.)d. Notice that (∪iKi)
d ∈K 1. Clearly, it may well be the case that new inferences based

on positive or negative introspection can be drawn from (∪iKi)
d. A case in point is when

(∪iKi)
d equals K in Table 3. However, I stipulate by definition that a non-introspective agent

only draws inferences that are represented by the distributive closure. The revision type of

a non-introspective agent is denoted by (d) so as to emphasize that the distributive closure

fully identifies the way in which she revises knowledge.

A positively introspective agent uses both (.)+ and (.)d to revise her knowledge. Here

one needs to consider two distinct cases depending on the order in which the revision op-
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erators are employed. In the first case, suppose the agent revises (∪iKi) by applying (.)+

first, and (.)d afterwards. That is, the agent starts out by forming (∪iKi)
+, and then ap-

plies the distributive closure to the latter. Abusing notation, I denote (∪iKi)
+d the resulting

knowledge operator. It follows immediately from Propositions 3 and 5 and Lemma 1 that

(∪iKi)
+d satisfies both positive introspection and distributivity. Thus no further inferences

can be drawn from (∪iKi)
+d by subsequent iterations of the positive introspection operator

or of the distributive closure. An agent’s revision type is (+d) when she revises her knowl-

edge by applying first the positive introspection operator and then the distributive closure.

In the second case, suppose the agent uses the same two revision operators as above but

in reverse order. First she forms (∪iKi)
d, and then applies the positive introspection operator

to the latter so as to obtain (∪iKi)
d+. Importantly, the agent can further refine (∪iKi)

d+

by applying the distributive closure to it. In fact, while (∪iKi)
d+ always satisfies positive

introspection, it may fail to satisfy distributivity. Thus I assume that the agent completes her

revision process by applying again the distributive closure so as to form (∪iKi)
d+d. Since

the distributive closure preserves positive introspection, there is no further inference that

can be drawn from (∪iKi)
d+d through the distributive closure or the positive introspection

operator. An agent’s revision type is (d+d) when she revises her knowledge by applying the

distributive closure and the positive introspection operator in the exact order just illustrated.

Notice that both (∪iKi)
+d and (∪iKi)

d+d belong to K 2 yet they need not be equal. This

means that types (+d) and (d+d) may reach different conclusions when revising the very

same knowledge operator.

The definition of fully introspective types mirrors the definition of positively introspec-

tive ones. A fully introspective agent uses both (.)± and (.)d to revise her knowledge. Two

cases are possible. In the first, the agent applies the full introspection operator first, and

then the distributive closure. The resulting operator is denoted by (∪iKi)
±d and the agent’s

revision type is (±d). In the remaining case, the agent starts out with (.)d, then applies (.)±,

and finally (.)d. The resulting operator is indicated as (∪iKi)
d±d and the agent’s revision

type is (d± d). By Propositions 4 and 5 and Lemma 1, there is no further inference that

either type can draw through the full introspection operator or the distributive closure. Both

(∪iKi)
±d and (∪iKi)

d±d belong to K 3 but they need not be equal. This means that two fully

introspective agents may reach different conclusions depending on the order in which they

process the very same knowledge operator.

In sum, there are five revision types that describe how agents with different levels of
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introspection revise knowledge. All types are collected in the following set:

Θ = {(d),(+d),(d+d),(±d),(d±d)} .

When an agent of type θ ∈ Θ revises a knowledge operator K, I write Kθ to indicate the

resulting revised operator.

At this juncture, one might wonder why every type uses the distributive closure and why

I ignore the two possible types (d+) and (d±). First, I examine a specific form of bounded

rationality: introspection on one’s own knowledge. More introspective agents are more ra-

tional. Being more or less introspective depends on using, or not using, the full or positive

introspection operator in knowledge revision; it does not depend on the distributive closure.

Second, I take introspection skills as independent of computational skills. I assume that

agents may have limited introspection skills but they do not face any limit on the computa-

tional burden of what they can potentially do. Notice that the distributive closure calls for

the processing of potentially long and non-trivial sequences of events. Finally, I assume that

each agent revises knowledge as much as possible, provided that she only adopts the revision

operators that form her type. The two candidate types (d+) and (d±) are not included in Θ

because (∪iKi)
d+ and (∪iKi)

d± can be further refined through the distributive closure.

5.2 Revision in terms of possibility relations

Revision types are defined in terms of revision operators, which are transformations of

knowledge operators. The dual isomorphism established in Proposition 1 implies that, for

each revision type, there is a unique possibility relation that represents the revised knowledge

of that type. As the following proposition shows, the representation of revised knowledge for

introspective types hinges on the left trace and the left n-ary trace introduced in Subsection

3.2.

Proposition 6. Let K1, . . . ,Kn be n ≥ 1 knowledge operators in K 1, and let P = (P1, . . . ,Pn)

be the profile of possibility relations in P1 that represent those n knowledge operators. Then

the following hold.

(i) (∪iKi)
d is represented by ∩iPi;

(ii) (∪iKi)
+d is represented by TP, i.e., the left n-ary trace of P;

(iii) (∪iKi)
d+d is represented by T∩iPi

, i.e., the left trace of ∩iPi;
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(iv) (∪iKi)
±d is represented by EP, i.e., the symmetric part of the left n-ary trace of P;

(v) (∪iKi)
d±d is represented by E∩iPi

, i.e., the symmetric part of the left trace of ∩iPi.

Proof. See Appendix A.5.

Besides its theoretical interest, the proposition above has “practical” relevance in the

sense that it is often easier to compute revised knowledge by possibility relations than by

revision operators. A case in point is the example in Subsection 6.1.

5.3 A preorder on the set of revision types

There is a natural preorder on the set of revision types. Formally, consider the binary relation

� on the type set Θ. For all types θ and θ
′, we have that θ � θ

′ if, for all finite sequences of

n ≥ 1 operators K1, . . . ,Kn in K 1, the following holds:

(∪n
i=1Ki)

θ ≤ (∪n
i=1Ki)

θ
′
.

In words, θ � θ
′ if revision according to θ

′ always yields as much knowledge as revision

according to θ . It is easy to check that � is reflexive and transitive but not necessarily

antisymmetric. The graph of � is an immediate consequence of the claim below, and is

represented in Figure 1.

(±d)

(+d) (d±d)

(d+d)

(d)

Figure 1: The preorder � on the set of revision types. Loops and arcs implied by transitivity

are omitted.
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Claim 4. Let K1, . . . ,Kn be n ≥ 1 knowledge operators in K
1, and let P = (P1, . . . ,Pn) be

the profile of relations in P1 that represent those n knowledge operators. Then the following

are true:

(i) (∪iKi)
d ≤ (∪iKi)

d+d ≤ (∪iKi)
d±d ≤ (∪iKi)

±d;

(ii) (∪iKi)
d ≤ (∪iKi)

d+d ≤ (∪iKi)
+d ≤ (∪iKi)

±d.

Dually, also the following are true:

(i’) ∩iPi ⊇ T∩iPi
⊇ E∩iPi

⊇ EP;

(ii’) ∩iPi ⊇ T∩iPi
⊇ TP ⊇ EP.

Proof. I show the dual statements (i’) and (ii’). It is immediate that ∩iPi ⊇ T∩iPi
⊇ E∩iPi

and

that TP ⊇ EP. In order to show that T∩iPi
⊇ TP, notice that (ω,ω ′) ∈ TP implies ∩ jPj(ω

′) ⊆

Pi(ω) for all i ∈ {1, . . . ,n}. Therefore, ∩ jPj(ω
′) ⊆ ∩iPi(ω) and (ω,ω ′) ∈ T∩iPi

. Finally,

E∩iPi
⊇ EP follows easily from T∩iPi

⊇ TP.

6 Distributed knowledge

This section gives a formal definition of distributed knowledge and then shows how one can

calculate distributed knowledge in groups of differently introspective agents. The formal

definition follows the principle of full communication of van der Hoek et al. (1999), which

says that distributed knowledge is the knowledge that group members can attain if they were

fully able to communicate with one another and share everything they know. Communi-

cation is non-strategic and truthful. Such a notion of distributed knowledge is deliberately

permissive since the ultimate goal is to understand what a group can know potentially.

Agents are allowed to communicate for as long as they want. Time is discrete and in-

dexed by t = 0,1,2, . . . . Let (θ1, . . . ,θN) be a profile of revision types, which are held fixed

throughout the entire communication process. Let (K1, . . . ,KN) be a profile of initial knowl-

edge operators in K 1. At each stage t, everyone communicates her knowledge operator to

everyone else. Then every agent revises her knowledge in light of what she has learned from

others and according to her own revision type. At stage t +1, the same process of communi-

cation and revision takes place, and so on in all subsequent stages. The resulting knowledge

of each agent i is represented by the sequence (Kt
i : t = 0,1,2, . . .) defined recursively as
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follows. For each i ∈ I,

K0
i = Ki

Kt
i = (∪ j∈IK

t−1
j )θi for t = 1,2, . . .

Distributed knowledge is what anyone knows “at the end” of the communication process

just described. Formally, distributed knowledge is the knowledge operator KD obtained as

KD = ∪i∈I

(

∪∞

t=0Kt
i

)

. (5)

The next proposition shows how (5) reduces to rather simple expressions that depend

only on initial knowledge operators and on some of the revision types in the group.

Proposition 7. Let (K1, . . . ,KN) be a profile of N initial knowledge operators in K 1, let P =

(P1, . . . ,PN) be the profile of possibility relations representing those N knowledge operators,

and let (θ1, . . . ,θN) be a profile of revision types.

(i) If there is a type θ̄ ∈ {θi : i ∈ I} such that θi � θ̄ for all i ∈ I, then

KD = (∪iKi)
θ̄ .

(ii) In the complementary case, in which θi 6= (±d) for all i ∈ I and there are distinct

j,k ∈ I such that θ j = (+d) and θk = (d±d), we have

KD =
(

(∪iKi)
+d ∪ (∪iKi)

d±d
)d±d

= (∪iKi)
±d.

Proof. (i) Without loss of generality, suppose θN = θ̄ . By the definition of �, for all j ∈ I,

K1
j = (∪iKi)

θ j ≤ (∪iKi)
θ̄ = K1

N .

Thus ∪iK
1
i = K1

N . Then it is easy to check that for all j ∈ I,

K2
j = (∪iK

1
i )

θ j = (K1
N)

θ j = K1
N,

from which the result follows.

(ii) I use the following claim to prove part (ii).
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Claim 5. Let K1, . . . ,Kn be n ≥ 1 knowledge operators in K
2, and let P = (P1, . . . ,Pn)

be the profile of relations in P2 that represent those n knowledge operators. Then we

have:

(∪iKi)
d = (∪iKi)

d+d = (∪iKi)
+d ≤ (∪iKi)

d±d = (∪iKi)
±d

and, dually,

∩i Pi = T∩iPi
= TP ⊇ E∩iPi

= EP. (6)

Proof of Claim 5. I only prove the dual statement (6). Suppose (ω,ω ′) ∈ ∩iPi. Then

ω
′ ∈∩iPi(ω)⊆ Pj(ω) for all j ∈ {1, . . . ,n}. Since each Pj is transitive, ω

′ ∈ Pj(ω) im-

plies Pj(ω
′)⊆ Pj(ω). Thus (ω,ω ′) ∈ TP and ∩iPi ⊆ TP. By Claim 4, we can conclude

∩iPi = T∩iPi
= TP ⊇ E∩iPi

. Since T∩iPi
= TP, we also have E∩iPi

= EP.

To prove part (ii) of the proposition, suppose no one is of type (±d). Without loss of

generality, suppose θN−1 = (+d) and θN = (d±d). By Claim 4, for all j ∈ I, either

K1
j = (∪iKi)

θ j ≤ (∪iKi)
+d = (∪iKi)

θN−1

or

K1
j = (∪iKi)

θ j ≤ (∪iKi)
d±d = (∪iKi)

θN ,

or both. Therefore,

∪iK
1
i = (∪iKi)

+d ∪ (∪iKi)
d±d.

Since both (∪iKi)
+d and (∪iKi)

d±d are in K 2, we can use Claim 5 to conclude that

for all j ∈ I,

K2
j = (∪iK

1
i )

θ j ≤
(

(∪iKi)
+d ∪ (∪iKi)

d±d
)d±d

= K2
N ,

from which it follows that KD = K2
N . It remains to show that K2

N = (∪iKi)
±d. By

Proposition 6, the revised knowledge operator (∪iKi)
+d is represented by TP, the op-

erator (∪iKi)
d±d is represented by E∩iPi

, and K2
N is represented by the symmetric part

of the left trace of TP ∩E∩iPi
. Now, the relation TP ∩E∩iPi

is reflexive and transitive

because it is the intersection of two reflexive and transitive relations. Moreover, it is

easy to check that the left trace of a reflexive and transitive binary relation is equal to

the relation itself. Therefore, the relation TP ∩E∩iPi
coincides with its left trace, and

its symmetric part is EP ∩E∩iPi
. By Claim 4, we have EP ∩E∩iPi

= EP. Finally, by
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Proposition 6, the relation EP represents (∪iKi)
±d, so ending the proof.

Proposition 7 shows that there are two different cases to consider. In the first, there is a

highest type θ̄ in the group. An agent of type θ̄ makes all the inferences that anyone else

in group can make (This is the interpretation, i.e., how to interpret the highest type). As a

result, distributed knowledge is nothing other than what anyone of type θ̄ knows after having

learned what others know. We mentioned in the Introduction that distributed knowledge is

essentially “what a wise man would know”. Thus we can say that any agent of type θ̄

acts as the “wise man” who processes all the knowledge in the group and whose inferences

determine distributed knowledge. In the second case, we do not have a highest type. Who

is the “wise man” now? It turns out that the two maximal types (+d) and (d±d) jointly

act as the “wise man”. More specifically, distributed knowledge can be attained in two steps.

First, everyone communicates her knowledge operator to everyone else. Then distributed

knowledge can be attained in the second step by letting just the two types (+d) and (d±d)

talk to each other. Remarkably, distributed knowledge in this case coincides with what it

would have been if someone of type (±d) had been a group member. In sum, part (2) of the

proposition depicts a wisdom-of-the-crowd effect, in which the group knows more than what

each of its members could possibly do alone. Differently put, distributed knowledge in part

(i) can be attained by a single group member who has access to everyone’s knowledge. In

part (ii), two agents are necessary. We emphasize that part (ii) only holds in heterogeneous

groups.

6.1 Example

This is an example of how to calculate distributed knowledge. There are three agents and

four states of the world. The initial knowledge operators are K1,K2 and K3 in Table 6, and

the corresponding possibility relations are reported in Table 7. Suppose revision types are

(θ1,θ2,θ3) = ((d),(d+ d),(d± d)). The highest type in the group is θ3 = (d± d). By

part (i) of Proposition 7, distributed knowledge is determined by the highest type and is

equal to (∪iKi)
d±d in Table 8. This means that distributed knowledge is attained just by

transferring each agent’s initial knowledge to agent 3. Now suppose the profile of types is

(θ ′
1,θ

′
2,θ

′
3) = ((d),(+d),(d±d)). The two types θ

′
2 = (+d) and θ

′
3 = (d±d) are maximal

but none of them is the highest type in the group. By part (ii) of Proposition 7, distributed

knowledge is (∪iKi)
±d in Table 8. Notice that no one in the group is of type (±d). In
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this case, one cannot attain distributed knowledge just by transferring initial knowledge to a

single group member. In fact, at the end of the first round of communication, the knowledge

operators of the three agents are K1
1 = (∪iKi)

d, K1
2 = (∪iKi)

+d and K1
3 = (∪iKi)

d±d, all

of which can be found in Table 8. It takes another round of communication to finally get

K2
3 = (∪iK

1
i )

d±d = (∪iKi)
±d, which gives us distributed knowledge. Notice that (∪iKi)

±d

is strictly finer than all the three knowledge operators K1
1 , K1

2 and K1
3 formed at the end of

the first round of communication.

A K1(A) K2(A) K3(A) ∪iKi(A)
/0 /0 /0 /0 /0

{ω1} /0 {ω1} {ω1} {ω1}
{ω2} {ω2} {ω2} /0 {ω2}
{ω3} /0 /0 /0 /0

{ω4} /0 /0 /0 /0

{ω1,ω2} {ω1,ω2} {ω1,ω2} {ω1} {ω1,ω2}
{ω1,ω3} /0 {ω1} {ω1} {ω1}
{ω1,ω4} /0 {ω1} {ω1} {ω1}
{ω2,ω3} {ω2} {ω2} /0 {ω2}
{ω2,ω4} {ω2} {ω2} /0 {ω2}
{ω3,ω4} {ω3} /0 /0 {ω3}

{ω1,ω2,ω3} {ω1,ω2} {ω1,ω2} {ω1} {ω1,ω2}
{ω1,ω2,ω4} {ω1,ω2} {ω1,ω2} {ω1} {ω1,ω2}
{ω1,ω3,ω4} {ω3,ω4} {ω1} {ω1} {ω1,ω3,ω4}
{ω2,ω3,ω4} {ω2,ω3} {ω2,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4}

Ω Ω Ω Ω Ω

Table 6: Initial knowledge operators and their union.

More generally, Table 8 collects all the five knowledge operators that can possibly de-

scribe distributed knowledge for the group under consideration when their initial knowledge

is given by K1, K2 and K3 in Table 6. The prevailing profile of revision types determines

the unique operator that represents distributed knowledge. One can calculate each operator

in Table 8 by applying the relevant revision operators to ∪iKi. The calculations are straight-

forward yet laborious; it is quicker to leverage on the duality between knowledge operators

and possibility relations. For instance, suppose one wants to calculate (∪iKi)
d±d. Proposi-

tion 6 says that the latter is represented by E∩iPi
, i.e., the symmetric part of the left trace of

∩iPi. One can easily calculate E∩iPi
just by following the definitions in Subsection 3.2, and

the result is in Table 7. Then one can form (∪iKi)
d±d via (2), which defines the knowledge

operator represented by any given possibility relation. More generally, Table 7 collects the
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possibility relations that represent the knowledge operators in Table 8. To conclude, no-

tice that EP, which is the symmetric part of the left ternary trace of P = (P1,P2,P3), can be

formed directly through minimal sets as per Claim 1: it is not necessary to calculate first the

left ternary trace TP.

ω P1(ω) P2(ω) P3(ω)
∩iPi(ω),
T∩iPi

(ω),
E∩iPi

(ω)
TP(ω) EP(ω)

ω1 {ω1,ω2} {ω1} {ω1} {ω1} {ω1} {ω1}
ω2 {ω2} {ω2} {ω2,ω3,ω4} {ω2} {ω2} {ω2}
ω3 {ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4} {ω3,ω4} {ω3} {ω3}
ω4 {ω1,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4} {ω3,ω4} {ω3,ω4} {ω4}

Table 7: Initial possibility relations, their intersection, and their traces.

A

(∪iKi)
d(A),

(∪iKi)
d+d(A),

(∪iKi)
d±d(A)

(∪iKi)
+d(A) (∪iKi)

±d(A)

/0 /0 /0 /0

{ω1} {ω1} {ω1} {ω1}
{ω2} {ω2} {ω2} {ω2}
{ω3} /0 {ω3} {ω3}
{ω4} /0 /0 {ω4}

{ω1,ω2} {ω1,ω2} {ω1,ω2} {ω1,ω2}
{ω1,ω3} {ω1} {ω1,ω3} {ω1,ω3}
{ω1,ω4} {ω1} {ω1} {ω1,ω4}
{ω2,ω3} {ω2} {ω2,ω3} {ω2,ω3}
{ω2,ω4} {ω2} {ω2} {ω2,ω4}
{ω3,ω4} {ω3,ω4} {ω3,ω4} {ω3,ω4}

{ω1,ω2,ω3} {ω1,ω2} {ω1,ω2,ω3} {ω1,ω2,ω3}
{ω1,ω2,ω4} {ω1,ω2} {ω1,ω2} {ω1,ω2,ω4}
{ω1,ω3,ω4} {ω1,ω3,ω4} {ω1,ω3,ω4} {ω1,ω3,ω4}
{ω2,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4} {ω2,ω3,ω4}

Ω Ω Ω Ω

Table 8: Revised knowledge operators.
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7 Conclusion

We have provided a characterization of distributed knowledge for groups in which members

might not be equally rational. We have modelled explicitly the communication process that

leads to distributed knowledge as well as the inferences that agents make along the way.

Our main result shows that there are two fundamental cases. If there is a highest type in the

group, i.e., a member who can replicate all the inferences that anyone else in group makes,

then such highest type determines what is distributed knowledge. In more practical terms,

distributed knowledge can be attained just by transferring each member’s knowledge to the

highest type. This means that unilateral communication is sufficient. In the case in which no

highest type is in the group, reciprocal communication becomes necessary in order to attain

distributed knowledge. In addition, distributed knowledge coincides with what it would have

been had the highest type been in the group. This means that the group can replicate what the

highest type would be able to accomplish by herself. All in all, our results show the power

of communication to generate new knowledge. On a normative level, our results suggest that

heterogeneous groups can know more than groups in which everyone processes information

in the same way.
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A Appendix

A.1 Proof of Proposition 3

(i) Veridicality of K+ follows from the veridicality of K and the definition of K+. To show

that K+ satisfies positive introspection, notice that if A ∈ Img(K), then K+(A) = A.

Consequently, K+(K+(A)) = K+(A) = A. If A /∈ Img(K), then K+(A) = K(A). Thus

K+(K+(A)) = K+(K(A)) = K(A) since K(A) ∈ Img(K).

(ii) If K+ = K, then part (i) above implies that K satisfies positive introspection. To show

the other direction, suppose K satisfies positive introspection. Take any event A ⊆ Ω.

If K(A) = A, it follows immediately by the definition of K+ that K+(A) = A. Now

suppose K(A) 6= A. There are two cases. If A /∈ Img(K), then K+(A) = K(A). In

the remaining case, A ∈ Img(K). This means that there exists an event B 6= A such

that K(B) = A. By positive introspection, K(B) = K(K(B)). Since K(B) = A, we get

K(A) = A, which contradicts the assumption that K(A) 6= A.

(iii) This follows immediately by the definition of K+ and the axiom of veridicality.

(iv) By part (i), the revised knowledge operator K+ satisfies positive introspection. Thus

K++ = K+ by part (ii).

A.2 Proof of Proposition 4

(i) Veridicality of K± follows from the veridicality of K and the definition of K±. As for

necessitation, it is clear that K( /0) = /0 since K satisfies veridicality. Thus Ω=¬K( /0)∈

Img(¬K) and K±(Ω)=Ω. To show that K± satisfies positive introspection, notice that

if A ∈ Img(K)∪ Img(¬K), then K±(A) = A. Consequently, K±(K±(A)) = K±(A) =

A. If A /∈ Img(K)∪Img(¬K), then K±(A)=K(A). Therefore, K±(K±(A))=K±(K(A))=

K(A) since K(A) ∈ Img(K). Finally, to show that K± satisfies negative introspection,

suppose A ∈ Img(K)∪ Img(¬K). Then K±(A) = A and ¬K±(A) = ¬A. Moreover,

K±(¬K±(A)) = K±(¬A). If A ∈ Img(K), then ¬A ∈ Img(¬K) and K±(¬A) = ¬A.

Analogously, if A ∈ Img(¬K), then ¬A ∈ Img(K) and K±(¬A) = ¬A. Now suppose

A /∈ Img(K)∪ Img(¬K). By definition, K±(A) = K(A) and, consequently, ¬K±(A) =

¬K(A). Furthermore, K±(¬K±(A))=K±(¬K(A))=¬K(A), since ¬K(A)∈ Img(¬K).
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(ii) If K± = K, then part (i) above implies that K satisfies negative introspection. To show

the other direction, suppose K satisfies negative introspection. Take any A ⊆ Ω. If

K(A) = A, then K±(A) = A by the definition of K±. Now suppose K(A) 6= A. If

A /∈ Img(K)∪ Img(¬K), then K±(A) = K(A). If A ∈ Img(K)∪ Img(¬K), there are

two subcases. First, A ∈ Img(¬K). This means that there exists an event B such that

¬K(B) = A. By negative introspection, ¬K(B) = K(¬K(B)). Since A = ¬K(B), we

get K(A) = A, which contradicts the assumption K(A) 6= A. In the remaining sub-

case, A ∈ Img(K). Hence there is an event B such that A = K(B), which is equivalent

to ¬A = ¬K(B). By negative introspection, ¬K(B) = K(¬K(B)) and, consequently,

¬A = K(¬A), which is equivalent to A = ¬K(¬A). By negative introspection again,

¬K(¬A) = K(¬K(¬A)) and, consequently, K(A) = A, so reaching a contradiction.

(iii) This follows by the definition of K± and the fact that K satisfies veridicality.

(iv) By part (i), the revised knowledge operator K± satisfies negative introspection. Thus

K±± = K± by part (ii).

A.3 Proof of Proposition 5

(i) Veridicality of Kd follows from the veridicality of K and the definition of Kd. To

show that Kd satisfies distributivity, notice that Kd satisfies monotonicity (1). Hence,

Kd(A∩B) ⊆ Kd(A)∩Kd(B) for all A,B ⊆ Ω. To show the reverse inclusion, take any

A,B ⊆ Ω. The case where Kd(A)∩Kd(B) = /0 is trivial. So suppose ω ∈ Kd(A)∩

Kd(B) 6= /0. By the definition of Kd, there exist events C1, . . . ,Cn,D1, . . . ,Dm ⊆ Ω such

that ∩n
i=1Ci ⊆ A, ∩m

j=1D j ⊆ B, and

ω ∈ (∩n
i=1K(Ci))∩

(

∩m
j=1K(D j)

)

= K(C1)∩· · ·∩K(Cn)∩K(D1)∩· · ·∩K(Dm). (7)

Since ∩n
i=1Ci ⊆ A and ∩m

j=1D j ⊆ B, we have

C1 ∩· · ·∩Cn ∩D1 ∩· · ·∩Dm ⊆ A∩B.

Hence it follows by the definition of Kd that the set (7) is included in Kd(A∩B), so

proving that Kd satisfies distributivity.
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(ii) If Kd = K, then part (i) above implies that K satisfies distributivity. To show the other

direction, suppose K satisfies distributivity. Fix A ⊆Ω and take any sequence of events

B1, . . . ,Bn such that ∩n
i=1Bi ⊆ A. Since K satisfies distributivity, and consequently

monotonicity, we have

∩n
i=1K(Bi) = K(∩n

i=1Bi)⊆ K(A).

This means that Kd(A) is the union of subsets of K(A). Therefore, Kd(A)⊆ K(A). In

addition, it follows easily from the definition of Kd that K(A) ⊆ Kd(A). Thus we can

conclude that K(A) = Kd(A) for all A ⊆ Ω.

(iii) This follows immediately from the definition of Kd.

(iv) The revised knowledge operator Kd satisfies distributivity by part (i). Thus Kdd = Kd

by part (ii).

(v) Suppose K ≤ J, i.e., K(A)⊆ J(A) for all A⊆ Ω. It follows that ∩n
i=1K(Bi)⊆∩n

i=1J(Bi)

for all sequences B1, . . . ,Bn ⊆ Ω. Therefore, Kd ≤ Jd.

A.4 Proof of Lemma 1

(i) Suppose K ∈K v satisfies positive introspection. Fix A⊆Ω. If Kd(A) is the empty set,

it is obvious that Kd(A)⊆ Kd(Kd(A)). Now suppose Kd(A) 6= /0 and take ω ∈ Kd(A).

By the definition of Kd, there exist events B1, . . . ,Bn ⊆Ω such that ∩n
i=1Bi ⊆A and ω ∈

∩n
i=1K(Bi)⊆ Kd(A). By positive introspection and veridicality, we have ∩n

i=1K(Bi) =

∩n
i=1K(K(Bi)). By using the fact that ∩n

i=1K(Bi) ⊆ Kd(A) and the definition of Kd,

one can conclude that

ω ∈ ∩n
i=1K(K(Bi))⊆ Kd(Kd(A)).

(ii) Suppose K ∈ K v satisfies negative introspection. Fix A ⊆ Ω. If ¬Kd(A) is the empty

set, then it is obvious that ¬Kd(A) ⊆ Kd(¬Kd(A)). Now suppose ¬Kd(A) 6= /0 and

take ω ∈ ¬Kd(A). By the definition of Kd and De Morgan’s laws, the event ¬Kd(A) is

¬Kd(A) =
⋂

{∪n
i=1¬K(Bi) : B1, . . . ,Bn ⊆ Ω, ∩n

i=1Bi ⊆ A, n ≥ 1} . (8)
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As per (8), the event ¬Kd(A) is the intersection of infinitely many events of the form

∪n
i=1¬K(Bi). Notice that ¬Kd(A) is fully determined by sequences B1, . . . ,Bn in Ω

such that Bi 6= B j for all i 6= j. Since the state space Ω is finite, there are only finitely

many such sequences. Thus one can write ¬Kd(A) as the intersection of finitely many

events of the form ∪n
i=1¬K(Bi). In addition, recall that set intersection distributes over

union and that for any two finite families {A j} j∈J and {Ak}k∈K we have

(

∪ j∈JA j

)

∩ (∪k∈KAk) =
⋃

( j,k)∈J×K

(A j ∩Ak). (9)

Now, by repeated application of (9), the event ¬Kd(A) can be written as the union of

finitely many events of the form ∩m
i=1¬K(Ci). Since ω ∈¬Kd(A) by assumption, there

must exist a sequence C1, . . . ,Cm in Ω for which

ω ∈ ∩m
i=1¬K(Ci)⊆ ¬Kd(A).

By negative introspection and veridicality, we have ∩m
i=1¬K(Ci) = ∩m

i=1K(¬K(Ci)).

By using the fact that ∩m
i=1¬K(Ci) ⊆ ¬Kd(A) and by the definition of Kd one can

conclude that

ω ∈ ∩m
i=1¬K(Ci) = ∩m

i=1K(¬K(Ci))⊆ Kd(¬Kd(A)).

A.5 Proof of Proposition 6

The proof relies on the following two lemmata.

Lemma 2. Let K1, . . . ,Kn be n ≥ 1 knowledge operators in K
1, and let P = (P1, . . . ,Pn) be

the profile of relations in P1 that represent those n knowledge operators. In addition, let Q

be the relation that represents (∪n
i=1Ki)

+d. For all ω,ω ′ ∈ Ω, the following are equivalent:

(i) (ω,ω ′) ∈ TP;

(ii) for all A ⊆ Ω, ω ∈ ∪n
i=1Ki(A) =⇒ ω

′ ∈ ∪n
i=1Ki(A);

(iii) for all A ⊆ Ω, ω ∈ (∪n
i=1Ki)

+(A) =⇒ ω
′ ∈ (∪n

i=1Ki)
+(A);
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(iv) for all A ⊆ Ω, ω ∈ (∪n
i=1Ki)

+d(A) =⇒ ω
′ ∈ (∪n

i=1Ki)
+d(A);

(v) (ω,ω ′) ∈ Q.

Proof of Lemma 2. It is easier to show pairwise equivalence as follows.

• (i) =⇒ (ii). Suppose (ω,ω ′) ∈ TP. If ω ∈ ∪n
i=1Ki(A) for some A ⊆ Ω, then ω ∈

Kh(A) for some h ∈ {1, . . . ,n}. This means that Ph(ω) ⊆ A. By the definition of the

left n-ary trace, there exists a j ∈ {1, . . . ,n} such that Pj(ω
′) ⊆ Ph(ω). Therefore,

ω
′ ∈ K j(A)⊆ ∪n

i=1Ki(A).

• (ii) =⇒ (i). Suppose b) holds. It is clear that, for all i∈ {1, . . . ,n}, ω ∈Ki(Pi(ω))⊆

∪n
j=1K j(Pi(ω)). It follows by b) that ω

′ ∈ ∪n
j=1K j(Pi(ω)) too. The latter implies that

ω
′ ∈ Kh(Pi(ω)) for some h ∈ {1, . . . ,n}, which is equivalent to Ph(ω

′)⊆ Pi(ω). Thus

(ω,ω ′) ∈ TP.

• (ii) =⇒ (iii). This follows from the definition of (∪n
i=1Ki)

+.

• (iii) =⇒ (ii). This follows from the fact that, for all A ⊆ Ω, the event ∪n
i=1Ki(A) is

a fixed point of (∪n
i=1Ki)

+.

• (iii) =⇒ (iv). This follows from the definition of (∪n
i=1Ki)

+d.

• (iv) =⇒ (iii). Suppose d) holds. For all A ⊆ Ω, the event (∪n
i=1Ki)

+(A) is a fixed

point of (∪n
i=1Ki)

+. In addition, since (.)d is extensive, and since (∪n
i=1Ki)

+d satisfies

veridicality, we can conclude that

(∪n
i=1Ki)

+ (A) = (∪n
i=1Ki)

+d
(

(∪n
i=1Ki)

+(A)
)

,

from which c) follows.

• (iv) =⇒ (v). Suppose d) holds. Since Q represents
(

∪n
i=1Ki

)+d
by assumption,

Q(ω) =
⋂

{A : ω ∈ (∪n
i=1Ki)

+d(A)} ⊇
⋂

{A : ω
′ ∈ (∪n

i=1Ki)
+d(A)}= Q(ω ′).

Since Q ∈P2, Q is reflexive. Thus we can conclude that ω
′ ∈ Q(ω), i.e., (ω,ω ′)∈ Q.

• (v) =⇒ (iv). Suppose (ω,ω ′) ∈ Q. Since Q is transitive, ω
′ ∈ Q(ω) implies

Q(ω ′)⊆ Q(ω), which in turn implies d).
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Lemma 3. Let K1, . . . ,Kn be n ≥ 1 knowledge operators in K
1, and let P = (P1, . . . ,Pn) be

the profile of relations in P1 that represent those n knowledge operators. In addition, let Q

be the relation that represents (∪n
i=1Ki)

±d. For all ω,ω ′ ∈ Ω, the following are equivalent:

(i) (ω,ω ′) ∈ EP;

(ii) for all A ⊆ Ω, ω ∈ ∪n
i=1Ki(A) ⇐⇒ ω

′ ∈ ∪n
i=1Ki(A);

(iii) for all A ⊆ Ω, ω ∈ (∪n
i=1Ki)

±(A) ⇐⇒ ω
′ ∈ (∪n

i=1Ki)
±(A);

(iv) for all A ⊆ Ω, ω ∈ (∪n
i=1Ki)

±d(A) ⇐⇒ ω
′ ∈ (∪n

i=1Ki)
±d(A);

(v) (ω,ω ′) ∈ Q.

Proof of Lemma 3. It is easier to show pairwise equivalence as follows.

• (i) ⇐⇒ (ii). This follows immediately from the equivalence between (i) and (ii) in

Lemma 2.

• (ii) =⇒ (iii). This follows from the definition of (∪n
i=1Ki)

±.

• (iii) =⇒ (ii). This follow from the fact that, for all A ⊆ Ω, the event ∪n
i=1Ki(A) is

a fixed point of (∪n
i=1Ki)

±.

• (iii) =⇒ (iv). This follows from the definition of (∪n
i=1Ki)

±d.

• (iv) =⇒ (iii). Suppose d) holds. For all A ⊆ Ω, the event (∪n
i=1Ki)

±(A) is a fixed

point of (∪n
i=1Ki)

±. In addition, since (.)d is extensive, and since (∪n
i=1Ki)

±d satisfies

veridicality, we can conclude that

(∪n
i=1Ki)

± (A) = (∪n
i=1Ki)

±d
(

(∪n
i=1Ki)

±(A)
)

,

from which c) follows.

• (iv) =⇒ (v). Suppose d) holds. Since Q represents
(

∪n
i=1Ki

)±d
by assumption,

Q(ω) =
⋂

{A : ω ∈ (∪n
i=1Ki)

±d(A)}=
⋂

{A : ω
′ ∈ (∪n

i=1Ki)
±d(A)}= Q(ω ′).

Since Q ∈P3, Q is reflexive. Thus we can conclude that ω
′ ∈ Q(ω), i.e., (ω,ω ′)∈ Q.

• (v) =⇒ (iv). Suppose (ω,ω ′) ∈ Q. Since Q is an equivalence relation, ω
′ ∈ Q(ω)

implies Q(ω ′) = Q(ω), which in turn implies d).
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Now we can prove Proposition 6 as follows.

(i) It is clear that (∪n
i=1Ki)

d ∈ K 1 and ∩n
i=1Pi ∈ P1. Call L the knowledge operator

represented by ∩n
i=1Pi. By (3), for all A ⊆ Ω,

L(A) = {ω : ∩n
i=1Pi(ω) ⊆ A} .

We need to show that (∪n
i=1Ki)

d =L. Take any A⊆Ω. First we show that (∪n
i=1Ki)

d(A)⊆

L(A). Suppose ω ∈ (∪n
i=1Ki)

d(A). This means that there exist events B1, . . . ,Bm such

that ∩m
j=1B j ⊆ A and

ω ∈
m
⋂

j=1

(

∪n
i=1Ki(B j)

)

. (10)

Since each Pi represents Ki, (10) is equivalent to

ω ∈
m
⋂

j=1

(

∪n
i=1

{

ω
′ : Pi(ω

′)⊆ B j

})

,

from which we see that, for all j ∈ {1, . . . ,m}, there exists a i ∈ {1, . . . ,n} such that

Pi(ω)⊆ B j. Therefore,

∩n
i=1Pi(ω)⊆ ∩m

j=1B j ⊆ A,

so proving that ω ∈ L(A).

To show the reverse set inclusion, suppose ω ∈ L(A), so that ∩n
i=1Pi(ω)⊆ A. It is clear

that ω ∈ Ki(Pi(ω)) for all i ∈ {1, . . . ,n}. Therefore, we have

ω ∈ ∩n
i=1Ki(Pi(ω))⊆

n
⋂

i=1

(

∪n
j=1K j(Pi(ω))

)

⊆ (∪n
i=1Ki)

d(A).

(ii) The knowledge operator (∪n
i=1Ki)

+d belongs to K 2 and is represented by the binary

relation Q ∈ P2 defined by (3). By Lemma 2, (ω,ω ′) ∈ Q if and only if (ω,ω ′) ∈ TP

for all ω,ω ′ ∈ Ω. Thus Q = TP.

(iii) It is clear that (∪n
i=1Ki)

d ∈ K 1. By part (i) of Proposition 6, (∪n
i=1Ki)

d is represented

by ∩n
i=1Pi. Then the result follows immediately from part (ii) of the same proposition.
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(iv) The knowledge operator (∪n
i=1Ki)

±d belongs to K
3 and is represented by the binary

relation Q ∈P3 defined by (3). By Lemma 3, (ω,ω ′) ∈ Q if and only if (ω,ω ′) ∈ EP

for all ω,ω ′ ∈ Ω. Thus Q = EP.

(v) It is clear that (∪n
i=1Ki)

d ∈ K 1. By part (i), (∪n
i=1Ki)

d is represented by ∩n
i=1Pi. Then

the result follows immediately from part (iv) of Proposition 6.
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