Welcome! We will begin shortly....

Teaming in a Virtual World: What Network Science and Research on Astronauts Can Teach Us About Working Together When We Are Apart

Noshir Contractor

Jane S. & William J. White Professor of Behavioral Sciences, McCormick School of Engineering Professor of Management & Organizations

Leslie DeChurch

Professor of Communication Studies at Northwestern University

Northwestern | Kellogg

Executive Education

Agenda

- Welcome and Zoom Webinar user tips
- Today's session on Teaming in a Virtual World: What Network Science and Research on Astronauts Can Teach Us About Working Together When We Are Apart
- Q&A

Please Note

- This webinar is being recorded
- A link to the recording will be emailed to you in a few days

How to Participate

Northwestern

How to Control Your View

Teaming in a Virtual World: What network science and research on astronauts can teach us about working together when we are apart

Noshir Contractor & Leslie DeChurch

Note. This material is based upon work supported by NASA under awards 80NSSC18K0221, NNX15AM32G, 80NSSC18K0276, & NNJ15ZSA001N. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Humans will become an interplanetary species

7 Risk of Performance and Behavioral Health Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team

Short Title: Team Last Published: 07/31/19 10:05:29 AM (Central)

Element: Human Factors and Behavioral Performance (HFBP)

Evidence: Report Risk Master Logic Diagram: Diagram Point of Contact: Lauren Landon

HRP Risk Status:

Risk Ratings and Dispositions per Design Reference Mission (DRM) Category							
DRM Categories	Mission Duration	Operations			Long-Term Health		
		LxC	Risk Disposition *	LxC	Risk Disposition *		
Low Earth Orbit	6 months	3x2	Accepted with Monitoring	2x2	Accepted		
	1 year	3x2	Accepted with Monitoring	2x2	Accepted		
Deep Space Sortie	1 month	3x2	Accepted with Monitoring	2x2	Accepted		
Lunar Visit/ Habitation	1 year	3x2	Accepted with Monitoring	2x2	Accepted		
Deep Space Journey/Habitation	1 year	3x3	Requires Mitigation	2x2	Accepted		
Planetary	3 years	3x4	Requires Mitigation	3x2	Accepted with Monitoring		

Mission Duration~ 259 Days NASA'S JOURNEY TO MARS

NASA'S JOURNEY TO MARS

Add slide on current mission launches to Mars this month

Travel Time: 25 Days

NASA'S JOURNEY T

| Depart from AU Years AU/Year J2000 | Earth | 1.0000 1.0000 6.2832 100.4644 | Arrive at | Mars | 1.5237 1.8808 5.0902 355.4533 | Synodic | Period | 2.1354 Years | Aphelion DV | 2.6490 km/sec | Aphelion DV | 2.6490 km/sec | Depart from AU Years AU/Year J2000 | Aphelion DV | 2.6490 km/sec | Aphelion DV | 2

Trip Time	0.70871	/ears	Total DV		5.5937	km/sec	
Leave	Month	Day	Year	Arrive	Month	Day	Year
2001.2495	3	30		2001.9582	12	15	2001
2003.3849	5	19		2004.0936	2	4	2004
2005.5202	7	7		2006.2290	3	22	2006
2007.6556	8	26	2007	2008.3643	5	11	2008
2009.7910	10	15		2010.4997	6	30	2010
2011.9264	12	4	2011	2012.6351	8	19	2012
2014.0618	1	22	2014	2014.7705	10	7	2014
2016.1972	3	11	2016	2016.9059	11	26	2016
2018.3326	4	30	2018	2019.0413	1	15	2019
2020.4679	6	18	2020	2021.1767	3	4	2021
2022.6033	8	7	2022	2023.3120	4	22	2023
2024.7387	9	26	2024	2025,4474	6	11	2025
2026.8741	11	15	2026	2027.5828	7	30	2027
2029.0095	1	3		2029.7182	9	19	2029
2031.1449	2	22		2031.8536	11	7	2031
2033.2803	4	11		2033.9890	12	26	2033
2035.4156	5	30		2036.1244	2	15	2036
2037.5510	7	18		2038.2597	4	4	2038
2039.6864	9	7		2040.3951	5	22	2040
2041.8218	10	26		2042.5305	7	11	2042
2043.9572	12	15		2044.6659	8	30	2044
2046.0926	2	3		2046.8013	10	18	2046
2048.2280	3	22		2048.9367	12	7	2048
2050.3633	5	11		2051.0721	1	26	2051
2052,4987	6	30		2053.2074	3	15	2053
2054.6341	8	18		2055.3428	5	3	2055
2056.7695	10	7		2057.4782	6	22	2057
2058.9049	11	26		2059.6136	8	11	2059
2061.0403	1	14		2061.7490	9	30	2061
2063.1756	3	3		2063.8844	11	18	2063
2065.3110	4	22		2066.0198	1	7	2066
2067.4464	6	11		2068.1551	2	26	2068
2069.5818	7	29		2070.2905	4	15	2070
2071.7172	9	18		2072.4259	6	3	2070
2071.7172	11	7		2074.5613	7	22	2072
	12	26		2074.5613	9	11	2074
2075.9880	2				_		
2078.1233	4	14 3		2078.8321	10 12	30	2078
2080.2587				2080.9674		18	2080
2082.3941	5	22		2083.1028	2	7	2083
2084.5295	7	11		2085.2382	3	26	2085
2086.6649	8	29		2087.3736	5	14	2087
2088.8003	10	18		2089.5090	7	3	2089
2090.9357	12	7		2091.6444	8	22	2091
2093.0710	1	26		2093.7798	10	11	2093
2095.2064	3	14		2095.9151	11	29	2095
2097.3418	5	3		2098.0505	1	18	2098
2099.4772	6	22	2099	2100.1859	3	7	2100

2101 2102.3213

2101.6126

Mars is far ...

Distance

"All the conditions necessary for murder are met if you shut two men in a cabin measuring 18 by 20 and leave them together for two months."

-Valery Ryumin, Cosmonaut

What happens to teamwork under extended periods of isolation & confinement?

Wouldn't it be nice to have a human petri dish?

A human petri dish?

- ... where we could manipulate people's isolation and sensory deprivation for 100s of days
- ... while making them do complex and boring tasks and
- ... monitoring them 24/7 physiologically and via audio/video, administering unlimited surveys?
- Zimbardo's dream ..?

That's exactly what we are doing

NASA's HERA Space Analog

Northwestern

Japan's Isolation Chamber

Concordia (S. Pole)

Caves (Sardinia)

European Space Agency

Pangaea-X Moon base (Canary Islands)

Now that we have a petri dish...

What happens to teamwork under extended periods of isolation & confinement?

Can you imagine?

Living & working while...

- 1. socially isolated from friends & family
- 2. confined to a relatively small space
- 3. under conditions that make it difficult to work (e.g., sleep deprivation, distraction, potential health concerns)
- 4. for an extended period of time

5 lessons from space teams to virtual teams...

Lesson 1. If you're not with the team you love then love the team you're with

insert re-pairing slide and

Lesson 2. The new Covid team competency: Small group living

Table 1. Mission profiles for astronaut job analysis.

Mission Type	A	В	C	D	
Duration (up to)	6 Months	12 Months	12 Months	12 - 36 Months	
Distance from	Low Earth	Low Earth	Deep Space	Deep Space	
Earth	Orbit	Orbit	Exploration	Exploration	
Crew Size	6	6	4	4-6	
Vehicle Size	Large	Large	Medium/Small	Medium/Small	
Communication	.5 − 3 Seconds	.5 − 3 Seconds	8 – 10 Minutes	10 – 20 Minutes	
Delay (one-way)					

Note: Adapted from Barrett et al., 2015.

Source: Landon, L., Vessey, W., & Barrett, J. Evidence report: Risk of performance and behavioral health decrements due to inadequate cooperation, coordination, communication, and psychosocial adaptation within a team

Table 2. Competency importance ratings derived from the updated astronaut job analysis for each mission.

	Type A	M	Туре В	M	Type C	M	Type D	<i>M</i>
1	Teamwork	82.33	Teamwork	82.71	Self-Care	93.93	Self-Care	95.14
2	Communication	79.40	Self-Care	82.57	Small Group Living	92.29	Technical	94.21
3	Adaptability	79.20	Judgment	81.07	ı eamwork	90.50	Small Group Living	94.07
4	Self-Care	79.13	Adaptability	80.43	Judgment	90.21	Judgment	94.51
5	Judgment	78.67	Communication	80.21	Technical	90.00	Motivation	92.00
6	Situational Followership	78.60	Small Group Living	78.86	Autonomous Worker	89.07	Teamwork	91.50
7	Technical	75.80	Situational Followership	78.57	Motivation	88.07	Adaptability	91.00
8	Motivation	75.60	Motivation	76.79	Adaptability	87.79	Autonomous Worker	89.59
9	Learner/Teacher	75.00	Sociability	76.36	Communication	87.07	Communication	88.86
10	Sociability	74.40	Learner/Teacher	75.59	Situational Leadership	87.00	Situational Leadership	87.64
11	Confidence	73.67	Situational Leadership	75.14	Sociability	83.43	Emotional Independence	86.00
12	Operations Orientation	72.73	Confidence	74.21	Emotion Management	83.00	Sociability	85.79
13	Small Group Living	71.13	Technical	74.07	Operations Orientation	82.71	Operations Orientation	84.14
14	Situational Leadership	70.40	Operations Orientation	73.57	Situational Followership	82.07	Emotion Management	83.71
15	Autonomous Worker	69.27	Emotion Management	71.57	Emotional Independence	81.07	Situational Followership	83.29
16	Emotion Management	68.80	Autonomous Worker	70.43	Learner/Teacher	80.14	Learner/Teacher	81.93
17	Family	62.73	Family	66.71	Confidence	79.43	Confidence	81.00
18	Emotional Independence	60.20	Emotional Independence	66.36	Family	75.64	Family	75.86

Add legend on what is Type A, Type B, Type C and Type D

Note: M = mean score of SME ratings on a 100-point scale. Colors call attention to ratings of importance, within each mission type. Adapted from Barrett et al., 2015.

Source: Landon, L., Vessey, W., & Barrett, J. Evidence report: Risk of performance and behavioral health decrements due to inadequate cooperation, coordination, communication, and psychosocial adaptation within a team

Lesson 3. The third-quarter phenomenon

Decision Accuracy by Mission Phase (5 Phases)

HERA C4, C5, & SIRIUS '19, N = 9 crews

Problem Solving Task Performance

Northwestern

Lesson 4. Create structure & meaningful routines

Shackleton's Crew

Lesson 5. Humor is a coping style

shackleton's cook

View terms

Babbage from Economist Radio

Babbage: Joker AAAStronauts

2/20/2019 · 21 min · Subscribe · Share

Humans will become an interplanetary species...but first

They will learn to collaborate virtually from all over the globe.

Teaming in a Virtual World

- 1. Re-pair your team
- 2. Promote positive small-group living
- 3. Manage the third quarter
- 4. Create structure & meaningful routines
- 5. Remember that humor is a coping style

THANK YOU

Academic Collaborators

Suzanne Bell, DePaul/NASA
Jessica Mesmer-Magnus, UNCW
Jeffrey Johnson, U. Florida
Dorothy Carter, UGA
Alina Lungeanu, Northwestern
Marissa Shuffler, Clemson
Aaron Schecter, UGA
Steve Zaccaro, George Mason
Shawn Burke, U. Central Florida

SONIC Northwestern

Brennan Antone, Niloufar Izadinia, Kyosuke Tanaka

ATLAS Northwestern

Valerie Gruest, Ilya Gokhman, Lindsay Larson, Ashley Niler, Gabriel Plummer

NASA BHP Collaborators

Tom Williams
Brandon Vessey
Lauren Landon
James Garrett
Sarah Huppman
Ashley Johnson
Igor Kofman
Igor Savelev
Andy Self
Robert Pietrzyk

Northwestern