Module 12: Holdup Problem

Information Economics (Ec 515) · George Georgiadis

Standard Holdup Problem

- Canonical model by Hart and Moore (1988)
- 2 contracting parties: A buyer and seller can trade a quantity \(q \in [0, 1] \) at a price \(P \).
- Buyer’s valuation \(v \) and seller’s production cost \(c \) are uncertain when contracting takes place and can be influenced by investments

\[
\begin{align*}
\text{Buyer: } & v \in \{v_L, v_H\} \text{ and } \Pr(v_H) = j \text{ at cost } \psi(j) \\
\text{Seller: } & c \in \{c_L, c_H\} \text{ and } \Pr(c_L) = i \text{ at cost } \phi(i)
\end{align*}
\]

- For example:
 - Buyer invests in marketing to increase price that he can sell the good at.
 - Seller invests in modern infrastructure to reduce production cost.

- Ex-post payoff levels are

\[
\begin{align*}
\text{Buyer: } & vq - P - \psi(j) \\
\text{Seller: } & P - cq - \phi(i)
\end{align*}
\]

- **Timing:**

1. The buyer and the seller contract.
 - Contract specifies quantity \(q \) to be traded at price \(P \).
2. Each party simultaneously chooses his investment level \(i \) and \(j \).
3. Both parties learn state of nature \(\theta = (v, c) \).
4. The contract is executed (possibly after renegotiation).
First Best

- Assume that

\[c_H > v_H > c_L > v_L \]

- Ex-post efficient level of trade is

\[q = 1 \text{ if } \theta = (v_H, c_L) \]
\[q = 0 \text{ otherwise} \]

- The total expected surplus is given by

\[\max_{i,j} \{ ij (v_H - c_L) - \psi (j) - \phi (i) \} \]

so the first best investment levels satisfy

\[i^{fb} (v_H - c_L) = \psi' (j^{fb}) \]
\[j^{fb} (v_H - c_L) = \phi' (i^{fb}) \]

Nash Equilibrium

- \(\theta \) is observable to both parties ex-post, but it is not contractable ex-ante, nor are the investment levels \(i \) and \(j \).

- Assume that ex-post bargaining gives each party half of the surplus.

- The buyer solves

\[\max_j \left\{ \frac{1}{2} i^* j (v_H - c_L) - \psi (j) \right\} \]

while the seller solves

\[\max_i \left\{ \frac{1}{2} i^* j^* (v_H - c_L) - \phi (i) \right\} \]

- So in equilibrium, they choose

\[\frac{1}{2} i^* (v_H - c_L) = \psi' (j^*) \quad \text{and} \quad \frac{1}{2} j^* (v_H - c_L) = \phi' (j^*) \]

- Clearly, \(i^* < i^{fb} \) and \(j^* < j^{fb} \), due to “moral-hazard-in-teams”.

- Solutions?

 - Can we formulate an optimal long-term contract independent of \(\theta \) that mitigates underinvestment?
Default Options

○ Define level of trade \tilde{q} such that

$$\tilde{q} (c_H - c_L) = \phi' (i^{fb})$$

○ Consider the following contractual mechanism (after the state of nature θ is revealed):

1. Buyer makes a take-it-or-leave-it offer (P, q).
2. Seller accepts (P, q), or rejects it, in which case \tilde{q} is traded at price \tilde{P}.
 - \tilde{P} chosen to share the ex-ante surplus according to bargaining weights.

○ We will show that this mechanism implements first best!

○ Buyer will offer (P, q) such that seller is indifferent between accepting the offer and rejecting it.

○ Seller always expects to obtain the default option payoff so he solves

$$\max_i \left\{ \tilde{P} - ic_L\tilde{q} - (1 - i) c_H\tilde{q} - \phi (i) \right\}$$

First order condition: $\tilde{q} (c_H - c_L) = \phi' (i)$, so that $i = i^{fb}$.

○ Buyer maximizes

$$\max_j \left\{ \frac{i^{fb}}{j} (v_H - c_L) - \left[\tilde{P} - i^{fb} c_L\tilde{q} - (1 - i^{fb}) c_H\tilde{q} \right] - \psi (j) \right\}$$

First order condition: $i^{fb} (v_H - c_L) = \psi' (j)$, so that $j = j^{fb}$.

○ Lesson: By choosing \tilde{q} appropriately, it is possible to induce (i^{fb}, j^{fb}).

○ Comments:
– Investment efficiency for the buyer since he’s the residual claimant ...
– ... but why is there investment efficiency for the seller who has no bargaining power at all?
– Incentive to invest comes from availability of default option, which becomes more attractive when cost is c_L and this can be influenced through i.

References

