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Al Omitted expressions

Below we provide several expressions that are omitted from the main text as well as further

details on the concept of inclusive price.

A1l1l.1 Firms’ decisions: Conditional expectation of scrap value and setup

cost

Exit decision of incumbent firm. Given the assumed distribution for scrap values, the

probability of incumbent firm 1 exiting the industry in state €’ is
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Entry decision of potential entrant. Given the assumed distribution for setup costs,

the probability of potential entrant 1 not entering the industry in state €’ is
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and the expectation of the setup cost conditional on entering the industry is
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A1.2 Learning-by-doing: Marginal revenue and inclusive price

mri(p1,p2(e)) = p1— m is the marginal revenue of incumbent firm 1 with respect
to quantity and therefore analogous to the traditional textbook concept. To see this, let
q1 = D1(p1,p2(e)) be demand and p; = Pi(q1,p2(e)) inverse demand as implicitly defined
by ¢1 = D1(Pi(q1,p2(e)),p2(e)). The marginal revenue of incumbent firm 1 is

I Pi(q1,p2(e))] _  OPi(q1,p2(e))
oq n oqn

MR1(q1,p2(e)) = + Pi(q1, p2(e)). (A1)



Define mri(p1,p2(e)) = MR (D1(p1,p2(e)), p2(e)) to be the marginal revenue of incumbent
firm 1 evaluated at the quantity ¢ = D1 (p1,p2(e)) corresponding to prices p; and pa(e).

Then we have

OPy(D1(p1,p2(e)), p2(e)) _ [8D1(p1,p2(e))}_1 o
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Substituting equation (A2) into equation (A1), it follows that mry (p1, p2(e)) = P\ =D ()

A1.3 Industry structure, conduct, and performance: Consumer and pro-
ducer surplus

Consumer surplus in state e is

CS(e) = olog {exp <_Up"> + Z; exp (_pg(e)> } .

The producer surplus of firm 1 in state e is
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The first set of terms represents the contingency that firm 1 is an incumbent that participates
in the product market and receives a scrap value upon exit; the second set the contingency

that firm 1 is an entrant that incurs a setup cost upon entry.

A2 Additional figures and tables

Below we provide additional figures and tables to supplement those in the main text.



A2.1 Equilibrium correspondence: Metrics of industry conduct and per-
formance

Figures A1-A5 complement Figure 3 in the main text. They illustrate the equilibrium
correspondence by plotting p*°, CS®, T8>, CSNPV and TSNPV against p, o, and X,

respectively.

A2.2 Equilibrium correspondence: Aggressive equilibria with little learning-
by-doing

Figure A6 supplements footnote 21 in the main text. It illustrates that aggressive equilibria
can arise for p = 0.99 and o0 = 0.10 and p = 0.98 and ¢ = 0.30 where there is practically

no learning-by-doing.

A2.3 Equilibrium correspondence: Multiple equilibria

Figure A7 shows the number of equilibria that we have identified for combinations of p and
o, pand X, and o and X, respectively. Darker shades indicate more equilibria.

We have found 81 equilibria for p = 0.45 and ¢ = 0.9. In Figures A8-A10 we present
some of them to further illustrate the differences between equilibria alluded to in footnote
25 in the main text. Figure A8 presents equilibria #35 and #36 that are fairly similar to
each other;! the differences between values and policies in any state are less than 9%.

Figure A9 presents equilibria #35 and #5 that are much less similar to each other; the
differences between values and policies in some state are 114%. These equilibria differ in
the location of the trench: The pricing decision has a single trench along the ej-axis at
eo = 5 in equilibrium #35 and at es = 2 in equilibrium #5. Due to the delayed onset of
predation-like behavior, the industry is much more likely to evolve into a mature duopoly
in equilibrium #35 than in equilibrium #5.

Figure A10 presents equilibria #14 and #15. In these equilibria the pricing decision has
double trenches along the ej-axis at e = 2 and es = 5. While the location of the trenches

is the same, these equilibria differ in the depth of the trenches.

A2.4 Isolating predatory incentives: Accommodative equilibrium

Table A1 complements Table 6 in the main text. The left and middle panels illustrate the de-
composition (10) for the accommodative equilibrium at the beginning of Section 4. The pric-

ing decision is driven by the advantage-building/baseline and advantage-denying/baseline

'Equilibria are numbered arbitrarily.
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Figure A8: Pricing decision of firm 1 (left panels), non-operating probability of firm 2
(middle panels), and time path of probability distribution over industry structures, starting
from e = (1,1) at T' = 0 (right panels). Equilibrium #35 (upper panels) and equilibrium
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Figure A9: Pricing decision of firm 1 (left panels), non-operating probability of firm 2
(middle panels), and time path of probability distribution over industry structures, starting

from e = (1,1) at T' = 0 (right panels). Equilibrium #35 (upper panels) and equilibrium
#5 (lower panels) for p = 0.45 and o = 0.90.
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motives. As can be seen in the right panels, a sacrifice test based on Definitions 1 and 2

may indicate predation whereas a sacrifice test based on Definitions 3 and 4 does not.

A2.5 Counterfactual and equilibrium correspondences: Multiple coun-
terfactuals

Figures A11, A12, and A13 show the number of counterfactuals for Definitions 2, 3, and 4
that we have identified for combinations of p and o, p and X, and ¢ and X, respectively.
Darker shades indicate more counterfactuals. As can be seen from comparing Figures All,
A12; and A13 to Figure A7, there tend to be less counterfactuals than equilibria for a given

parameterization.

A2.6 Counterfactual and equilibrium correspondences and eliminated
and surviving equilibria: Product differentiation and scrap value

Figures A14 and A15 complement Figure 4 in the main text. They illustrate the counterfac-
tual correspondence for Definitions 1-4 by plotting HHI™® against o and X, respectively.
They superimpose the equilibrium correspondences H™*(0) and H~!(X) from Figure 3 and
distinguish between surviving and eliminated equilibria.

As in the main text, the counterfactual correspondences for Definitions 3 and 4 resem-
ble the equilibrium correspondence much more closely than those for Definitions 1 and 2.
Furthermore, the stronger Definitions 1 and 2 eliminate many more equilibria that are as-
sociated with high expected long-run Herfindahl indices than the weaker Definitions 3 and
4.

A3 Definitions of predation in the literature

To complement the discussion in Section 5 of the main text, below we adapt the Ordover
& Willig (1981) and Cabral & Riordan (1997) definitions of predation to our model. Both
stress the advantage-building/exit motive I'3(e) and the advantage-denying/exit motive

O3 (e).

Cabral & Riordan (1997). Cabral & Riordan (1997) call “an action predatory if (1) a
different action would increase the probability that rivals remain viable and (2) the different
action would be more profitable under the counterfactual hypothesis that the rival’s viability
were unaffected” (p. 160). In the context of predatory pricing, it is natural to interpret
“a different action” as a higher price p; > pi(e). To port the Cabral & Riordan definition

from their two-period model to our infinite-horizon dynamic stochastic game, we take the

16
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“rival’s viability” to refer to the probability that the rival exits the industry in the current
period. Finally, we interpret “the different action would be more profitable” in the spirit
of Markov perfection to mean that by a setting a higher price in the current period but
returning to equilibrium play from the subsequent period onward, the firm can affect the
evolution of the state to increase its expected NPV if it believed, counterfactually, that the
probability that the rival exits the industry in the current period is fixed at ¢,(e).

With these interpretations, Proposition 1 formalizes the relationship between the Cabral

& Riordan definition of predation and the decomposition (10) in the main text:

Proposition 1 Consider an industry with two incumbent firms in state € > (1,1). Assume
pi1(e) <1, Vi(e1,0) > Vi(e), and Vi(e1 +1,0) > Vi(e1 + 1, e2), i.e., exit by the firm is less
than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If
I'2(e) > 0 and ©3(e) > 0, with at least one of these inequalities being strict, and

r3(e) + [Ti(e) ~ THe)],, _y. (o))
+T(pa(e)) | [O1(e) = O(e)],,_, o] +OF(e) + [OF(e) = Oi(e)], _, o]] >0, (43)
then the firm’s equilibrium price pi(e) in state e is predatory according to the Cabral &

Riordan (1997) definition.? (b) If pi(e) is predatory according to the Cabral & Riordan
definition, then I'3(e) > 0 or ©%(e) > 0 and inequality (A3) holds.

Proof. The probability that firm 2 exits the industry in the current period (given po(e)

and e) is
Dy (p1,p2(e),e) = ¢o(e)Do(p1, pa(€))+do(e1+1, e2) D1 (p1, pa(€))+ds(e1, e2-+1)Da(p1, p2(e)).

We say that pi(e) is predatory according to the Cabral & Riordan (1997) definition if
there exists a price p; > pi(e) such that (1) ®a(pi(e),p2(e),e) > Po(p1,p2(e),e) and (2)
i(pi(e), p2(e),€)lg,—g,(e) < M1 (P1:p2(e)€)l4,—p, (e)-
Part (a): Let p1 = argmax,, Hl(pl,pg(e),e)]¢2:¢2(e). Then p; is uniquely determined
by
mry (51, pa(e)) = cler) + [Ti(e) + TH(e)], _, ) +Tile) + Tile)]

Y (pa(e)) [O1(€)], s o) + OL@)|y, g o) + OLE)] = 0. (A4)

2The notation | o=y (e) Means that we evaluate the relevant term under the assumption that Py(e) =

P(e1 +1,e2) = Py(e1,e2 + 1) so that the probability that the rival exits the industry in the current period
is indeed fixed at ¢,(e).
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Subtracting equation (10) in the main text (evaluated at p; = pi(e)) from equation (A4),

we have

mr (51, pa(e) — mr (i (€), pae)) = [T(e) + [Te) — Te)], . 0]]

+T(pa(e)) |[O1(e) — Ol(e)],, | +6F(e) + |B(e) ~ O],y ]| >0

per inequality (A3). Because mri(p1,p2(e)) is strictly increasing in p;, it follows that
p1 > pi(e).

Because I'?(e) > 0 and ©%(e) > 0, with at least one of these inequalities being strict,
under the maintained assumptions of Proposition 1 it follows that ¢y(e; +1,e2) — po(e) > 0
and ¢q(e) — ¢y(er,ea + 1) > 0, with at least one of these inequalities being strict. Because
Do(p) =1 — Dy(p) — D2(p) we thus have

8®2 (p17p2 (e)7 e)
Op1

0D (p1,p2(e))
Op1

0D (p1,p2(e))
Op1

= [#a(e1 + 1, e2) — d(e)] —[p2(e) — Pa(e1, €2 +1))] <0

Drlprrale) < and 222BL22(E) 5 . Thus, Ba(pi(e), pa(e), e) > Ba(pr,pa(e),e).

This establishes part (1) of the Cabral & Riordan definition above.
To establish part (2), recall that by construction II; (p1(e), p2(e), €)] 5, —y, ) < 111 (P1,2(€), €)]4,—4, (e)-

since

Moreover, this inequality is strict because II;(p1,p2(e),e)| So=0s(e) is strictly quasiconcave
in p;.

Part (b): Because p;(e) is predatory according to the Cabral & Riordan definition, there
exists a higher price p; > pi(e) such that (1) ®2(pi(e), pa(e),e) > Pa(p1,p2(e),e) and (2)
I (p1(e, p2(e), €)] s, —p, ) < L1 (P1,p2(€),€)] 4 4, (e)- Thus we have

Dy (p1(e), pa(e), €) — @2(p1, pa(e), e)
= [D1(p1(e), p2(e)) — D1(p1, p2(e))] [da(e1 + 1, €2) — dy(e)]

— [D2(p1(e), pa(e)) — Da(p1, p2(e))] [da(€) — da(e1, 2+ 1)] > 0. (AD)
Because % < 0 and w > 0, Di(p1(e),pa(e)) — D1(p1,p2(e)) > 0 and
Ds(pi(e),pa(e)) — Da(p1,p2(e)) < 0. The only way for inequality (A5) to hold is thus that
Bole1 +1,e2) — py(e) > 0 or ¢y(e) — dy(e1, ea + 1) > 0 which, in turn, implies I'3(e) > 0 or
©2(e) > 0.

Because 11 (p1, p2(e), e)]¢2:¢2(e) is strictly quasiconcave in p1, it follows from p; > p1(e)
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and 111 (p1(e), pa(e), @)l y,—g,(e) < M1 (P1,p2(e),€)l4,—p, () that

0 1 (p1(e), p2(e), e)‘¢2:¢2(e)
p1
+ [me) + 13

= mri(pi(e), pa(e)) — c(e1)

()], g, + T1(e) + Ti(e)]

Y (pa(e)) [O1(€)] . 0y + OL@)] s, o) + OL@)] < 0. (A6)

Subtracting inequality (A6) from equation (10) in the main text (evaluated at p; = pi(e))
then yields

F%(e) + {Fi’(e) - F?(e)‘%:%(@}

+T(pae)) | [O(e) ~ Ol(@)],, | +6%(e) + (e ~ O], _,, ]| >0

Ordover & Willig (1981). According to Ordover & Willig (1981), “[p]redatory behav-
ior is a response to a rival that sacrifices part of the profit that could be earned under
competitive circumstances were the rival to remain viable, in order to induce exit and gain
consequent additional monopoly profit” (pp. 9-10). As Cabral & Riordan (1997) observe,
the premise in the Ordover & Willig definition is that the rival is viable with certainty.?
We have:

Proposition 2 Consider an industry with two incumbent firms in state e > (1,1). Assume
¢1(e) <1, Vi(e1,0) > Vi(e), and Vi(e; + 1,0) > Vi(e1 + 1, e2), i.e., exit by the firm is less
than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If
I'?(e) > 0 and ©3%(e) > 0, with at least one of these inequalities being strict, and

ri(e) + [Ii(e) - Ti(e)], _o| +Ti(e)

+T(pa(e)) | [O1(e) - Bl(e)],,_,] +OF(e) + [OF(e) — OF(e)], || >0, (A7)

then the firm’s equilibrium price pi(e) in state e is predatory according to the Ordover
& Willig (1981) definition. (b) If p1(e) is predatory according to the Ordover & Willig
definition, then T'3(e) > 0 or ©%(e) > 0 and inequality (A7) holds.

Proof. Omitted as it follows the same logic as the proof of Proposition 1. =

3This observation indeed motivates Cabral & Riordan (1997) to propose their own definition: “Is the
appropriate counterfactual hypothesis that firm B remain viable with probability one? We don’t think so.
Taking into account that firm B exits for exogenous reasons (i.e. a high realization of [the scrap value])
hardly means that firm A intends to drive firm B from the market” (p. 160).
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