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4 
Articles 

STRATEGY-PROOFNESS 

AND SINGLE-PEAKEDNESS 

Jean Marie Blin and Mark A. Satterthwaite 

Is the occurrence of a single-peaked preference profile sufficient to 

guarantee that individuals within a group which uses generalized majority rule to 
choose among three or more alternative have no incentive to misreveal their true 

preferences on their ballots? A result of M. Dummett and R. Farquharson, recently 
reproved by P. Pattanaik, lends support to this hypothesis. They have shown that if 
the true preference profiles of the group's members are single-peaked and if the 
ballots which members are permitted to cast are restricted so as to allow expression 
only of single-peaked orderings, then every member's dominant strategy is to cast 
that ballot which faithfully represents his true preferences. In other words, their 
result states that generalized majority rule is strategy-proof whenever both sincere 

preferences and ballots are a priori restricted to be single-peaked. 
Our question in this note therefore concerns the possibility of strengthening 

this result by eliminating the requirement that ballots, as well as preferences, be 
restricted to be single-peaked. Specifically consider a group which uses generalized 
majority rule without any restriction, such as single-peakedness, on how members 

may rank the various alternatives being considered. On a particular issue suppose 
members' preferences over the alternatives happen to be single-peaked. Is it possible 
that, despite the single-peakedness of true preferences, some member may have an 
incentive to cast a ballot which misrepresents his preferences? Our answer to this is 
affirmative: single-peakedness of preferences alone without a restriction on 
admissible ballots is insufficient to guarantee strategy-proofness. We show this in 
three steps: (1) formalization of the concepts of voting procedure, manipulation, 
and strategy-proofness; (2) definition of a specific variety of generalized majority 
rule; and (3) construction of an example where an individual has an incentive to 

*Graduate School of Management, Northwestern University, Evanston, IL 60201. 
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manipulate through misrevelation despite the existence of a single-peaked 
preference profile within the group. 

II Formulation 

A group consists of a set N = 1,2, ... ,n of members whose task is to select 
a single alternative from a set S = {x,y,z, ... of alternatives. The number of 
individuals INI in the group is assumed to be odd and the number of alternatives IS I 
in the alternative set is assumed to be at least three. Each individual iEN is rational: 
his preferences 'i are a strict order on S, i.e. Pi is a complete, asymmetric, and 
transitive binary relation. In the usual manner xi y means that individual i prefers 
that the group select alternative x instead of alternative y. Indifference between 
alternatives i inadmissible.1 

A n-tuple p1,..." 'n) 
of all individuals' preferences is called a preference 

profile. An individual's preferences Pi must be an element of the set of admissible 

preferences -. The set of admissible preference profiles is consequently Pn, the 
n-fold cartesian product of T. If no restriction is placed a priori on individual 

preferences then 7 = ir and "pn = " where 7r is the collection of all possible strict 

orderings on S. If some restriction is placed on individual preferences,then-7 is a 
proper subset of 7r. 

The group makes its choice among the elements of S by voting. Each 
individual casts a ballot Pi which is a strict order of the alternatives within S. The 

resulting ballot profile P = (P1,.... Pn) is inserted into the voting procedure. A 
voting procedure is a single valued function v(P) whose argument is the ballot 
profile P and whose image is a single element of S. This image is defined to be the 
group's choice. Thus, given a ballot profile of P, v(P) = xES is the group's choice. 
We assume that, for each alternative xES, an admissible ballot profile P exists such 
that v(P) = x. 

The preference ordering Pi which an individual reveals as his ballot may or 
may not be an accurate statement of his true preference Pi. Any attempt through 
direct regulation to require him to reveal his true preferences is certain to fail 
because his preferences are internal to him and thus unobservable. If individual i 
does reveal his true preferences, then Pi -i 

and Pi is said to be his sincere strategy. 
If he misrepresents his true preferences, then Pi F i is an insincere strategy. A 
ballot profile P E pn is called the sincere strategy profile if and only if P -P. An 
individual's ballot Pi must be an element of the set of admissible ballots p. If no 
restriction is placed on ballots, then p = 7r. If ballots are a priori restricted, then p is 
a proper subset of ir. 

The strong assumptions (a) that the group contains an odd number of members and (b) 
that members' preferences are always strict orders are justifiable because we are showing a 
negative result in this note. If single-peaked preferences necessarily induce revelation of true 
preferences when the group has an odd number of members and each member's preferences are 
a strict order, then in general, when the number of members may be odd or even and 
preferences may be weak or strict, single-peakedness will not necessarily induce preference 
revelation. 
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A voting procedure is strategy-proof if it never gives any individual an 
incentive to employ an insincere strategy. Formally, individual i can manipulate the 

voting procedure v(P) at profile P E pn if and only if an insincere strategy P! E p 
exists such that 

v(P/Pi) Pi v(P/Pi) (1) 

where Pi is his sincere strategy, P/Pi=P=(Pl ... ,Pi-1Pi' i+1 " Pn)' and P/Pi 
(P1, ... ,P,Pi-P i+1 ) ... Pn) In other words, individual i can manipulate v at 

profile P if and only if he prefers the outcome which he obtains by playing the 
insincere strategy P' to the outcome which he obtains by playing his sincere 

strategy Pi = Pi. A voting procedure v(P) is strategy-proof if (a) n C pn and (b) no 
sincere strategy profile P EGn exists at which some individual i E N can manipulate 
the outcome. Requirement (b) states that if a voting procedure is strategy-proof, 
then no situation can occur where an individual has an incentive to employ 
anything but his sincere strategy. Consequently, if a voting procedure is 
strategy-proof, then every individual's dominant strategy is to reveal his true 
preference. Requirement (a) ensures that the sincere strategy of every individual - 
no matter what his true preferencesT"i E PWare - is always admissible. 

Strategy-proofness is difficult to achieve. A. Gibbard and M. Satterthwaite 
have independently proved an impossibility theorem which states that if S contains 
at least three elements and neither admissible preferences nor admissible ballots are 
restricted, then every strategy-proof voting procedure is dictatorial. A dictatorial 

voting procedure is a voting procedure which vests all power in one individual, the 
dictator. Thus, individual iEN is dictator for v(P) if only if, for all P = 

(P1' 
.... 

,Pi' ... ,Pn)EC and all yES, either v(P) = y or v(P) Pi y. Formally stated, 
the theorem is: 

Theorem 1. If ISI 3 and f -= 7 = 
rn, 

then no strategy-proof voting 
procedure exists which is not dictatorial. 

Proofs of this theorem, in addition to the original ones by Gibbard and 
Satterthwaite, may be found in Schmeidler and Sonnenschein and in Blin and 
Satterthwaite. 

III. Majority Rule with Borda Completion 

Given a ballot profile P = (P1, a . 'Pi 
.... 

P Pn)ER, majority rule with Borda 

completion calculates the group's choice as follows. 2 If a Condorcet winner exists, 
then it is the group's choice. A Condorcet winner is that element of S which defeats 

every other alternative within S on the basis of simple majority rule. If the voting 
paradox occurs, then no Condorcet winner exists. In such cases the Borda count is 
used as a secondary rule to make the group's choice determinate. The Borda count 
selects a winning alternative by assigning points: each alternative xES receives 
(IS I-k-1) points for each ballot Pi in which it is ranked k positions from the top. The 

2For the history of this and other related voting procedures, see P. Fishburn. 
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points each alternative receives are summed and the winner is that alternative which 
receives the most points. Finally, if two alternatives receive the same number of 

points, then the ballot P1 of individual one, who may be interpreted as the group's 
chairman, is used to break the tie. Let vM(P) denote this voting procedure. 

Suppose, for example, that INI = 3, S = { w,x,y,z }and 

P1 = (w x y z), 

P2 = (x z y w), (2) 

P3 = (y w x z). 

where P1 = (w x y z) mean that w P1 a, w P1 y w P1 z,xPly, etc. In this case no 

majority winner exists: w has a majority over x, x has a majority over y, and y has a 

majority over w. The Borda count assigns five points to w (three from P1, zero 
from P2, and two from P3), six points to x, five points to y, and two points to z. 
Therefore VM(P1,P2,P3) -= x. 

This example also illustrates that Theorem 1 is correct in stating that majority 
rule with Borda completion is not strategy-proof when admissible preferences and 
admissible revealed preferences are unrestricted. Suppose P = (P1,P2,P3) as defined 

by (2) represents the sincere strategies of individuals one, two, and three, i.e. P ='P. 
Individual three, who prefers that the group's choice be either y or w instead of x, 
can manipulate the group's decision by playing the insincere strategy P' = (w y x 
z). This causes the outcome to become VM(P1,P2,P3 = w because the switch from 

P3 to P breaks the cycle among w, x, and y and results in w being the majority 
winner. Therefore vM(P/Pj) 3 vM(P/P3), i.e. vM is not strategy-proof when p= -= 
i7. 

IV. Single-peakedness and Strategy-proofness. 

The most intuitively appealing restriction on individuals' preference is single- 
peakedness.3 Formally: 

Single-peakedness. The set of admissible preferences fpis single-peaked if and 

only if a strict ordering Q E 7T exists such that, for all triples x, y, z ES, x Q y 
Q z implies that if PE-p, then neither x P z P y nor z P x P y. 
Single-peakedness of the admissible ballot set p is defined in the same 

manner, mutatis mutandis. 
The reasonableness of the single-peakedness condition is supported by the following 
example: Consider individuals' preferences among different sized pieces of steak. 
Let S = 1,2,3,4,5,6,...,32 where 1 represents a one ounce steak, 2 represents a 
two ounce steak, etc. Let Q order S as 1 Q 2 Q 3... 31 Q 32. If my most 

preferred steak is a seventeen ounce steak, then my preferences among fifteen 
ounce, nineteen ounce, and a twenty-three ounce steak could easily be any of the 

3D. Black introduced the concept of single-peakedness. For further discussion of it, see 
K. Arrow (ch. 7), A.K. Sen (Chs. 10 and 10*), and G. Kramer. 
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following: 

P,= (15 19 23) , 
P'1 = (19 15 23) , (3) 
P;'= (19 23 15) 

Therefore 
P,' i, P 1'Ep. Preference ordering P- = (23 15 19), however, makes no 

logical sense given that my most preferred steak is seventeen ounces. Therefore P1 
may reasonably be excluded from the domain of admissible preferences, a 
conclusion which is consistent with formal requirements of single-peakedness: 15 Q 
19 Q 23 implies that neither P* = (23 15 19) nor P* = (15 23 19) are admissible. 
This example also explains why such preferences are said to be single-peaked. If we 
list the alternatives along a horizontal axis according to their "objective" 
order-their weight in this case-and indicate levels of preference by points on a 
vertical axis, then the resulting preference graphs have a single mode: they are 
single-peaked. Preferences for alternatives other than the most preferred one 
decrease monotonically from this maximum 

As we stated in the introduction, first Dummett and Farquharson and, 
subsequently, Pattanaik (Theorem 3) have shown that majority rule with Borda 
completion is strategy-proof if both admissible preferences and admissible ballots 
are restricted to be single-peaked.4 Formally: 

Theorem 2. If p and " are both single-peaked and p ~, then majority rule 
with Borda completion is a strategy-proof voting procedure. 

Our question concerns the robustness of this result. 
Specifically, does this strategy-proofness of majority rule with Borda 

completion depend critically on the single-peakedness of both r'and p? Or in order 
to be strategy-proof, is it sufficient that only 

- 
be restricted to be single-peaked? 

Our conclusion is negative. Admissible preferences and admissible ballots must both 
be single-peaked in order for majority rule with Borda completion to be 
strategy-proof. We can demonstrate this with a simple example. 

Consider the case where admissible preferences are restricted but admissible 
ballots are not. Specifically suppose that IN'I = 3, S = {w, x, y, z , Tis 
single-peaked with respect to the strict ordering Q = (w x y z), and p =r. Let the 
profile of preferences P E -n be; 

1 = (wx y z) , 
P2 = (x yw z) , 

3 = (z y xw). 

Inspection shows that this profile is in fact single-peaked with respect to Q. If each 
individual plays his sincere strategy Pi - Pi, then the majority winner is x, i.e. vM(P) 

Both Dummet and Farquharson and Pattanaik proved stronger results that what we 
state in Theorem 2. They showed that the result is true for more general restrictions on 
admissible preferences and ballots than single-peakedness. We use only single-peakedness here 
because it is the simplest, most intuitive restriction and because it is sufficient to make our 
point that both preferences and ballots must be restricted in order to guarantee strategy- 
proofness. 
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vM 5) = x. 
This outcome, however, is not stable despite the single-peakedness of the 

sincere strategy profile P - P. Individual three can manipulate the outcome by 
changing his ballot from P3 = P3 = (z y x w) to P3 = (y z w x). This switch creates 
the voting paradox among alternatives w, x, and y which, when resolved by 
application of the Borda count, results in alternative y being chosen, i.e. vM(P/P3) = 
y. Thus 

vM(P/P3) P3 vM(P/P3)' (5) 

and individual three can manipulate vM at the sincere strategy profile P. Note, 
however, that this example does not violate Theorem 2. The ordering P', while 
admissible as his ballot, is not admissible as his preferences because it violates the 
single-peakedness requirement of P. Thus the mere occurrence of a single-peaked 
preference profile is not sufficient to guarantee strategy-proofness. 
Single-peakedness of the set of admissible ballots is also required. 

This negative conclusion suggests a second, complementary question 
concerning the robustness of Theorem 2. In order to guarantee strategy-proofness is 
it sufficient to restrict the admissible ballot set to be single-peaked even while the 
admissible preference set ' is unrestricted? The answer is negative. If - is 
single-peaked while 

j" 
is unrestricted, then - 

P( p. A requirement of 
strategy-proofness is that " C p; therefore the voting procedure can not be 
strategy-proof. 

This particular argument that restriction of p is insufficient to guarantee 
strategy-proofness is not fully satisfactory because it depends critically on the 
formal requirement that pC p. We can make a more satisfactory argument if we use 
Gibbard's concept of a straightforward voting procedure. A voting procedure is 
straightforward if and only if each member's optimal choice of a ballot always 
depends only on his sincere preferences Pi and never depends on the other 
members' choice of ballots. In other words, straightforwardness removes the 
incentive which group members might otherwise have to react strategically to each 
others preferences and ballots. Formally, v(P) is straightforward if and only if, for 
any member i E N with any preferences P-iE, 

a ballot PIEp exists such that, for all 
ballot profiles P E pn, either v(P/Pi) = v(P) or v(P/Pi)Pi v(P). Notice that 
straightforwardness includes strategy-proofness as a special case and does not 
require A5 C p. 

Given this concept, we can easily construct examples which show that 
majority rule with Borda completion is not straightforward when INI = 3, S = 

a,b,c , p = r, and p = (a b c), (b a c), (b c a), (c b a) . Notice that p is 
single-peaked. Let member three have preferences P3 = (a c b) E Cr, i.e. they are 
admissible as preferences but not admissible as a ballot. Suppose first that the two 
other members cast ballots P1 = (a b c) and P2 = (c b a). Inspection shows that 
member three's unique optimal ballot is P3 = (a b c) because 

VM(P1P2,P3) 
= a, 
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member three's most preferred alternative. Now consider the case where members 
one and two do not cast ballots P1 and P2, but rather cast ballots P = 

(c b a) and 

P2'= (b a c). In this changed situation if member three casts ballot P3 = (ab c), then 
the outcome is vM(Pi, P', P3) = b, his least preferred alternative according to his 

preferences P3. He can do better by casting ballot Pj = (c b a)E p because 

vM(Pi,P',P3) = c, his second most preferred alternative. Therefore member three's 

optimal ballot is dependent on the other members' ballots and, consequently, vM 
is not straightforward. Therefore restriction of p is insufficient by itself to 
guarantee either strategy-proofness or strategy-proofness's generalization, 
straightforwardness. 

V. Conclusions 

If, because of the substantive nature of the alternatives, the profile of true 

preferences is in fact single-peaked, then the problem which K. Arrow raised with 
his impossibility theorem vanishes: majority rule suffices to order social elements 
of S into a transitive social ordering which satisfies Arrow's conditions for being an 

acceptable social welfare function. Unfortunately, as our examples show, the 
existence of a profile of single-peaked true preferences does not make the problem 
of manipulation vanish in like manner. This makes it difficult for a group to realize 
the potential for strategy-proof decisions which, as Theorem 2 shows, single-peaked 
preference profiles create. To achieve strategy-proofness the group must both 
realize that preferences are single-peaked and then, before it votes among the 
elements of S, agree to restrict individuals from casting ballots which are not 

single-peaked. 
If a group considers a sequence of issues such that members' preferences over 

the alternatives contained within each issue are certain to be single-peaked, then the 

requirement for such agreement may be easily met. The group can make a single 
once and for all decision that requires the casting of single-peaked ballots. If, 
however, the sequence of issues which the group considers has more variety and 

preferences cannot be assumed to be single-peaked, then this becomes a very 
difficult requirement because a once and for all decision is inappropriate. The 
decision to restrict the set of admissible ballots must be made anew for each issue. 
But making the restriction of the admissible ballot set itself an issue is 

self-defeating. By voting strategically on the subsidiary question of whether to 
restrict or not to restrict the admissible ballot set individuals may successfully 
manipulate the group's final decision among the elements of S. The existence of 
this possibility is a prima-facie violation of the concept of strategy-proofness. 
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