Players with private information can take some action to “signal” their type.
- Taking this action would distinguish them from other types.

Privately informed agents credibly convey information about themselves to another party.

- Studied signaling in the labor market.
- Workers can signal their type by obtaining education.
- In equilibrium: high ability workers get more education, so employers can learn the agent’s type by observing their education level.
- Signal is credible: only high ability workers will be willing to get more years of education.

Setup
- Two types of workers: $\theta_H > \theta_L$ (high ability and low ability)
 - A worker of type θ produces output which is worth θ to the employer.

There is a fraction $\lambda \in (0, 1)$ of low type-workers in the market.

- A worker can obtain education level e, which is perfectly observable.
 - Assume that e does not affect the worker’s productivity θ.

- Cost of getting education $e \geq 0$ for a type θ worker is $c(e, \theta)$.

- We assume that:
 - $c(0, \theta) = 0$, $c_e(e, \theta) > 0$, $c_{ee}(e, \theta) \geq 0$ for $\theta \in \{\theta_L, \theta_H\}$.

\[c_e(e, \theta_H) < c_e(e, \theta_L) \text{ for all } e. \]

- Second condition implies that getting more education is more costly for low ability workers than for high ability workers.

- Goal: Can high types credibly signal to employers their quality by getting more education than low types.

- If a type \(\theta \) worker gets a wage \(w \) and education \(e \), her utility is

\[w - c(e, \theta). \]

- Assume that

 1. the outside option of both types of workers is zero; and
 2. there is perfect competition among employers (and so they earn zero profits in expectation).

Benchmark

- Suppose first that workers cannot get education.

 - In this case there is no signaling.

- Equilibrium in this case:

\[w = \mathbb{E}[\theta] = \lambda \theta_L + (1 - \lambda) \theta_H \]

 - All workers accept this wage (recall that outside option is 0).
 - Firms earn zero profits.
 - High types get a low wage, and low types get a high wage (relative to their productivity).

Education

- Suppose now that workers can get education to signal their type.

- We consider the following game:

 - The worker first learns her type. (Worker is type \(\theta_H \) w.p \(1 - \lambda \) and type \(\theta_L \) w.p \(\lambda \).)
− After learning her type, worker chooses education level \(e \geq 0 \).
− All firms then observe \(e \) but not \(\theta \). Then they make wage offers to the worker.
− Worker accepts (at most) one offer.

○ In equilibrium, a worker who chooses \(e \) cannot gain by choosing a different \(e' \neq e \).

○ Let \(\mu (e) = \Pr (\theta = \theta_H | e) \).
 − \(\mu (e) \) is the belief of the firms when they observe a worker with education level \(e \).
 − These beliefs are derived from the workers’ strategies.

○ Let \(w(e) \) be the wage that firms offer when they see a worker with education \(e \).
 − Zero profit condition implies that \(w(e) = \mu (e) \theta_H + [1 - \mu (e)] \theta_L \).
 − Wages depend solely on beliefs.
 − If \(\mu (e) \) is not constant in \(e \), then workers with different education level will get different wages.

○ Let \(e(\theta) \) be the education level chosen by a worker with type \(\theta \).

○ Two types of equilibria:
 − Separating equilibria: \(e(\theta_H) \neq e(\theta_L) \).
 − Pooling equilibria: \(e(\theta_H) = e(\theta_L) \).

○ We will focus mainly on separating equilibria (but we will discuss pooling equilibria at the end).

Separating equilibria

○ Recall that \(e(\theta_H) \neq e(\theta_L) \) and \(\mu (e) = \Pr (\theta = \theta_H | e) \).

○ In a separating equilibrium, \(\mu (e(\theta_H)) = 1 \) and \(\mu (e(\theta_L)) = 0 \).
 − If firms observe \(e(\theta_i) \), they know that worker has type \(\theta_i \).
 − Thus, workers signal their types through their education level.

○ This implies that \(w(e(\theta_H)) = \theta_H \) and \(w(e(\theta_L)) = \theta_L \).
This follows since \(w(e) = \mu(e) \theta_H + [1 - \mu(e)] \theta_L \).

○ We shall show that \(e(\theta_L) = 0 \).

 - Towards a contradiction, suppose that \(e(\theta_L) > 0 \).

 - If a type \(\theta_L \) worker deviates and chooses \(e = 0 \), she gets wage
 \[
 w(0) = \mu(0) \theta_H + [1 - \mu(e)] \theta_L \geq \theta_L
 \]

 - The utility she gets from doing so is
 \[
 w(0) - c(0, \theta_L) \geq \theta_L - c(0, \theta_L) > \theta_L - c(e(\theta_L), \theta_L),
 \]
 so this worker strictly prefers to choose \(e = 0 \) than to choose \(e = e(\theta_L) > 0 \).

 ○ Therefore, in a separating equilibrium, it must be that \(e(\theta_L) = 0 \).

○ What about \(e(\theta_H) \)?

 ○ This education level has to satisfy two constraints:

 \[
 \begin{align*}
 \theta_H - c(e(\theta_H), \theta_L) &\leq \theta_L - c(0, \theta_L) = \theta_L \\
 \theta_H - c(e(\theta_H), \theta_H) &\geq \theta_L - c(0, \theta_H) = \theta_L
 \end{align*}
 \]

 - First constraint guarantees that a worker with type \(\theta_H \) prefers to get education level \(e(\theta_H) \) than \(e(\theta_L) \).

 - Second constraint guarantees that a worker with type \(\theta_L \) prefers to get education level \(e(\theta_L) \) than \(e(\theta_H) \).

 \[
 \implies c(e(\theta_H), \theta_L) \geq \theta_H - \theta_L \geq c(e(\theta_H), \theta_H)
 \]

 - Recall that \(c(e, \theta_L) > c(e, \theta_L) \) for all \(e \).

○ There is a range \([\underline{e}, \bar{e}]\) of values of \(e(\theta_H) \) that satisfy these two inequalities:

 - \(\underline{e} \) is such that \(c(\underline{e}, \theta_L) = \theta_H - \theta_L \).
– \bar{e} is such that $c(\bar{e}, \theta_H) = \theta_H - \theta_L$.

○ Any $e(\theta_H) \in [\underline{e}, \bar{e}]$ can be supported as an equilibrium.

○ One thing left: what values does $\mu(e)$ take for $e \neq \{e(\theta_H), e(\theta_L)\}$?

 – We cannot derive these beliefs from the workers actions.

 – If employers observe $e \neq \{e(\theta_H), e(\theta_L)\}$, what should they believe?

○ Recall that $w(e) = \mu(e) \theta_H + [1 - \mu(e)] \theta_L$.

○ For this to be an equilibrium, both types of workers must prefer to take their equilibrium actions:

 – type θ_H must prefer to get education $e(\theta_H)$ than any $e \neq e(\theta_H)$.

 – type θ_L must prefer to get education $e(\theta_L)$ than any $e \neq e(\theta_L)$.

○ We specify $\mu(e)$ so that workers don’t want to deviate:

 – Different ways in which we can do this.

 – Idea: “punish” workers with $e \neq \{e(\theta_H), e(\theta_L)\}$ by making $\mu(e)$ small.

Pooling Equilibria

○ In a pooling equilibrium, $e(\theta_H) = e(\theta_L) = e^*$.

 – All workers get the same education level.

○ Zero profits by firms imply that $w(e^*) = (1 - \lambda) \theta_H + \lambda \theta_L$.

 – This implies that $\mu(e^*) = 1 - \lambda$.

○ In an equilibrium, no type of worker must benefit from choosing $e \neq e^*$.

 – Need to specify $\mu(e)$ so that neither high types nor low types have a profitable deviation.

References
