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Abstract

In this paper we study how emergency department (ED) doctors respond to incentives

to reduce wait times. We use bunching techniques to study an English policy that imposed

strong incentives to treat patients within four hours. The policy reduced affected wait times

by 21 minutes, yet caused doctors to increase the intensity of treatment and admit more

patients. We find a striking 14% reduction in mortality. Analysis of patient severity and

hospital crowding strongly suggests it is the wait time reduction that saves lives. We conclude

that, despite distorting medical decisions, constraining ED doctors can induce cost-effective

reductions in mortality.
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1 Introduction

Perhaps the most complicated node of health delivery in any modern health care system

is the emergency department (ED). Patients arrive at the ED with a wide array of different

problems. ED nurses and physicians must quickly assess where patients should slot in what

can be a very large queue, deciding almost instantly who needs to be treated right away and

who can wait. And ultimately these providers need to decide whether those going to the ED

are to be admitted to the hospital or sent back to their homes – a decision that can, in many

instances, have life or death consequences.

Despite its critical role, EDs often face budgetary pressures and a shortfall in resources.

These pressures have been especially acute in recent years, with ED performance having been

described as an international crisis in several developed economies (Hoot and Aronsky, 2008).

Practising doctors are especially vocal, referring to ‘battlefield medicine’ and ‘third world condi-

tions’ caused by ED overcrowding in England.1 Alongside these tensions, EDs are increasingly

facing public pressure to advertise and reduce their wait times. U.S. cities are replete with

digital billboards highlighting wait times at local EDs. And other nations use regulatory and

financial tools to reward reductions, or penalize increases, in wait times.

Many are concerned that external pressures on wait times could reduce the ability of EDs to

maximize the quality of the care that they provide. At the same time, however, it is not

clear that ED personnel would maximize patient quality in the absence of such pressures.

Emergency rooms are not directly compensated for shortening wait times. Moreover, while

health-maximizing ED personnel may internalize the costs of waiting to the extent that they

impact patient outcomes, this may only be partial if physicians have incomplete knowledge or

are imperfect agents for their patients. Theoretical ambiguities such as this have motivated

a growing number of empirical studies of hospital production in the ED setting (Chan, 2016,

2017; Gowrisankaran et al., 2017; Silver, 2016).

The ‘four-hour wait’ policy in the England provides a natural environment in which to

address this critical question. This policy was first announced in 2000 as part of a wide ranging

set of government pledges to decrease wait times for different types of care, and came into

force in all English public hospitals in 2004.2 The policy set arbitrary targets for wait times,

1https://www.nytimes.com/2018/01/03/world/europe/uk-national-health-service.html?smid=tw-
share& r=0

2Other targets included maximum limits on wait times for elective surgery.
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initially requiring that 98% of all patients be treated within four hours of arrival. The ability

of hospitals to meet this target became an important part of overall hospital evaluation in

England, with managers in some cases losing their jobs because of poor wait time performance.

In addition, there were strong financial penalties associated with breaching the target – hospitals

were penalized by an amount that was more than twice the average revenue of an ED patient,

and total fines for missing ED and elective wait time targets were equivalent to a third of

hospital deficits.

This policy has been controversial. Some stakeholders have argued that the focus on patient

wait times has improved patient care. As one ED nurse quoted in Mortimore and Cooper (2007)

said, “it was worse [before the targets were introduced], definitely it just seemed to be more

hectic, there were people on trolleys for 12 hours and you’d leave here at 8pm and come back

in the morning and there would still be some patients here”. Others have argued that care

quality has been sacrificed. One medical student stated, “patients are no longer known by their

names or by their conditions, they’re not even known by a number, patients are referred to by

their time. By this I mean how long they’ve been in the department, as soon as a patient ticks

past 3 hours their name lights up like a Christmas tree. If their stay approaches 3 hours 30,

the managers start to appear, they don’t actually care about Mr Jones who is having a heart

attack. He’s got to go, wherever it may be, as long as it’s not ED”.

Despite the controversy, there is little consistent evidence from either the UK or other

nations that have introduced wait time targets on the impact of those targets on patient costs

and health outcomes. This is because the policies are generally introduced nation-wide, with

no ‘hold-out’ or control populations, making it impossible to apply quasi-experimental methods

such as difference-in-difference estimation. An additional challenge in the case of the English

wait time policy is that no systematic data on wait times are available before the policy was

introduced in 2004.

In this paper we take a different approach. We apply the bunching techniques that have

been used widely in other contexts (see Kleven, 2016) to analyze wait times and outcomes. This

approach allows us to model how the four-hour target impacts wait times, costs and outcomes,

conditional on the underlying hospital technology in place to monitor patient wait times. That

is, we estimate here the short term impact of changing wait times, but hold constant the

underlying technological changes that might be associated with the introduction or removal of

a wait time target. This counterfactual focuses attention on the impact of incentives rather
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than technology adoption.

We initially examine the distribution of wait times around the four-hour target, finding a

very large spike right at four hours. We then turn to estimating counterfactual distributions

of wait times in order to measure the effect of the four-hour policy. We estimate that, relative

to the counterfactual, the four-hour target led wait times to be 21 minutes (8%) lower for

patients affected by the policy, and for those patients that move from after-to-before the four

hour position, the wait time reductions are large and average 59 minutes.

We then use these data to study the impact of the policy on patient treatment and outcomes.

Without pre-period data and exogenous variation in policy effects across hospitals, we cannot

directly use data on treatments and outcomes to identify policy effects. But we argue that

under a set of minimal and testable assumptions we can directly identify policy effects from

bunching at the four-hour target.

In particular, to assess the impact of the target on outcomes such as hospital admissions

and mortality, we need to separate a ‘composition effect’ (because some patients are moved

from after to before four hours of wait time due to the target, and they may not be randomly

chosen) and a ‘distortion effect’ (the target itself may have a direct distortion on the treat-

ment of randomly chosen patients). To separately identify the distortion effect, we estimate a

‘composition-adjusted counterfactual outcome’ by imposing a ‘no-selection’ assumption on the

distribution of patients that obtain shorter wait times because of the policy. We can test this

assumption directly using patient observables, showing that along multiple dimensions there is

little meaningful difference between these and other patients.

We estimate that there is a significant distortion effect of the English policy. We find that

there is more intensive testing of patients in the ED, leading to a modest rise in ED costs. We also

find that there is a significant increase in hospital admissions as a means of meeting the target,

with corresponding reductions in those discharged to home. Among those marginal admits,

inpatient resource use is insignificant, suggesting that such admissions were just placeholders to

meet the four-hour target. These admissions were not costless, however, and we estimate that

inpatient payments from the government to hospitals rose by roughly 5% due to the target.

Most interestingly, we find significant improvements in patient outcomes associated with the

four hour policy. We estimate that 30-day patient mortality falls by 14% among patients who

are impacted by the wait time change, a very sizeable positive effect. This effect falls slightly

over time while baseline mortality rises, so that by one year after ED admission this amounts
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to a 3% mortality reduction, which is still quite large.

We then turn to understanding the mechanism behind the outcome improvement that we

observe. To do so we exploit heterogeneity across patient groups that are affected along different

margins. The first is patients of different severity: across severity groups, the four-hour policy is

associated with differential impacts on wait times, but not admission probabilities. The second

is patients facing different levels of crowding of the inpatient department when they arrive at

the ED: across different levels of crowding, the four-hour policy is associated with differential

impacts on admission probabilities but little variation in the wait times impacts. We then

show that the mortality effect we estimate varies strongly across patient severity, but not across

inpatient crowding. Taken together, this evidence suggests that it is the wait time mechanism,

and not the admissions mechanism, that is driving our mortality effect. As a final check,

we examine whether the reductions in mortality occur among patients with potentially time-

sensitive conditions, and find that the majority of these reductions are found among conditions

which are known to benefit from rapid treatment.

We contribute to two literatures. First, there is a growing literature that has begun doc-

umenting features of hospital production relevant for incentive setting (Chan, 2016, 2017;

Gowrisankaran et al., 2017; Silver, 2016). Chan (2016) and Chan (2017), for example, study

how ED physicians respond to team environments and work schedules, while Silver (2016) stud-

ies peer effects in the ED. Gowrisankaran et al. (2017) also study the ED and estimate different

measures of physician skill. Adjacent to these studies, a medical literature has documented

robust correlations between mortality rates and measures of ED crowding and wait times (Hoot

and Aronsky, 2008). Our contribution is to show how ED production is affected when doctors

are put under pressure to make decisions quicker. We find that the wait time policy generated

cost-effective mortality improvements through reduced wait times but at the expense of distort-

ing medical decisions. These findings are consistent with the medical literature and highlight

that ED wait times are an important input to the health production process. The findings also

illustrate how constraining healthcare providers through regulatory interventions can improve

health outcomes even in the presence of significant distortions.

The second contribution we make is to the literature using bunching estimators. From

its origins in the tax setting (Saez, 2010; Chetty et al., 2013; Kleven and Waseem, 2013),

these estimators have now been deployed in other settings such as health insurance (Einav

et al., 2015, 2017, 2018), mortgage markets (Best et al., 2017; Best and Kleven, 2018) and
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education (Diamond and Persson, 2016). We apply these estimators in a healthcare provision

setting, adapting them to study outcomes indirectly affected by a discontinuity in the incentives

associated with the running variable, and devise new empirical tests to evaluate the credibility

of the bunching assumptions required in our context.

Our paper proceeds as follows. Section 2 provides background information on emergency

care in England and on the four-hour target policy. Section 3 describes the data. Section 4 sets

out our methodology, beginning with an overview and followed by the details of our analysis

of wait times, treatment decisions, and health outcomes. Section 6 describes our results for

wait times, treatment decisions and health outcomes. Section 7 explores heterogeneity and

mechanisms. Section 8 concludes.

2 Background

2.1 Emergency care in England

Emergency care in England is publicly funded and is available free at the point of use for

all residents. There is no private market for emergency care. The majority of care is provided

at emergency departments (EDs) attached to large, publicly owned hospitals. These major

emergency departments are physician-led providers of 24-hour services, based in specifically

built facilities to treat emergency patients that contain full resuscitation facilities. In 2011/12,

9.2 million patients made 13.6 million visits to 174 emergency departments. In addition, 2.1

million patients made an additional 2.7 million visits to specialist emergency clinics and ‘walk

in’ or minor injury centres where simple treatment is provided for less serious diagnoses; as

discussed below, we exclude patients from these centres due to the minor nature of their injuries

and our results are unaffected if they are included.

EDs provide immediate care to patients. Hospitals are reimbursed by the government for the

care they provide, receiving a nationally fixed payment for providing certain types of treatment.3

In 2015/16, there were 11 separate tariffs for ED treatment depending on the severity of the

patient and the type of treatments administered.4 These tariffs ranged from $77 to $272 per

3Treatments are assigned to a Healthcare Resource Group (HRG), similar to DRGs in the US, with a set of
national tariffs for each HRG announced each year by the Department of Health.

4https://www.gov.uk/government/publications/confirmation-of-payment-by-results-pbr-arrangements-for-
2012-13
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visit.5 Revenue from the ED accounted for 5.3% of total hospital income in 2015/16.6

Treatment in the ED follows one of two pathways depending upon the method of arrival.

Non-ambulance patients register at reception upon arrival, where they must identify themselves

and provide basic details of their condition. Patients then undergo an initial assessment to

establish the seriousness of their condition. This triage process is carried our either by a spe-

cialist triage nurse or doctor, and includes taking a medical history, and, where appropriate,

conducting a basic physical examination of the patient. Patients are then prioritized according

to severity.

Alternatively, patients can arrive at the ED by ambulance following an emergency call out.

In 2011/12, 29.4% of ED patients arrived by ambulance. For these patients, ambulance staff

collect medical details en route, and report these details to hospital staff upon arrival.7 This

information feeds into a separate triage process, where patients will be categorized by their

severity.

These triage processes sort patients into ‘minor’ and ‘major’ cases. Minor cases require

relatively simple treatment, and can often be treated in a short space of time. Major cases are

often those who arrive by ambulance, although there are some exceptions to this (for example,

a patient with chest pain may arrive independently at the hospital). Major cases will receive

treatment more quickly, as they often present with more severe symptoms, but will usually

require more treatment and investigations within the ED, and are therefore likely to spend

longer in the ED. Treatment of the two types often requires the use of different resources

(including staff and machines), and in most large hospitals, treatment for minor conditions will

take place in a separate part of the emergency department (for example, in the hospital’s ‘urgent

care centre’).

Following triage, patients are placed into a queue on the basis of their severity and time of

arrival. Patients are not aware of their position in the queue. Patients are assigned to individual

doctors as they become available. These doctors will carry out a series of further examinations

and tests. The nature of these investigations depend on the symptoms presented by the patients,

and range from physical examinations to tests such as x-rays or MRI scans. Patients can also

5All cost figures in 2017/18 US Dollars. Figures are deflated using the UK GDP deflator, and then
converted from sterling to dollars using an exchange rate of 1GBP:1.35USD (US Treasury, 31st Dec 2017,
https://www.fiscal.treasury.gov/fsreports/rpt/treasRptRateExch/currentRates.htm).

6Figures calculated from the 2015/16 UK Department of Health Reference Costs. See:
https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016

7Ambulance staff also provide emergency treatment in the ambulance to patients where required.
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receive treatment in the ED, ranging from sutures to resuscitation, before being admitted for

further treatment in an inpatient ward, or discharged from the hospital.

Importantly, the objective of much of the ED care provided in this setting is either to

treat simple conditions, or to provide early diagnostic information that can be used to send

patients to the correct specialist inpatient ward for future treatment (while also stabilising

patients and providing basic treatment as these tests are carried out). Table A1 in Appendix A

shows the most common ED investigations and treatments across 40 ED diagnosis categories,

distinguishing between the first and subsequent investigations and treatments.8 X-rays and

blood tests are the most common primary investigations, while in a quarter of (more minor)

diagnoses the majority of patients receive no specific investigations. Most treatments are simple:

providing guidance or advice, or treating minor cases (e.g. wound closures for lacerations,

plaster of paris for fractures). For the more serious cases, common treatments include inserting

an intravenous cannula or observing patients (including taking an ECG or recording patients’

pulses) while diagnostic tests such as x-rays, CT scans and blood tests are carried out. This is

further reflected in Table A2, which shows the most common ED investigations and treatments

for admitted (and therefore likely more serious) patients only.

Patients who require further specialist treatment are then admitted as an inpatient. Table

A3 shows the most common first and subsequent inpatient procedure across each ED diagnosis.

Initial inpatient treatment is also often diagnostic in nature, as shown by the frequency of the

use of CT and MRI scans. More comprehensive treatment of the condition then follows.

Taken together, these tables demonstrate that the ED provides an important first stage

of treatment, solving more minor problems in the department itself, while collecting important

diagnostic information that is important in ensuring that more complex cases receive the correct

inpatient treatment further along the treatment pathway.

2.2 The 4-hour target

All public hospitals with EDs in England are subject to a wait time target. This target

specifies that 95% of ED patients must be admitted for further inpatient treatment, discharged

or transferred to another hospital within four hours of their arrival. The target level was initially

8There are 24 ED investigation categories, including ‘none’. There are 57 ED treatments.
Details of these can be found in the HES Data Dictionary (Accident and Emergency), avail-
able here: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-
statistics/hospital-episode-statistics-data-dictionary
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set at 98% when it was first introduced in December 2004, before being relaxed to its current

level in November 2010.9

This target is important to hospitals in two ways. First, the target is widely used by policy

makers and the media as a measure for the wider performance of the public health service in

England.10 Hospital managers who consistently fail to meet this target are likely to be fired,

and therefore have a strong incentive to organise emergency care in a way that minimises the

number of patients who take more than four hours to treat.

Second, hospitals face significant financial incentives to meet the target. As the target came

into force between March 2004 and March 2005, hospitals were offered payments (to be used

only for hospital investment) if they met the target level early (National Audit Office, 2004).

In recent years, significant financial penalties have been imposed for missing the target. In

2011/12, hospitals were fined $300 for every patient who failed to be treated within 4 hours if

the hospital missed the overall 95% target during that week.11 This compares to an average

payment of $140 per patient in the same year. In 2015, a report commissioned by a number of

hospitals indicated that public hospitals paid $325 million in fines due to missed performance

targets (including the 4 hour target), with total penalties equal to around a third of the average

deficit of public hospitals in that year.12

Hospital staff therefore face pressure from hospital management to meet the target. As

a result, the organisation of EDs has changed significantly since the target was introduced.13

Changes include the use of new IT systems, which track patient wait times in real time. The ex-

act systems vary by hospital, but will indicate when patients reach particular waiting thresholds

(e.g. 3 hours) and alert physicians (for example through changing the colour of the computer

screen).14 Most departments also now employ specific members of staff to monitor the progress

9Interviews with hospital managers, doctors and regulators suggest that it is the ‘four-hour’ component of
the target that matter to hospitals rather than the absolute level of the target. Hospitals attempt to meet the
target on a daily basis, and aim to achieve the highest proportion possible. This suggests that certain behaviours,
such as relaxing or improving performance in later parts of the reporting period, are unlikely.

10For example, see http://www.mirror.co.uk/news/uk-news/ae-crisis-exposed-only-three-9801509.
11This penalty was decreased to $170 in 2015.
12https://www.theguardian.com/society/2016/mar/29/nhs-bosses-slam-600m-hospital-fines-over-patient-

targets
13Interviews with senior member of the Emergency Care Improvement Programme (ECIP), a clinically led

programme intended to improve the performance of EDs, clearly describe significant changes to the technology
used in EDs since the target was introduced. One manager in the programme claimed that “This [the target] is
the most monitored part of the entire healthcare system with software specifically designed for it.”

14One medical student in an ED describes the IT system in the following way: “Displayed prominently
on an electronic whiteboard is a list of all the patients currently in A&E and waiting to be seen, and the
second a patient ticks past a 3 hour wait, their name lights up like a Christmas tree in bright red.” See:
https://imamedicalstudentgetmeoutofhere.blogspot.co.uk/2008/03/there-is-338-in-bay-5.html
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of all patients against the clock, and to alert physicians that an admission decision is required

soon.

3 Data

3.1 Hospital Episodes Statistics

Our primary source of data are the Hospital Episode Statistics (HES). These contain the

administrative records of all visits to public hospitals between April 2011 and March 2013, and

include information on both ED visits and inpatient admissions.15

The ED data record treatment at the visit level, and include information on the precise time

of arrival, initial treatment and the admission decision. We define ED ‘wait times’ as total time

spent in the ED, consistent with the definition of the policy. This includes time being examined

and treated. We calculate ED wait times as the time elapsed between arrival and the admission

decision, where the arrival time is recorded as patients enter the ED.16,17

The data also include a hospital identifier, whether the patient is admitted or discharged,

details of basic diagnoses, the number and types of ED investigations and treatments, whether

the patient arrived by ambulance, and some basic patient characteristics such as age, sex and

local area of residence.

Patients are identified by a psuedo-anonymized identifier that allows patients to be followed

over time and across hospitals, and enable linkage between ED and inpatient records. Inpatient

records contain detailed information on treatment undergone in the hospital. The data contain

the dates of admission and discharge, and information on up to twenty diagnoses and procedures

undertaken. Treatment is recorded at the episode level, defined as a period of treatment under

the care of a single senior doctor.18 We combine information across all episodes within the

same admission to create visit-level variables for total length of stay (in days) and number of

inpatient procedures. Each episode also contains a Healthcare Resource Group (HRG) code,

similar to Diagnosis Related Groups (DRGs) in the US. English hospitals are compensated by

15Data on EDs is available prior to 2011, covering 2008 and 2010, although data from the earlier period is less
complete than in the years we study.

16For non-ambulance patients, this time is recorded when they first speak with the receptionist.
17Hospitals may attempt to manipulate wait times to meet the target. We evaluated one possibility in this

regard, namely that hospitals simply miscode the timing of the admission decision, such that the total wait time
is 4 hours or less. Following Locker and Mason (2006), we analyzed the distribution of ‘final digits’ in wait
times (e.g. the digits 0 to 9 at the end of each wait time value) which in the absence of manipulation should
be uniformly distributed. Relative to this benchmark, we found that less than 1% of records were likely to be
miscoded and that this would have a negligible impact on our analysis.

18Senior doctors in England are known as ‘consultants’, and are equivalent to attending physicians in the US.
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the government through a system of national tariffs for each HRG.19 We calculate ‘costs’ for

each episode by matching tariffs to the appropriate HRG, which gives us a measure of the cost

to the government, and revenue received by the hospital, associated with each visit. We then

sum all treatment costs over a 30 day period to estimate the cost associated with each ED visit

and any follow-up treatment.

Mortality outcomes are recorded in administrative records made available by the UK Office

for National Statistics (ONS). These records are linked to HES through anonymized identifiers

based on patient National Insurance (Social Security) numbers. The data include the date of

death for all individuals who died in the UK, or UK citizens who died abroad, between April

2010 and March 2014. We create indicators of whether a patient dies within 30, 90 and 365

days of an ED visit.

3.1.1 Sample construction

Our analysis focuses on a sample of emergency patients treated in ‘major’ emergency depart-

ments.20 We exclude patients treated at specialist clinics that treat only particular diagnoses

(e.g. dental) and minor injury (‘walk in’) centres. Patients treated by these units typically have

simple diagnoses and short wait times, and are therefore unlikely to be affected by the target.

This excludes 18% of emergency visits.

We keep all patients with full information relating to the timing of treatment and their exit

route from the ED, in addition to their age, gender and whether they arrived by ambulance.

Dropping patients with some missing information reduces the number of visits in the sample by

14.5%.21 This yields an analysis sample of 14.7 million patients, who made 24.7 million visits

to 184 EDs between April 2011 and March 2013.

3.1.2 Summary statistics

Table 1 reports summary statistics. The first two columns present the mean and standard

deviation for a range of patient characteristics, treatments and outcomes for all ED patients in

the sample. Mean ED patient age was 39 years, and 51% of patients were male. 29% of patients

19National tariffs are calculated for each HRG on the basis of annual cost reports submitted by hospitals to
the UK Department of Health. These tariffs are meant to reflect the average cost of providing the procedure.
Payments are then adjusted for unavoidable regional differences in providing care, and unusually long hospital
stays.

20Major emergency departments are defined as consultant-led providers of 24-hour services, based in specifi-
cally built facilities to treat emergency patients that contain full resuscitation facilities.

21Results are unaffected by the inclusion of patients with full information relating to treatment times and
decisions, but who are missing demographic information.
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arrived by ambulance. 5.8 million visits, or 24% of all ED episodes, resulted in an inpatient

admission at the same hospital. 58% of visits did not require further hospital treatment and

led to a patient being discharged. The remaining visits resulted in a transfer to an outpatient

clinic or another hospital for further treatment. Mean 30-day treatment costs were $1,676, of

which 89% was accounted for by subsequent inpatient treatment. In the short term, mortality

among ED patients is relatively rare. 2% of patients died within 30 days of visiting the ED.

This increases to 3% over a 90 day period, and 5% during the following year.

Table 1 also shows summary statistics separately for visits that result in an inpatient admis-

sion. As expected, these case are typically more severe, with an older average age (55 years) and

twice the likelihood of arriving in an ambulance (60%). Mortality rates (5% over 30 days, 16%

over a year) are substantially higher than in the main sample. ED treatment is more intense

for this sample, with a higher mean number of treatments and investigations than in the main

sample. Their treatment is also more expensive, with an average total cost over a 30-day period

of $4,762.

Inpatients also experienced longer mean wait times in the ED than those who are not

admitted. Mean wait times were 223 minutes for patients who were eventually admitted as

inpatients, compared to a mean of 155 minutes for all ED patients. This demonstrates that the

level of patient complexity, and the intensity of treatment for these patients, is likely to vary by

wait time. This variation is important to account for when analysing the impact of the target.

Figure 1 shows the distribution of ED wait times. There is a noticeable discontinuity in

the proportion of patients who exit the ED in the period immeditely prior to 4 hours. This

spike is unlikely to naturally occur, and is instead induced by the target. We cannot illustrate

the absence of this spike prior to the wait times target, since we do not have systematic data

available from that period. But it is worth noting, as we do in Online Appendix Figure A1,

that such a spike is not present in data on ED wait times from a major U.S. hospital.22

One possibility is that this spike in wait times simply reflects recoding and is not a real

change in patient wait times. Two features suggest that this is not the case. First of all, a

sizeable share of hospitals pay large penalties and are publicly criticized as a result. Indeed,

a substantial number of hospitals only just miss the target, with 23% of hospitals missing the

target by less than two percentage points in 2011/12. If recoding explained the spike then those

22Of course, different ED objectives and technologies across countries means that the U.S. data does not
provide a natural comparison group, but the lack of any spike confirms our conclusion that the large spike here
is particular to the wait time policy.
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hospitals should do more recoding to avoid the penalty altogether. Second, we show below that

there are comparable spikes in a number of real outcomes, such as hospital admissions, costs,

and mortality, which are inconsistent with this simply being a coding response.

4 Empirical methodology

We now set out our empirical methodology. We begin with an outline of our approach and

then describe our analysis of wait times followed by our analysis of treatment decisions and

health outcomes.

4.1 Overview

A key challenge when analysing the four-hour target is that without pre-policy data or a

control sample, quasi-experimental methods cannot be used to construct the counterfactual

outcome. To address this issue we use and extend bunching estimators that were developed

in the tax literature (Saez 2010, Chetty et al. 2013). We argue that these methods can be

used in our setting to estimate the counterfactual outcomes that would occur if the target were

removed but other aspects of hospital production were held constant. This allows us to quantify

the short-run impact of the policy.

We first apply a bunching estimator to the distribution of wait time outcomes. This involves

interpolating how the wait time distribution would look in the absence of the target. As is

typical in other bunching settings, we make a ‘local effects’ assumption; namely, that the target

only affects the wait time distribution within a certain segment of the distribution. We argue

that this assumption holds if hospitals do not substitute resources between patients located in

different segments of the wait time distribution, and present empirical evidence that supports

this assumption. The estimated counterfactual distribution from the bunching estimator allows

us to quantify the impact of the target on wait times.

We then turn to an analysis of treatment decisions and health outcomes. Plotting these

outcomes conditional on the wait time shows that they also exhibit ‘bunching’ at the four-hour

discontinuity point. Figure 2 gives an example for the likelihood of inpatient admission. The

plot shows that admission odds are generally increasing with wait times, and there is a clear

spike in admission odds at 240 minutes. Our analysis decomposes this spike into two channels.

The first channel is the ‘composition effect’. As Figure 1 suggests, the target causes a
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substantial number of patients to be moved from later to earlier in the distribution of wait times

(a group we refer to as ‘post-threshold movers’). Since admission probabilities are increasing

with wait time, this movement of patients would increase the observed pre-threshold admission

probability even if the target led to no additional admissions. This effect arises purely because

the target changes the composition of patients observed at each wait time.

There is also potential for a ‘distortion effect’ if the target has a direct effect on treatment

decisions and health outcomes. The distortion effect implies identical patients receive different

treatment depending on whether or not the target is in place. In the case of admissions, for

example, it would imply that part of the spike in observed outcomes is because the target causes

additional admissions, in addition to the composition effect shifting some admissions from after

to before the target.

To decompose these two effects we construct a ‘composition-adjusted counterfactual’ (CAC).

This is the outcome that would occur in the presence of composition effects but the absence

of distortion effects. Since the observed data contains both effects, the difference between the

observed data and the CAC identifies the distortion effect. Estimates of the distortion effects

and tests of whether these are significantly different from zero are the central results of this

paper.

We construct estimates of the CAC by first showing it can be written as a weighted average of

counterfactual outcomes for patients situated in different parts of the wait time distribution. We

then argue that the required counterfactual outcomes can be constructed by applying bunching

techniques to the expected outcomes conditional on the wait time.23 This relies on a ‘no-selection’

assumption about the distribution of post-threshold movers: that those patients moved forward

in time are representative of all post-threshold patients.

To evaluate the validity of the no-selection assumption, we devise a test based on observable

patient characteristics such as age. These variables, conditional on the wait time, also exhibit

bunching at the four-hour point but in these cases the spike can only be explained by a com-

position effect since there is no distortion effect by definition. If the no-selection assumption

is valid then for these variables the observed data and the CAC should be equal. Tests of this

hypothesis therefore act as a placebo test, where rejection of the null hypothesis would suggest

23This is in contrast to a typical bunching application that would work with the distribution of a variable that
is subject to a discontinuity in incentives. Here we work with outcomes conditional on a variable that is subject
to a discontinuity in incentives. Our approach is similar in spirit to Diamond and Persson (2016) and Gerard
et al. (2018).
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that the no-selection assumption has been violated. We pass these placebo tests for several

demographic variables.

We proceed by outlining each of these steps and assumptions more formally.

4.2 Wait times

Let w be the wait time in minutes, where w∗ = 240 (the target threshold). Denote the

density function of w in the targeted regime as ft(w) where t = {0, 1} signifies whether the

function relates to the targeted or non-targeted regime. We observe data on f1(w) and use a

bunching estimator to obtain f0(w).

To implement the bunching estimator we aggregate the data to 10-minute wait time bins

and then interpolate parts of the distribution using a polynomial regression. Following Kleven

(2016) we define f̂0(w) ≡
∑p

i=0 β̂iw
i and obtain the estimates β̂i from the following regression

cj =

p∑
i=0

βi(wj)
i +

w+∑
i=w−

γi1[wj = i] + uj , (1)

where cj is the number of individuals in wait time bin j, wj is the maximum wait time in bin

j (e.g. wj = 10 for the 1-10 minute wait time bin, wj = 20 for the 11-20 minute wait time bin,

etc), p is the order of the polynomial, and [w−, w+] is an ‘exclusion window’ that contains w∗

and is the period during which we assume that the target may have had local effects on the

wait time. This regression fits a polynomial to the wait time distribution in periods outside of

the exclusion window, where the window is captured by the indicator variables which then do

not feature in f̂0(w).

Equation (1) makes the following assumption in relation to the exclusion window.

Assumption 1 (Local wait time effects). Wait times of patients outside of an ‘exclusion win-

dow’, defined locally around the threshold w∗, are unaffected by the target:

f0(w) = f1(w) ∀w /∈ [w−, w+]. (2)

This assumption will hold if hospitals do not respond to the target by substituting resources

between patients that are inside and outside of the exclusion window.24 We discuss this as-

24A comparable assumption is required when using bunching techniques to study taxable income responses.
In that setting the local effects assumption is often innocuous because the income distribution is the result of
optimization decisions of many unrelated individuals, with those situated far from the tax scheme discontinuity
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sumption at length in the next section.

To establish the bounds of the exclusion window, we follow Kleven and Waseem (2013) and

set w− visually by examining when the distribution changes sharply and determine w+ using an

iterative procedure that equates the excess mass in the period [w−, w∗] with the missing mass in

the period (w∗, w+].25 An advantage of this iterative approach is that we make no assumption

about w+ and let the data determine where the effects on the wait time distribution end. In the

baseline analysis we use a polynomial of order 10 and set w− = 180. After applying the iterative

procedure this produces an upper cut-off of w+ = 400. Our results are robust to variations in

the choice of polynomial and w− (see Online Appendix Tables A4 and A5).

The observed data and our estimated counterfactual distribution are shown in Figure 3,

which indicates that the target moves a number of patients from the post-threshold period to

the pre-threshold period (‘post-threshold movers’). We later use these distributions to estimate

the impact of the target on wait times.

4.2.1 Interpreting the counterfactual

The counterfactual that the bunching estimator delivers in our context is the short-run

outcome that would occur if the four-hour discontinuity in incentives were removed. The coun-

terfactual holds constant other aspects of hospital production, such as patient prioritization,

capital and labour inputs, and government funding. As a benchmark, the counterfactual fo-

cuses attention on the role of incentives in determining outcomes rather than the specifics of

the production function in our setting. We see it as a logical benchmark for understanding how

wait time incentives affect outcomes.

Our counterfactual differs from the pre-policy or long-run outcomes. To give an example

of the difference, we know from anecdotal evidence that the pre-policy outcome had different

production inputs (particularly the volume of staff) and different production technology (e.g.

IT systems). The full policy impact relative to the pre-policy situation would include the impact

of these changes as well as the discontinuity in incentives introduced by the target.

We refer to our results as the ‘impact of the target’ for brevity but with the above under-

standing in mind. This interpretation applies to the results for wait times and other outcomes.

having no incentive to adjust their behaviour. In our setting, the distribution of patient wait times is not
determined by patients’ decisions but by the decisions of doctors and nurses, and this raises the concern that
there may be an incentive to substitute wait times between patients across different parts of the wait time
distribution.

25This implicitly assumes that the target does not affect patient demand for ED care in the short-term.
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4.3 Treatment decisions and mortality outcomes

We now extend the analysis to consider outcomes other than the wait time, such as treatment

decisions (e.g. inpatient admission) and mortality outcomes. We first introduce some notation

to define the different channels through which the target can affect outcomes and then show

how we identify and estimate the ‘distortion effects’ of the target.

4.3.1 Composition and distortion effects

In a potential outcomes framework, let yt be an outcome (treatment decision or mortality

outcome) and wt be the wait time in regime t ∈ {0, 1}. We then define two conditional ex-

pectation functions. The first is E[yt | wt], which is the expected outcome conditional on the

wait time. This allows us to express average outcomes (either in the targeted or non-targeted

regime) for groups of patients located in different parts of the wait time distribution (either

in the targeted or non-targeted regime). For example, the observed data can be written as

E[y1 | w1]. It is also possible to think about E[y0 | w0], outcomes in the absence of the target,

and combinations such as E[y0 | w1] which are the outcomes in the non-targeted regime for

patients at certain points of the wait time distribution in the targeted regime.

We also define E[yt | w1, w0], which is the expected outcome for patients with wait time w1

in the targeted regime and wait time w0 in the non-targeted regime. This notation allows us to

denote outcomes for groups of individuals that have had a change in wait time due to the target.

For example, E[yt | w− < w1 ≤ w∗, w∗ < w0 < w+] is the expected outcome for post-threshold

movers. Since we will repeatedly refer to this and other related groups, we abbreviate these

conditioning inequalities in the following way: E[yt | w−
1 , w

+
0 ].

Using this notation we can decompose the observed outcomes in the pre-threshold period.

Note that, from the wait time analysis, we know that the target causes a number of patients

to shift from the post-threshold to the pre-threshold period (‘post-threshold movers’). So with

the target, outcomes in the pre-threshold period are a weighted-average of pre-threshold non-

movers and post-threshold movers. Abbreviating the pre-threshold period as w−
1 , outcomes can

be written as

E[y1 | w−
1 ] = ρE[y1 | w−

1 , w
−
0 ] + (1− ρ)E[y1 | w−

1 , w
+
0 ], (3)

where ρ ≡
[
F0(w∗)−F0(w−)

]
/
[
F1(w∗)−F1(w−)

]
and Ft is the cdf of wait times. The parameter

ρ is defined by the observed and counterfactual wait time distributions, where ρ is the proportion
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of pre-threshold non-movers and 1− ρ is the proportion of post-threshold movers.

The composition and distortion effects are then defined as follows.

Definition 1 (Composition effect). The composition effect is the change in expected outcomes

conditional on the wait time that occurs in the pre-threshold period because the target shifts some

patients into this period from the post-threshold period:

∆C ≡ ρ
(
E[y0 | w−

1 , w
−
0 ]− E[y0 | w−

1 , w
−
0 ]
)

+ (1− ρ)
(
E[y0 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
−
0 ]
)

(4)

= (1− ρ)
(
E[y0 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
−
0 ]
)
. (5)

Definition 2 (Distortion effect). The distortion effect is the change in expected outcomes con-

ditional on the wait time that occurs in the pre-threshold period because the target has a direct

effect on the outcomes in each regime:

∆D ≡ ρ
(
E[y1 | w−

1 , w
−
0 ]− E[y0 | w−

1 , w
−
0 ]
)

+ (1− ρ)
(
E[y1 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
+
0 ]
)
. (6)

Note that the distortion effects may impact both pre-target non-movers (first term) or post-

target movers (second term). With these definitions the observed outcomes in the pre-threshold

period can be written as

E[y1 | w−
1 ]︸ ︷︷ ︸

Targeted regime (observed)

= E[y0 | w−
0 ]︸ ︷︷ ︸

Non-targeted regime

+ ∆C︸︷︷︸
Composition effect

+ ∆D︸︷︷︸
Distortion effect

(7)

which can be verified by substituting in Equations (3), (5) and (6) and rewriting the non-targeted

regime outcome as E[y0 | w−
1 , w

−
0 ].

4.3.2 Identification of the distortion effect

To identify the distortion effect we make use of the following definition.

Definition 3 (Composition-adjusted counterfactual). The composition-adjusted counterfactual

(CAC) is the outcomes from the non-targeted regime in the pre-threshold period that would occur

in the presence of the composition effect only:

E[y0 | w−
1 ] ≡ E[y0 | w−

0 ] + ∆C (8)

= ρE[y0 | w−
1 , w

−
0 ] + (1− ρ)E[y0 | w−

1 , w
+
0 ]. (9)
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where the second line follows from the definition of ∆C .

With this definition it is straightforward to show that the distortion effect is identified as the

difference between the observed data and the CAC: ∆D = E[y1 | w−
1 ]− E[y0 | w−

1 ]. Moreover,

Equation (9) shows the CAC can be constructed as a weighted average of the counterfactual

outcomes for two groups, the pre-threshold non-movers and the post-threshold movers, where

the weights can be constructed from the observed and counterfactual wait time distributions.

4.3.3 Estimating counterfactual outcomes

We now revisit the bunching estimator and show it can be used to obtain the counterfactual

outcomes in Equation (9). We require two assumptions for this purpose.

Assumption 2 (Local outcome effects). Outcomes outside of an ‘exclusion window’, defined

locally around the threshold w∗, are unaffected by the target:

E[y1 | wt] = E[y0 | wt] ∀w /∈ [w−, w∗ + ε]. (10)

Assumption 2 rules out distortion effects outside of the pre-threshold period. It is the parallel

of Assumption 1 for the conditional expectation function. In this case the exclusion window

ends at w∗ + ε, where ε is a small ‘overhang period’ that extends past the four-hour threshold.

The overhang period allows for the empirical fact that the bunching in outcomes extends

slightly past the threshold (see Figure 2). We interpret the overhang as being a case of distortion

effects for patients that are narrowly discharged or admitted after the threshold. For example,

it may be that doctors admit additional patients in attempts to meet the target but not all of

the excess admits occur prior to the threshold as some patients may be delayed for unexpected

reasons. We determine the size of the overhang period visually, setting ε = 20 in the baseline

analysis, and note that our findings are robust to more conservative (larger) overhang periods.26

Assumption 3 (No-selection). Non-targeted regime outcomes conditional on the non-targeted

wait time are comparable for post-threshold movers and post-threshold non-movers:

E[y0 | w−
1 , w0] = E[y0 | w+

1 , w0] = E[y0 | w0] ∀w0 ∈ w+
0 . (11)

26Our estimates of the distortion effect, which relate to the pre-threshold period, do not capture distortions
in the overhang period. These omitted effects are small: the number of patients in the overhang period is 1.3%
of the number of patients in the pre-threshold period.
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Assumption 3 rules out composition effects in the post-threshold period. It states that after

conditioning on the non-targeted wait time, there is no selection when the post-threshold movers

are assigned. The assumption is consistent with doctors randomly selecting which patients

get a shorter wait time in response to the target, and in that sense it is equivalent to an

unconfoundedness assumption in traditional IV terminology.27 While this is strong assumption

we believe it is plausible and, most importantly, we are also able to evaluate the assumption

empirically using placebo tests. We discuss this assumption and the results of these tests in

detail shortly.

Together Assumptions 2 and 3 imply that there are no composition or distortion effects

outside of the exclusion window [w−, w∗ +ε]. We can therefore apply the bunching estimator in

the same way as before but to the conditional expectation function E[y1 | w1]. The estimated

counterfactual delivered by the bunching estimator is then E[y0 | w0]. This directly gives us

E[y0 | w−
1 , w

−
0 ] and, given Assumption 3, also provides us with E[y0 | w−

1 , w
+
0 ], which are the

two terms required to construct Equation (9).28

Figure 6 presents an example showing the observed data and our estimated counterfactual

for the likelihood of inpatient admission, where the exclusion window is highlighted in grey and

we have set ε = 20.

4.3.4 Testing for distortion effects

Recalling the definition ∆D = E[y1 | w−
1 ] − E[y0 | w−

1 ], and noting that this can now be

constructed from the observed data and Equation (9), the test for distortion effects is simply

a hypothesis test that ∆D = 0. Estimates of this difference and tests of this null hypothesis

form the central results of this paper. We compute statistical significance for the test using

non-parametric bootstrapped standard errors clustered at the hospital organisation level.29

Figure 7 provides a visual example of how we construct the CAC and the test of distortion

effects for the probability of inpatient admission. The pre- and post-threshold periods are

shown in different shades of grey. In each of these periods the horizontal thin dashed line gives

27Similarly, in IV terminology, the post-threshold movers would be compliers, the post-threshold non-movers
would be never-takers, and the pre-threshold non-movers would be always-takers. We implicitly make the as-
sumption that there are no defiers.

28Note that when constructing E[y0 | w−
1 , w

+
0 ] it is necessary to use the distribution of movers, which is equal

to the difference between the counterfactual and observed distribution of patients in the post-threshold period.
29Throughout the analysis we cluster results at the trust (organisation) level. NHS trusts include groups of

one or more hospitals in close geographical proximitiy that share common management. We do not use hospital
site codes due to some organisations entering data only at the trust level. All results are robust to clustering at
the site level.
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the conditional expectation in Equation (9). The CAC, which is a weighted average of these

two conditional expectations, is shown in the horizontal thick dashed line in the pre-threshold

period.30 In comparison, the horizontal thick solid line in the pre-threshold period is the mean

observed outcome in the pre-threshold period. Finally, the difference between the thick solid and

dashed line is the distortion effect, ∆D, which shows that the observed admission probability

in the pre-threshold period is too high to be explained by the composition effect alone. In this

case we can reject the null hypothesis that ∆D = 0.

4.3.5 Testing the no-selection assumption

In Assumption 3 we rule out the possibility of non-random selection of post-threshold movers.

By adapting our test for distortion effects, it is straightforward to generate placebo tests of this

assumption based on observable patient characteristics. The key insight that motivates this is

that observed demographics, such as age or gender, are by definition subject to composition

effects but not distortion effects. Testing the hypothesis that ∆D = 0 for any demographic

variable is therefore equivalent to testing the no-selection assumption.

This ‘demographic test’ acts as a placebo test, since we are testing for effects in situations

where it is known that none should exist. To the extent that these tests indicate that the

no-selection assumption does not hold, our estimated distortion effects will be a combination of

distortion and composition effects.

Figure 8 provides a visual example of the demographic test using age, which follows the

same format as Figure 7. There is again bunching at the four-hour threshold but in this case

it cannot be explained by any distortion effects because patient age is unaffected by hospital

treatment decisions. Comparing the observed data and the CAC shows that these now lie very

close to one another and indeed a hypothesis test cannot reject the null hypothesis that ∆D = 0.

This is consistent with the no-selection assumption: the mean age of post-threshold movers is

comparable to the mean age of all post-threshold patients.

5 Validity of key assumptions

Our methodology rests on our assumptions about local effects (Assumptions 1 and 2) and

selection (Assumption 3). We discuss these assumptions and supporting evidence below.

30The weights are obtained from the wait time distributions shown in Figure 3.
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5.1 Local effects assumption

The local effects assumption is that wait times and treatment decisions prior to w− are

unaffected by the target, and we set w− at 180 minutes in the baseline analysis. As noted

earlier this will not hold if hospitals substitute time or resources between patients that exit

before w− (‘early exit patients’) and after w− (‘late exit patients’). We view our assumption

as very reasonable in this setting with little potential for bias. To support this claim, we first

discuss the potential concerns, and then describe the relevant institutional factors in our setting

and a series of robustness tests.

As an example, a violation of this assumption would occur if the target induced physicians to

substitute from early exit patients (often high severity patients with unambiguous symptoms,

e.g. knife attack victims) to late exit patients (often high severity patients with uncertain

diagnoses, e.g. headaches). By making this type of substitution, physicians may be able to

delay some patients in order to treat a greater proportion of patients within four-hours and

thus perform better relative to the target. The wait time distributions, with and without the

target, would then differ outside of the exclusion window and violate Assumption 1.

The example above is a general type of concern (which we refer to as ‘substitution’) and

would arise in a dynamic model where physicians allocate their time across patients. In such a

model, imposing any target would cause physicians to reallocate their time across all patients,

and change the entire wait time distribution. A second type of concern in a general dynamic

setting is that physicians may not know on arrival which patients are at risk of breaching the

target, and may therefore speed up care for some patients that ultimately would leave the

ED prior to w− irrespective of the target (an ‘uncertainty’ effect). Both of these responses,

substitution and uncertainty, raise the prospect that wait times and treatment decisions are

affected prior to 180 minutes.

It is possible to analyze the direction of bias from violations of Assumptions 1 and 2. For the

wait time analysis, this task is relatively straightforward: substitution will cause us to overstate

the wait time reduction (since our analysis omits any delays prior to w−) while uncertainty will

cause us to understate the reduction (we omit any reductions prior to w−).31 The potential

bias in our analysis of treatment decisions and health outcomes is more difficult to characterize

31A related concern in both cases is that our counterfactual could be substantially misspecified if the observed
distribution in the pre-exclusion window is entirely uninformative. The impact of this on our estimates is harder
to predict. Given the institutional factors discussed below, however, we view a major misspecification of this
type as unlikely.
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because it depends on composition and distortion effects and may involve non-random selection.

As we set out below, however, it is possible to characterize how and where any bias is most

likely to be present, and we run a series of tests that evaluate our assumption on this basis.

5.1.1 Institutional factors

There are three factors that mitigate concerns about a violation of local effects. The first

is simply that there is far less scope for dynamic responses than Figure 1 would suggest. In

particular, this figure aggregates across many hospitals, days, and time periods. The actual

scope for substitution between patients is much more limited, since there is no incentive to

substitute between patients that are not within the same four hour window. Looking at the

data, there are on average only 33 patients who arrive at a hospital within a given four-hour

window. This limits the potential extent of dynamic responses.

Second, ED staff are organized in a way that further limits scope for substitution. Physicians

and nurses in English EDs are generally separately assigned to minor or major units within the

ED, and this physical separation limits the prospect of substitution between early and late exit

patients. It is of course possible that as a major unit becomes busy, staff could be diverted from

the minors unit to assist and this could violate Assumption 1 by delaying early exit patients.

However, our understanding is that there are often slack resources in the majors unit, such as a

senior physician who will step in at busy times rather than pulling resources across from minors.

This will again limit the likelihood of substitution.32

Finally, hospitals are likely to be maximizing an objective function that, at least in part,

contains patient mortality. This will naturally place limits on their willingness to substitute

between different types of patients. For example, patients with clear and life-threatening in-

juries (e.g. knife wounds) will always be treated immediately, and for a similar length of time,

irrespective of the target. Similarly, patients with very minor injuries will always be sent home

shortly after initial assessment. These unambiguously high and low severity patients are likely

to account for a significant proportion of exits prior to the exclusion window, and suggest that

if there are substitution or uncertainty responses, then these are more likely to occur away from

the very early exits and nearer to w−.

32A limitation of our data is that it does not record the outcome of any minor or major classification, nor does
it record staff or patient locations.
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5.1.2 Robustness test I: Variation in w−

In the baseline specification we use w− = 180 on the basis of visual inspection. As we note

above, based on institutional factors, if there are violations of Assumptions 1 and 2, then they

will be most evident in the neighborhood of w−. We therefore vary our choice of w− and assess

how sensitive our results are. If there are major shifts in our estimates then this would be a sign

that there are significant substitution or uncertainty effects prior to 180 minutes. In Online

Appendix A (Table A4) we show that this is not the case and our results are robust to the

choice of w− as it varies between 160 and 200 minutes.

5.1.3 Robustness test II: Disaggregated analysis

In the baseline specification we pool the data for all patients together. As a robustness

check, we can separate out patients according to their ED diagnosis and run the same baseline

specification. Doing this eliminates any bias from substitution effects across patients with

different ED diagnoses (e.g. if hospitals shorten wait times for stroke patients at the expense of

patients with broken arms). We present and discuss the details of these results in Section 7.2 (see

Table A6), but note here that the weighted average of the estimated impacts across diagnoses

(weighted using the number of patients in each diagnosis) provide very similar estimates to the

aggregate baseline results.

5.1.4 Robustness test III: Planned substitution effects

We now turn to two tests that evaluate specific types of substitution effects. First, we test

for evidence of ‘planned substitution’, by which we refer to when hospitals anticipate that the

target will bind and in response change the relative priority given to certain patients to improve

target performance. While we would ideally evaluate this using data from before the target,

given that is unavailable we instead exploit variation in expected volumes of ED arrivals. The

idea is that this variation changes how tightly the target binds since higher volumes of arrivals

make the target more challenging to meet in relative terms. If planned substitution effects are

present, we anticipate it should be noticeable in the prioritization of patients across periods

that are expected to be more or less busy.33

33While the volume of arrivals may be correlated with other factors, such as the number of doctors scheduled
to be on shift, this would not necessarily impact the patient prioritization that we compare in this test. One
potential concern could be that any increase in scheduled doctors may offset any increase in expected arrivals. If
we repeat the same test but use shocks to ED arrivals then we find similar results.
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Figure 4 plots the proportion of patients who exit within 180 minutes for each percentile of

predicted mortality (as a measure of severity) for patients that arrive during ‘busy’ and ‘non-

busy’ periods. We define busy periods by first predicting the number of patients present in the

ED during each hour in our data, using a regression with hospital-specific week-of-year, day-

of-week, and hour-of-day fixed effects. We then divide periods into the top-third of predicted

volumes (busy) and bottom-third of predicted volumes (non-busy).

The plot shows that a smaller proportion of higher severity patients leave the ED within

180 minutes. It also shows that busier periods have longer wait times for patients of all severity,

with a smaller proportion of patients across the severity distribution leaving the ED within

3 hours as the department becomes busier. Most importantly for our purposes, the relative

probabilities of exits within 180 minutes for high and low severity patients are very similar

in both types of period. The same is also true if you repeat this exercise for other waiting

periods.34 These results suggest that as the target binds more or less tightly, hospitals maintain

the same prioritization of patients and there are no planned substitution effects.

5.1.5 Robustness test IV: Temporary substitution effects

Turning to the second substitution test, we now consider ‘temporary substitution’, by which

we refer to the case when hospitals experience a demand shock–such as the ED being momen-

tarily overrun with patients–and this causes them to make short-term deviations from their

planned priorities. A specific example could be that the hospital has a build up of patients that

are close to breaching the target and they temporarily substitute resources away from newly-

arriving patients to clear their backlog of patients and therefore increase the wait time of these

new arrivals.

To test for temporary substitution effects, we examine whether there is any evidence that

hospitals substitute resources away from patients that we would expect to exit in the early part

of the distribution in order to ensure that patients approaching the target do not wait over 4

hours. Intuitively, we compare the wait times of newly arrived patients on the basis of how

many patients in the ED have waited almost four hours. If there are temporary substitution

effects between these individuals, we would anticipate large effects of the presence of existing

34We also examined the proportion of patients who exit the ED after 60 minutes, 120 minutes, 240 minutes and
400 minutes. This produces similar results in all cases, with a broadly parallel shift downwards in the proportion
of exits when moving from a non-busy to busy period. This shift is very small when examining the proportion
of patients exiting within 240 and 400 minutes as the vast majority of patients have exited the ED by this point.
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patients near the four-hour threshold on the wait times of new patients.

We examine four groups of newly arriving patients on the basis of their predicted waiting

times: those predicted to have wait times below 150 minutes; between 150 and 180 minutes;

180-210 minutes; and 210-240 minutes. For each group, we regress wait times on the volume

of existing patients waiting ahead of them at each 10-minute internal of the queue. We then

compare the results between the early exit patients (those in the first two groups with predicted

wait times below 180 minutes, such that they exit prior to the exclusion window) and late exit

patients (those predicted to have wait times above 180 minutes). The late exit groups act as

control groups in the sense that Assumption 1 allows for temporary substitution effects to occur

for these groups (inside the exclusion window) but not for the early exit groups (outside the

exclusion window). We predict early or late exit using a regression of wait times on age, gender,

diagnosis fixed effects and an ambulance indicator.

To implement the test we aggregate the data to the hospital-period level, where periods are

defined at 10-minute intervals, and estimate the following equation

wg
ht =

∑
k

βkqh,t−k + µhw + δhd + γhp + eht (12)

where wg
ht is the mean wait time for newly arriving patients of group g (as per the four categories

described above) at hospital h in period t (e.g. between 12:01 and 12:10), qh,t−k is the number

of existing patients waiting ahead in the queue at horizon t − k (e.g. the number of patients

that have been waiting 1-10 minutes, 11-20 minutes, and so on), and µhw, δhd and γhp are

hospital-specific week-of-year, day-of-week, and period-of-day fixed effects.

Figure 5 presents the estimated βk coefficients from Equation (12). We normalise coefficients

so they can be interpreted as the impact of a one standard deviation increase in the queue

length at each horizon on newly arriving patients’ wait times. The results for each group are

shown separately in panels (a) - (d). Looking first at the early exit groups (panels (a) and

(b)), the plot shows that longer queues increase wait times and the impacts decline with the

time horizon. There is no evidence of disproportionate impacts around the four-hour threshold

in either group.35 Looking now at the late exit groups (panels (c) and (d)), there is again

evidence of longer queues increasing wait times but for these groups there is clear evidence of a

35We would expect to see a spike around the target in panel (b) if the exclusion window should start prior to
180 minutes. The similarities between panel (a) and panel (b) therefore suggest that 180 minutes is a reasonable
choice for the lower bound of the exclusion window.
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discontinuity at the four-hour threshold. This indicates that, for the late exit groups, doctors

actively substitute resources away from newly arriving patients towards those patients that

are at risk of breaching the target. The spike is largest for the group who are predicted to

wait between 210 and 240 minutes (panel (d)), indicating that the greatest substitution occurs

between the most similar patients. These results suggest that there are temporary substitution

responses for patients predicted to be within the exclusion window (late exits) but not for those

predicted to be in the earlier part of the distribution (early exits).

Taken together, Figures 4 and 5 suggest that there are no planned substitution responses,

and temporary substitution responses do not occur outside of the exclusion window. This is

consistent with Assumption 1 and our choice of lower bound for the exclusion window. The

robustness tests based on w− and our disaggregated analysis further support this claim.

5.2 No selection assumption

We set out our methodology for a test of Assumption 3, based on observable demographic

variables, in Section 4.3.5. Table 2 presents the results of the relevant demographic tests.

Column (1) presents estimates of the distortion effect and column (2) presents estimates of the

distortion effect as a proportion of the counterfactual mean. Panel A presents results using

individual demographic variables, where we test using age, a male indicator, an indicator for

whether the patient arrived via ambulance, and the Charlson co-morbidity index based on the

12 months of hospital admissions prior to the beginning of our ED data (‘past-CCI’). Each of

these variables should be unaffected by decisions made in the ED, and thus allow us to test our

selection assumption.36

For age and ambulance-arrival we cannot reject the no-selection hypothesis. In contrast, we

reject the no-selection hypothesis for gender and past-CCI. The gender result suggests that post-

threshold movers are more likely to be female than the post-threshold non-movers. However,

the extent of this selection effect is small: the difference between the observed and composition-

adjusted counterfactual proportion of females in the pre-target period is 0.5 percentage points

(1.1% of the baseline).37 With regard to the past-CCI results, the positive estimate suggests

36We considered several other variables for the demographic test. Unfortunately a number of variables have
missing data around the threshold (e.g patient ethnicity).

37Exploring the male indicator more carefully shows that, unlike the other variables we study, it is poorly cor-
related with ED wait times. This causes the polynomial regression, which we use to determine the counterfactual
outcomes, to fit the data less robustly (i.e. it is sensitive to the choice of polynomial). The demographic test is
therefore not reliable for this variable. The same is also true for other variables that we considered for the test,
including whether the patient lives in an urban area and the deprivation level of the local area.
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post-threshold movers are on average less healthy than post-threshold non-movers, with a past-

CCI score that is 4% higher. This is consistent with physicians responding to the target by

prioritizing patients with a worse health record.

Panel B in Table 2 presents results for variables that are linear combinations of the indi-

vidual demographic variables. We use predicted admission and predicted mortality, where the

predictions are obtained from linear regressions of the outcome on a flexible specification of the

demographic variables (past-CCI score, and a fully interacted set of age, gender and ambulance-

arrival fixed effects). The R2 statistic from these predicted regressions is 0.22 and 0.06. An

advantage of using these predicted variables is that they weight individual demographic vari-

ables according to their relative importance for clinical outcomes. Weighting factors on this

basis is useful because selection on factors which do not impact these outcomes is unlikely to

bias our estimates. Looking at the estimates, the demographic tests for these predicted vari-

ables cannot reject the hypothesis of no-selection. So even though the gender and past-CCI

tests reject the hypothesis, the contribution of these variables to salient medical outcomes and

thus the likelihood of bias is low.

As a direct test of whether gender and past-CCI introduce meaningful bias to our estimates,

we computed estimates conditional on these observables and compared them to our baseline

estimates that we present below. The two sets of results were very similar, suggesting that any

selection does not introduce substantive bias to the estimates.38 We also note that any bias

from selection on (unobservable) severity, if it mirrors the past-CCI result, would attenuate our

estimates towards zero and thus make our mortality estimates conservative.

As a final probe of the no-selection assumption, we simulated how selection of different

degrees would manifest itself in the observed data. To do this we built a simulated dataset

using the counterfactual wait time and age distributions and then artificially assigned post-

threshold movers using different selection rules. We describe this process in more detail in

Online Appendix B. The simulation highlights three facts about selection in our setting. First,

the observed data on age looks very similar to the simulated data with a random selection rule.

Second, even very modest selection is predicted to have a clear impact on the data, by creating

a spike in outcomes in the pre-threshold period and a very pronounced ‘dip’ in outcomes in

the post-threshold period, and neither of these features of selection are present in our data.

38To compute the conditional estimates, we apply our methodology to subgroups of patients defined by gender
and past-CCI, and then aggregate these results up to be comparable to the baseline estimates using the sample
weights associated with each subgroup.
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Third, an advantage of our test is that it has potential to detect selection-on-unobservables

even though it relies purely on observables. This follows since a test based on age, for example,

would reveal selection on another unobservable variable as long as it is sufficiently correlated

with age.

Together these results indicate that the no-selection assumption is plausible in this setting.

On its face, this is perhaps a surprising finding. While patients themselves do not make the

selection decision, hospitals do make these choices and selecting certain patients may be in their

interest. But on a day-to-day basis, hospitals are treating patients at different times and we

find this limits the scope for selection. If the data is segregated into hospital-hour periods,

for example, then the number of patients approaching the target at any given point in time is

actually small, at around 3 to 4. This compares to an average of 3.5 physicians that are on shift

in a typical ED, suggesting physicians rarely have a choice between multiple ‘potential breach’

patients.39 Rather than being a result of selection on patient characteristics, we view breaches

of the target as more likely to occur due to idiosyncratic events and delays (e.g. staff shortages).

While we cannot rule out that such events could be correlated with patient characteristics, our

demographic tests suggest that this is not the case.

In practice, we therefore treat those patients observed with wait times in excess of 240

minutes (post-threshold non-movers) as comparable to those patients that would have had wait

times in excess of 240 minutes in the absence of the target (post-threshold movers), and we

can therefore use these post-threshold non-movers as the counterfactual for the post-threshold

movers.

6 Results

We begin this section by first presenting the wait time results. We then present results

from the placebo tests of the no-selection assumption, and finally turn to the results concerning

treatment decisions and mortality outcomes. We explore the mechanisms behind the mortality

outcomes in Section 7.

39We do not have detailed staffing data but obtained this number from a data request sent to all hospital
trusts. We received responses from roughly 40% of trusts, and average physician figure is an average of physician
numbers across all hospital-hours.
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6.1 Wait times

Figure 3 shows the observed wait time distribution and our estimated counterfactual distri-

bution. The shaded panel is the exclusion window where we estimate the effects of the policy,

covering the period between 180 and 400 minutes. The solid line is the observed distribution

of patients that exit at each interval and the dashed line is the estimated counterfactual dis-

tribution. The effect of the target on exit times is clear: a large proportion of patients from

the post-threshold period (240 to 400 minutes) are moved to the pre-target period (180 to 240

minutes); these are the patients we refer to as post-thresholder movers. By comparing the ob-

served wait time distribution with our counterfacutal we can compute the impact of the target

on average wait times.

The results indicate that the target is successful in achieving its primary aim of reducing wait

times. We estimate that the target reduces mean wait times by 7 minutes. This is equivalent

to 4% of the estimated counterfactual mean. For patients affected by the target (i.e. in the

exclusion window), we estimate that the target reduces wait times by 21 minutes, or 8% of their

estimated counterfactual mean. Moreover, if we restrict our attention to those patients moved

to the pre-threshold period from the post-threshold period (the post-threshold movers), then

the average wait time reduction is 59 minutes.40

6.2 Treatments and mortality outcomes

Table 3 presents results of the distortion test for a range of treatment decisions and costs.

Each row shows results for a separate outcome. Column (1) presents estimates of the distor-

tion effect and column (2) presents estimates of the distortion effect as a proportion of the

counterfactual mean.

Panel A presents estimates for treatment decisions in the ED. We find that, controlling for

compositional changes, there is an increase in the odds of admission of 4.6%. This is 12.2%

of the baseline composition-adjusted counterfactual value, which is sizeable. The results for

discharges and referrals out of the ED to specialist clinics or hospitals offset these admission

effects, with roughly three-quarters of the effect coming from decreased discharges, and one-

quarter from decreased referrals, although as a percentage of the baseline these responses are

of comparable magnitude.

40To obtain estimates of the distribution of wait time reductions would require further assumptions on the
ordering of patients. We do not impose these assumptions, but note that the maximum wait time reduction could
be as large as 200 minutes (i.e. a patient moved from 390 minutes to 190 minutes).
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We also show target effects on the number of investigations performed in the ED, such as

x-rays, blood-test and CT scans. We find that investigations rose by 0.1 per patient, or 4.6%

of the baseline. We do not, however, find any effect on the number of treatments performed

in the ED. This suggests that doctors perform more tests in order to speed up the admission

decision for individuals (i.e. they perform an extra test instead of monitoring the patient for a

longer period of time) but has little effect on the treatments that they provide in the ED.

Panel B examines inpatient treatment decisions. For inpatient treatments, in order to avoid

selection, we include all ED patients, even those who did not end up being admitted. As a result,

the coefficient represents the incremental amount of treatment due to the four-hour target. We

find no evidence of any statistically significant increases in length of stay or the number of

procedures. This suggests that the extra admissions do not receive substantial amounts of care

in the hospital. That is, these admissions appear to be largely placeholders in order to avoid

the four-hour target.

Nevertheless, the additional admits are costly. Panel C of Table 2 examines the impact of

the four-hour target on 30-day patient costs. There is a small rise in ED costs of $3, or two

percent of ED costs. But there is a significant increase in inpatient costs of $126, which is 5%

of inpatient costs. That is, even though most patients appear to be only housed in inpatient

departments as a way of avoiding the four-hour target, these admissions generate transfers from

the government to hospitals. Total costs rise by roughly 5% relative to the baseline.

Table 4 then extends our analysis to look at patient mortality outcomes. We consider

mortality at a variety of time frames, ranging from 30 days after entering the ED to 1 year

later. We find significant short term declines in mortality. Mortality over 30 days declines by

0.4 percent, or 14% of baseline. The CAC for 30-day mortality is shown in Figure 9; here, after

adjusting for the composition effect, we find that the observed data is lower than the CAC and

this is what produces the negative estimate. This effect fades slightly over time and falls as a

share of the baseline, so that at one year it is only 3.1% of baseline. This pattern suggests that

the health benefits of the four-hour policy are seen in the short term.

This is a sizeable mortality decline given the modest increase in costs documented in Table

2. We find that total costs over 30 days from admission to the ER rise by 5%, while mortality

falls by 3.1% over a year. Calculating the cost per year of life saved by the policy requires

assumptions on how long-lasting is the impact on mortality and on any subsequent costs past

30 days. Assuming no subsequent costs, but also assuming that the mortality impact only lasts
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one year, this implies a cost per year of life saved of $43,000.41 This is low relative to standard

valuations of a life-year in the U.S., where typical benchmarks are around $100,000 (Cutler,

2003), and at the upper end of valuations in the U.K., where the national benchmarks are set

at $28,000 to $42,000 (McCabe et al., 2008).

In summary, then, our analysis of the four-hour target shows that it led to shorter wait

times, more admission, only marginal additional costs (due to little use of inpatient care for

those admitted), and significant reductions in mortality. That is, it appears that constraining

hospitals did save lives.

7 Mechanisms

7.1 Using Patient Heterogeneity to Identify Mechanisms

Our results so far show a number of effects of the wait time target on patient treatment

– on wait times, admission probabilities, and treatment costs more generally. We also show a

significant effect on patient mortality. Ideally we would like to uncover the mechanism through

which the four-hour target impacts patient mortality. This is difficult since we essentially have

one instrument (the target) and multiple changes in patient treatment.

To address this issue we turn to considering heterogeneous impacts across types of patients.

That is, we examine whether there are groups of patients where there are differential effects of

the four-hour target. If those groups have effects that are focused along one channel (e.g. wait

times) but not another (e.g. admits), then we can use this to separate the effect of the two

channels on outcomes.

In particular, we consider two natural sources of heterogeneity. The first is differences

across diagnosis. In particular, we divide patients into 36 diagnosis groups.42 It seems likely

that the largest wait time impacts of the target will show up for those who have the most

severe diagnoses, since they are the most likely to hit the wait time target. Indeed, Figure

41This reflects the cost to the government of the policy due to the increase in HRG transfers to hospitals.
The actual cost in terms of resource-use will be even lower if the marginal admissions due to the policy use
fewer resources than the average HRG cost. The calculation also omits the fines levied on hospitals for breaching
the target. Incorporating these fines into the cost calculation reduces the cost per year of life saved (as the
government effectively recoups some of its additional expenditure through collecting the fines) but this effect is
very small because performance was close to the 95% target in the period we analyze.

42The data assign patients to 40 diagnosis categories, including a ‘missing’ category. We exclude four diagnoses
(nerve injuries, electric shock, near drowning and visceral injury) as small samples do not allow us to separately
estimate the impact of the target for these groups. We also tested whether the missing data had an impact on the
results, by conducting the same analysis for hospitals that had fewer missing data points and we found similar
results to those presented here.
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10 graphs the proportion of patients hitting the wait time target (in the counterfactual wait

time distribution) against the severity of the diagnosis. Severity is measured by mean predicted

30-day mortality for patients within each diagnosis. In fact, we see that the odds of hitting 240

minutes are much higher for the most severe diagnoses.

We therefore separately compute the wait time reduction effects, and distortion effects for

admissions and 30-day mortality for each diagnosis group.43 We then assess how the hetero-

geneity across diagnosis groups translates to each of these outcomes.

The results of this exercise are shown in Figure 11. Panel A shows that higher severity

diagnoses have larger wait time effects. This is sensible since they are most likely to wait

the longest without the four-hour policy. But Panel B shows that the effects of the target on

hospital admissions is no higher for more severe diagnoses. That is, the more severe diagnoses

are getting treated sooner, but are no more likely than others to have that treatment resolve in

an extra hospital admission.

Panel C shows the differential treatment effect on mortality by diagnosis category, where

black circles correspond to actual mortality outcomes and red triangles correspond to predicted

mortality outcomes. The y-axis shows the absolute value of mortality reduction, so that a larger

value means a larger mortality reduction. Looking at the black circles, there is a clear upward

slope showing that the mortality effect of the four-hour target is strongest for the most severe

diagnoses. To ensure that selection is not driving our result, the graph also repeats this exercise

for predicted mortality. If our assumption of no-selection (Assumption 3) holds, these effects

should not be statistically different from zero. The red triangles shows that this is indeed the

case, with all estimates clustered around zero and no systematic relationship between the effects

of the target on predicted mortality and the severity of the diagnosis.

Given that there is an effect on wait times, but not admissions, this suggests that it is wait

time reductions and not increased admissions that are driving the results. Of course, this set

of corresponding facts do not prove this causal mechanism because there may be other factors

that cause the effects to differ by diagnosis. So to further test this conclusion we consider a

second source of heterogeneity.

We next turn to heterogeneity by the degree of inpatient crowding. In times where the

inpatient department is more crowded, EDs may be less able to address their wait time targets

43We adjust the polynomial choice for each diagnosis to ensure that it both fits the data well and meets
the condition that the excess and missing mass are equal. To do this we use an approach that maximizes the
adjusted-R2 of Equation (1) for each outcome. We use the same approach for the crowding analysis that follows.
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by admitting patients because the inpatient wards have less spare capacity for these patients

to be sent. But it is unclear that inpatient crowding would much affect the marginal wait time

impacts of the target. Inpatient crowding therefore provides an opposite test of the diagnosis

heterogeneity: an opportunity to observe heterogeneity that drives admission probabilities but

not wait times.

To assess this, we divide the data into 50 quantiles depending on how busy the hospital

inpatient department is on the day of admission. For each hospital-day, we calculate the daily

number of inpatients treated by the hospital, and use this to assign each hospital-day to one of

50 groups in the hospital-specific distribution of inpatient crowding. Patients are then assigned

to each of these groups depending on their day of arrival.44 To address differences in casemix

during busy and quiet periods, we also split patients into two severity groups. ‘Major’ diagnoses

are defined as those with a 30-day mortality rate above the overall 30-day mortality rate (1.6%).

Interacting the 50 inpatient crowding groups with severity yields 100 groups. For 95 of these

groups we have sufficient sample size to independently compute the effects of the target, and

therefore across which to examine heterogeneity in effects.

Figure 12 presents the results of this second heterogeneity test. The figure shows the results

for these observations, ranked from least crowded to most crowded. Panel A shows that inpatient

crowding has a weak, positive relationship with wait times. Panel B shows a strong, negative

relationship between crowded inpatient departments and smaller increases in admission. So this

source of heterogeneity gives the opposite results of what we saw for severity: a small effect

on wait times and a large effect on admissions. Therefore, if our earlier supposition is correct

that it is wait times and not admissions that drives our mortality effects, we should see little

differential impact on mortality across these groups.

In fact, that is exactly what we see in Panel C in the black circles: there is no significant

relationship between the degree of inpatient crowding and the estimated mortality effect. As

in Figure 11c, we repeat this analysis with estimated reductions in predicted mortality (which

should be unaffected by the target once we adjust for the composition of patients) to show that

these results are not driven by selection. The red triangles show that the predicted mortality

effects are again close to zero. There is a positive relationship between predicted mortality

reductions and inpatient crowding but this is small in magnitude.45

44We calculate the inpatient census at the daily level as the data do not contain information on time of arrival
at, or discharge from, the inpatient department.

45This means that our results may actually understate the mortality reductions in the most crowded periods.
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We formalize these graphical results in Table 5. The unit of analysis in this table is either

diagnosis groups (columns 1-3) or inpatient crowding by severity (columns 4-6). The dependent

variable is the distortion effect on mortality in absolute value for each group. The indepen-

dent variables are the estimated wait time reduction and the distortion effect for admission

probability. Essentially, these regressions report associations between the estimated impact on

mortality and the estimated impact on wait times and admissions, using a grouping estimator

with groups defined by severity or inpatient crowding. A positive coefficient in these regres-

sions can be interpreted as that margin being associated with a larger policy effect on 30-day

mortality.

Column 1 shows that across the 36 diagnosis groups, those groups with larger wait time

effects have larger mortality effects. The estimated coefficient suggests that each additional

minute of wait time reduction increases the mortality reduction by 0.001 percentage points.

Earlier, we estimated that wait times fell by 19 minutes on average. This suggests a mortality

reduction of 2.2 percentage points. This is of a similar magnitude to our reduced form estimate

in Table 4 of 3-4 percentage points. Column 2, however, shows that there is no impact of the

increase in admissions on mortality. And column 3 shows it is still the case that groups with

larger wait time effects, but not larger admit effects, have larger mortality effects when we

consider both variables together.

Columns 4-6 repeat this exercise using the estimates by inpatient crowding and patient

severity. Once again, we have a highly significantly relationship between the wait time reduction

and mortality reduction, which a coefficient that is similar to column 1. In this case, in column

5, we do see a significant effect of the admissions effect on mortality, albeit with a wrong signed

coefficient suggesting that a larger admissions effect leads to a smaller mortality effect. But

when both are included in column 6 only the wait time effect persists.

These results are not surprising given the graphical evidence shown above. The bottom line

is that heterogeneity associated with wait time variation appears associated with mortality vari-

ation, while heterogeneity associated with admissions variation does not. This does not prove

that the wait time reductions are driving our mortality reductions, but it is highly suggestive.

Given that these periods are also those with the smallest increases in admissions, this would strengthen the
conclusion that mortality reductions are associated with reductions in wait times and not additional admissions.
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7.2 Wait times, diagnoses and causes of death

This evidence raises the question of how reductions in wait times could lead to lower mor-

tality rates. The most likely mechanism is that reductions in wait times lead to lower time-

to-treatment for patients with severe diagnoses. An extensive medical literature makes it clear

that rapid treatment is associated with better mortality outcomes for patients across a range

of conditions. For example, Seymour et al. (2017) find a strong positive association between

time-to-treatment and survival for ED patients with sepsis and septic shock.46 However, it

may be difficult for physicians to identify these patients as they arrive at the ED: a body of

medical evidence suggests that misdiagnosis in the ED is not uncommon, while there is often

disagreement between ED physician and subsequent specialist diagnosis.47 This suggests why

the target may have been successful in improving outcomes relative to an unconstrained sce-

nario as it leads doctors to speed up treatment for all patients, which is costly but ensures that

hard-to-diagnose and time-sensitive patients ultimately get the correct treatment sooner.

We explore the likelihood that this mechanism is driving our results in two ways. First,

we look at how hospitals achieve the reductions in wait times by examining which parts of the

treatment pathway they are compressing. This provides some evidence on whether patients start

to receive treatment earlier. Second, if wait times are driving mortality reductions we would

expect to see the greatest mortality reductions for patients with conditions where outcomes

are known to be time-sensitive. We therefore examine variation in mortality reductions across

diagnoses and primary causes of death.

To examine how wait times are reduced, we break down the overall impacts on waits into

the three separate components that the data allows: time to initial assessment; time between

assessment and the beginning of treatment; and duration of ED treatment. The initial as-

sessment is usually conducted by a triage nurse, and includes a relatively basic examination.

Treatment begins when the patient is first examined by a doctor (i.e. when the first ED treat-

46There are also many examples from other diagnoses. For example, Saver et al. (2013) find significant im-
provements in mortality and post-hospital outcomes for stroke patients when cutting time-to-treatment. Cannon
et al. (2000) also find substantial increases in mortality following a heart attack when patients receive angioplasty
more than two hours after arriving at hospital.

47Shojania et al. (2003) conducted a systematic review into studies of autoposy-detected diagnostic errors over
a 40 year period in the US and found a median error rate of 23.5%, although this rate was decreasing over time.
Delays and misdiagnoses are particularly common for neurological and cerebrovascular patients, and many of the
existing studies are in this area. For example, Newman-Toker et al. (2014) estimate that between 15,000 and
165,000 cerebrovascular events are misdiagnosed annually in US EDs, while Moulin et al. (2003) found that half
of ED patient diagnoses in a large French hospital were changed after neurology consults were obtained, following
access to more detailed testing equipment (e.g. CT and MRI scanners) which were not available to the original
ED physician.
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ment is received, and we document the common first treatments in Table A1), and ends when

the ED makes the decision to admit or discharge the patient. Admitted patients will then

receive further treatment from a specialist within the hospital. As noted in Section 2.1 and

shown in Appendix Tables A1 and A2, most ED treatment in England is aimed at stabilising

and diagnosing patients, with more extensive treatments provided by specialists in inpatient

wards. Reducing treatment time in the ED therefore means that patients start to receive this

specialist treatment sooner.

We repeat the analysis in Section 4.3 using each of the three components as an outcome

variable. The results show that the reductions are achieved both by reducing the initial wait

for treatment (48% of the overall reduction), and by shortening the duration of ED treatment

(45%). The remaining reduction (7%) is explained by the initial time to assessment. These

results suggest that the target reduces the wait for both ED and specialist treatment to begin.

Patients start to receive treatment from ED physicians sooner and spend less time receiving

treatment in the ED.48 Importantly, shorter periods spent in the ED also mean that admitted

patients start to receive specialist inpatient treatment sooner. This specialist treatment often

begins with further diagnostic testing (such as CT or MRI scanning, as documented in Table

A3), and so reducing ED time means patients are likely to receive a detailed diagnosis sooner.

Next we turn to examining which patients benefit most (in terms of mortality reductions)

from the target. If quicker treatment is responsible for improving patient outcomes, we would

expect to see the greatest improvements for patients with diagnoses that can be affected by

time-sensitive treatments. We therefore examine in which diagnosis groups we see the biggest

impact of the target on patient outcomes. Table A6 in Appendix A shows the estimated impact

on mortality and wait times within each of the 40 ED diagnoses categories, ordered by the size

of the mortality reduction. The largest impacts of the target on mortality rates are found in

patients with septicaemia, cerebo-vascular (stroke) and other vascular injuries. These are all

areas, as noted above, in which medical evidence suggests benefits to patients from reduced

time-to-treatment.

While the impacts are largest among these diagnoses, the total number of patients saved

in each diagnosis group will also depend on the number of patients who attend ED with these

diagnoses. For example, septicaemia is a relatively rare condition, while respiratory problems

48The data do not include more detailed information on the amount of time actually spent with physicians.
As a result we cannot test whether the target reduces time spent being treated by an ED physician. However,
our results in Table 3 suggest that patients do not receive fewer ED treatments as a result of the target.
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are more common. We therefore use the estimates to compute the number of patients for each

broad ED diagnosis who survived for at least 30 days following their ED visit as a result of the

target.

The last column of Table A6 reports these estimates as the share of total lives saved among

patients with complete diagnosis information. The aggregate estimates indicate that in 2012/13,

17,800 patients were saved by the target, or just under one patient per hospital every three

days. Among patients with complete diagnosis information, a third of the lives saved are from

patients attending the ED with a respiratory problem. Gastrointestinal, cardiac and cerebro-

vascular diagnoses also explain substantial shares of the lives saved. While these categories are

still relatively broad, they provide reassurance that the majority of the mortality reductions

come from serious conditions where timely treatment can plausibly make a difference to patient

outcomes.

An alternative way of analyzing which patients are saved by the target is to examine whether

we observe reductions in the specific causes of death contained in the official mortality records

that are linked to our hospital records (ICD-10 codes of primary cause of death). These data

provide a far more granular record of a patient’s condition than the ED diagnosis data. How-

ever, while the recording of ED diagnosis should be independent of the the treatment received,

mortality is an endogenous outcome. Rather than split the sample by cause of death, we there-

fore use indicators for specific causes of death as outcome variables and test whether the target

reduced the prevalence of each cause. In this way we can further test the time-to-treatment

mechanism by examining whether the target reduced deaths in time-sensitive conditions, but

not in conditions that we would not expect to be time-sensitive in an acute setting.

We begin by classifying deaths into 23 categories according to the first letter of the ICD-10

code, and repeat our analysis with the 23 dummy variables as outcome variables. Table A7 in

Appendix A shows the results. We find that 70% of the reduction in mortality can be explained

by reductions in deaths related to circulatory (30.1%), respiratory (25.7%) and digestive (15.0%)

conditions. These are all categories which include specific conditions that are likely to be time-

sensitive.49 In contrast, there is no significant reduction in mortality attributed to neoplasms

(cancers), which include a number of high mortality conditions unlikely to be time-sensitive.

Undertaking the same analysis in yet more detail, we analyze more detailed causes of death

49Circulatory conditions in the ICD-10 data include strokes, which are the most common cause of death for
patients with the ED diagnosis of cerebro-vascular.
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using the first 2 digits from the ICD-10 codes. We examine the ten most common causes of death

for ED patients, which together account for 60% of all patient deaths. Table A8 in Appendix A

presents the results. The estimates again show that the greatest mortality reductions are found

for time-sensitive conditions. The largest effects are found in patients with cerebrovascular

diseases, both as a proportion of the overall mortality reduction (column 3) and as a proportion

of deaths due to the specific cause (column 4). Deaths from chronic lower respiratory diseases,

influenza and pnuemonia, and ischemic and pulmonary heart diseases are also substantially

reduced.

In contrast, we again observe no significant changes in mortality associated with cancers

of any type. These are all conditions which we would expect to be less sensitive to time-to-

treatment in an acute setting, and so act as a convincing placebo test when examining the

time-to-treatment mechanism.

While these results do not provide definitive proof that wait time reductions are causing

mortality reductions, they do provide reassuring evidence that many of the mortality reductions

occur in diagnoses where timely treatment is known to be important, and not in areas where

it is less so. Wait times, and specifically time-to-treatment, therefore do appear to play an

important role in explaining patient outcomes.

8 Conclusion

The Emergency Department is a central node of health care delivery in developed countries

around the world. It is the entry point into the hospital for a large share of patients and decisions

made rapidly by ED staff have fundamental impacts on the entire course of care. Despite the

complicated nature of these decisions, there remains dissatisfaction in most health care systems

with the level of crowding in EDs and the speed with which cases are resolved. This has led

in recent years to both open competition on ED wait times and to regulatory interventions to

reduce those times.

We study one type of regulatory intervention, the four-hour wait target policy enacted in

England. We find that this target had an enormous effect on wait times, as illustrated vividly

by the spike in the wait times distribution at the four-hour mark. We use well-established

bunching methodologies to estimate that this represents a significant reduction of around 20

minutes, or 11%, in the average wait time of impacted ED patients.
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We then turn to assessing how this change in wait times impacted patient care and outcomes.

We do so by introducing an econometric framework that allows us to separate the compositional

impacts of individuals shifting from after to before the four-hour target from the distortionary

effect of the four-hour target on medical decisions. We find this target led to a significant

rise in hospital admissions. These admissions do not appear to involve much new treatment,

suggesting that they may just be ‘placeholders’ to meet the target. But there is nonetheless a

significant rise in inpatient spending of about 5% of baseline.

At the same time, we find striking evidence that the target is associated with lower patient

mortality. There is a 0.4 percentage point reduction in patient mortality that emerges within the

first 30 days, amounting to a large 14% reduction in mortality in that interval. This reduction

fades slightly over time, so that after one year it amounts to a 3.1% mortality reduction. While

modest, this effect is large relative to the extra spending, suggesting a cost of extending life

by one year of $43,000. Finally, we exploit heterogeneity across patient types to show that

this effect arises through reduced wait times, not through increased inpatient admissions, with

the majority of mortality reductions occuring in diagnoses where rapid treatment is known to

benefit patients.

The implications of our finding is that, unconstrained, EDs in England are not making

optimal decisions on patient wait times. By reducing wait times, the four-hour target induced

cost-effective mortality reductions. This is likely a lower bound on the welfare gains due to the

target, as it does not value the other benefits to consumers from waiting shorter times, although

there may be welfare costs from the extra admissions (Hoe, 2017).

Of course, this result only applies to the specific target studied here, and does not necessarily

imply that other limits would have equal effects. It is also unclear how this result applies to

other nations with different means of rewarding or incentivizing EDs. A question raised by

our results is why physicians and EDs do not optimize wait times in the absence of the policy.

One credible explanation is that physicians are simply imperfect agents for their patients, a

longstanding concern in medical markets (Arrow, 1963). This seems especially plausible in our

setting where physicians are dealing with patients prior to their full diagnosis being revealed. An

alternative explanation could come from physicians lacking information on the relative benefits

of timely treatment for certain patients. In practice, however, we are unable to separate these

two potential explanations in this analysis. More work is clearly needed to understand the

proper set of rules and incentives for delivering cost-effective ED care.
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Figures and Tables

Figure 1: Distribution of wait times
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy.
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Figure 2: Inpatient admission probability conditional on wait time
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy.
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Figure 3: Estimated counterfactual wait time distribution
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy; (4) The estimated counterfactual is obtained from a polynomial regression that omits the exclusion
window shown in grey.
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Figure 4: The probability of ED exit within 180 minutes by patient severity and expected
volumes of ED arrivals
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Notes: (1) Wait times defined as the time from arrival in the ED to leaving the ED; (2) Predicted mortality
defined using a regression of 30-day in-hospital mortality on a fully interacted set of age, gender, ambulance
arrival fixed effects and diagnosis fixed effects; (3) Busy and non-busy periods defined by predicting the volume
of ED arrivals during each hour in our data, using a regression with hospital-specific week-of-year, day-of-week,
and hour-of-day fixed effects, and then dividing periods into the top-third of predicted volumes (busy) and
bottom-third of predicted volumes (non-busy).
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Figure 5: Impact of queues on wait times for arriving patients by predicted waiting times
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with predicted wait times below 150 minutes. Panel (b) includes individuals with predicted wait times between
150 and 180 minutes. Panel (c) includes individuals with predicted wait times between 180 and 210 minutes.
Panel (d) includes individuals with predicted wait times between 210 and 240 minutes.

47



Figure 6: Estimated counterfactual admission probability conditional on wait times
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy; (4) The estimated counterfactual is obtained from a polynomial regression that omits the exclusion
window shown in grey.
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Figure 7: Constructing the composition-adjusted counterfactual for admission probability
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240
minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark grey) region give the counterfactual outcome in the
pre-threshold (post-threshold) period, E[y0 | w0]; (5) The horizontal thick dashed line in the pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−

1 ]; (6)
The horizontal thick solid line in the pre-threshold period is the observed observed admission probability, E[y1 | w−

1 ]; (7) The distortion effect is the gap between the thick
solid and dashed line, ∆D = E[y1 | w−

1 ]− E[y0 | w−
1 ].
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Figure 8: Demographic test of the no-selection assumption using age
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240
minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark grey) region give the counterfactual outcome in the
pre-threshold (post-threshold) period, E[y0 | w−

0 ]; (5) The horizontal thick dashed line in the pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−
1 ]; (6)

The horizontal thick solid line in the pre-threshold period is the observed observed admission probability, E[y1 | w−
1 ]; (7) The distortion effect is the gap between the thick

solid and dashed line, ∆D = E[y1 | w−
1 ]− E[y0 | w−

1 ].
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Figure 9: Constructing the composition-adjusted counterfactual for 30-day mortality

E[y0 | w* < w0 < w+]

E[y0 | w- < w0 < w*]

CAC: E[y0 | w- < w1 < w*]
Obs.: E[y1 | w- < w1 < w*]

0
1

2
3

4
5

6
7

30
-d

ay
 m

or
ta

lit
y 

(%
)

0 60 120 180 240 300 360 420 480 540 600
Wait time (mins)

Observed
Counterfactual

Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240
minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark grey) region give the counterfactual outcome in the
pre-threshold (post-threshold) period, E[y0 | w0]; (5) The horizontal thick dashed line in the pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−

1 ]; (6)
The horizontal thick solid line in the pre-threshold period is the observed observed admission probability, E[y1 | w−

1 ]; (7) The distortion effect is the gap between the thick
solid and dashed line, ∆D = E[y1 | w−

1 ]− E[y0 | w−
1 ].
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Figure 10: Proportion wait beyond the threshold vs. predicted mortality by diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Proportion waiting beyond the
threshold defined using the counterfactual distribution of wait times; (3) Predicted mortality defined using a
regression of 30-day in-hospital mortality on past-CCI and a fully interacted set of age, gender, and ambulance
arrival fixed effects.
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Figure 11: Estimated effects of the target vs. predicted mortality by diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Predicted mortality defined using a
regression of 30-day in-hospital mortality on past-CCI and a fully interacted set of age, gender, and ambulance
arrival fixed effects.
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Figure 12: Estimated effects of the target vs. inpatient crowding by crowding-severity groups
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Notes: (1) Each data point corresponds to an inpatient crowding-severity group average; (2) Inpatient crowding
groups defined according to the number of inpatients treated per hospital-day, which we then use to split into
50 quantiles; (3) Severity is defined as diagnoses with a mean 30-day mortality rate above the mean overall
30-day mortality rate; (4) Predicted mortality defined using a regression of 30-day in-hospital mortality on
past-CCI and a fully interacted set of age, gender, and ambulance arrival fixed effects.
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Table 1: Summary statistics

All patients Admitted inpatients

Mean Std. dev. Mean Std. dev.

Patient characteristics
Age 38.99 26.22 54.64 27.84
Male 0.51 0.50 0.48 0.50
Ambulance arrival 0.29 0.45 0.60 0.49
Past-CCI 0.20 0.78 0.47 1.20

Treatment decisions
Inpatient admission 0.24 0.42 1.00 0.00
ED discharge 0.58 0.49 0.00 0.00
ED referral 0.19 0.39 0.00 0.00
Wait time (mins) 154.56 100.20 222.50 120.46
ED treatment count 1.81 1.38 2.22 1.68
ED investigation count 1.54 2.03 3.18 2.50
Inpatient length of stay (days) 1.28 5.63 5.41 10.58
Inpatient procedure count 0.16 0.64 0.69 1.18

Costs
30-day ED cost 172.35 117.21 203.98 114.98
30-day inpatient cost 1, 503.58 5, 321.99 4, 558.00 8, 524.53
30-day total cost 1, 675.93 5, 358.37 4, 761.98 8, 559.73

Mortality outcomes
30-day mortality 0.02 0.13 0.05 0.23
60-day mortality 0.03 0.16 0.09 0.29
365-day mortality 0.05 0.22 0.16 0.37

Notes: (1) Costs reported in 2018 USD and refer to payments from the government to hospitals based on the
prospective payment system; (2) All inpatient variables (e.g. length of stay, costs) take on the value zero for
patients that are not admitted.
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Table 2: Demographic tests of the no-selection assumption

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: Individual characteristics
Age 0.417 0.009 46.468

(0.284) (0.006)
Male −0.005∗∗∗ −0.011∗∗∗ 0.487

(0.001) (0.003)
Ambulance −0.002 −0.005 0.440

(0.004) (0.010)
Past-CCI 0.013∗∗∗ 0.043∗∗∗ 0.300

(0.005) (0.016)

Panel B: Predicted characteristics
Predicted admission 0.002 0.007 0.307

(0.002) (0.007)
Predicted mortality 0.000 0.014 0.019

(0.000) (0.013)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) Predicted variables defined

using a regression of the variable on past-CCI score, and a fully interacted set of age, gender and
ambulance-arrival fixed effects; (3) Bootstrapped standard errors clustered at the hospital trust level (199
repetitions).
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Table 3: Estimated distortion effects of the target on treatment decisions and costs

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: ED treatment decisions
Pr(admission) 0.046∗∗∗ 0.122∗∗∗ 0.379

(0.008) (0.022)
Pr(discharge) −0.033∗∗∗ −0.070∗∗∗ 0.472

(0.007) (0.014)
Pr(referral) −0.013∗∗∗ −0.089∗∗∗ 0.150

(0.003) (0.020)
ED investigation count 0.108∗∗ 0.046∗∗ 2.369

(0.048) (0.021)
ED treatment count −0.033 −0.016 2.070

(0.028) (0.014)

Panel B: Inpatient treatment decisions
Length of stay (days) 0.035 0.015 2.302

(0.048) (0.021)
Inpatient procedure count 0.000 0.001 0.290

(0.006) (0.020)

Panel C: Hospital costs
30-day ED cost 3.040∗∗∗ 0.016∗∗∗ 192.950

(0.911) (0.005)
30-day inpatient cost 125.793∗∗∗ 0.052∗∗∗ 2, 414.087

(33.992) (0.015)
30-day total cost 128.833∗∗∗ 0.049∗∗∗ 2, 607.037

(34.389) (0.014)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) All inpatient variables (e.g.

length of stay, costs) take on the value zero for patients that are not admitted; (3) Bootstrapped standard
errors clustered at the hospital trust level (199 repetitions).
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Table 4: Estimated distortion effects of the target on mortality

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

30-day mortality −0.004∗∗∗ −0.138∗∗∗ 0.029
(0.001) (0.019)

90-day mortality −0.004∗∗∗ −0.079∗∗∗ 0.048
(0.001) (0.019)

1-year mortality −0.003∗ −0.031∗ 0.090
(0.002) (0.017)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) Bootstrapped standard errors

clustered at the hospital trust level (199 repetitions).
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Table 5: OLS regressions of the estimated 30-day mortality reductions on other effects of the
target

Diagnosis groups Crowding-severity groups

(1) (2) (3) (4) (5) (6)

Wait time 0.118∗∗∗ 0.115∗∗∗ 0.083∗∗∗ 0.066∗∗∗

(0.034) (0.034) (0.018) (0.022)
Admission probability −0.059 −0.029 −0.088∗∗∗ −0.037

(0.065) (0.058) (0.024) (0.028)

N 36 36 36 95 95 95

Notes: (1) Dependent variable is the absolute value of the target impact on 30-day mortality measured as % of
the CAC mean over the pre-threshold period; (2) Independent variables are the absolute value of the target
impact on the respective variable, measured as a % of the CAC mean over the pre-threshold period.
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A Online Appendix: Additional Figures and Tables

Tables A1 and A2 show the most common first and subsequent ED investigations and
treatments, by ED diagnosis, for all ED and admitted patients respectively. The tables show
that ED treatments are often simple, with basic treatment for simple conditions and diagnostic
investigations for more complex cases.

Table A3 shows the most common first and subsequent inpatient procedures for all admitted
patients, by ED diagnosis. Initial procedures are largely diagnostic, continuing the diagnostic
investigations carried out in the ED.

Table A4 shows the estimated impact of the target according to the lower bound of the
exclusion window. In our baseline results (as shown by Table 3), the exclusion window began
at 180 minutes. Table A4 shows two other scenarios: 170 and 190 minutes. In each case, an
iterative procedure is used to automatically pick the end point of the exclusion window, as
described in Section 4.2. The results show that the main estimates are robust to the choice of
the lower bound of the exclusion window. While the exact magnitude of the estimates varies,
the results show that the target is associated with an increased admission probability, increased
number of ED investigations, increased costs and reduced 30-day mortality.

Table A5 presents the results of a second robustness check, showing how the estimated
impact of the target varies by the order of polynomial used in estimation. The baseline results
(shown in Table 3) use a polynomial of 10. Table A5 presents additional results when using a
polynomial of order 6 and 8. In both cases, the results are similar to the baseline results. The
final column shows the results from separately picking the polynomial for each outcomes. This
is an automated process that maximised the adjusted-R2 statistic from estimating Equation
(1). Again, the results are similar to the baseline estimates presented in the main text.

Table A6 shows the estimated mortality impact of the target by ED diagnosis. We created
36 outcome variables, which take the value of 1 if a patient with a specific ED diagnosis died,
and 0 otherwise. We produce bootstrapped standard errors using 199 repetitions. The results
show that the largest mortality reductions took place in potentially time-sensitive diagnoses
with high baseline mortality rates.

Table A7 shows the estimated mortality impact of the target on broad causes of death. We
created 23 outcome variables, which take the value of 1 if the ED patient dies of a specific
cause of death, based on the first letter of the ICD-10 chapter recorded on their official death
certificate, and 0 otherwise. We produce bootstrapped standard errors using 199 repetitions.
The results show that the mortality reductions are focused among potentially time-sensitive
conditions: circulatory, respiratory and digestive conditions. The results are discussed in more
detail in Section 7.2.

Table A8 shows the estimated mortality impact of the target on the ten most common causes
of death, as defined by the first letter and first digit of the ICD-10 code recorded on official
death certificates. We create 10 dummy indicators, which take the value of 1 if the ED patient
dies of a specific cause within 30 days of visiting an ED, and zero otherwise. Together, these
conditions account for 60% of ED patient deaths in 2011/12 and 2012/13. Again, the results
show that mortality impacts are focused among the potentially time-sensitive conditions, but
not among others such as cancer. The results are discussed in more detail in Section 7.2.
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Figure A1: Distribution of wait times at a large hospital in California
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Notes: (1) The English data displays a sharp discontinuity in the wait time distribution at four hours (see
Figure 1). Here we present the wait time distribution from a large hospital in California to illustrate that the
discontinuty in the English data is unlikely to naturally occur, and is instead induced by the target; (2) We
thank David Chan for providing the data for this chart.
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Table A1: The most common ED invesigations and treatments, all patients

Most common ED investigations Most common ED treatments

ED diagnosis First % of Subsequent % of First % of Subsequent % of
investigation patients investigation patients treatment patients treatment patients

Laceration None 65.8% Biochemistry 2.6% Wound closure 20.1% Wound closure 18.8%
Contusion/abrasion X-ray plain film 55.0% Biochemistry 3.0% Guidance/advice only 36.8% None 6.8%
Soft tissue inflammation X-ray plain film 51.9% Biochemistry 6.2% Guidance/advice only 37.2% Medication administered 7.0%
Head injury None 61.6% Biochemistry 6.9% Guidance/advice only 30.9% Observation (ECG, pulse oximetry etc) 12.8%
Joint injury/fracture X-ray plain film 81.6% Haematology 8.0% Plaster of paris 17.9% Plaster of paris 9.4%
Sprain/ligament injury X-ray plain film 65.0% Biochemistry 1.7% Guidance/advice only 38.8% Medication administered 6.4%
Muscle/tendon injury X-ray plain film 44.9% Biochemistry 7.7% Guidance/advice only 30.5% Medication administered 9.1%
Nerve injury None 42.9% Biochemistry 19.2% Recording vital signs 36.4% Medication administered 17.2%
Vascular injury None 31.9% Biochemistry 21.5% Guidance/advice only 16.7% Observation (ECG, pulse oximetry etc) 16.0%
Burns and scalds None 84.4% ECG 1.8% Dressing 42.4% Dressing 17.8%
Electric shock X-ray plain film 50.7% Urinalysis 2.9% Guidance/advice only 44.2% Medication administered 15.1%
Foreign body None 62.3% Biochemistry 1.5% Removal foreign body 26.4% Removal foreign body 12.2%
Bites/stings None 78.3% Biochemistry 2.1% Medicines prepared to take away 18.9% Medicines prepared to take away 19.3%
Poisoning (inc overdose) None 28.4% Biochemistry 31.0% Observation (ECG, pulse oximetry etc) 22.5% Observation (ECG, pulse oximetry etc) 19.1%
Near drowning None 73.4% Biochemistry 5.8% Dressing 28.2% Dressing 36.9%
Visceral injury None 38.1% Biochemistry 20.8% Guidance/advice only 16.0% Observation (ECG, pulse oximetry etc) 22.0%
Infectious disease None 43.2% Biochemistry 22.3% Guidance/advice only 18.4% Observation (ECG, pulse oximetry etc) 15.1%
Local infection None 49.5% Biochemistry 16.7% Medicines prepared to take away 18.5% Observation (ECG, pulse oximetry etc) 13.8%
Septicaemia X-ray plain film 44.3% Haematology 47.3% Intravenous cannula 21.3% Observation (ECG, pulse oximetry etc) 27.7%
Cardiac X-ray plain film 38.7% Haematology 49.4% Intravenous cannula 19.2% Observation (ECG, pulse oximetry etc) 21.5%
Cerebro-vascular CT scan 26.4% Biochemistry 43.7% Intravenous cannula 21.8% Observation (ECG, pulse oximetry etc) 21.6%
Other vascular Haematology 20.5% Biochemistry 33.5% Medication administered 18.7% Observation (ECG, pulse oximetry etc) 17.5%
Haematological X-ray plain film 29.0% Biochemistry 36.3% Guidance/advice only 18.7% Observation (ECG, pulse oximetry etc) 16.8%
Central nervous system None 24.6% Biochemistry 33.1% Observation (ECG, pulse oximetry etc) 20.3% Observation (ECG, pulse oximetry etc) 18.8%
Respiratory X-ray plain film 40.7% Haematology 33.1% Observation (ECG, pulse oximetry etc) 15.2% Observation (ECG, pulse oximetry etc) 19.5%
Gastrointestinal X-ray plain film 21.8% Biochemistry 36.8% Observation (ECG, pulse oximetry etc) 15.2% Observation (ECG, pulse oximetry etc) 18.4%
Urological Urinalysis 19.3% Biochemistry 34.7% Observation (ECG, pulse oximetry etc) 13.5% Observation (ECG, pulse oximetry etc) 19.3%
Obstetric None 21.8% Biochemistry 24.9% Observation (ECG, pulse oximetry etc) 19.6% Observation (ECG, pulse oximetry etc) 18.0%
Gynaecological Haematology 26.4% Biochemistry 32.1% Guidance/advice only 19.2% Observation (ECG, pulse oximetry etc) 14.3%
Diabetes and endocrine Haematology 24.1% Biochemistry 44.2% Intravenous cannula 20.6% Observation (ECG, pulse oximetry etc) 19.4%
Dermatological None 68.4% Biochemistry 9.3% Guidance/advice only 23.1% Recording vital signs 11.8%
Allergy (inc anaphylaxis) None 65.9% Biochemistry 11.2% Medication administered 18.6% Observation (ECG, pulse oximetry etc) 15.7%
Facio-maxillary conditions None 66.0% Biochemistry 6.8% Guidance/advice only 20.1% Observation (ECG, pulse oximetry etc) 11.9%
ENT None 61.5% Biochemistry 11.9% Guidance/advice only 20.8% Observation (ECG, pulse oximetry etc) 11.4%
Psychiatric None 55.8% Biochemistry 16.5% Guidance/advice only 28.0% Observation (ECG, pulse oximetry etc) 11.6%
Ophthalmological None 58.3% Biochemistry 1.6% Guidance/advice only 26.4% Medication administered 11.9%
Social problems None 30.8% Biochemistry 29.5% Observation (ECG, pulse oximetry etc) 21.1% Observation (ECG, pulse oximetry etc) 17.1%
Diagnosis not classigiable None 41.1% Biochemistry 21.7% None 18.5% Observation (ECG, pulse oximetry etc) 12.6%
Nothing abnormal detected None 53.0% Biochemistry 15.1% None 33.1% None 12.1%
Diagnosis missing None 39.2% Biochemistry 19.1% Guidance/advice only 19.3% Observation (ECG, pulse oximetry etc) 11.7%

Notes: (1) A full list of investigations and treatments are available from the NHS Digital HES Data Dictionary (Accident and Emergency):
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics/hospital-episode-statistics-data-dictionary; (2) First ED
investigation/treatment contains the first recorded investigation/treatment code for a specific ED visit; (3) Subsequent investigations/treatments combined information
across all other investigation/treatment codes in a specific ED visit (up to 12 investigations and 8 treatments).
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Table A2: The most common ED invesigations and treatments, admitted patients only

Most common ED investigations Most common ED treatments

ED diagnosis First % of Subsequent % of First % of Subsequent % of
investigation patients investigation patients treatment patients treatment patients

Laceration X-ray plain film 36.7% Haematology 25.9% Observation (ECG, pulse oximetry etc) 11.6% Observation (ECG, pulse oximetry etc) 16.2%
Contusion/abrasion X-ray plain film 50.0% Haematology 37.1% Observation (ECG, pulse oximetry etc) 14.1% Observation (ECG, pulse oximetry etc) 19.3%
Soft tissue inflammation X-ray plain film 40.8% Biochemistry 40.0% Intravenous cannula 15.7% Observation (ECG, pulse oximetry etc) 18.5%
Head injury CT scan 26.7% Haematology 27.9% Observation (ECG, pulse oximetry etc) 25.1% Observation (ECG, pulse oximetry etc) 22.2%
Joint injury/fracture X-ray plain film 72.3% Haematology 39.4% Intravenous cannula 16.6% Intravenous cannula 18.8%
Sprain/ligament injury X-ray plain film 56.8% Biochemistry 30.6% Medication administered 19.3% Recording vital signs 17.0%
Muscle/tendon injury X-ray plain film 56.5% Haematology 34.7% Medication administered 20.5% Recording vital signs 19.8%
Nerve injury ECG 36.1% Biochemistry 58.1% Recording vital signs 59.1% Intravenous cannula 47.7%
Vascular injury X-ray plain film 18.9% Biochemistry 40.8% Intravenous cannula 21.0% Observation (ECG, pulse oximetry etc) 22.9%
Burns and scalds Haematology 48.5% ECG 37.0% Other parenteral drugs 33.0% Medication administered 9.6%
Electric shock Haematology 27.0% Haematology 19.4% Guidance/advice only 16.9% Medication administered 16.4%
Foreign body X-ray plain film 54.2% Haematology 19.6% Observation (ECG, pulse oximetry etc) 16.4% Observation (ECG, pulse oximetry etc) 15.6%
Bites/stings X-ray plain film 34.5% Haematology 24.2% Intravenous cannula 14.4% Intravenous cannula 16.4%
Poisoning (inc overdose) Haematology 29.4% Biochemistry 41.5% Observation (ECG, pulse oximetry etc) 23.1% Observation (ECG, pulse oximetry etc) 22.0%
Near drowning X-ray plain film 56.0% Haematology 42.0% Intravenous cannula 18.8% Observation (ECG, pulse oximetry etc) 22.8%
Visceral injury X-ray plain film 28.9% Biochemistry 50.8% Intravenous cannula 18.2% Observation (ECG, pulse oximetry etc) 35.6%
Infectious disease X-ray plain film 33.7% Biochemistry 45.4% Other parenteral drugs 17.4% Observation (ECG, pulse oximetry etc) 23.3%
Local infection X-ray plain film 32.2% Biochemistry 41.1% Intravenous cannula 21.4% Observation (ECG, pulse oximetry etc) 24.1%
Septicaemia X-ray plain film 50.8% Haematology 57.2% Intravenous cannula 25.8% Intravenous cannula 31.6%
Cardiac X-ray plain film 47.4% Haematology 57.7% Intravenous cannula 24.9% Observation (ECG, pulse oximetry etc) 24.3%
Cerebro-vascular CT scan 36.4% Haematology 54.0% Intravenous cannula 29.4% Observation (ECG, pulse oximetry etc) 26.0%
Other vascular X-ray plain film 27.9% Haematology 44.8% Intravenous cannula 19.0% Observation (ECG, pulse oximetry etc) 25.0%
Haematological X-ray plain film 32.5% Haematology 48.6% Intravenous cannula 24.5% Observation (ECG, pulse oximetry etc) 25.3%
Central nervous system X-ray plain film 21.8% Haematology 46.9% Observation (ECG, pulse oximetry etc) 22.0% Observation (ECG, pulse oximetry etc) 22.8%
Respiratory X-ray plain film 51.3% Haematology 48.7% Intravenous cannula 18.4% Observation (ECG, pulse oximetry etc) 23.8%
Gastrointestinal X-ray plain film 32.6% Biochemistry 46.7% Intravenous cannula 23.9% Intravenous cannula 23.6%
Urological X-ray plain film 24.1% Biochemistry 48.7% Intravenous cannula 21.3% Observation (ECG, pulse oximetry etc) 24.8%
Obstetric Haematology 28.0% Biochemistry 35.7% Observation (ECG, pulse oximetry etc) 24.4% Observation (ECG, pulse oximetry etc) 23.0%
Gynaecological Haematology 33.8% Biochemistry 44.0% Intravenous cannula 21.5% Observation (ECG, pulse oximetry etc) 18.1%
Diabetes and endocrine X-ray plain film 33.6% Biochemistry 51.0% Intravenous cannula 27.2% Intravenous cannula 24.1%
Dermatological None 25.9% Biochemistry 34.2% Observation (ECG, pulse oximetry etc) 17.4% Recording vital signs 23.1%
Allergy (inc anaphylaxis) None 31.9% Biochemistry 30.2% Observation (ECG, pulse oximetry etc) 16.6% Observation (ECG, pulse oximetry etc) 24.1%
Facio-maxillary conditions X-ray plain film 37.7% Biochemistry 32.8% Intravenous cannula 17.9% Observation (ECG, pulse oximetry etc) 29.0%
ENT Haematology 29.8% Biochemistry 34.9% Intravenous cannula 18.6% Observation (ECG, pulse oximetry etc) 20.4%
Psychiatric None 22.7% Biochemistry 40.3% Observation (ECG, pulse oximetry etc) 23.4% Observation (ECG, pulse oximetry etc) 19.3%
Ophthalmological None 23.7% Biochemistry 30.3% Observation (ECG, pulse oximetry etc) 17.1% Observation (ECG, pulse oximetry etc) 27.1%
Social problems X-ray plain film 34.1% Biochemistry 46.2% Observation (ECG, pulse oximetry etc) 23.1% Observation (ECG, pulse oximetry etc) 20.2%
Diagnosis not classigiable X-ray plain film 35.4% Biochemistry 45.0% Observation (ECG, pulse oximetry etc) 21.5% Observation (ECG, pulse oximetry etc) 22.1%
Nothing abnormal detected X-ray plain film 29.8% Biochemistry 38.2% None 31.8% Recording vital signs 21.1%
Diagnosis missing X-ray plain film 34.5% Biochemistry 48.1% Recording vital signs 18.6% Intravenous cannula 21.9%

Notes: (1) Includes only ED visits which resulted in an inpatient admission; (2) A full list of investigations and treatments are available from the NHS Digital HES Data
Dictionary (Accident and Emergency):
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics/hospital-episode-statistics-data-dictionary; (3) First ED
investigation/treatment contains the first recorded investigation/treatment code for a specific ED visit; (4) Subsequent investigations/treatments combined information
across all other investigation/treatment codes in a specific ED visit (up to 12 investigations and 8 treatments).
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Table A3: The most common inpatient procedures

Most common inpatient procedures

ED diagnosis First % of Subsequent % of
procedure patients procedure patients

Laceration Suture of skin 17.4% Debridement/cleaning of skin/wound 48.6%
Contusion/abrasion CT / MRI scan of head, spine or CNT 33.2% Treatment/examination of pelvis or spine 36.6%
Soft tissue inflammation CT / MRI scan (site not specified) 12.3% Treatment/examination of pelvis or spine 22.4%
Head injury CT / MRI scan of head, spine or CNT 67.8% CT / MRI scan of head, spine or CNT 49.2%
Joint injury/fracture Closed reduction of fracture 17.3% Debridement/cleaning of skin/wound 13.9%
Sprain/ligament injury CT / MRI scan of head, spine or CNT 23.8% Treatment/examination of pelvis or spine 23.9%
Muscle/tendon injury Primary repair of tendon 21.4% Debridement/cleaning of skin/wound 29.8%
Nerve injury CT / MRI scan of head, spine or CNT 22.0% Treatment/examination of pelvis or spine 21.0%
Vascular injury CT / MRI scan (site not specified) 12.5% CT / MRI scan (site not specified) 22.2%
Burns and scalds CT / MRI scan of head, spine or CNT 18.9% Debridement/cleaning of skin/wound 21.5%
Electric shock CT / MRI scan of head, spine or CNT 28.8% Debridement/cleaning of skin/wound 23.1%
Foreign body Removal of inorganic substance from the skin 17.0% Debridement/cleaning of skin/wound 28.4%
Bites/stings Debridement/cleaning of skin/wound 28.1% Debridement/cleaning of skin/wound 72.3%
Poisoning (inc overdose) CT / MRI scan of head, spine or CNT 31.3% CT / MRI scan of head, spine or CNT 35.6%
Near drowning Ventilation 19.0% CT / MRI scan of head, spine or CNT 50.0%
Visceral injury CT / MRI scan (site not specified) 26.5% Treatment/examination of pelvis or spine 62.3%
Infectious disease CT / MRI scan of head, spine or CNT 22.3% CT / MRI scan of head, spine or CNT 32.1%
Local infection Drainage/incision of lesion or skin 23.1% Debridement/cleaning of skin/wound 21.8%
Septicaemia CT / MRI scan of head, spine or CNT 19.0% Treatment/examination of pelvis or spine 34.5%
Cardiac Echocardiography 25.3% Echocardiography 46.6%
Cerebro-vascular CT / MRI scan of head, spine or CNT 76.5% CT / MRI scan of head, spine or CNT 73.0%
Other vascular CT / MRI scan of head, spine or CNT 31.2% CT / MRI scan of head, spine or CNT 23.0%
Haematological Blood transfusion (inc blood stem cell transplant) 15.1% Treatment/examination of pelvis or spine 41.2%
Central nervous system CT / MRI scan of head, spine or CNT 70.9% CT / MRI scan of head, spine or CNT 67.8%
Respiratory Ventilation 23.1% Treatment/examination of pelvis or spine 24.5%
Gastrointestinal CT / MRI scan (site not specified) 29.2% Treatment/examination of pelvis or spine 68.3%
Urological CT / MRI scan (site not specified) 30.7% Treatment/examination of pelvis or spine 40.3%
Obstetric Aspiration/extraction of products of conception from uterus 21.5% Examination of female genital tract 25.6%
Gynaecological Examination of female genital tract 22.9% Treatment/examination of pelvis or spine 28.5%
Diabetes and endocrine CT / MRI scan of head, spine or CNT 26.0% Treatment/examination of pelvis or spine 39.4%
Dermatological Drainage/incision of lesion or skin 17.7% Treatment/examination of pelvis or spine 29.5%
Allergy (inc anaphylaxis) CT / MRI scan of head, spine or CNT 16.4% Treatment/examination of pelvis or spine 22.9%
Facio-maxillary conditions Operations on tooth and surrounding area 20.9% Extraction of teeth 30.5%
ENT Packing of cavity of nose 28.2% Packing of cavity of nose 70.4%
Psychiatric CT / MRI scan of head, spine or CNT 32.9% CT / MRI scan of head, spine or CNT 25.6%
Ophthalmological CT / MRI scan of head, spine or CNT 35.8% CT / MRI scan of head, spine or CNT 24.6%
Social problems CT / MRI scan of head, spine or CNT 52.4% CT / MRI scan of head, spine or CNT 34.4%
Diagnosis not classigiable CT / MRI scan of head, spine or CNT 26.6% Treatment/examination of pelvis or spine 32.0%
Nothing abnormal detected CT / MRI scan of head, spine or CNT 27.0% Treatment/examination of pelvis or spine 36.0%
Diagnosis missing CT / MRI scan of head, spine or CNT 23.3% Treatment/examination of pelvis or spine 31.5%

Notes: (1) Inpatient procedures are recorded using OPCS4.8 codes. For a mapping of OPCS4.8 codes to procedures, see:http://www.surginet.org.uk/informatics/opcs.php;
(2) First procedures contains the first recorded procedure code for a specific inpatient spell; (3) Subsequent procedures combine information across all other procedure codes
in a specific ED visit (up to 12 investigations and 8 treatments).
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Table A4: Estimated distortion effects of the target, robustness by exclusion window lower
bound

Exclusion window lower bound (mins):

160 170 180 190 200
(baseline)

Panel A: ED treatment decisions
Pr(admission) 0.033∗∗∗ 0.039∗∗∗ 0.046∗∗∗ 0.058∗∗∗ 0.074∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008)
Pr(discharge) −0.022∗∗∗ −0.027∗∗∗ −0.033∗∗∗ −0.042∗∗∗ −0.054∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)
Pr(referral) −0.011∗∗ −0.012∗∗∗ −0.013∗∗∗ −0.016∗∗∗ −0.020∗∗∗

(0.004) (0.003) (0.003) (0.003) (0.003)
ED investigation count 0.090∗ 0.098∗∗ 0.108∗∗∗ 0.133∗∗ 0.169∗∗∗

(0.049) (0.048) (0.048) (0.050) (0.052)
ED treatment count −0.039 −0.037 −0.033 −0.026 −0.013

(0.029) (0.029) (0.028) (0.029) (0.029)

Panel B: Inpatient treatment decisions
Length of stay (days) 0.022 0.022 0.035 0.087∗ 0.168∗∗∗

(0.047) (0.047) (0.048) (0.050) (0.052)
Inpatient procedure count −0.003 −0.002 0.000 0.007 0.017∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Panel C: Hospital costs
30-day ED cost 2.503∗∗∗ 2.786∗∗∗ 3.040∗∗∗ 3.590∗∗∗ 4.335∗∗∗

(0.866) (0.876) (0.911) (0.972) (1.042)
30-day inpatient cost 62.459∗ 93.132∗∗∗ 125.793∗∗∗ 183.993∗∗∗ 260.498∗∗∗

(34.028) (33.421) (33.992) (35.047) (36.550)
30-day total cost 64.962∗ 95.918∗∗∗ 128.833∗∗∗ 187.583∗∗∗ 264.833∗∗∗

(34.336) (33.770) (34.389) (35.496) (37.055)

Panel D: Patient outcomes
30-day mortality −0.003∗∗∗ −0.003∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Notes: (1) Polynomial order is set to 10 in all specifications; (2) All inpatient variables (e.g. length of stay,
costs) take on the value zero for patients that are not admitted; (3) Bootstrapped standard errors clustered at
the hospital trust level (199 repetitions).
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Table A5: Estimated distortion effects of the target, robustness by polynomial order

Polynomial order

6 8 10 (baseline) Auto

Panel A: ED treatment decisions
Pr(admission) 0.033∗∗∗ 0.041∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.008) (0.008) (0.008) (0.008)
Pr(discharge) −0.013∗∗ −0.029∗∗∗ −0.033∗∗∗ −0.033∗∗∗

(0.007) (0.006) (0.007) (0.007)
Pr(referral) −0.020∗∗∗ −0.012∗∗∗ −0.013∗∗∗ −0.013∗∗∗

(0.003) (0.003) (0.003) (0.003)
ED investigation count 0.101∗∗ 0.090∗ 0.108∗∗∗ 0.108∗∗∗

(0.046) (0.048) (0.048) (0.048)
ED treatment count −0.024 −0.031 −0.033 −0.026

(0.027) (0.027) (0.028) (0.030)

Panel B: Inpatient treatment decisions
Length of stay (days) −0.066 −0.006 0.035 0.035

(0.051) (0.050) (0.048) (0.048)
Inpatient procedure count −0.014 −0.005 0.000 0.000

(0.006) (0.006) (0.006) (0.006)

Panel C: Hospital costs
30-day ED cost 1.651∗ 2.638∗∗∗ 3.040∗∗∗ 3.080∗∗∗

(0.946) (0.880) (0.911) (0.939)
30-day inpatient cost 46.035 95.305∗∗∗ 125.793∗∗∗ 125.793∗∗∗

(36.389) (34.955) (33.992) (33.992)
30-day total cost 47.680 97.905∗∗∗ 128.833∗∗∗ 128.833∗∗∗

(36.857) (35.331) (34.389) (34.389)

Panel D: Patient outcomes
30-day mortality −0.005∗∗∗ −0.007∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Notes: (1) Exclusion window begins at 180 minutes in all specifications; (2) ‘Auto’ selects the polynomial
separately for each outcome, by selecting the polynomial that maximizes the adjusted-R2 statistic from
estimating Equation (1); (3) All inpatient variables (e.g. length of stay, costs) take on the value zero for patients
that are not admitted; (4) Bootstrapped standard errors clustered at the hospital trust level (199 repetitions).
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Table A6: Estimated effects of the target on mortality, by ED diagnosis

Wait time Mortality Affected
reduction reduction Predicted patients in % of total

ED diagnosis (mins) (ppts) mortality 2012/13 lives saved

Septicaemia 15 5.3 3.7% 14,510 6.9%
Vascular injury 7 2.2 1.6% 3,381 0.7%
Cerebro-vascular 9 2.2 3.8% 50,257 9.9%
Other vascular 7 2.1 1.9% 29,940 5.6%
Respiratory 11 1.5 2.1% 244,732 32.7%
Haematological 11 1.3 1.7% 15,094 1.7%
Central nervous system 12 0.8 1.9% 108,315 7.7%
Gynaecological 4 0.8 0.2% 38,203 2.7%
Cardiac 6 0.6 3.1% 229,047 12.2%
Gastrointestinal 10 0.5 1.3% 329,935 14.2%
Laceration 0 0.4 0.6% 99,535 3.5%
Local infection 3 0.4 0.8% 63,561 2.3%
Diabetes and endocrine 19 0.4 2.3% 28,252 1.0%
ENT 3 0.4 0.7% 51,964 1.9%
Obstetric 1 0.3 0.2% 12,728 0.3%
Soft tissue inflammation 4 0.2 0.5% 104,420 1.9%
Urological 12 0.2 2.2% 128,363 2.3%
Facio-maxillary 1 0.2 0.3% 9,715 0.2%
Social problems 12 0.2 3.2% 17,378 0.3%
Nothing abnormal detected 6 0.2 1.3% 85,682 1.5%
Head injury 5 0.1 1.1% 84,319 0.8%
Bites/stings 1 0.1 0.2% 7,692 0.0%
Infectious disease 7 0.1 0.9% 47,447 0.4%
Psychiatric 5 0.1 0.7% 46,649 0.4%
Burns and scalds 3 0 0.3% 9,913 0.0%
Poisoning (inc overdose) 12 0 0.6% 72,641 0.0%
Joint injury/fracture 6 -0.1 0.9% 217,152 -1.9%
Contusion/abrasion 4 -0.2 0.5% 69,328 -1.2%
Muscle/tendon injury 2 -0.3 0.5% 49,384 -1.3%
Dermatological 2 -0.3 0.4% 17,143 -0.5%
Allergy 1 -0.3 0.4% 14,942 -0.4%
Ophthalmological 0 -0.3 0.2% 25,701 -0.7%
Foreign body 0 -0.5 0.1% 15,314 -0.7%
Sprain/ligament injury 1 -0.6 0.2% 92,555 -4.9%

Notes: (1) Column 2 and 3 contain the estimated reduction in wait times and 30-day mortality for patients
with each ED diagnosis, respectively; (2) There are 40 diagnosis categories. Non-missing data defined as
patients without a missing or ‘not classifiable’ diagnosis.

67



Table A7: Estimated mortality effects of the target by cause of death (ICD-10 chapter)

Mortality reduction % of overall % reduction
Cause of death (percentage points) mortality impact in deaths

Circulatory 0.124∗∗∗ (0.021) 30.1% 19.6%
Respiratory 0.105∗∗∗ (0.018) 25.6% 25.5%
Digestive 0.062∗∗∗ (0.010) 15.0% 35.2%
Unintentional accidents 0.024∗∗∗ (0.004) 5.8% 47.9%
Mental/behavioural 0.015∗∗ (0.007) 3.6% 15.2%
Genitourinary disease 0.014∗∗∗ (0.005) 3.5% 27.1%
Infectious disease 0.013∗∗∗ (0.004) 3.2% 39.0%
Neoplasms 0.011 (0.018) 2.7% 2.8%
Musculoskeletal 0.011∗∗∗ (0.003) 2.6% 38.4%
Nervous system 0.009∗ (0.005) 2.3% 15.2%
Endocrine/metabolic 0.005∗ (0.003) 1.3% 20.5%
Disorders of the blood 0.004 (0.003) 0.9% 20.7%
Vehicle and traffic accidents 0.003∗∗ (0.001) 0.8% 45.1%
Skin and subcutaneous tissue 0.003 (0.002) 0.7% 26.7%
Other external causes 0.002 (0.002) 0.6% 27.8%
External cause (e.g. fire, nature) 0.002 (0.003) 0.5% 7.7%
Codes for special purposes 0.002∗∗ (0.001) 0.5% 53.9%
Congenital 0.001 (0.001) 0.2% 14.8%
Parasitic diseases 0.000 (0.001) 0.1% 9.0%
Pre-natal 0.000 (0.000) 0.1% 63.3%
Eye and ear 0.000 (0.000) 0.0% 17.9%
Pregnancy related −0.000 (0.000) 0.0% −109.3%
Symptoms not classified −0.000 (0.000) −0.1% −3.0%

Notes: (1) Cause of death categories defined by the first letter of the ICD-10 diagnosis code; (2) Column 2
shows the estimated reduction in 30-day mortality attributed to the cause of death; (3) Column 3 shows the
proportion of the overall mortality reduction that is accounted for by the cause of death; (4) Column 4 shows
the proportion of deaths due to the specific cause that is avoided because of the target.
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Table A8: Estimated distortion effects of the target by cause of death (ICD-10 sub-chapter)

Mortality reduction % of overall % reduction
Cause of death (percentage points) mortality impact in deaths

Cerebrovascular diseases 0.071∗∗∗ (0.010) 17.2% 33.3%
Chronic lower respiratory
diseases

0.055∗∗∗ (0.009) 13.3% 29.0%

Influenza and pneumonia 0.034∗∗∗ (0.008) 8.2% 23.0%
Ischemic and pulmonary heart
diseases

0.030∗∗ (0.012) 7.4% 11.7%

Organic mental disorders 0.013∗ (0.006) 3.2% 14.1%
Malignant neoplasms
(respiratory, intrathoracic)

0.005 (0.008) 1.2% 4.8%

Malignant neoplasms (lip, oral
cavity and pharynx)

0.002 (0.005) 0.5% 3.8%

Malignant neoplasms (digestive) 0.001 (0.005) 0.2% 2.0%
Malignant neoplasms (male
genital organs, urinary tract)

0.001 (0.004) 0.2% 1.5%

Malignant neoplasms (breast,
female genital organs)

−0.000 (0.004) −1.1% −12.4%

Notes: (1) Cause of death categories are defined by the first letter and digit of their ICD-10 code:
Cerebrovascular diseases (I6), chronic lower respiratory disease (J4), influenze and pneumonia (J1), ischemic
heart diseases and pulmonary heart disease (I2), Organic, including symptomatic, mental disorders (F0),
Malignant neoplasms of respiratory and intrathoracic organs (C3), Malignant neoplasms of lip, oral cavity and
pharynx (C1), Malignant neoplasms of digestive organs (C2), Malignant neoplasm of breast and female genital
organs (C5), and Malignant neoplasm of male genital organs and urinary tract (C6); (2) Column 2 shows the
estimated reduction in 30-day mortality attributed to the cause of death; (3) Column 3 shows the proportion of
the overall mortality reduction that is accounted for by the cause of death; (4) Column 4 shows the proportion
of deaths due to the specific cause that is avoided because of the target.
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B Online Appendix: Selection simulation

This appendix sets out the details of a simulation we conducted to evaluate the no-selection

assumption. There are two stages in the simulation. The first stage is to produce a simulated

‘counterfactual dataset’ that is based on the counterfactual wait time and age distribution. The

second stage is to use the counterfactual dataset to simulate different responses to the four-hour

target, specifically in terms of how the post-threshold movers are selected. We then compare

these simulated outcomes to the observed data to learn about selection and the validity of our

no-selection assumption. Below we describe the two stages of the simulation and the results.

B.1 Constructing the counterfactual dataset

We take the following steps:

1. We compute the counterfactual wait time distribution as described in Section 4.2.

2. We compute the counterfactual expectation of age conditional on wait times as described

in Section 4.3.3. We use this same approach to compute the counterfactual standard

deviation of age conditional on wait times.

3. Using outputs from steps 1 and 2, we create a simulated dataset of patients. This dataset

has the counterfactual distribution of wait times and an age distribution that is normally

distributed with its mean and standard deviation defined according to the results from

step 2. As a result, the wait time distribution and the conditional expectation of age are

both smooth functions through the four-hour threshold.

4. We generate a random variable, denoted εi, where εi ∼ N(0, σ2
age) and σ2

age is the variance

of the age variable created in step 3. We normalise this variance by the variance of age to

help with interpretation later.

B.2 Simulating the selection of post-threshold movers

We take the following steps:

1. We set up the following selection equation

Si = βagei + εi, (B.1)
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where Si is the selection index for patient i, β is a selection parameter to be specified,

agei is the age of patient i, and εi is a random term for patient i.

2. For each wait time bin in the post-threshold period, w∗ to w+, we define post-threshold

movers as follows

Mi = 1{Si ≥ τw}, (B.2)

where Mi is a binary variable equal to one if patient i is a post-threshold mover and τw is

a threshold specific to wait time bin w.

3. The selection thresholds τw are unknown but we can estimate each threshold by finding

the number of post-threshold movers that equates the wait time distributions for that bin

in the counterfactual and observed datasets. The post-threshold movers are then identified

as those patients with Mi = 1.

4. We consider the following different scenarios for β:

(a) If β = 0 then there is ‘random selection’ as post-threshold movers are determined

purely by εi, which is entirely random.

(b) If β = 1 then there is ‘selection-on-observables’, specifically on age. Note that age

and εi contribute equally to variation in Si in this scenario.

(c) If β ∈ (0, 1) then there is selection-on-observables, but age plays a smaller role than

εi in determining Si. Note that this scenario can also be thought of as ‘selection-

on-unobservables’ in the following sense: if β = 0 but εi contains some non-random

element that is positively correlated with age, then the resulting selection equation

is equivalent to Equation (B.1) with β ∈ (0, 1).

5. To complete the simulation, we need to specify how post-threshold movers are allocated to

the pre-threshold period. This allocation is unknown and so we simply adopt the simplest

possible rule for the purposes of illustration. When shifting post-threshold movers we

maintain their existing wait time ordering, such that those located just above w∗ are

moved to w−, and those located at w+ are moved to w∗.

B.3 Results

Figure B1 first shows the conditional expectation of age in the simulated dataset (Panel a),

and then the results of simulating random selection of post-threshold movers (Panel b). Random
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selection has three main features: (i) there is a spike at 240 minutes, which is where many of the

post-threshold movers are shifted to; (ii) there is an increase in the pre-threshold level which is

smaller the further away it is from the 240 threshold; (iii) there is a smooth distribution after

the 240 threshold.

Figure B2 compares the random selection case to the observed data. The two conditional

expectation functions are very similar, with the observed data exhibiting the same three features

described above. The observed data lies marginally above the simulated data, but the gap is

small.

Figure B3 now introduces the different selection scenarios and in each case compares the

scenario to the random selection case. The scenarios are β = {0.1, 0.5, 1}. As described earlier,

the cases where β < 1 can be thought of as selection-on-unobservables that are correlated with

age.

Looking first at the scenario with β = 1 in Panel (b). The markers of selection are clear:

the spike at 240 minutes is large; the pre-threshold period is substantially higher; and there is

a pronounced drop in the post-threshold period. The post-threshold drop is more pronounced

than the pre-threshold increase because, in the pre-threshold period, selection causes the post-

threshold movers to be averaged with the pre-threshold non-movers while, in the post-threshold

period, selection leaves behind a very select group of post-threshold non-movers.50

Turning now to the cases with β = 0.5 (Panel c) and β = 0.1 (Panel d). These share the

same characteristics as the previous selection scenario, although the markers of selection become

less pronounced as the selection mechanism is weaker. In the final case, where β = 0.1, the

pre-threshold period differences are very small. Yet even in this case, the post-threshold period

exhibits the pronounced drop.

These simulations highlight three key points. First, the data looks very similar to the random

selection case, sharing the same three features. Second, to the extent that there is significant

selection, for example in the case of β = 1, then its markers show up clearly in the data.

None of these markers are present in the observed data. Third, to the extent that observable

and unobservable variables are correlated, then selection-on-unobservables will manifest itself

directly in the observables. As a result, concerns about selection-on-unobservables can be

thought of directly in terms of this correlation. While it is difficult to quantify the correlation

50Note that the specific pattern of the pre-threshold and post-threshold period is influenced by the allocation
of post-threshold movers which is somewhat arbitrary in this simulation.
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and link it with the power of our demographic test, there is clear evidence linking age and

ambulance status to many medically relevant unobservables. For example, medical guidelines

for physicians routinely incorporate age-based decision rules and, even after conditioning on age

and diagnosis, the likelihood of death is more than 150% higher for ambulance patients than

the average patient. These facts, which suggest that the correlation between observables and

unobservables is far from negligible, are reassuring given that we find no evidence of selection

on these observable variables.
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Figure B1: Selection simulation using the counterfactual dataset

(a) Conditional expectation of age
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(b) Random selection simulation of post-threshold movers
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Notes: (1) Panel (a) shows the expectation of age conditional on the wait time bin in the counterfactual dataset
(‘counterfactual’); (2) Panel (b) shows the simulated data when post-threshold movers are chosen at random
and shifted into the pre-threshold period (‘random selection’); (3) Vertical dashed lines indicate the exclusion
window and the vertical dashed red line indicates the 240 minute threshold.
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Figure B2: Comparison of the random selection simulation and the observed data
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Notes: (1) This chart compares the simulated data when post-threshold movers are chosen at random and
shifted into the pre-threshold period (‘random selection’) with the observed data (‘observed’); (2) Vertical
dashed lines indicate the exclusion window and the vertical dashed red line indicates the 240 minute threshold.
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Figure B3: Comparison of the random selection and selection simulations

(a) Random selection
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(b) Selection: β = 1
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(c) Selection: β = 0.5
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(d) Selection: β = 0.1

10
20

30
40

50
60

Ag
e

0 60 120 180 240 300 360 420 480 540 600
Wait time (mins)

Random selection
Selection, β  0.1

Notes: (1) These charts compares the simulated data when post-threshold movers are chosen at random and
shifted into the pre-threshold period (‘random selection’) with various degrees of selection-on-observables
(‘selection’); (2) Vertical dashed lines indicate the exclusion window and the vertical dashed red line indicates
the 240 minute threshold.
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