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1 Introduction

Public investment in science in the United States has grown very significantly since World
War II, as has scientific output. For the first four or five decades, private investment in
scientific research also grew. However, over the last two or three decades, corporations have
reversed course. Figure 1 shows that the recent decline in publications produced by firms
(Arora, Belenzon, & Patacconi, 2018; Mowery, 2009) has coincided with a rise in publications
produced by universities, other nonprofits, and federal government laboratories (henceforth,
“public knowledge”), as well as a rise in trained PhD scientists (henceforth, “human capital”).
Moreover, there is no decline in corporate patenting (Arora, Belenzon, & Sheer, 2021a), and
corporate R&D intensity has remained stable. In other words, corporations are reducing the
share of “R” in their R&D, even as public investment in scientific research is increasing.

However, there are notable exceptions to this broad trend. In several emerging technology
fields, including artificial intelligence (AI) and quantum computing, leading corporations,
such as IBM, Microsoft, and Google, continue to invest in upstream research. IBM and
Microsoft together have produced more quantum computing publications than MIT during
2013-2020.1 Some of the best-known AI researchers and quantum computing experts now
work for corporations rather than universities.2

In this paper, we analyze how public science affects corporate innovation—both upstream
research and downstream development. The relationships between public science and corpo-
rate scientific research and invention are complex. There are different dimensions to public
science: human capital, in the form of trained PhD scientists, is produced along with disem-
bodied knowledge, in the form of scientific publications. Universities also produce inventions
that may be supplied to firms through different channels. We explore differences in firm re-
sponses to human capital (as measured by the flow of new PhDs) and disembodied knowledge
(as measured by the stock of scientific publications). We also analyze differences between
public knowledge covered by university patents and public knowledge that is in the public
domain. And, we explore how the response of the leading firms differs from that of followers,
and across different industries.

To capture the key economic forces behind the effect of public science, we develop a
conceptual framework of private returns to investment in internal research, conditional on
the state of public science. We distinguish between scientific knowledge and invention (Arora
et al., 2021a). Innovation—the introduction of new products and processes—is the source of

1IBM, Microsoft, and MIT published 228, 165, and 283 publications, respectively, on “quantum com-
puter/computing” during 2013-2020, based on data from Microsoft Academic Graph (Sinha et al., 2015;
Wang et al., 2019).

2https://www.wsj.com/articles/universities-ai-talent-poached-by-tech-giants-1479999601
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Figure 1: Trends in Public and Private Science, 1981-2016

Notes: This figure presents trends in the production of scientific knowledge (measured by U.S. science
and engineering journal publications, left axis) and human capital (measured by U.S. hard science PhD
dissertations, right axis) over time. Public knowledge includes publications from academia, other nonprofits,
the federal government, and federally funded research and development centers (dashed line), while private
knowledge includes publications from industry (solid line). Publication data for 1981-1995 are from Online
Appendix Table 5-44 of Science and Engineering Indicators 1998 (National Science Board, 1998) and have
been normalized by their 1981 values. Publication data for 1995-2003 are from Online Appendix Table 5-42 of
Science and Engineering Indicators 2010 (National Science Board, 2010). Publication data for 2003-2016 are
from Online Appendix Table 5-41 of the Science and Engineering Indicators 2018 (National Science Board,
2018). Dissertation data are from ProQuest Dissertations & Theses Global and have been normalized by
their 1981 value.

profits. Innovations are based on inventions generated internally or on inventions acquired
from outside. Scientific knowledge—from internal research and public science—reduces the
cost of internal invention. Human capital lowers the cost of internal research.

How firms respond to an increase in public science depends on three key features. First,
public knowledge could complement or substitute for internal research in firms, which would
condition how internal research and invention respond to changes in public knowledge. Sec-
ond, inventions from universities substitute for those generated inside firms, and thus lower
the returns to internal research. Third, an increase in the supply of human capital reduces
the cost of internal research. It may also directly reduce the cost of internal invention.

We consider two extensions to our conceptual framework. First, public science is avail-
able to all firms. Therefore, the nature of strategic interactions between competitors may
affect the focal firm’s innovation level and, hence, also its investment in internal research.3

3Strategic interactions describe situations where the outcome of one firm’s choice depends on the actions
of other firms.

2



Second, leading firms, operating closer to the technological frontier, derive greater returns
from investing in internal research, and may respond differently than followers to increases
in public science.

Understanding the mechanisms underlying the effect of public science is important, es-
pecially if public and private science are imperfect substitutes, as prior research suggests
they are. Corporate research is more mission-oriented, more multi-disciplinary, and more
closely tied to solving practical problems than university research (Rosenberg & Nelson,
1994). Corporations have access to specialized resources and expensive equipment, as well
as links to manufacturing that can inform and subsequently scale useful research. Differ-
ences in incentives matter as well. While corporate researchers are rewarded for producing
discoveries that are useful to their employers (Rosenberg, 1990), university researchers are
rewarded for being first to make novel discoveries, even if those discoveries have little com-
mercial application (Dasgupta & David, 1994). Potential heterogeneity in firm responses is
important as well. If leaders respond to an increase in public science by increasing internal
research and invention, whereas followers are more likely to pull back, then the increase in
public science may widen the gap between leaders and followers, and possibly contribute to
the rise of “superstar” firms.

Our empirical analysis includes all publicly traded firms headquartered in the United
States that had at least one year of positive R&D expenditures, at least one granted patent,
and at least three years of consecutive financial records from the first patent between 1980
and 2015. We measure corporate innovation using R&D intensity, patents, publications
authored by corporate scientists, and the employment of scientists profiled in the American
Men & Women of Science (hereafter, “AMWS scientists”). An important part of the analysis
is measuring the public knowledge and human capital that are potentially relevant to the focal
firm’s innovation. We link publications to firms using non-patent literature (NPL) citations
from patents granted in the same CPC subclasses as the patents of a firm. We link PhD
dissertations to firms by using a state-of-the-art deep learning algorithm, SPECTER (Cohan,
Feldman, Beltagy, Downey, & Weld, 2020), to measure the similarity between dissertations
and the patents of a firm. We then use the publications of the thesis advisor(s) to link
dissertations to funding from federal agencies.

Estimating the effect of public science on corporate innovation suffers from a classical
endogeneity problem, whereby technological shocks that affect public science can also affect
corporate innovation. This concern means that OLS estimates of the effect of public science
on corporate innovation inputs (R&D intensity and employment of AMWS scientists) and
outputs (patents and publications) would be upward biased. To deal with this, we use vari-
ation in funding for federal agencies to predict public science that is relevant to each firm.
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Government funding affects the cost of public research and may, under some conditions,
offer a source of variation that is orthogonal to technological opportunities. We measure
each firm’s potential exposure to federal funding using citations from patents granted in
the subclasses in which the firm also has patents to publications from universities (and all
other non-corporate sources). We link the sources of funding of these publications to specific
federal agencies and use exogenous variation in agency funding to purge the endogeneity
bias. We build our funding instruments for public knowledge and human capital by ex-
ploiting the windfall (or shortfall) in federal agency funding resulting from the congressional
appropriations process (which is unlikely to be affected by technology shocks).

We present three main findings. First, we document a crowding-out effect of public
knowledge on corporate research and invention. Moving from the first to the third quartile
of relevant public knowledge lowers firm publications by about 7% and firm patents by
about 10%. This effect, however, varies substantially across firms. Firms operating on
the technology frontier (henceforth, “frontier firms”) continue to invest in upstream research
and downstream development even when public knowledge relevant to their innovation is
abundant. Second, we document a crowding-in effect of human capital on corporate research
and invention, especially for frontier firms.

On average, growth in public knowledge leads firms to withdraw from internal research.
However, growth in human capital leads firms to increase internal research. Moreover, the
negative effect of relevant public knowledge on internal research is smaller for frontier firms.
Because frontier firms continue to invest in internal research and to invent, the gap between
leaders and followers can grow. These results mean that public science can have an uneven
effect on internal research, crowding out research by followers, while increasing research by
leaders.

Third, we document a negative effect of competition, as rival use of public knowledge
reduces the focal firm’s market value. However, we do not find evidence that strategic inter-
actions in the product market moderate the effect of public science on corporate innovation
(i.e., there is no effect of rival use of public science on the focal firm’s patenting, publishing,
or hiring behavior).

We make two main contributions to the innovation literature. First, we contribute to the
literature that examines the effect of public science on corporate R&D. Over the past several
decades researchers have investigated the effects of public R&D at various levels of aggrega-
tion, including the economy as a whole (Narin, Hamilton, & Olivastro, 1997), states (Acs,
Audretsch, & Feldman, 1994; Jaffe, 1989), industries (Adams, 1990), firms (Lichtenberg,
1984; Myers & Lanahan, 2022; Wallsten, 2000), diseases (Azoulay, Graff Zivin, Li, & Sam-
pat, 2019), and individuals (Goolsbee, 1998). Perhaps not surprisingly—given the diversity
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of approaches and levels of analysis—these studies have produced conflicting results (David,
Hall, & Toole, 2000). At the firm level, Dimos and Pugh (2016) conducted a meta-regression
analysis of 52 studies. They rejected crowding out of firm R&D investment yet found no
evidence of substantial crowding in either. Beyond this average null effect, studies found
substantial heterogeneity by industry (Mulligan, Lenihan, Doran, & Roper, 2022), channel
of interaction between firms and government laboratories (Adams, Chiang, & Jensen, 2003),
firm size (González, Jaumandreu, & Pazó, 2005), firm age (Cohen, Nelson, & Walsh, 2002),
and firm R&D intensity (Szücs, 2020).

Our study differs from this vast literature in two important ways. First, we model how
firms capture returns on their investment in upstream research and downstream development,
and how public science—both disembodied and embodied in PhD scientists—conditions these
investments. To our knowledge, ours is the first large-scale empirical analysis that considers
both components of public science. We also explore how private returns to science depend
on how close firms are to the technology frontier. And, we consider strategic interactions in
the product market. Prior research has shown that spillovers to rivals affect the focal firm’s
R&D investments by changing the marginal returns to such investments (Arora et al., 2021a;
Bloom, Schankerman, & Van Reenen, 2013; Lucking, Bloom, & Van Reenen, 2018). In our
conceptual framework, the ability of rivals to draw on public science can affect focal firms’
decisions to invest in internal research. Empirically, though, we find no effect of rival use of
public knowledge on focal firm innovation.

Second, we make a data contribution by using funding acknowledgements and other bib-
liometric linkages to connect federal agency funding to publications and PhD dissertations.
Other studies have leveraged linkages between federal funding for research, the resulting
publications, and the patents that cite them (e.g., Azoulay et al., 2019). However, to our
knowledge, we are the first to systematically link corporate innovation to public knowledge
and human capital that is relevant to the firm. Moreover, we trace funding to science while
accounting for the identity of firms and the nature of competition between them. This is
important because public science is free for all, so its impact on corporate R&D may depend
on the nature of strategic interactions between the firms that use it.

The paper proceeds as follows. Section 2 presents the conceptual framework that guides
our empirical investigation. Section 3 discusses and summarizes the data, Section 4 outlines
the econometric specifications, and Section 5 presents the results. Section 6 concludes and
suggests directions for future work.
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2 Conceptual Framework

We adapt the framework from Arora et al. (2021a) to focus on the effect of public science
on internal research and invention. Public science has at least three dimensions that af-
fect private innovation: (disembodied) knowledge captured in scientific publications, trained
human capital, and university inventions. In general, all three encourage innovation, but
there are some subtle differences in how they affect internal research (i.e., upstream R&D).
For instance, public knowledge may either complement internal research or substitute for it.
University inventions substitute for internal inventions. Human capital from universities, on
the other hand, tends to increase internal research and internal inventions.

The focal firm’s product market profits, Π(d) depends on the number of inventions it
introduces into the market, d, which is the sum of (i) internal inventions, d1, and (ii) exter-
nally acquired inventions, d2. Internal inventions are produced at a unit cost ϕ(r;u), where
r is internal research and u is the stock of public knowledge that is relevant to the firm. The
term ϕ, which is the inverse of invention productivity, decreases with r at a diminishing rate.
We also assume that ϕ decreases with u.4 The firm can acquire external inventions at a cost
represented by a0d2 +

1
2
α1d2

2.
The relationship between public knowledge and internal research in reducing the unit

cost of internal invention is important for how investments in internal research relate to the
stock of public knowledge. We assume that the cost of internal research depends on the
supply of trained PhD scientists produced by universities.

2.1 Setup

The value of the firm is v = max
d1,d2,r

{Π(d1 + d2) − d1ϕ − γ(k)1
2
r2 − a0d2 − 1

2
a1d2

2}, where

γ(k)1
2
r2 is the direct cost of internal research, and k is the supply of human capital (i.e.,

trained PhDs). Π represents the profits the firm gains in the product market due to its
innovation output d. We assume that v is concave. Panel A in Figure 2 summarizes the
elements of our basic conceptual framework.

2.2 Public Knowledge

An increase in relevant public knowledge increases the value of the firm, v, by reducing the
cost of internal invention. Formally, applying the envelope theorem, ∂v

∂u
= −d1

∂ϕ
∂u

> 0. If
internal research complements public knowledge (i.e., − ∂2ϕ

∂r∂u
> 0), then an increase in public

4The cost function reflects a simple linear production function d = λ(r, u)K, where K is the number of
inventors the firm employs. Thus, normalizing the wage rate of inventors to unity, ϕ = 1

λ(r,u) .
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Figure 2: Conceptual Framework

Notes: This figure presents the elements of our basic conceptual framework (Panel A). The “demand” for
firm innovation output, d, is represented by Π′(d1 + d2). The “supply” of external inventions is represented
by α0 +α1d, while the “supply” of internal inventions is represented by Φ(r;u), where r is internal research,
u is the stock of relevant public knowledge, γ(k) 12r

2 is the cost of internal research, and k is the supply of
human capital. Firm innovation output, d, is the sum of internal inventions, d1, and external inventions,
d2. The figure also presents comparative statics for increases in relevant public knowledge (Panel B), human
capital (Panel C), and university invention (Panel D).
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knowledge will also increase internal research. If they are substitutes, then there are two
opposing effects. Substitutability reduces the marginal return to internal research. However,
a reduction in the cost of internal invention due to public knowledge increases the scale of
internal invention, thereby increasing the marginal return on internal research.

The effect on internal invention follows a similar logic. The direct effect of an increase in
public knowledge is to reduce the marginal cost of internal invention, ϕ, as shown in Panel
B. As long as the marginal cost of internal invention decreases, overall innovation increases
as the increase in internal invention is only partly at the expense of external invention.

2.3 Human Capital

In our framework, an increase in human capital supply reduces the direct cost of internal
research, γ(k). As with public knowledge, an increase in human capital supply increases
firm value. Formally, ∂v

∂k
= − r2

2
∂γ
∂k

> 0. An increase in k will increase internal research and,
therefore, also increase internal invention because, with an increase in r, ϕ must decrease,
as shown in Panel C. Since external invention substitutes for internal invention, the former
will fall. These results hold a fortiori if an increase in human capital also reduces the cost
of internal invention, ϕ, directly.

2.4 University Invention

An increase in the supply of university inventions can be modeled as a reduction in a0, as
shown in Panel D. This will increase firm value. Formally, − ∂v

∂a0
= d2 > 0. However, a

reduction in the marginal cost of external invention will decrease internal invention, which
will, in turn, decrease internal research. Intuitively, an increase in the supply of an input
increases the firm’s value. However, it will decrease the demand for substitute inputs. Table
1 summarizes the predictions of our basic conceptual framework.

Notice that university inventions may also result in startups that compete with the firm.
If they are strategic substitutes for the firm’s innovations (i.e., they reduce the marginal
return to innovation, ∂Π

∂d
), the effect on firm research and invention will be similar: both will

fall in response to an increase in university invention, as will firm value.

In the empirical analysis, we focus on public knowledge and human capital supply. We
indirectly examine the role of university invention by distinguishing public knowledge that
is covered by university patents from the knowledge that is fully in the public domain.
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Table 1: Theoretical Predictions Regarding the Effect of Public Knowledge, Human Capital,
and University Invention on Internal Research, Internal Invention, and Firm Value

(1) (2) (3) (4)
Relationship between public knowledge and

internal research in the internal invention cost function

Equation Comparative statics Complements or unrelated Substitutes

A. Effect of higher public knowledge
Publications ∂r/∂u ↑ ↓ ↑
Patents ∂d1/∂u ↑ ↓ ↑
Firm value ∂v/∂u ↑ ↑

B. Effect of higher human capital
Publications ∂r/∂k ↑ ↑
Patents ∂d1/∂k ↑ ↑
Firm value ∂v/∂k ↑ ↑

C. Effect of higher university invention
Publications −∂r/∂a0 ↓ ↓
Patents −∂d1/∂a0 ↓ ↓
Firm value −∂v/∂a0 ↑ ↑

Notes: This table summarizes the theoretical predictions regarding the effect of higher public knowledge,
human capital, and university invention on the publications, patents, and value of the focal firm.

2.5 Leaders and Followers

Even if the fruits of public science are available to all, they may not benefit all firms equally.
It is plausible that for leading firms, which require “frontier” innovations, sourcing external
inventions that match their needs is more difficult. By contrast, for follower firms, which are
trying to “catch-up” to the technology frontier, external inventions may be more plentiful. If
so, frontier firms would naturally rely to a greater extent on internal inventions and also invest
more in internal research compared to follower firms. This suggests that frontier firms may
also respond differently than followers to public science. Public knowledge may substitute
for internal research for followers, but may complement internal research in frontier firms.
Insofar as human capital reduces the cost of internal research, frontier firms would be more
responsive to increases in human capital. On the other hand, followers may respond more
to an expansion in the supply of university invention.

2.6 Competition

Introducing competition adds some additional considerations. Obviously, invention by com-
petitors reduce the payoff of the focal firm. By extension, a reduction in the cost of invention
for competitors, whether through an expansion in the supply of external inventions to com-

9



petitors or through an increase in the knowledge relevant to them, will reduce the payoff of
the focal firm. But whether the focal firm changes its behavior in response depends upon
how competition affects its marginal return to innovation. In turn, this depends on whether
invention by rivals is a strategic substitute for invention by the focal firm or a strategic
complement. With strategic interactions, the effects of public science on private investment
in internal research and invention are not straightforward to analyze. For instance, by ex-
panding its internal invention, a firm may deter invention by its rivals when inventions are
strategic substitutes. Thus, a firm may cut back on internal research if a rival benefits from
an expansion in public science, even though its own research costs are unchanged. The pat-
terns are similar to the single-firm case if inventions are strategic complements. An increase
in public knowledge increases internal research and invention unless the marginal product of
internal research falls with public knowledge. For completeness, we include our conceptual
framework for competition in the AppendixA.

In our empirical analysis, we analyze separately how the focal firm’s investments in
internal research and invention respond to the use of public knowledge by its rivals, as
well as the effect on the focal firm’s value. Our results suggest that strategic interactions
stemming from product-market rivalry are not significant empirically. A direct implication is
that the single firm analysis of the effect of public science on internal research and invention,
as summarized in Table 1, provides a reasonable conceptual framework.

3 Data

We combine data from five primary sources: (i) scientific publications (by research insti-
tutions and corporations), grants, patents, and citations from Digital Science’s Dimensions
project; (ii) scientists profiled in the American Men & Women of Science directory; (iii) PhD
dissertations from ProQuest Dissertations & Theses Global; (iv) federal R&D budgets from
the American Association for the Advancement of Science (AAAS); and (v) Budgets of the
U.S. Government from FRASER, the digital library of the Federal Reserve Bank of St. Louis
(U.S. Office of Management and Budget, 2022). Firm financial information is from S&P’s
Compustat North America. The construction of the main variables used in our econometric
analyses is summarized below and detailed in Online AppendixB.

3.1 Corporate Science: Publications and AMWS Scientists

We measure corporate scientific research using (i) the number of publications authored by
scientists affiliated with the firm (from Arora et al., 2021a) and (ii) the number of scientists
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employed by the firm that were listed in the American Men & Women of Science, a directory
of accomplished North American scientists in the physical, biological, and related sciences
(similar to Kim & Moser, 2021). Over the course of 39 editions published between 1906
and 2021, AMWS has profiled more than 300,000 people, including such information as field
of specialty, education, professional experience, memberships, research information, mailing
address, fax number, and email address. We identify 17,063 AMWS scientists who worked
for 1,321 different firms (including their subsidiaries) in our panel during 1986-2015.

Taken individually, publications and AMWS scientists are noisy measures of corporate
investment in research. The pairwise correlation between the number of corporate publica-
tions and the number of AMWS scientists employed in a firm year is 0.68, suggesting that
there is a strong shared component. However, as Online Appendix Table C4 shows, 46% of
the firms that publish do not employ AMWS scientists, while 10% of the firms that employ
AMWS scientists do not publish. This suggests that using both measures in our analyses is
warranted.

3.2 Public Knowledge: Relevant Publications

Public scientific investments yield new scientific knowledge as well as new scientists. We
source scientific publications from Dimensions. Central to our analysis is determining which
scientific publications are relevant to a firm’s innovation. We identify relevant publications
using non-patent literature (NPL) citations from patents granted by the U.S. Patent and
Trademark Office (USPTO) in a subclass where the focal firm also has patents. Our firm-year
measure of Relevant publications is the weighted sum of university (and other non-corporate)
publications cited by one or more of the patents in each subclass. The weights are the focal
firm’s shares of patents in each subclass during the previous 5-year time cohort, as follows:

Relevant publicationsi,t =
∑
s∈S

Precohort share of patentsi,s ×Relevant publicationss,t

(1)
S is the full set of patent subclasses, identified using the first four digits of the current
CPC classification of patents from the USPTO. Precohort share of patentsi,s is firm i’s
share of patents in subclass s (relative to all firm patents) during the previous (i.e., lagged)
time cohort, obtained by dividing (i) the number of firm patents granted in subclass s in
the previous time cohort by (ii) the total number of firm patents granted in the previous
time cohort. Relevant publicationss,t is the number of university (and other non-corporate)
publications published in year t and cited by at least one patent (whether a corporate patent
or a non-corporate patent) granted in subclass s during 1980-2020.
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We generate a stock measure of Relevant publications using a perpetual inventory method
with a 15% depreciation rate (similar to Hall, Jaffe, & Trajtenberg, 2005).

We construct a stock measure of Rival-relevant publications for each focal firm as the
weighed sum of the stocks of Relevant publications for firms operating in the same industry,
where an industry is defined using the Text-based Network Industry Classifications (TNIC,
calibrated to be as granular SIC3 codes) from Hoberg and Phillips (2010, 2016). The weights
are the pairwise textual similarity scores of product descriptions included in firms’ annual
reports on Form 10K filings for 1988-2015. The scores range from 0 to 1, with higher scores
indicating more similar product portfolios that year. We also construct an alternative stock
measure of Rival-relevant publications as the sum of the stocks of Relevant publications for
firms operating in the same SIC4 industry as the focal firm.

3.3 Human Capital: Relevant PhD Dissertations

We measure human capital using PhD dissertations sourced from ProQuest Dissertations
& Theses Global (hereafter, PQDT), which includes more than 5 million dissertations and
theses from thousands of universities around the world between 1900 and 2021. PQDT is
the largest collection of multidisciplinary dissertations and is recognized by the U.S. Library
of Congress as the official repository for dissertations.

We take several steps to remove “soft science” PhD dissertations and master’s degree
theses from our data. Doing so is challenging because the field that records dissertation
subjects, “classterms,” lists 308,862 different combinations of subjects. First, we manually
create a list of 1,027 disambiguated subjects. Second, we drop dissertations with a “soft
science” subject, such as “literature,” “history,” and “social sciences.” Third, we discard PhD
dissertations from non-U.S. universities and master’s degree theses. Our final dissertation
dataset includes 771,023 U.S. PhD dissertations defended between 1985 and 2016 in 394
“hard science” subjects.

The firm-relevant supply of human capital is based on the textual similarity between
the abstracts of dissertations and the abstracts of firm patents, calculated using Google’s
Bidirectional Encoder Representations from Transformers (BERT) algorithm. We implement
BERT as detailed in Online AppendixB. Our firm-time cohort measure of Relevant PhD
dissertations is the weighted sum of unique PhD dissertations that are in the top 1,000 most
similar dissertations for each of the firm’s patents granted in the 5-year time cohort. The
weights are the maximum similarity scores between dissertations and the focal firm’s patents
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granted in the 5-year time cohort, as follows:

Relevant PhD dissertationsi,t =
∑
d∈D

Maximum textual similarityd,i,t (2)

D is the set of PhD dissertations in the top 1,000 most similar dissertations for one or more
of the patents granted to firm i during time cohort t. Maximum textual similarityd,i,t is the
maximum textual similarity score between the abstract of dissertation d and the abstracts
of all the patents granted to firm i during 5-year time cohort t. We build stock measures of
Relevant PhD dissertations and Rival-relevant PhD dissertations using the same approaches
as described for relevant publications.

3.4 External Inventions

External inventions are typically based on knowledge produced by universities, and may
also be embodied in the scientists and engineers produced. We construct a measure of
Relevant university patents and also divide Relevant publications into those that are related
to university patents and those that are purely in the public domain. To do so, we first
identify all the patents granted to universities between 1980 and 2015. For each university
patent, we use BERT to calculate the textual similarity between its abstract and the abstracts
of all publications published in years [t− 1, t + 1] relative to the patent application year, t.
We consider the top 3 most similar publications as “covered” by the focal university patent.
Our firm-year measure of Relevant publications covered by university patents is the weighted
sum of university (and other non-corporate) publications that (i) are cited by one or more of
the patents in each CPC subclass and (ii) are “covered” by a university patent. Once again,
the weights are the focal firm’s shares of patents in each subclass during the previous 5-year
time cohort. We assume that publications with knowledge covered by patents represent
inventions that firms can acquire, either via technology licensing or by acquiring the relevant
academic startup.

3.5 Federal Funding for Public Science

The U.S. government is a significant funder of public science. In constant 2012 dollars federal
agencies’ R&D budgets increased from $1.046 trillion in the 1980s to $1.561 trillion in the
2010s (American Association for the Advancement of Science, 2020). The Dimensions dataset
includes more than 4.6 million publications that acknowledge federal funding. Relevant to
our study, federal funding for public science varies substantially by agency and over time.
As shown in Online Appendix Table B2, some agencies are significant funders of R&D (e.g.,
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Defense, Health and Human Services), while others are not (e.g., Environmental Protection
Agency, Department of Homeland Security). More importantly, the composition of federal
R&D investments has changed over time. Defense-related R&D has dropped from 58% of
all federal R&D budgets in the 1980s to just 49% in the 2010s. Conversely, human health-
related R&D has increased from 11% of all federal R&D budgets in the 1980s to 23% in the
2010s.

We measure federal funding for publications and PhD dissertations using (i) funding link-
ages between publications, grants, and funding organizations from the Dimensions dataset,
(ii) funding organization identifiers from the Global Research Identifier Database (GRID),
and (iii) PhD student-advisor linkages from PQDT. We use federal funding data to create in-
strumental variables for Relevant publications and Relevant PhD dissertations (as described
in Section 4), as well as to identify industries for our alternative identification strategy (the
panel event study included in Online Appendix E).

3.6 Citations to Publications

We use NPL citations to measure use of public knowledge in innovation. Citations to pub-
lications is the sum of NPL citations from a firm’s patents granted in the focal year to
non-corporate publications published since 1980. Rival citations to publications is the sum
of Citations to publications for firms operating in the same industry as the focal firm. Ad-
ditional details are included in Online AppendixB.

3.7 Descriptive Statistics

Our sample consists of 3,371 publicly traded firms headquartered in the U.S. with at least one
year of reported R&D expenditures and at least one granted patent during 1980-2015 (Arora,
Belenzon, & Sheer, 2021b), resulting in 41,693 firm-year observations. Table 2 presents de-
scriptive statistics for the main variables used in the econometric analyses. Our sample
includes a wide distribution of firm sizes: sales range from $3.96 million (10th percentile) to
$5,546 million (90th percentile), while R&D expenditures range from approximately $0.56
million (10th percentile) to $203 million (90th percentile). Approximately 65% of firms per-
form internal research (i.e., have at least one publication during 1986-2015). On average,
firms produce 16 publications and 28 patents per year, and employ 5 AMWS scientists. Firms
also vary in their potentially relevant public science. The annual stock of Relevant publica-
tions ranges from zero publications (10th percentile) to 21,908 publications (90th percentile),
while the cohort-level count of textual similarity-weighted Relevant PhD dissertations ranges
from zero dissertations (10th percentile) to 17,124 dissertations (90th percentile). There is a
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positive correlation between relevant publications and relevant dissertations. However, this
correlation is not perfect and is subject to some degree of variability (as shown in Online
Appendix Table C5).

Table 2: Summary Statistics for Main Variables

(1) (2) (3) (4) (5) (6)
Distribution

Obs. Mean Std. dev. 10th 50th 90th
Relevant publications 41,693 6,954 14,032 0.00 1,436 21,908
Relevant PhD dissertations 41,693 6,413 9,709 0.00 2,762 17,124
Relevant publications, Corp Pubs 41,693 11,570 15,700 0.00 0 32,189
Relevant university patents 41,693 365 643 0.00 141 997
R&D expenditures ($ mm) 36,709 142 656 0.56 12 203
R&D stock ($ mm) 41,693 600 3,159 0.52 34 765
Patents 41,693 28 157 0.00 1 44
Publications 41,693 16 94 0.00 0 17
AMWS scientists 41,693 5 32 0.00 0 5
Award-winning AMWS scientists 41,693 1 5 0.00 0 1
Sales ($ mm) 41,458 3,174 14,514 3.96 202 5,546
Tobin’s Q 36,800 34 688 0.39 2 16
Assets 41,032 2,388 12,497 2.62 100 3,705

Notes: This table provides summary statistics for the main variables used in the econometric analyses.
The analysis sample is at the firm-year level and includes an unbalanced panel of 3,371 U.S.-headquartered
publicly traded firms during 1986-2015.

4 Econometric Framework

We turn to the empirical investigation of the model predictions from Table 1.

4.1 R&D Intensity, Patents, Publications, and AMWS Scientists

Equations

We estimate the following specification for the relationship between public science and cor-
porate innovation (bold indicates vector representation):

ln(Y )i,t =α0 + α1 ln(Relevant publications)i,t−1 + α2 ln(Relevant PhD dissertations)i,t−1

+Z ′
i,t−1ω + ηi + τt + ϵi,t

(3)
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Yit represents different measures of corporate innovation—R&D intensity, Patents, Publi-
cations, and AMWS scientists, respectively—for firm i in year t. R&D intensity is R&D
expenditures divided by sales. Relevant publications is the stock of public knowledge that is
relevant to firm i’s innovation, while Relevant PhD dissertations is the 5-year time cohort
count of human capital that is relevant to firm i’s innovation (the construction of these vari-
ables is detailed in Online AppendixB). The vector Z includes time-varying controls, such
as ln(Sales) for the R&D intensity equation and ln(R&D stock) for the patents, publica-
tions, and AMWS scientists equations (where we also add an unreported indicator variable
equal to 1 for firms without R&D expenditures prior to the focal year). In all specifica-
tions, we account for a possible direct funding effect by adding an unreported control for
lagged ln(Awards to focal firm), a measure of federal procurement contract and grant dol-
lars awarded to the focal firm and its subsidiaries. In the 2SLS specifications, we also add
unreported indicator variables equal to 1 for firms without positive instruments prior to the
focal year and an unreported control for lagged Agency exposure. The vectors η and τ are
firm and year fixed effects, respectively, and ϵ is an iid error term. When calculating natural
logarithms, we add $1 to variables measured in millions of dollars (e.g., Sales, R&D stock)
and one unit to other variables (e.g., patents, publications, AMWS scientists). Standard
errors are clustered at the firm level.

Our coefficients of interest are α1 and α2. If α1 < 0 in the patents, publications, and
AMWS scientists equations, this would imply that internal research and public knowledge are
substitutes in the internal invention cost function. We expect α2 ≥ 0. In some specifications,
we distinguish between (i) relevant publications that are covered by university patents and
(ii) relevant publications that are not. The latter should reflect the pure effect of u, public
knowledge, whereas the former likely also reflects the supply of external inventions. In other
specifications, we distinguish between papers that are not cited by patents and those that
are.

We present results where Relevant publications and Relevant PhD dissertations are instru-
mented using different instrumental variables, as described in Section 4.2. We also examine
heterogeneity in effects by firm proximity to the technology frontier and by main industry. To
examine strategic interactions between firms, we also estimate specifications where rival use
of public knowledge and rival-relevant dissertations are included in the patents, publications,
and AMWS scientists equations.
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4.2 Identification Strategy

A key econometric challenge is how to deal with the endogeneity of public science. Unob-
served, time-varying technological shocks can influence both public science and corporate in-
novation. We deal with this problem by implementing an instrumental variable identification
strategy. Specifically, we exploit changes in (i) federal agency R&D budgets, and (ii) federal
agency windfall (or shortfall) in total funding resulting from the congressional appropriations
process to predict firm-relevant publications and PhD dissertations. The construction of our
instrumental variables is summarized below and detailed in Online AppendixB.

4.2.1 Instruments for Relevant Publications

First, we construct a measure of Relevant R&D budget by combining (i) the value of the
federal R&D budget that is relevant to each patent subclass-agency-year with (ii) a focal
firm’s shares of patents granted in each patent subclass in the previous 5-year time cohort.
This measure is used as an instrument for Relevant Publications for firm i in year t:

Relevant R&D budgeti,t =
∑
s∈S

∑
a∈A

Precohort share of patentsi,s

×Reliance on public knowledges,a

×R&D budgeta,t

(4)

S is the full set of patent subclasses. A is the set of 12 main federal agencies, plus an
“Other” category for smaller agencies. Precohort share of patentsi,s is as previously de-
fined. Reliance on public knowledgep,a is a share obtained by dividing (i) the number of
NPL citations from patents in subclass s to non-corporate publications funded by agency a

by (ii) the total number of NPL citations from patents in subclass s to all non-corporate pub-
lications. R&D budgeta,t is the R&D budget appropriated by the U.S. Congress to agency
a in year t.

Because agency R&D budgets may reflect a technological shock that is common to the
R&D decisions of firms, our preferred instrument for Relevant publications uses data on the
differences between the proposed budget and the actual budget enacted by Congress for
each federal agency (similar to Dugoua, Gerarden, Myers, & Pless, 2022). We construct our
measure of Windfall-predicted R&D budget by using the difference between (i) an agency’s
actual total budget enacted by Congress and (ii) the agency’s proposed total budget included
in the President’s budget proposal to Congress to predict the agency’s annual R&D budget,
then using these predicted values in Equation 4.

The idea behind this approach is as follows. The Budget of the U.S. Government discloses,
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for each main federal agency, both the total amount proposed by the President and the total
amount actually authorized by Congress. Demand for funding (the proposed amount) is a
function of the common technological shock that can affect both public science and corporate
innovation. However, the actual budget authorized by Congress includes a component that
is independent of this shock. Hence, we can use an agency’s windfall (or shortfall) in total
funding as a source of exogenous variation in its R&D budget.

4.2.2 Instruments for Relevant PhD Dissertations

We construct analogous measures of federal R&D budgets to instrument each firm’s Relevant
PhD dissertations. We use information on each dissertation advisor’s name, school, and
field of study to match advisors to the Dimensions dataset and retrieve (i) the scientific
publications authored by the advisors during the 5-year duration of the PhD program, (ii)
the grant amounts and funding organizations for these publications. In our dissertation
dataset, 1,310,774 dissertations have advisor information, producing 1,472,326 dissertation-
advisor pairs (some dissertations have more than one advisor). We assume that grant funding
received by the advisor(s) of a PhD student during the 5-year duration of the PhD program
affects the direction and content of the dissertation. Our measure of Advisors’ R&D budget
combines (i) the value of federal R&D budget that is relevant to each dissertation with (ii)
the maximum textual similarity between the dissertation and a focal firm’s patents granted
in a 5-year time cohort.

Our preferred instrument for each firm’s Relevant PhD dissertations is Advisors’ windfall-
predicted R&D budget, which leverages the windfall (or shortfall) in total funding for federal
agencies resulting from the political negotiation process in Congress. Additional details are
available in Online AppendixB.

Our instrumental variable is constructed as the average of the windfall-predicted R&D
budget for federal agencies, weighted by the relevance of the R&D budget of the agency
for the focal firm. A key identifying assumption is that the share of a patent subclass in
the firm’s patenting is not related to variations in the R&D budget of the agencies. We
empirically probe this issue by using an event study described in further detail in Online
Appendix E.2, where we use the collapse of the Soviet Union as a source of exogenous change
in the R&D budgets of various Federal agencies. We find that firms increased publication
activity in response to a fall in the R&D budget of relevant federal agencies.
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5 Estimation Results

5.1 R&D Intensity Equation

The general pattern of results in Columns 1-5 of Table 3 points to a negative effect of relevant
publications and a positive effect of relevant dissertations on R&D intensity. However, the
effects are not statistically significant in most specifications. Subject to the proviso that they
reflect average effects, the 2SLS estimates in Columns 2 and 4 suggest that public science
may only modestly affect R&D intensity overall.5

We next consider the effect of relevant publications covered by university patents and
relevant university patents, respectively. The pattern of negative/positive results remains
largely unchanged (Columns 6 and 7), implying that Relevant publications and Relevant PhD
dissertations capture different effects of disembodied and embodied public science. Overall,
these results also strongly suggest that relevant publications reflect both public knowledge as
well as university inventions. The negative coefficient estimate on relevant publications may
therefore either reflect substitution in invention between public knowledge and corporate
research, or the substitution between internal and external inventions, or both.

5.2 Patents Equation

Table 4 presents the effect of public knowledge and human capital on firm patents (our
measure of corporate invention). While we find a positive correlation between public knowl-
edge and patents (Column 1), once we account for endogeneity, we find that an increase in
public knowledge leads to fewer corporate patents (Column 2, p-value < 0.001). Moving
from the first to the third quartile of relevant public knowledge decreases firm patents by
10%. In unreported specifications, we find a 15% decrease in patents for firms that publish
at least one publication during 1986-2015 (p-value < 0.001). Conversely, an increase in the
relevant human capital increases corporate patenting, as predicted by our conceptual frame-
work (Columns 3 and 4). The same pattern of results holds when we include both relevant
publications and relevant PhD dissertations (Column 5, p-values < 0.001).

We address the concern that publications and PhDs are jointly produced by including
only relevant publications from national laboratories—which produce scientific knowledge
for the public domain but do not train human capital—in Column 6.

Our patenting results may seem to contradict prior empirical findings. For example,
5In the 2SLS specifications, the first stage predicts Relevant publications against Windfall-predicted R&D

budget (in Column 2) and Relevant PhD dissertations against Advisors’ windfall-predicted R&D budget
(in Column 4). The first stage results reported in Online Appendix Table D14 confirm that both public
knowledge and human capital are positively related to federal agencies’ R&D budgets (p-value < 0.001).
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Table 3: Main Effect of Relevant Public Science on R&D Intensity

(1) (2) (3) (4) (5) (6)
Dependent variable: ln(R&D intensity)

OLS 2SLS OLS 2SLS 2SLS 2SLS

ln(Relevant publications)t−1 0.012 -0.100 -0.156
(0.010) (0.053) (0.063)

ln(Relevant PhD dissertations)t−1 0.015 0.079 0.158 0.179
(0.010) (0.042) (0.057) (0.062)

ln(Relevant publications, Corp Pubs)t−1 0.006 0.001
(0.004) (0.006)

ln(Relevant university patents)t−1 -0.198
(0.077)

ln(Sales)t−1 -0.104 -0.101 -0.104 -0.106 -0.107 -0.108
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 4.63 4.63 4.63 4.63 4.63 4.63
Weak identif. (Kleibergen-Paap) 129.98 735.50 129.32 132.38
Firms 3,125 3,125 3,125 3,125 3,125 3,125
Observations 35,833 35,833 35,833 35,833 35,833 35,833
Adjusted R-squared 0.74 0.74

Notes: This table presents estimation results for the relationship between relevant public science (including
both public knowledge and human capital) and firm R&D intensity. In the 2SLS specifications, Relevant
publications, Relevant PhD dissertations, Relevant publications covered by university patents, and Relevant
university patents are instrumented using Windfall-predicted R&D budget, Advisors’ windfall-predicted R&D
budget, and a modified version of Windfall-predicted R&D budget, respectively. One is added to logged
variables. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for serial
correlation through clustering by firms.

Jaffe (1989) uses state-level data to show that corporate patenting increases with university
research expenditures. Azoulay et al. (2019) use disease-level data to show that total private-
sector patenting increases with National Institutes of Health research funding. Conversely, we
use firm-level data and find a negative effect in a sample of large, publicly traded firms. Both
types of results could easily be reconciled if small, privately held firms (such as university
spinoffs) were responsible for driving an increase in total patenting.

Indeed, our conceptual framework suggests that, insofar as relevant publications are also
related to the supply of university inventions, there may be countervailing effects. Recall
that an increase in university invention would directly reduce internal invention. When we
include the stock of relevant university patents in Column 7, we find that university patents
have a negative effect on patenting by public companies (p-value < 0.001).
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These are average effects and may differ across firms. For instance, public knowledge may
complement research conducted in firms operating on the technology frontier. Followers, by
contrast, may be content to use established science, rather than invest in internal research.
We examine how these effects vary across firms in section 5.5.

Table 4: Main Effect of Relevant Public Science on Patents

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable: ln(Patents)

OLS 2SLS OLS 2SLS 2SLS 2SLS

2SLS
Only natl.
lab pub. 2SLS

ln(Relevant publications)t−1 0.012 -0.150 -0.217 -0.097 -0.363
(0.003) (0.024) (0.025) (0.022) (0.049)

ln(Relevant PhD dissertations)t−1 0.030 0.220 0.346 0.339 0.387 0.358
(0.003) (0.023) (0.032) (0.032) (0.038) (0.032)

ln(Relevant publications, Corp Pubs)t−1 0.009 0.009 0.007
(0.002) (0.004) (0.004)

ln(Relevant university patents)t−1 -0.234
(0.027)

ln(R&D stock)t−1 0.244 0.271 0.238 0.199 0.191 0.020 0.189 0.195
(0.017) (0.020) (0.017) (0.015) (0.016) (0.005) (0.017) (0.015)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 28.30 28.30 28.30 28.30 28.30 28.30 28.30 28.30
Weak identif. (Kleibergen-Paap) 147.90 746.86 182.18 109.26 92.79 194.93
Firms 3,371 3,371 3,371 3,371 3,371 3,371 3,371 3,371
Observations 41,693 41,693 41,693 41,693 41,693 41,693 41,693 41,693
Adjusted R-squared 0.86 0.86

Notes: This table presents estimation results for the relationship between relevant public science (including
both public knowledge and human capital) and firm patents. In the 2SLS specifications, Relevant publica-
tions, Relevant PhD dissertations, and Relevant university patents are instrumented using Windfall-predicted
R&D budget, Advisors’ windfall-predicted R&D budget, and a modified version of Windfall-predicted R&D
budget, respectively. One is added to logged variables. Standard errors (in parentheses) are robust to
arbitrary heteroskedasticity and allow for serial correlation through clustering by firms.

5.3 Publications Equation

Table 5 presents the effect of public knowledge and human capital on firm publications (a
measure of corporate investment in internal research). Similar to the results for patents,
we find a negative and statistically significant effect of public knowledge (Column 2). At
the sample means, moving from the first to the third quartile of relevant public knowledge
decreases firm publications by 7%. In unreported specifications, we find that the effect is a
larger 11% decrease among firms that publish at least one publication during 1986-2015.

As predicted by our conceptual framework, relevant human capital has a positive and
statistically significant effect on publications (Column 4, p-value < 0.001). The nega-
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tive/positive effects disembodied/embodied public science remain when both dimensions
are considered together (Column 5), and when we use only publications from national labs,
which might provide a less contaminated estimate of the effect of public knowledge (Column
6).

The negative effect of public knowledge on corporate research might suggest that public
knowledge impairs the effectiveness of internal research in reducing the cost of internal in-
vention. Alternatively, our measure of public knowledge may also be related to the supply
of external invention. Indeed, university patents have a negative effect on corporate research
(Column 7), consistent with external invention substituting for internal invention. As was
the case with patents, it is likely that these average effects disguise substantial heterogeneity
across frontier firms and followers.

Table 5: Main Effect of Relevant Public Science on Publications

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable: ln(Publications)

OLS 2SLS OLS 2SLS 2SLS 2SLS

2SLS
Only natl.
lab pub. 2SLS

ln(Relevant publications)t−1 0.005 -0.107 -0.134 -0.044 -0.266
(0.002) (0.018) (0.019) (0.016) (0.037)

ln(Relevant PhD dissertations)t−1 0.008 0.072 0.151 0.145 0.195 0.162
(0.002) (0.015) (0.021) (0.021) (0.026) (0.021)

ln(Relevant publications, Corp Pubs)t−1 0.006 0.005 0.006
(0.002) (0.003) (0.003)

ln(Relevant university patents)t−1 -0.151
(0.020)

ln(R&D stock)t−1 0.148 0.166 0.149 0.136 0.130 0.128 0.132
(0.013) (0.015) (0.013) (0.013) (0.013) (0.014) (0.013)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 15.72 15.72 15.72 15.72 15.72 15.72 15.72 15.72
Weak identif. (Kleibergen-Paap) 147.90 746.86 182.18 108.35 92.79 194.93
Firms 3,371 3,371 3,371 3,371 3,371 3,372 3,371 3,371
Observations 41,693 41,693 41,693 41,693 41,693 41,698 41,693 41,693
Adjusted R-squared 0.88 0.88

Notes: This table presents estimation results for the relationship between relevant public science (including
both public knowledge and human capital) and firm publications. In the 2SLS specifications, Relevant
publications, Relevant PhD dissertations, and Relevant university patents are instrumented using Windfall-
predicted R&D budget, Advisors’ windfall-predicted R&D budget, and a modified version of Windfall-predicted
R&D budget, respectively. One is added to logged variables. Standard errors (in parentheses) are robust to
arbitrary heteroskedasticity and allow for serial correlation through clustering by firms.
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5.4 AMWS Scientists Equation

Table 6 presents the estimation results for the relationship between relevant publications
and PhD dissertations and firm employment of AMWS scientists (our alternative measure of
internal research). Evaluated at the sample means, the 2SLS estimates in Column 2 and 7
suggest that moving from the first to the third quartile of relevant public knowledge decreases
employment of AMWS scientists by 2% for all firms, and by 4% for publishing firms.

Consistent with the publication results, the effect of relevant human capital is positive
and significant (Columns 3-9), while the effect of public knowledge is negative and significant,
even when using only publications from the national labs (Columns 6 and 8). Similarly, the
supply of university patents has a negative effect on firm employment of AMWS scientists
(Column 9).

Table 6: Main Effect of Relevant Public Science on the Employment of AMWS Scientists

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dependent variable: ln(AMWS scientists)

All firms Publishing firms

OLS 2SLS OLS 2SLS 2SLS 2SLS

2SLS
Only natl.
lab pub. 2SLS

2SLS
Only natl.
lab pub. 2SLS

ln(Relevant publicationst−1) 0.004 -0.026 -0.039 -0.017 -0.070 -0.066 -0.110
(0.002) (0.010) (0.011) (0.011) (0.019) (0.018) (0.030)

ln(Relevant PhD dissertations)t−1 0.007 0.035 0.057 0.057 0.067 0.074 0.088 0.074
(0.002) (0.010) (0.013) (0.013) (0.015) (0.018) (0.021) (0.017)

ln(Relevant publications, Corp Pubs)t−1 0.001 -0.002 -0.003
(0.001) (0.002) (0.002)

ln(Relevant university patents)t−1 -0.073
(0.018)

ln(R&D stock)t−1 0.036 0.042 0.034 0.028 0.027 0.027 0.029 0.027 0.032
(0.007) (0.008) (0.007) (0.008) (0.008) (0.008) (0.011) (0.011) (0.010)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean DV 4.80 4.80 4.80 4.80 4.80 4.80 4.80 6.39 6.39 6.39
Weak identif. (Kleibergen-Paap) 147.90 746.86 182.18 108.35 92.79 106.21 61.87 152.60
Firms 3,371 3,371 3,371 3,371 3,371 3,372 3,371 2,255 2,255 2,255
Observations 41,693 41,693 41,693 41,693 41,693 41,698 41,693 31,154 31,154 31,154
Adjusted R-squared 0.93 0.93

Notes: This table presents estimation results for the relationship between relevant public science (includ-
ing both public knowledge and human capital) and firm employment of AMWS scientists. In the 2SLS
specifications, Relevant publications, Relevant PhD dissertations, and Relevant university patents are in-
strumented using Windfall-predicted R&D budget, Advisors’ windfall-predicted R&D budget, and a modified
version of Windfall-predicted R&D budget, respectively. One is added to logged variables. Standard errors
(in parentheses) are robust to arbitrary heteroskedasticity and allow for serial correlation through clustering
by firms.

In summary, our key findings thus far are that (1) public knowledge, as measured by the
stock of relevant publications, tends to crowd out corporate research and invention, whereas
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(2) human capital, as measured by trained PhD scientists, tends to crowd in corporate
research and invention. These results are robust across most industries, as reported in
Online Appendix F. They are also robust to using modified versions of our measure of
public knowledge (see Online Appendix Table G17), to constructing alternative measures
of relevant public knowledge and human capital that rely on the textual similarity between
publications and patents, as well as the grouping of publications in OECD subfields (see
Online Appendix Table G19), and to using measures of high-quality corporate innovation as
the dependent variables (see Online Appendix Table G20). In unreported specifications, we
find similar results when we transform the dependent variable using an inverse hyperbolic
sine transformation, calculated as asinh(x) = ln(x+

√
x2 + 1).

However, it is likely that these effects differ in strength, and perhaps even in direction, in
frontier firms versus followers. We investigate variation by firm proximity to the technology
frontier next.

5.5 Frontier Firms Versus Followers

Frontier firms may differ from followers in the type of the inventions they produce or in
terms of the value they derive from inventions, or both. We capture a firm’s proximity to
the technology frontier using its annual flow of novel patents, where patent novelty is based
on unique IPC combinations, in Table 7 and its patent values from Kogan, Papanikolaou,
Seru, and Stoffman (2017) in Table 8. Tables 7 and 8 present estimates from the second
stage of 2SLS regressions using Windfall-predicted R&D budget, Advisors’ windfall-predicted
R&D budget, and their interactions with Tech frontier measures as instrumental variables for
Relevant publications, Relevant PhD dissertations, and their interactions with Tech frontier
measures, respectively. We also report results where patent novelty is based on being the
first patent in a CPC subclass in Online Appendix Table G21. All Tech frontier measures
yield similar results.

The coefficient estimates on the interaction terms suggest that there is substantial het-
erogeneity in the effect of public knowledge on internal research and innovation based on firm
proximity to the technology frontier. While the estimates in Tables 4, 5, and 6 show that, on
average, public knowledge crowds-out corporate patents, publications, and employment of
AMWS scientists, firms operating on the technology frontier increase their patenting, pub-
lishing, and hiring when the stock of relevant non-corporate publications increases. Similarly,
though both frontier firms and followers increase their patenting, publishing, and hiring in
response to an increase in human capital supply, frontier firms do so to a greater extent.

Our results suggest that public knowledge may substitute for internal research, on aver-
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Table 7: Variation by Firm Proximity to the Technology Frontier: Unique IPC Combinations

(1) (2) (3) (4) (5) (6)

ln(Patents) ln(Pubs.)
ln(AMWS
Scientists ) ln(Patents) ln(Pubs.)

ln(AMWS
Scientists )

ln(Relevant publications)t−1 × Tech frontier 0.085 0.023 0.010
(0.002) (0.002) (0.001)

ln(Relevant PhD dissertations)t−1 × Tech frontier 0.059 0.020 0.012
(0.002) (0.003) (0.002)

ln(Relevant publications)t−1 -0.074 -0.089 -0.020 -0.041 -0.011 -0.007
(0.012) (0.016) (0.010) (0.003) (0.003) (0.002)

ln(Relevant PhD dissertations)t−1 0.035 0.041 0.013 0.069 0.020 0.003
(0.007) (0.009) (0.006) (0.014) (0.014) (0.009)

ln(R&D stock)t−1 0.074 0.103 0.016 0.117 0.108 0.011
(0.008) (0.011) (0.007) (0.010) (0.013) (0.009)

Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 28.30 15.72 4.80 28.30 15.72 4.80
Weak identif. (Kleibergen-Paap) 178.61 178.61 178.61 450.01 450.01 450.01
Firms 3,371 3,371 3,371 3,371 3,371 3,371
Observations 41,693 41,693 41,693 41,693 41,693 41,693

Notes: This table presents the second stage of 2SLS estimation for the effect of public knowledge and human
capital on firm patents, publications, and AMWS scientists when considering firm proximity to the technology
frontier. We measure Tech frontier using a firm-cohort measure based on unique IPC combinations. We
use Windfall-predicted R&D budget and its interactions with Tech frontier as instrumental variables for
Relevant publications and its interactions with Tech frontier. We also use Advisors’ windfall-predicted R&D
budget and its interactions with Tech frontier as instrumental variables for Relevant PhD dissertations and
its interactions with Tech frontier. One is added to logged variables. Standard errors (in parentheses) are
robust to arbitrary heteroskedasticity and allow for serial correlation through clustering by firms.

age. However, public knowledge may well complement internal research for frontier firms.
Alternatively, frontier firms may have a larger scale of operations. By reducing the cost of
internal invention, public knowledge may increase the marginal return to internal research
even if public knowledge substitutes for internal research in frontier firms. Furthermore, hu-
man capital has a larger positive effect on invention in frontier firms, as might be expected if
frontier firms were more likely to invest in internal research in the first place. It may also be
that frontier firms are less reliant on external inventions, leading to a larger scale of internal
research and invention.

5.6 Rival Use of Public Science

Table 9 presents the estimation results for the relationship between rival-relevant public
science (including actual use of public knowledge and rival-relevant PhD dissertations) and
the focal firm’s market value. Columns 1-2 present OLS estimation results. In Column 3,
we use Predicted rival-relevant PhD dissertations as an instrument for Rival-relevant PhD
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Table 8: Variation by Firm Proximity to the Technology Frontier: Patent Value

(1) (2) (3) (4) (5) (6)

ln(Patents) ln(Pubs.)
ln(AMWS
Scientists ) ln(Patents) ln(Pubs.)

ln(AMWS
Scientists )

ln(Relevant publications)t−1 × Tech frontier 0.121 0.014 0.003
(0.003) (0.002) (0.001)

ln(Relevant PhD dissertations)t−1 × Tech frontier 0.094 0.020 0.008
(0.005) (0.004) (0.003)

ln(Relevant publications)t−1 -0.117 -0.109 -0.030 -0.029 -0.005 -0.002
(0.020) (0.018) (0.011) (0.004) (0.003) (0.002)

ln(Relevant PhD dissertations)t−1 0.094 0.063 0.023 0.209 0.069 0.034
(0.012) (0.010) (0.006) (0.022) (0.016) (0.011)

ln(R&D stock)t−1 0.193 0.142 0.033 0.171 0.130 0.026
(0.014) (0.013) (0.007) (0.014) (0.013) (0.008)

Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 28.30 15.72 4.80 28.30 15.72 4.80
Weak identif. (Kleibergen-Paap) 178.25 178.25 178.25 546.33 546.33 546.33
Firms 3,371 3,371 3,371 3,371 3,371 3,371
Observations 41,693 41,693 41,693 41,693 41,693 41,693

Notes: This table presents the second stage of 2SLS estimation for the effect of public knowledge and human
capital on firm patents, publications, and AMWS scientists when considering firm proximity to the technology
frontier. We measure Tech frontier using a firm-cohort measure based on patent values from Kogan et al.
(2017). We use Windfall-predicted R&D budget and its interactions with Tech frontier as instrumental
variables for Relevant publications and its interactions with Tech frontier. We also use Advisors’ windfall-
predicted R&D budget and its interactions with Tech frontier as instrumental variables for Relevant PhD
dissertations and its interactions with Tech frontier. One is added to logged variables. Standard errors (in
parentheses) are robust to arbitrary heteroskedasticity and allow for serial correlation through clustering by
firms.

dissertations, and Predicted rival-relevant publications as an instrument for Rival citations
to publications. Consistent with the theoretical predictions from Online Appendix Table A1,
firm value decreases with rival use of public knowledge for both OLS and 2SLS (Columns 2
and 3). However, the effect of Rival-relevant PhD dissertations is effectively zero.

So far, we have defined rivals as panel firms operating in the same Text-based Network
Industry Classification (Hoberg & Phillips, 2010, 2016). An alternative set of rivals consists
of small firms. In Column 4, we also consider the use of public knowledge by small rivals
(i.e., standalone firms with fewer than 50 employees and within 10 years of incorporation
that are included in the NETS High Tech 2020 database). We use Predicted small rival-
relevant publications as an instrument for Small rival citations to publications. The 2SLS
coefficient estimates suggest that the use of public knowledge by all rivals, whether large or
small, decreases focal firm value.

In Column 5, we restrict our attention to a subsample of manufacturing firms, for which
we can calculate product market distances between firms using pre-period sales in various
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business segments. Even after we control for spill-ins of knowledge from other firms to the
focal firm (using the product market distance-weighted sum of all other firms’ R&D stocks),
we find that rival use of public knowledge has a negative effect on focal firm value. Results
remain unchanged when we define rivals as firms operating in the same SIC4 industry as the
focal firm (Column 6), suggesting a negative effect of competition.

Table 9: Firm Value Equation with Rival Use of Public Science

(1) (2) (3) (4) (5) (6)
ln(Tobin’s Q)

OLS
(Baseline)

OLS
(Add

corp. rivals)

2SLS
(Instrument

for
corp. rivals)

2SLS
(Add

instrument
for

small rivals)

2SLS
(Add

control
for rival
spill-ins)

2SLS
(Alternative
definition
of rivalry
based on

SIC4 overlap)

Own-relevant publicationst−1 / Assetst 0.018 0.016 0.017 0.016 0.014 0.014
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Own-relevant PhD dissertationst−1 / Assetst -0.005 -0.002 -0.002 -0.002 -0.002 -0.004
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

ln(Rival citations to publications)t−1 -0.107 -0.105 -0.101 -0.118 -0.051
(0.013) (0.017) (0.019) (0.019) (0.019)

ln(Rival-relevant PhD dissertations)t−1 0.001 0.002 0.002 0.006 0.009
(0.004) (0.005) (0.005) (0.005) (0.008)

ln(Small rival citations to publications)t−1 -0.008 0.010 -0.011
(0.013) (0.014) (0.014)

R&D stockt−1 / Assetst 0.201 0.208 0.207 0.208 0.205 0.204
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010)

ln(SPILLSIC R&D stock)t−1 -0.162 -0.223
(0.092) (0.095)

Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Mean DV 33.80 33.80 33.80 33.80 28.51 28.51
Weak identif. (Kleibergen-Paap) 1,590.92 942.62 901.30 744.81
Firms 3,230 3,230 3,230 3,230 2,871 2,871
Observations 36,718 36,718 36,718 36,718 33,975 33,975

Notes: This table presents estimation results for the relationship between rival-relevant public science and
Tobin’s Q. In Columns 1-5, ln(Rival citations to publications) and ln(Rival relevant PhD dissertations) are
constructed using the Text-based Network Industry Classifications and pairwise product portfolio similarity
scores from Hoberg and Phillips (2010, 2016). In Columns 3-5 we use Predicted rival-relevant PhD disserta-
tions as an instrument for Rival-relevant PhD dissertations and Predicted rival-relevant publications as an
instrument for Rival citations to publications. In Columns 4 and 5 we also use Predicted small rival-relevant
publications as an instrument for Small rival citations to publications. Column 5 is restricted to manufac-
turing firms. SPILLSIC R&D stock is the product market distance-weighted sum of all other firms’ R&D
stocks. In Column 6, we use alternative measures for ln(Rival citations to publications) and ln(Rival relevant
PhD dissertations) based on SIC4 industry definitions. One is added to logged variables. Standard errors
(in parentheses) are robust to arbitrary heteroskedasticity and allow for serial correlation through clustering
by firms.

In Table 10, we turn our attention to the effect of rival-relevant public science on focal
firm innovation. Unlike the effect on firm value, rival use of public knowledge does not affect
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corporate patenting, publishing, and hiring, on average. These results are consistent with
changes in rival innovation not affecting the focal firm’s marginal returns to innovation. In
turn, this suggests that strategic interactions in innovation between rivals are modest.

Table 10: Patents, Publications, and AMWS Scientists Equations with Rival Use of Public
Science

(1) (2) (3)
Dependent variable: ln(Patents) ln(Publications) ln(AMWS scientists)

ln(Own-relevant publications)t−1 -0.201 -0.124 -0.035
(0.024) (0.019) (0.011)

ln(Own-relevant PhD dissertations)t−1 0.337 0.143 0.054
(0.032) (0.020) (0.013)

ln(Rival citations to publications)t−1 -0.017 -0.002 -0.002
(0.013) (0.011) (0.007)

ln(Rival-relevant PhD dissertations)t−1 0.023 0.017 0.006
(0.003) (0.002) (0.002)

ln(R&D stock)t−1 0.186 0.123 0.025
(0.016) (0.014) (0.008)

Year FE Yes Yes Yes
Firm FE Yes Yes Yes
Mean DV 28.30 15.72 4.80
Weak identif. (Kleibergen-Paap) 92.21 92.21 92.21
Firms 3,371 3,371 3,371
Observations 41,693 41,693 41,693

Notes: This table presents the second stage of 2SLS estimation results for the relationship between rival-
relevant public science and firm patents, publications, and AMWS scientists. ln(Rival citations to publi-
cations) and ln(Rival relevant PhD dissertations) are constructed using the Text-based Network Industry
Classifications and pairwise product portfolio similarity scores from Hoberg and Phillips (2010, 2016). We
use Windfall-predicted R&D budget, Advisors’ windfall-predicted R&D budget, Predicted rival citations to
publications, and Predicted rival-relevant PhD dissertations as instruments for Own-relevant publications,
Own-relevant PhD dissertations, Rival citations to publications, and Rival-relevant PhD dissertations, re-
spectively. One is added to logged variables. Standard errors (in parentheses) are robust to arbitrary
heteroskedasticity and allow for serial correlation through clustering by firms.

6 Conclusion

This paper provides systematic evidence that most firms, across various industries, respond to
an increase in relevant public knowledge by employing fewer AMWS scientists and producing
fewer publications and patents. Conversely, firms respond to an increase in relevant human
capital by employing more AMWS scientists and producing more publications and patents.
We find that the disembodied and embodied components of public science appear to affect the
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R&D investments of firms differently. Whereas public knowledge represented by publications
appears to substitute for internal research by corporations, the trained scientists that are
often produced alongside scientific knowledge enhance the payoffs to internal research by
corporations. These potentially offsetting effects imply that the net effect of public science
on corporate innovation may well be small. However, they also illuminate the different ways
in which public and private R&D investments interact. Moreover, they suggest that firms
may respond to rising public science differently depending on how close they are to the
technology frontier.

Indeed, we find that firms respond differently to the rise in public knowledge based on
their proximity to the technology frontier. Frontier firms continue to invest in internal re-
search and invention even when public knowledge becomes abundant. The surge in corporate
scientific research in several emerging technology fields (e.g., artificial intelligence and quan-
tum computing) is consistent with these empirical findings. These differences may arise
because the marginal returns from using internal research in innovation are greater for fron-
tier firms than the marginal returns enjoyed by other firms. Put differently, public knowledge
is less likely to substitute for internal research in frontier firms, whereas followers are more
likely to use public knowledge to power their internal inventive activity. A complementary
explanation is that external inventions generated from public science are less likely to substi-
tute for internal inventions in frontier firms, whereas followers may be more reliant on such
eternal inventions.

Understanding the mechanisms behind the effects of embodied and disembodied public
science on corporate research and invention is important for understanding the evolution of
the American innovation ecosystem, in which publicly-funded public knowledge and startups
have steadily grown in importance as sources of innovation, at the expense of established
corporate labs of yesteryears. To the extent that diversity in the sources and types of R&D
activities is important for a vibrant innovation ecosystem, a reduction in corporate research
could be problematic. Our results also point to the possibility that the expansion of public
science may widen the gap between firms. Increases in the gap between frontier firms and
followers have implications for product market competition, and for the rate and direction
of technical advance, more broadly.
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