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1. Introduction

In many settings where incentives are used to induce effort, there is a lower bound on what can be paid. A retail worker
has a minimum wage determined by law, but a commission structure is under the control of the retailer. A manager may
already have a contractual right to a retention payment, but the board can choose the rest of his pay structure above that.
A supplier may have limited liability, or courts may be unwilling to enforce large penalties on suppliers.

This paper looks at the effect of the level of such minimum payments on the contract that will be implemented. We
consider a standard moral hazard problem using the first order approach (Holmstrom, 1979; Mirrlees, 1976, 1999), where
we assume that pay is constrained to be at least some amount m. We ask whether in the face of an increase in m the
principal chooses to adjust the contract of the agent in such a way that the agent chooses to exert more effort, or less.
This is a problem of considerable economic import. When considering, for example, minimum wage legislation, a first order
question is whether minimum wages do or do not get in the way of incentives and productivity." Similarly, if a supplier has
deeper pockets, so that the limited liability constraint is less binding, will contracts be adjusted so that the supplier faces
stronger performance incentives than before, or weaker?

™ We spent a fair bit of time thinking about some of the issues explored in this paper with Ian Jewitt. We learned a great deal from him. We also thank
a seminar audience at UT Austin.
* Corresponding author.
E-mail address: j-swinkels@kellogg.northwestern.edu (J.M. Swinkels).
1" Compensation contracts often include both a minimum payment and an incentive component. This is frequently the case in retail, sales, and hospitality
jobs, among others. Our model does not, however, include the possibility that the agent is fired if his performance is low enough, a possibility that is
relevant in some settings. All else equal, an increase in the minimum wage would increase incentives to work hard in such a setting.
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It is not enough to note that, holding fixed the bonus structure, an increase in the minimum payment decreases effort
(this follows because utility is concave, and so any given pay above the minimum has lower utility implications than before,
and hence less of a motivating effect). Rather, one needs to trace what happens when the principal has optimally reacted
to the change in the minimum payment.

When m increases, the principal is forced to pay more at low outcomes, and so, if payments are not increased at some
higher outcomes, then effort will go down. But, because utility is concave, as pay levels rise, incremental increases in pay
provide less motivation. Thus, there are significant forces in the direction that inducing effort is more expensive on the
margin when m is increased. But, despite this intuition, and despite the obvious economic and theoretical importance of the
question, results for this problem have proven to be quite elusive - the literature provides no results of any generality.” The
key problem is that as the effort level changes, so does the statistical structure of the inference problem about the agent’s
effort.

To address this issue, we start with a discussion of the comparative statics of the optimal contract for the problem of
minimizing costs for given effort level. This is interesting in its own right, as the agent may already be working as hard
as possible (a corner solution), and so the only issue is to optimally implement this effort level. Moreover, this analysis
provides a number of key constructs and results that we will need when we turn to the full analysis in which the choice of
effort level is also on the table.

For low levels of m, IR will bind at the cost minimizing solution.> We show that for such m, a small increase in m results
in a contract which is flat over a sufficiently long range that the agent is paid less over a range of outcomes. However, at
high outcomes, incentives become more intense. Thus the agent is rewarded over a smaller range of outcomes, but pay is
more responsive to output over that range. When m is high enough, IR does not bind. We show that a further increase in
m then results in the agent being paid more at all outcomes.

Thus, for example, think about a retail chain that pays its employees the minimum wage plus a percentage of sales above
some threshold, and assume that it wishes to hold the effort level of the employee constant in the face of an increased
minimum wage. If IR is binding, so that retention is a key issue for the chain in question, then an increase in the minimum
wage should be associated with an increase in the threshold above which commissions are paid, but also with an increase
in the commission received by the employee once this threshold is reached. On the other hand, if retention is not a key
issue, then an increase in the minimum wage should result in the agent being better compensated at all sales levels.

We then turn to our main focus: analysis of the setting in which the principal can adjust not only the contract for any
given effort level, but the choice of the effort level as well. We present a number of complementary results all pointing in
the direction that higher m induces lower effort.

Our approach for establishing those results is to find sufficient conditions under which the marginal cost of implementing
any given effort level is increasing in m. Our first set of conditions is on the curvature of the utility function u. These
assumptions impose varying levels of concavity/convexity on % the marginal cost to the principal of providing a util to the
agent. Similar assumptions have a pedigree in the literature on the moral hazard problem (see for example Jewitt, 1988).
Our second set of conditions is related to the statistical structure of the model. These conditions measure the extent to
which an increase in effort mutes or intensifies the ability of the principal to use one signal versus another as an indication
of effort.

Our results cover instances in which the IR constraint may or may not bind. We distinguish between two cases of a
binding IR constraint. First, is a softly binding IR constraint. Here the IR constraint binds but it does so sufficiently mildly
that the principal is not driven to make payments above m at outcomes which become less likely with higher effort. So,
while part of the pay above m is indeed directed at retention, none of the pay above m has the effect of decreasing the
incentive for effort. Second is the case of a severely binding IR constraint, where payments above m are made even at some
outcomes that become more likely with low effort.

Our sufficient conditions for the marginal cost of effort to increase in the minimum payment are rather permissive when
the IR constraint is slack and they are satisfied in many standard examples. When the IR constraint is softly binding we are
able to provide sufficient conditions which are more demanding in terms of the utility function. We are not able to provide
sufficient conditions for the case where the IR constraint is severely binding.

To examine the extent to which our sufficient conditions are also necessary, we develop an easy-to-implement and nu-
merically efficient algorithm for calculating optimal contracts for any given statistical setting where the first order approach
holds. We explore several examples that violate our sufficient conditions. In all cases (including when the IR constraint is
severely binding) we find that the marginal cost of inducing effort goes up as m goes up, implying that optimal effort falls.
Thus, it appears that our sufficient conditions are quite far from being necessary.

2 Papers that study moral hazard problems with a minimum bound on payments (or limited liability) under different assumptions are Holmstrém (1979),
Sappington (1983), Innes (1990), Park (1995), Kim (1997), Oyer (2000), Matthews (2001), Dewatripont et al. (2003), and Jewitt et al. (2008). These papers
do not study the effect of a change in the minimum payment on the contract and on induced effort, which is the focus of this paper.

3 Because of the minimum payment, IR can be non-binding, either simply because m already covers the agent’s outside option, or because the principal
has induced effort using payments above m for good performance, but cannot balance them with low payments for poor performance.
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Our results here are of the “traditional” form, in that our assumptions are clearly on primitives and we build heavily on
the validly of the first order approach (Mirrlees, 1976; Rogerson, 1985; Jewitt, 1988).# In Kadan and Swinkels (2013) we
take a different approach. We develop a general expression for shadow value as one simultaneously tightens both the IR and
minimum payment constraints that holds regardless of the validity of the first order approach. We then pursue applications
of this expression to comparative statics. One of these applications is the effect of an increase in minimum wage on induced
effort, which is the topic of this paper. However, since in Kadan and Swinkels (2013) we do not assume the validity of the
first order approach, we cannot use the techniques developed here. Instead, we consider the behavior of the distribution of
realized payments as the induced effort level changes. This distribution is a function of both the primitives and the contract,
and so is not exogenous (and yet may be observable in data). We view the two approaches as useful complements.

Section 2 presents the model. Section 3 discusses how the contract changes in m for a fixed effort level. Section 4
discusses the effect of changes in the minimum wage on optimally induced effort. The algorithm and numerical examples
are presented in Section 5. Section 6 concludes. Proofs can be found in Appendix A.

2. Model and preliminaries

To reduce clutter without sacrificing clarity, we make a number of notational conventions. If the variable or range of
integration is obvious, we often suppress it. When we do include the argument of a function, we use round parentheses.
For all other purposes we use squared brackets. So, k(g + h) is the function k applied to the sum of g and h, while k[g + h]
is k times the sum of g and h. A variable as a subscript always indicates a derivative. So, [g(y,z(¥)]1y is gy(y,z(y)) +
820y 202y (¥).

An agent exerts effort e € [0, e]. A signal x € [0, 1] is observed by the principal, where x is related to e via a distribution
F(x|e), with associated density f(x|e) that has common support [0, 1] for all e, and is twice continuously differentiable in
x and e. The principal uses x to construct a contract for the agent. Denote a generic such contract by 7 (x). The agent has
cost of effort c(e) that is twice continuously differentiable, increasing and convex, outside option ug, and utility of income
u(w) that is twice continuously differentiable, increasing, and strictly concave. We assume that the principal is constrained
to pay at least a minimum m > 0 for any given signal x, where m is in the interior of the domain of u.

Denote B(e) as the principal’'s gross expected revenue from effort level e. For example, if x is output, then B(e) =
[ xf (x|e) dx. The principal’s problem is to maximize, by choice of 7 (-) and e,

B(e) — /n(x)f(x|e)dx

subject to the individual rationality, incentive compatibility, and minimum payment constraints. As is typical in these set-
tings, we de-couple the problem into first finding the cheapest way to induce e, and then solving for the optimal e. That is,
we begin with the cost minimization (CM) problem, where for any given e and m the principal chooses a contract 7 (-) that
solves,

m(i‘gl/.rr(x)f(x|e) (CM)
s.t

/u(n () f(xle) —c(e) > ug (IR)
e carg me)x/ u(m () f (x|e') dx — c(e’) (IC)
T(X)>=m Vx. (MP)

As we often refer to the likelihood ratio % it will be convenient to give this ratio its own notation £(x,e) = ?e((;t))'
Assume that £(x, e) is uniformly bounded (this prevents near-forcing contracts as in Mirrlees, 1999). Also, assume that f
satisfies the monotone likelihood ratio property (MLRP), so that £(x, e) is increasing in x for each e. For any given e, denote
x*(e) as the unique point at which f.(x*(e)|e) =0, so that for each e, f.(x|e) and £(x, e) cross zero from below at x*(e). We
also assume CDFC (convexity of the distribution function), i.e.,, Fee > 0 so as to guarantee the validity of applying the first
order approach to the agent’s incentive problem (Mirrlees, 1976; Rogerson, 1985).° Then, the incentive constraint, IC, can
be replaced by

/u(n(x))fe()qe) dx —c’(e) =0. (1C")

4 Thiele and Wambach (1999) study the effect of the agent’s wealth on the well-being of the principal. Similarly to this paper, they make assumptions
on the primitives of the model, but they also allow for settings where the first order approach fails.

5 All of our examples satisfy both CDFC and MLRP. In a setting with a binding minimum wage, Jewitt’s (1988) conditions fail because the contract has an
upward kink at the output where the minimum wage ceases to bind.
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Jewitt et al. (2008, henceforth JKS) show that under the conditions given, an optimal contract exists, is weakly increasing,
and is unique.® Denote this contract 7 (-, e, m). Building on Holmstrom (1979) and Mirrlees (1976), JKS show that 7 (-, e, m)
is implicitly defined by

1 1
7u’(n xem) = max(—u,(m) ,Ae,m) + (e, myL(x, e)>, (1)

where the Lagrange multipliers A(e,m) > 0 and (e, m) > 0 are unique and continuous in e and m.
Write the expected cost to the principal of implementing e given m as

C(e,m) :/n(x,e,m)f(x|e) dx. (2)

JKS show that C(e,m) is continuous and is differentiable on any region where the same set of constraints binds, with C, > 0
and with Cp,, > 0 whenever m is being paid with positive probability.”
One can then write the principal’s full optimization problem as simply

max B(e) — C(e,m). (P)

For given (e, m) let the point at which

1
v A(e,m) 4+ u(e,m)L(x, e)
be denoted X(e, m). For x < X(e, m), the agent is paid m.®

By MLRP, when IR is not binding (A(e, m) = 0) we have X(e, m) > x*(e), so that pay is more than m only when incentives
are enhanced by payments ( fe(x|e) > 0). When IR is binding, x(e, m) may be higher or lower than x*(e). We say that IR is
softly binding when IR binds but X(e, m) > x*(e). If X(e, m) < x*(e) we say that IR is severely binding. In this case, IR forces
the principal to pay above the minimum at pay levels that actually hurt incentives.

The following two useful lemmas are immediate.

Lemma 1. A(e, m) f[u(n(x, e,m))]ef(xle)dx=0.

This is intuitive. Indeed, if (e, m) > 0, then the IR constraint is binding and holds as an identity. Therefore, the change
in the agent’s expected utility from a small change in effort is zero. Furthermore, since the agent is optimizing, this effect
is equal to the direct effect only.

Lemma 2. An expression for fT[e (x,e,m) f(x|e)dx is
(e, m) [c”(e) —/u(ﬂ(x,e,m))fee(x|e)dx] >0.

The intuition is that  is the shadow value of IC, while ¢”(e) — [ u() fee is the amount by which IC is thrown out of
balance as e increases. The shadow value A of IR can be ignored in this calculation by Lemma 1.

3. Comparative statics in m for given effort level

In this section we study how the optimal contract varies in the minimum wage m for fixed e. For notational simplicity,
we will often work with two levels of the minimum payment, m! and m", where m! <m", holding fixed e. Let 7H (x) =
7 (x,e,m™), let A" and u™ be the associated multipliers, and let ¥ = &(e, m"). Define 7!, AL, u! and X analogously. We
assume throughout this section that m is binding at (e, m!), so that ' > 0. We begin with two simple observations.

Lemma 3. C(e, m") > C(e, mb).

The weak inequality is obvious as any contract feasible under m" is also feasible under m’. The strict inequality follows

because optimal contracts are unique and 7! pays m! over an interval by assumption and so ceases to be feasible given m*,

6 If limy—_ oo u(w) is finite, then JKS (p. 64) also require that the problem is non-degenerate in the sense that both IR and IC can be met for some
increasing, continuous, and piecewise continuously differentiable contract.

7 Kinks in C(e,m) can occur when IR and MP move from being binding to not binding.

8 If m is never paid we set X(e,m) =0.
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Fig. 1. The effect of m on the contract when IR does not bind.
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Fig. 2. The effect of m on the contract when IR binds.

Lemma 4. Assume ! single crosses ! from above. Then,

/u(n”(x))f(x|e)dx> /u(nL(x))f(x|e)dx.

Intuitively, 7" gives the agent lower risk than m! (it is weakly flatter) and higher expected income by Lemma 3, and

hence raises the agent’s utility.
This in place, we can prove our first main result, which describes how contracts change in m when IR is not binding.

Proposition 1. Assume IR is not binding given mt. Then, uf > !, AH = AL =0, and =¥ lies everywhere strictly above ™.

An implication is that once IR is non-binding, it remains so at any higher m. In particular, the agent has strictly higher
utility under 7" than under 7!, Fig. 1 illustrates Proposition 1 for an example with a fixed effort level and for two levels
of the minimum payment where IR is not binding.® As claimed, when m goes up, the contract goes up at all signal levels.

Now let us turn to the effect of change in m when IR is binding.

Proposition 2. Assume IR is binding at both m! and m*. Then, wH crosses L once from above (while 7™ is still flat), and once from
below (on the non-flat region of both contracts). In particular, u* > u*, and X% > XL If IR is softly binding at m" then AH < AL,

Thus, where IR binds, an increase in m results in the agent being paid less over a range of outcomes. This is intuitive:
as m increases, the principal has some accumulated slack in IR at the point where the contracts first cross. But, he is more
challenged by IC, because the higher payments on the flat portion of the contract decrease incentives. He responds by
providing no incentives over some range where he used to, but incentives that are more intense once they kick in. Fig. 2
illustrates this result for the same basic set-up as Fig. 1, but for choices of m and ug at which IR binds.!°

From Propositions 1 and 2 we obtain the following corollary.

9 We use CRRA utility, u(w) = % with ¥ = 0.3, the FGM copula distribution, f(x|e) =14 0.5(1 — 2x)(1 — 2e), and c(e) = e®. We set e =0.5, up = 1.
We plot the cases m =2 (solid line) and m =4 (dotted line). We discuss the algorithm used to numerically solve for the contracts in Section 5.
10 We use e=0.5, ug =3, and m=1 and 1.5 for the solid and dotted contracts, respectively. In this example x*(e) = 0.5, hence IR is severely binding for

the solid contract and softly binding for the dotted contract.
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Corollary 1. (e, m) is strictly increasing in m for all m for which the minimum payment constraint is binding.

This follows since if IR binds at m! but not at m*, then one can find an intermediate i that is the boundary between
where IR does and does not bind. Proposition 1 gives ut > (e, M), and Proposition 2 gives (e, ) > ut.
We end this section with a result which we will need later.

Proposition 3. For all e and m,

Cm(e,m) = u’(m)/[; — e, m)}f(xle) dx. (3)

u'(m(x,e,m))

This is a corollary to Kadan and Swinkels (2013, Proposition 1), a more general result which does not rely on the validity
of the first order approach (FOA), allows for multidimensional signals and effort, and requires no order structure on signals
or differentiability of the distribution function. In the case discussed in this paper, one can derive (3) directly by integrating
(1) and differentiating by m, followed with some algebra (we omit this exercise for brevity).

4. The effect of minimum pay on optimal implemented effort

We now turn to the main problem of how the optimal effort level varies with the minimum wage m. We present a set
of results, each one of which has the conclusion that Cpe(e, m) > 0 anywhere that MP binds. That is, the marginal cost of
inducing effort goes up with the minimum wage. Since B(e) is not affected by m, this implies that the principal’s optimal
choice of e falls when m rises. This follows from a standard monotone comparative statics argument, and does not rely on,
for example, concavity of B(e) — C(e, m).

For some intuition for Cpe > 0, note first that if there are only two outcomes and if MP is binding, then the cost
of inducing extra effort increases in m without any additional assumptions on either utility or the distribution function.
Intuitively, inducing extra effort requires increasing the difference between the utility following a success versus a failure.
Increasing this difference is more expensive when the utility of the agent following failure, which is determined by the
minimum payment, is higher.

Another simple case is when u(w) =In(w) and IR does not bind, and when B, > 0. In this case, Proposition 3 becomes

1 1
Cm(e,m) = — /n(x,e,m)f(xle)dx: —C(m,e).
m m
Hence,
1
Cme(e,m) = —Ce(im,e),
m

which is positive at any interior optimal effort level given B, > 0. The first example involves a very simple information
structure, while the second involves a very special utility function. A general result requires some combination of assump-
tions on information and on utility. We first discuss our assumptions and then present our main results.

4.1. Assumptions on the curvature of u

Most of our results require a restriction on the curvature of the utility function.'' It is often convenient to state these
restrictions as convexity/concavity requirements on % the marginal cost of providing a util to the agent. To interpret
these conditions, we follow Thiele and Wambach (1999) who relate the curvature of the utility function to the relationship
between the degree of absolute risk aversion A = ‘u“,” and the degree of absolute prudence P = —% (which (see Kimball,
1990) is a measure of the incentives of the agent to engage in precautionary savings).

The first restriction is extremely mild.

age 1 . . p
Condition UO. ;; is weakly log-concave, or equivalently, 7 > 1.

Condition UO is equivalent to weak DARA.'? Thus, it is satisfied by many commonly used utility functions such as CARA
utility, and CRRA utilities of the form u(w) = "1"%7 where y > 0 is the coefficient of relative risk aversion. Next are two
opposing conditions, each useful for different results.

oy 1 . P
Condition U1. ;; is weakly concave, or equivalently > 2.

11 There is no conflict between conditions on utility and the first order approach, since for example, CDFC is purely about F, and makes no requirements
on u.
12 This follows since A’ = A[A — P].
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Condition U1". J; is weakly convex, or equivalently & < 2.

Both U1 and U1’ are plausible. For the case of CRRA utilities, U1 (U1’) is satisfied when y <1 (y > 1), with y =1 (log
utility) the borderline case. Condition U1’ is satisfied by CARA utility, but Condition U1 is not.
The next condition is more restrictive.

Condition U2. [%]2 is weakly concave, or equivalently % > 3.

Condition U2 is the opposite of that of Jewitt (1988). In the case of CRRA utilities it corresponds to risk aversion lower
than J.

Finally, for one result, we will require that % is decreasing. This is satisfied by all standard utility functions including the
CRRA and CARA cases.

Condition U3. % is weakly decreasing.

We now introduce two functions which become useful when applying these conditions. Let J be the function that
translates % into u, so that J is implicitly defined by

1
up= ]<u’<p>)’

and similarly, let W translate ﬁ into p, so that

1
=W{——).
P <u’(p))

Note that (1) implies that for x > X(e,m) we have u(mw(x,e,m)) = J(A(e,m) + u(e,m)€(x,e)) and 7m(x,e,m) =
W (r(e,m)+ u(e,m)£(x,e)), so these two functions are clearly fundamental to moral hazard problems. The following remark
is straightforward to verify.

Remark 1. Condition UO is equivalent to W” (t)t/W’(t) > —1, Condition U1 (U1’) is equivalent to W (-) being weakly convex
(concave) or to J”(t)t/]’(t) > (<) — 1, and Condition U2 is equivalent to J(-) being weakly convex.

A primary use of the conditions on utility is in ensuring that as m rises, contracts become steeper both in payment space
and in utility space. The next lemma provides sufficient conditions for this to be the case when IR is not binding.

Lemma 5. Fix an effort level e. Assume that IR is not binding and MP is binding for the cost minimizing contract it (x, e, m). Then, for
x> X(e,m)

1. if Condition U0 holds then mwy, > 0, and
2. if Condition U1 holds then [u () ]xm = 0.

When IR is binding this result is not available since contracts for different m levels cross (Proposition 2). However, the
following useful lemma can be established, providing conditions under which the difference in slopes flips sign just once.

Lemma 6. Assume that both IR and MP are binding and that U2 and U3 hold. Let m" > m! and let 7" and 7! be the corresponding
cost minimizing contracts. Then, [u(m®) — u(mw ™)), has sign pattern 0/+/—.

That is, for low x, 7" and w! have the same slope (while both are flat), then 7! is steeper than 7w, and finally 7 is
steeper than 7l

4.2. Assumptions on information
Our first two conditions make opposing assumptions on £.

Condition I1. For e > el and x > max(x*(e'), x*(el)),
L(x, eM)
£(x,el)

is decreasing in x.
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Condition I1’. For ef > el and x > max(x*(e'), x*(el)),

2(x, e
£(x,el)

is increasing in x.
To interpret these conditions, note that £(x, e) is a measure of how attractive it is for the principal to induce effort e
by using rewards at x. In particular, adding rewards at x relaxes IC proportionally to f.(x|e) but increases the cost to the

principal proportionally to f(x|e). Thus, asking i((’;‘::))

asking that the relative difficulty of inducing effort e/ versus el using rewards at outcome x has a simple structure as
the outcome changes. The conditions are implied by log-submodularity and supermodularity of £, but weaker in that they
apply only for x > max(x*(e), x*(el)). Both conditions are plausible and consistent with the FOA as illustrated in the next
example.

to be monotone (in either direction) in the outcome x is akin to
L

Example 1. Condition I1 is satisfied by the FGM copula,

f(xle)=1+0.5(1 —2x)(1 —2e), x,e€[0,1]
and by the LS1 distribution,

1—2x
fixle)=1+ ——+, x€[0,1], e>0,
e+1

which is due to LiCalzi and Spaeter (2003). Condition I1’ is satisfied by the LS2 distribution
f(xle) =exp(e(x —1))(ex+1), x€[0,1], e=>0,

which is again due to LiCalzi and Spaeter (2003). All of these distributions satisfy both MLRP and CDFC and so are also valid
for the FOA.

Our next assumption imposes a concavity condition on Fe.
Condition 12. [FF—“:]X <0 for all e and x > x*(e).

Equivalently, —F, is log-concave on (x*(e), 1]. Note also that

1 ee
Fee fx ff—efe
e fx fe
fee

and so is a conditional expectation of % Thus, Condition I2 states that on average, i is lower when x is higher. To further

fexfle)
fe(xle)

interpret this condition note that the ratio is a measure of by how much an increase in the signal from x to x" is

associated with extra effort. But,

d | Se&le) _ feexle)  feexle)

de " foixlle) ~ fele)  fedle) |

H
Hence, Condition I2 asserts that on average, ’;f ((’; T “:)) deteriorates in e.
e

Condition 12 is satisfied by the FGM copula and the LS1 distributions defined above, but fails for the LS2 distribution.
To see the relation between I1 and I2 note that both are implied by % being weakly decreasing in x (or equivalently
[In felex < 0) for x > x*(e).>
For our final condition on information denote
—Fe(xle) [1 B f(XIe)Fee(XIe)]
1-F(xle) fe(xle)Fe(xle) |’

for all e and x € [0, 1), and 7 (1, e) = limyy1 T(, e).

T(x,e)=

(5)

13 For 12 this follows directly from (4). For I1 this follows from MLRP and the fact that I1 is implied by log-submodularity of £(x, e), noting that

fee fei|
Int(x,e)] =28 -2,
[n x e)]ex [fe fly
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Condition I3. [T (x, e)]x > 0 for all e and x > x*(e).

To interpret Condition I3 note that 1 _F £ is positive and increasing by MLRP, while under CDFC, the bracketed term in (5)

is also positive. So, it is sufficient for I3 that

i Fee
fe —Fe
is increasing. Using (4) we see that Condition I3 is satisfied when 5? ((’:Z“:)) deteriorates fast enough. An example of a distri-

bution that satisfies I3 is the FGM copula discussed above.

We now present two sets of results. In the first we primarily rely on crossing properties of optimal contracts associated
with different effort levels when m is kept fixed. In the second set of results we primarily rely on crossing properties of
optimal contracts associated with different m when e is kept fixed.

4.3. Aresult using crossing properties of contracts when e changes

In this section we sign Cpe by considering optimal contracts for different effort levels and imposing sufficient conditions
implying that these contracts either don’t cross or single cross. Our result in this section applies when IR is not binding.
The economic intuition behind this result has the flavor of stochastic dominance rules. The idea is to apply Proposition 3,
which when IR is not binding becomes

1
Cm(e,m)y=u'(m) [ ————— f(x|e)dx. 6
e =u'm) [ s e ©)
We first present sufficient conditions in terms of the informational structure of the model implying that the contract be-
comes either more or less “risky” when e increases, as reflected in the crossing properties of  (x, e, m) for different effort
levels. We then align these conditions with assumptions on the curvature of the utility function, implying that % be either
convex or concave. Jointly, these conditions imply that the RHS of (6) increases in e. Thus, we obtain that Cpe > 0.

Proposition 4. Assume that IR does not bind. Assume further that either

(i) 11 and U1 hold or
(ii) 11’ and U1’ hold. Then Cpe (e, m) > 0.

The first key step in the proof is showing that under Conditions I1 or I1’ contracts for different e can only cross in
simple ways. For any given m and el > el, denote " (x) = w (x, e", m) and 7l (x) = 7w (x, eL, m).

Lemma 7. Assume IR is not binding at e and e®. Then

(i) if I1 holds then, either 1 (x) > 7! (x) everywhere or ! single crosses ! from above, and
(ii) if 11’ holds then either wH (x) > 7l (x) everywhere or wH single crosses 7r® from below.

Thus, a high effort contract can cross a low effort contract either from above or from below. When I1 holds, the high
effort contract is “flatter” than the low effort contract, but incentive pay starts at lower levels of the signal. By contrast,
when I1’ holds, the high effort contract is “steeper” than the low effort contract, and incentive pay starts at higher levels

H
of the signal. Intuitively, recall that %

using rewards at x. Thus, I1 implies that lower realizations of x are relatively attractive for inducing effort given e, whereas
higher realizations of x are relatively attractive for inducing effort given el. Correspondingly, assuming the contracts cross,
7t specifies relatively high payments at low outcomes and low payments at high outcomes compared to L. When we
instead impose Condition I1’, the crossing structure is reversed. Both cases are plausible as highlighted in Example 1.
When a contract single crosses another contract from below, it can be intuitively thought of as being “riskier” in the
sense that the distribution of payments it induces tends to be more spread out.'# Setting the case when the contracts do
not cross aside, the next lemma considers the cases where either (i) 7" is “less risky” than 7! (crossing from above) and

% is concave; and (ii) " is “riskier” than 7! (crossing from below) and - is convex. In both cases the expected value of

u/
ﬁ given effort level e’ is higher than the expected value of given effort level el.

is a measure of the relative attractiveness for the principal to induce effort by

_1
u/(ml)

14 More formally, note that when 7" > ! everywhere the payment distribution under e dominates the payment distribution under el in the sense
of first order stochastic dominance. Similarly, having 7" single cross 7! from above (below) creates a force in the direction of the payment distribution
given " being less (more) spread out than that given ! in a manner similar to second order stochastic dominance (the distribution of payments is
also affected by the fact that f(-|ef) differs from f(-|el)). Kadan and Swinkels (2013) study how stochastic dominance conditions on the (endogenous)
payment distribution relate to the effect of a change in minimum pay or outside option on the induced effort in a setting where the first order approach
is dispensed with.
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Lemma 8. Fix m and e/ > el. Assume IR is not binding at ™! and e®. Assume further that either

(i) 11 and U1 hold or
(ii) 11’ and U1’ hold.

Then,

1 H 1 L
/7u’(nH(x))f(x|e )dx>/7u/(nL(x))f(x|e ) dx. (7)

The final ingredient in the proof comes from Proposition 3, which in the case that IR is not binding (A = 0), says that (7)
is equivalent to

Cm(eH,m) > Cm(eL,m).

As this is true for all ef > el where IR does not bind, we have proven Proposition 4.
4.4. Results using crossing properties of contracts when m changes

In the previous section we used assumptions on information implying crossing properties of contracts with the same m
but different e. The approach in this section is to exploit the results in Sections 3 and 4.1, in which we used assumptions
on the utility function to develop crossing and other properties of contracts with different m when effort is kept fixed. This
approach yields results when the IR constraint is either non-binding or softly binding. We begin by noting that

Co= [mef+ [fe (8)

The first term on the RHS is the cost of changing the contract in such a way as to elicit higher effort. The second term is
the cost of the agent actually taking the deal. Both terms are positive, the first by Lemma 2 and the second by FOSD. To
sign Cpe we differentiate (8) by m and, either sign each resulting term separately or the entire expression.

This approach yields three sets of sufficient conditions, all leading to the conclusion that Cye > 0. When we sign each
term in (8) separately, we obtain two results — one for the case where IR is not binding and one for the case where IR
is softly binding. When the IR constraint is not binding we are able to sign the entire expression in (8). Compared to the
first two results, this approach yields conditions imposing very mild requirements on utility, but quite strong restrictions on
information.

To understand the technical issues that arise in these results, consider the term [ 7 f in (8). By Lemma 2,

[ ”ef] [ [C”(e) u(n)fee]]
Mm [C”(e) /u(n)fee] +u [C”(e)—/u(n)fee] .

A B

Since ; > 0 (Proposition 1), and using Lemma 2, we have that Term A is non-negative. The difficulty is in showing
that Term B is positive. Note that this term is equal to — [[u()]n fee. It is tempting to rewrite this expression using
integration by parts as f[u(n)]meee. Using that [u(s)]xyn = 0 over [0, X] one would like to conclude that this integral

equals f; [u(r)]xm Fee. Then, one would hope to use the conditions on utility and the results in Lemmas 5 and 6 combined
with CDFC to conclude that this integral is positive.

This simple and intuitive approach is, however, misguided. Indeed, it ignores the fact that X depends on m, implying that
the contract’s slope changes discontinuously at X as m changes. Moreover, it is often the case that X, > 0, implying that the
contract’s slope can jump down at X as m increases, introducing a force working against the positivity of the integral. To
account for this we first integrate by parts and only then differentiate by m obtaining that term B equals

1

1
[ / [u(ﬂ)]xFee} = [Am[UGD)] Fee] G €, m) + / [4GD)],, Fee.

Here it is clear that the first term (reflecting the movement of X) works against the positivity of this expression whenever
Xm > 0. Our results then use the conditions on preferences to guarantee that the second term is positive, and the conditions
on information to guarantee that the first term (even if negative) is dominated by the second term. A similar approach is
used when analyzing the second term in (8) or when analyzing the sum of the terms.

The first two results use a unified approach to establish conditions under which each term in (8) increases in m. The
first result applies when IR is not binding and the second, under stricter sufficient conditions, when IR is softly binding.
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Proposition 5. Assume that IR does not bind, U1, and 12. Then Cppe (e, m) > 0.
Proposition 6. Assume that IR binds softly, U2, U3 and 12. Then Ce (e, m) > 0.

Below we sketch the main ideas behind the proofs of both results.

Showing that [ 7. f increases in m. As noted above, it enough to show that [[u() feelm < 0, or, integrating by parts,
[/g[u(n)]x(_Fee)]m <o0.
When IR is not binding, we obtain from Lemma 5 under Condition U1 that [u(s)]ym > 0 for x > . Using this, and the

fact that under 12, _FF:E is increasing, we are able to show that [f;c[u(rr)]x(—Fee)]m > [f;([u(n)]x(—Fe)]m, accounting for the

jump in pay at X as m changes. But, the last expression (again by an integration by parts) is just the change in incentives
brought about as m changes, and since IC is satisfied for all m, is thus 0.
When IR is softly binding, we rely on Lemma 6 to obtain that

[u(r' ) —u(r" ®)],
has sign pattern 0/+/— whenever m" > m!. An integration by parts of J u(@) fee, and application of Condition 12 completes

this step of the proof.

Showing that [ 7 f, increases in m. When IR is not binding this follows fairly directly from integrating this term by parts
and using that m,, > 0 (Lemma 5). When IR is softly binding this is again more subtle as we cannot conclude that myy > 0.
The key is to show that the difference between u () and

u@) =u(rh) +um") —u(mh)

has sign pattern 0/—/+. This sign pattern, the concavity of [%]2, and the fact that

/u(n”)fe=/[u(ﬁ)]fe=/”(”L)f€

together imply that

/ane>/frfe>/ane,

completing the proof.
Our third result in this section is permissive on utility but quite demanding on information.

Proposition 7. Assume that MP binds, that IR does not bind, and U0 and 13. Then Cp,e (e, m) > 0.

The proof uses the fact that for x € [k, 1], uu'(7) = ﬁ and Lemma 2 to combine the two terms of (8). We then differ-
entiate the resulting expression by m and use Condition I3 and Lemma 5 (part 1) to account for the discontinuous jump in
pay at X, and show that Cye > T(X, €)[Cyy — 1]. The final step of the proof comes from Proposition 3, which in the case that
IR is not binding easily implies that C;;; — 1 > 0, establishing the result.

5. Numerical exploration

So far we have presented several sets of sufficient conditions implying that an increase in the minimum feasible payment
lowers the level of induced effort. To supplement these results, we now present an algorithm that allows the efficient
numerical calculation of optimal contracts in constrained moral hazard problems, and use it to present some examples
covering cases where our sufficient conditions are not met.'> Despite some effort, we have not found an example where an
increase in m results in higher induced effort. Our conclusion is that the sufficient conditions we have provided are rather
far from being necessary.

15 Matlab code implementing the algorithm is available for download at http://apps.olin.wustl.edu/faculty/kadan/index/Research.html.
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Fig. 3. Graphs for Example 2.

5.1. An algorithm for solving the constrained moral hazard problem

The algorithm is based on the existence part of the proof of Proposition 1 in JKS. The first key point for the proof is that,
fixing e, if one can find A and w such that the contract v (x, A, ) defined by

1 _ ( 1 fe (XIe))
—————— =max A+ ,
u'(mw(x, A, ) u’(m) fxle)
satisfies IR and IC with appropriate complementary slackness, then the contract is in fact the (unique) optimal solution to
the relaxed cost minimization problem. So, the search for an optimal contract is reduced to the search for an appropriate
A and w. The existence proof in JKS is based on the idea that an appropriate A and w are guaranteed to exist by two
intermediate value theorem arguments that use continuity and monotonicity properties of the problem.

Specifically, for any given w, consider the class of contracts defined by varying A. If at A =0, IR is already satisfied, define
A() = 0. Otherwise, JKS show that as A becomes arbitrarily large, IR is eventually slack, and so, by the intermediate value
theorem, there is some A(@) such that IR is satisfied exactly at (A(u), i). JKS then argue that when p =0, (-, A((), i)
leaves IC unsatisfied, while when w is large enough, 7 (-, A(it), ) leaves IC slack. The intermediate value theorem then tells
us that there is a @ such that 7 (-, A(w), u) satisfies IC with equality. But then, the resulting A(©) and w in fact satisfy the
required conditions.

The algorithm computationally implements the steps of this argument. For any given u, finding A(u®) within a given
tolerance can be accomplished in an amount of time that is logarithmic in the size of A(w) and in the inverse of the
tolerance (keep doubling an initial guess to find a A where IR is slack, and then successively divide the interval to get to
the given tolerance). Finding p to meet IC numerically consists of the same procedure as for A, noting that for each guess
at u, one needs to enter a subroutine to numerically find A(u).

We use the algorithm to first calculate C(e,m) on a fine grid of e values, and then approximate C.(e,m) by looking at
first differences. We then plot C.(e,m) for different values of m to check whether C, rises or falls with m. We also plot
u(e,m) and A(e, m).

5.2. Numerical examples

Example 2. Consider the following specification:

Distribution FGM copula, f(x|e) =14 0.5(1 — 2x)(1 — 2e)
Utility and cost of effort CRRA with y = 0.5, c(e) = e?

Outside utility up=4

Minimum pay mb =2 (solid line), m" = 2.5 (dotted line)

This example satisfies Conditions I1, 12, I3, U0, U1, U2, and U3. Our results guarantee that when the IR constraint is
non-binding or softly binding, effort is decreasing when the minimum payment goes up. Our sufficient conditions do not
cover the case of a severely binding IR constraint. The top left graph in Fig. 3 plots the marginal cost Ce (e, m) for two levels
of m. It can be seen that C, is higher for m" than for m!, consistent with Cpe > 0. The top right figure shows that for low
levels of e, the two contracts coincide, implying that MP does not bind, while for high levels of e we have A =0, implying
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Fig. 4. Graphs for Example 3.

that IR does not bind. At intermediate levels of e, IR first binds severely and then softly. Note also that A is increasing for a
while (when IR binds severely) and then decreasing, while w is always increasing. The bottom right graph plots the agent’s
expected utility net of effort costs. In this example, the agent is happy to be asked to work harder: the increase in his utility
from the contract outweighs the disutility from the increase in effort.

Example 3. Consider the following specification:

Distribution LS2, f(xle) =exp(e(x — 1))(ex+ 1)
Utility and cost of effort CRRA with y = 0.6, c(e) =e?

Outside utility Uup=5

Minimum pay mb =2 (solid line), m" = 4 (dotted line)

This example satisfies Conditions I1’, U0, U1, and U3. None of our results covers this combination of properties. The
results are in Fig. 4. As before Cr,e > 0 whether IR is binding or not. A is increasing for a while and then decreasing, and ©
is increasing. Once again, the agent is happy to be asked to work harder.

Example 4. Consider a case with CRRA utility and y > 1 using the following assumptions:

Distribution FGM copula, f(xle) =1+ 0.5(1 —2x)(1 — 2e)
Utility and cost of effort CRRA: u(w) = "{%V with y =1.2.'6 ¢c(e) = e?
Outside utility up=>5

Minimum pay mb =2 (solid line), m" = 2.5 (dotted line)

This example satisfies Conditions I1, 12, I3, U0, U1/, and U3. Our results guarantee that when IR is non-binding an
increase in m results in lower effort level. However, our sufficient conditions do not cover the case of a binding IR constraint.
The results presented in Fig. 5 show that even when the IR constraint binds (softly or severely) the marginal cost goes up as
m is increased. Note that when y > 1 the utility function is bounded, and it becomes very flat at high outcomes. This, along
with the minimum payment make it very hard for the principal to provide the agent with additional utility, and causes the
marginal cost of providing effort to explode.

16 The actual utility function used was

uw) =175

We added a constant to the utility function to make sure that the expected utility net of effort costs in this example is positive on the relevant range.
Equivalently, when y > 1 one can take the outside option up to be negative.
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Fig. 5. Graphs for Example 4.

6. Conclusion

In this paper, we examined the question of whether increasing the minimum allowable payment in a moral hazard
model causes the principal to increase or decrease the effort induced from the agent. Under a variety of conditions, we get
the same result: As the minimum payment goes up, the cost of inducing effort on the margin goes up as well, and so the
principal optimally settles for lower productivity.

We supplement our theoretical results by developing and then using an algorithm for efficiently generating optimal
contracts in constrained moral hazard problems. These examples are supportive of the prediction that effort is more costly
to induce when minimum payments are higher.

The fact that our results all point in the direction that a higher minimum payment implies a lower induced effort level
suggests that in settings where this model is appropriate, there is both a set of testable implications and some policy
implications. In particular, our results suggest that increases in minimum wage will result in lower individual productivity
in sectors where incentive pay is a material component of compensation. But, as explored in Kadan and Swinkels (2010),
there are interesting caveats to this prediction in settings where for example a firm can adjust the number of workers it
has, and not just the effort induced from a single worker, and in settings where the benefit to the firm of inducing effort is
itself determined as part of a broader market equilibrium.

We view this paper as a step in the direction of exploring comparative statics results in principal agent models. As
suggested by our numerical results, the sufficient conditions we provide are likely too strong. Additionally, there is a clear
gap in our results since we did not find sufficient conditions for the case where the IR constraint is severely binding. On the
other hand, it seems unlikely to us that there is no combination of parameter values in existence under which an increase
in minimum payment results in an increase in induced effort. However, an example of this sort (which would be highly
desirable) simply evades us. We leave these to future research.

Appendix A. Proofs

Proof of Lemma 1. If A(e, m) =0 we are done. Assume then that A(e, m) > 0. In this case, IR is binding on a neighborhood
of effort levels. Thus, we can differentiate IR to get

d(e)= [/U(ﬂ)f]ezf[u(ﬂ)]eva/U(n)fe

=/[u(n)]ef +c'(e),
using IC. So f[u(n')]ef =0, as required. O

Proof of Lemma 2. Note that

/”ef:/ ! u'(m)7e f
u ()
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fe
= [ |r(e,m) +u(e,m)7 [u@m)], f

=A@mnfUWﬂLf+uwm0/hmﬂLh.

A B

The second equality follows using (1) over [k(e,m), 1], and since over [0, X), [u(7r)]e =u’(;w)7e =0. By Lemma 1, A=0. To
evaluate B, note that from IC

/Mﬂk—5®=0

holds as an identity, and so

f[u(ﬂ)]efe'F/u(n)fee_C//(E)ZO,

from which

/[u(ﬂ)]efezc//(e) _/u(n)fee-

This is weakly positive from the second order necessary condition for the agent to be optimizing. O

Proof of Lemma 4. Let y be the point such that 7H(x) > wL(x) for all x < y, and 7" (x) < 7w (x) for all x > y. Then,
[l —ueh)r > [ @)t~ s
ZuTnH(w)/iﬂ”f-—an]>0,

where the first inequality follows by the definition of y and by concavity of u, and the last inequality follows by
Lemma 3. O

Proof of Proposition 1. If " < u!, then by Lemma 4, A" = 0. By assumption, A = 0 as well. So, since u" < ut, 2 occurs
at or after the point y > x*(e) at which 7% =m", and everywhere to the right of y, 7% > 7", But then,

[u(r") ~ u(wt)fe+ [ [u(x™) ~ u()]e

where = means ‘has the same sign as.’ The first inequality follows because the second term is weakly negative, since
S

fe(x) > 0 for x> y > x*(e), and since u(mw (x)) — u(w (x})) < 0. It also makes the substitution 7w " (x) = m!! for x < y. The
second inequality follows since w! =m! where f, <0 and 7! > m! where f, > 0. But, the last inequality contradicts that
IC binds for both 7w and w!. O
Proof of Proposition 2. Since 7" and 7! are continuous and both satisfy IR with equality, they must cross. Since m* > m?,
st first crosses 7! from above. If this is the only crossing (or if the only other “crossing” is at 1), then by Lemma 4
the agent strictly prefers wH to 7%, a contradiction. Since the contracts are of the form given by (1), the only remaining
possibility is that «f > u', and that 7/ also crosses ! once from below.

Consider now the case where IR is softly binding for m”, and let y be the crossing point of the contracts when they are
both strictly increasing. We have that y > x*(e), and hence ¢(y|e) > 0. Moreover,

M+ ufeyley =k + ptecyle.
Since uH > u! and ¢(yle) > 0 it must be that A7 <AL, O
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Proof of Lemma 5. Since IR is slack, by (1) for x > X(e,m), w = W (). It follows that
W (ul)pul
7Txm e TN

W' (po)

where the bracketed term is non-negative by U0 and Remark 1, w; > 0 (from Proposition 2), and £x > 0 (by MLRP). The
second part of the lemma follows similarly noting that for x > (e, m) u(;t) = J(uf), and applying U1 and Remark 1. 0O

+ 1j|.u«mzxw/(/1«£) =0,

Proof of Lemma 6. Note that [u(wl(x)) — u(zw"(x))]x is 0 on [0,X] and is positive (by Proposition 2) on [xF, 2"']. Let z be
the point at which 7" and 7! cross while having positive slope (such a point exists by Proposition 2). Beyond z we have
aH(x) > ml(x), and hence AH + puHe(x) > AL + pule(x). Thus, beyond z

[u(r' @) —u(@" @)] =[G +ute) = S + o),
=[/ (A +ptept — M+ pHe)ut]e, <o,

where the inequality follows from u! < uH (Proposition 2), the convexity of J(-) (Condition U2 and Remark 1), and since
£x > 0 (MLRP).
It is thus sufficient to show that on [k, z], the sign pattern never crosses from negative to positive. We can write

[u(rh®) —u(m" )], = K@tx
where
K@)y =J (A +pte)ut — ) (0F + ufe)uh.
By MLRP,
[u(rt ) - u(n’H(x))]x? K(x),

and so it is enough to show that K(x) cannot go from negative to positive, or that when K(x) =0, K’(x) <O0.
But,

K'(x) = []//()LL +ML€)[ML]2 _ ]//()\H +MHE)[MH]2]EX’
and where K(x) =0,
o +ute
ENICCEaTLI L
and so

K/(X) ? ]”()\L +ML£)[ML]2

rnL Ly 2
_]//()LH—I—/,LHZ)[]( + U )] [ML]Z

JGH o)
= []J/]z (W + pte) - [J]/]z (M + ute).

Since (AL + ule) > WH + uHe) on (3", 2) this expression is negative if ”]% is decreasing.
By the definition of J(-),

/< 1 )_[u/(W)]3

J wvw) ) —u(w)’

J,,< 1 )—u”(w)_{(u/(w)ﬁ]’
uw) ) @ w)? [ —u"(w)

J,,< 1 )Z[(u/(w)f]’(u/(w))2

uw'(w) —u'(w) | —u"(w)’

So,

or

Thus,
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‘w))3 @ (w))?
Rl P
U2\ww) ) @wwp* ww)* T [Tw(w)  u(w) [u'(w)

W) —ww)
B u”(w) |:3 B u/”(w)u/(w):| 1
Tu(w) W’ (w)? Ju'(w)
_ —w'w) [UW(W)U’(W) —B]u’(w)
W)l @ (w))? '

But, each term is positive (the middle one by Condition U2), and so it would be enough that each term decreased. The first
does so by Condition U2, the last by concavity of u, and the middle one by U3. O
H

Proof of Lemma 7. It cannot be that 7! is everywhere above 7. Indeed, in that case we would have XH > XL > x*(el),

since IR is not binding. Thus, 7! differs from 7" only where f.(x|e’) > 0, implying that

[urt)sellel) = [uGrsele)

Thus, 7" provides inadequate incentives to implement el and so by CDFC is a fortiori inadequate to implement e*.
Suppose the two contracts cross at y, so that ule(y,et) = ute(y, e, or equivalently,

ey.efy put
ey,el) ph
If I1 holds then for x > (<)y,

2(x, et ( ),l,LL
e(x’el-) < (> ﬁ

Thus, if there is a crossing point, then " crosses 7! from above, and the crossing is unique. Analogously, when I1’ holds,

if there is a crossing point, then H crosses ! from below, and the crossing is unique. O

Proof of Lemma 8. Consider first the case where I1” and U1’ hold. By Lemma 7, either w crosses 7! once from below, or
the two contracts don’t cross at all. We examine each case separately.

(i) The two contracts cross at some point y. Let p be the common value of 7/ and 7% at y.

For x <y, p >t (x) > " (x). Using that % is increasing and convex (by U1’) we have

11 Lo _H 17
T w0 (X))[u’(p)]
(L _ _H —u"(p)

= (" (x) — " (%) )

Similarly, for x >y, p < 7wl (x) < 7" (x), implying that

1 B Moo 1 17
) wakm) ST (X))[u'(m}
_(_H L —u"(p)

= (" x) — 7" %) )2

Combining the two cases we have

[l Ty | 1) > e [ o0 —wtl (e

w@H)  wrhe) u'(p)?
=0,

where the last inequality follows since [ 7, f > 0 from Lemma 2.
By FOSD we obtain

1 H 1 L
/u/(nH(x))f(X|e )> / u/(TL’L(X))f(X’e )’

as required.
(i) The two contracts do not cross. Then, 7! lies everywhere (weakly) above 7L. Consequently,
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/[u/(nH(X)) - u/(nL(x))]f(X|e ) >0,

and the result follows as before by FOSD.
The proof for the case where I1 and U1 hold is analogous with the appropriate sign changes. O

Proof of Proposition 5. We will show that each term in (8) increases in m.

The first term. By Lemma 2,

oo foe].
= tm [c“(e) - / u(n)fee} i [c”(e) - / u(n)fee]m.

A B

Since @, > 0 by Proposition 1, and using Lemma 2, A > 0.
Integrating by parts,

1

—/u(JT)fee =—u(n(x,e,m))Fee(XIe)IZ)+/[u(n)]xFee

=0 0

1

= [l e

X
since 7y (x,e,m) =0 for x < X.!7 Thus, B is given by'8
1
[ / [u(m],fee}
)*( m
1

= [—?ACm [U(T[)]xFee](&s e,m)+ f[U(ﬂ)]meee

X

A Fee ~ : Fee
= [—xm[u(ﬂ)]x[—F—][—Fe]](x,e,m)+/[u(n)]xm[—F—][—Fe].

From Lemma 5, [u(7T)]xm = 0. By MLRP, —F, is positive as well. Thus, since by 12, —Fee g non-decreasing in x for x > X >

Fe
Fee(xe) _ Fee(Rle) : 3
Frxie) Fowe) 1N the second term, the integral becomes smaller. Thus,

x*(e), if we replace —

1

[—ﬁm[u(n)]x[—Fe]]()?,e,m)+[[u(JT)]Xm[—Fe]]

X

Fee(;qe)
7 Fe(Rle)

1
__Fee(;qe) _
= e | [l Fe]}m

X

1

— Fee(X|€) o B R

=" .&le /[U(ﬂ)]x[_Fe]:| (again, since 7y (x, e) = 0 for x < %)
0

m

17 The reader will note that we laboriously drop from range of integration [0, 1] to [X, 1], and then a few steps later, reverse the process. The step is
needed because [u()]y changes discontinuously in m near X.
18 We take [u(7)]x(%, e,m) to be equal to limy3[u(7)] (X e, m).
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_ Fee(X]e)
Fe(Xle)
=0 (since IC holds for all m).

[ / u(mw) fe] (integrating by parts)

The second term. Now, let's consider [ [ 7 fe]m. Since IC binds for all m we have (integrating the IC constraint by parts) that

1

[/ u/(n)nx[—Fe]j| =0.

Fe m

Since u' (7 (x)) = /ltffe%!l?) on [k, 1] this is equivalent to

1
11 f
|:E/T7Tx[—l:e]i| =0.
e
R m
Equivalently,

1 1
1 f 1 f B
[ﬁ}m/ ﬁﬂx[_Fe] + ﬁ |:/ Eﬂx[_Fe]:|m =0.
Loo

The first term is strictly negative since [ﬁ]m < 0 (Proposition 1) and since X > x*(e) as IR is not binding, and so T
everywhere on the domain of integration. Thus,

1
0< |:/ finx[—Fe]:|

1
= [_&ménx[_lre]} (%, e,m) + / énxm[_Fe]- (9)

|=

is positive and weakly concave, it is also weakly log-concave. Thus, by Lemma 5, 7y > 0 and so myn[—Fe] > O.

is decreasing in x (by MLRP) we can replace it in the second term in (9) by its maximal value % >0 and
e

Since

7

=

Since
maintain the inequality:

=

) 1
< jj;(();”ee)) [—)?m(e,m)nx(fc,e,m)[—Fe(fcle)]+/7T"m[_Fe]}

X

- 1

= /ﬂx(_Fe):|

2 m

©n

= /nx(—Fe)i| (asmx =00n [0, ])

-0

([l s

Proof of Proposition 6. Let m" > m! and let 7" and #! be the corresponding cost minimizing contracts. We will show
that each term in (8) is larger at m" than at m?.

The first term. Much as in the proof of Proposition 5, from Lemma 2, and since w,; > 0 it is enough to show that

[ ulrt ) fee < [u(et) fee
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where

—F
Jua = [ fe= [utet) - u)), [ e
e
From Lemma 6 [u(wl(x)) — u(mwH (x))]x has sign pattern 0/+/—. Let y be the turning point from + to —. Then, for all x,

_Fee
Fe(xle) > [u(r' () — u(n”(x))]xﬁmxw),

where the inequality follows from Condition I2 (remembering that F, < 0). Hence,

Jluert) = ute), = e > 592 [utrt) = u(r)] Fe =0,

where the equality follows since both 7! and 7* satisfy IC.

—Fee(xl€)

L _ H
[ll(T[ (X)) u(n’ (X))]x Fe(x|e)

The second term. Let 77 be defined by
u(®#®) =u(rh) +u(m) —u(mb),

and note that fu(ﬁ')fe = fu(n")fe. Let A(x) =u(rH (%)) — u(# (x)). We first argue that A has sign pattern 0/—/+. Since
%H > &L by Proposition 2, A =0 on [0, X(e, mb)), and A <0 on some interval beginning at (e, m%). But, since f.(x|e) > 0
for all x > &L (IR is softly binding) it cannot be that A < 0 for all x > X(e, m%) since then

/[u(ﬁ) —u(z™)]fe >0,

contradicting that both contracts satisfy IC. Thus A crosses 0 from below at some y > X(e, mM).

To see that y is unique, note that since m" > m!, we have w(y) > wl(y). It follows from U2 and Proposition 2 that
1 is steeper than ! in utility space at y.'° However, by construction, the slope of 7 in utility space is equal to the slope
of ! in utility space. Hence, u(r ¥ (x)) crosses u(# (x)) at y from below, and there cannot be another crossing.

Let p =7 (y) = wH(y). Then, since u is concave,

H

U[r P -2@] > u(@ ) —u#®),

for all x. So,
u'(p) / [" —#)fe > / [u(T") — u(@)]fe =0

(noting that wH — # = 0 where f, is negative) and thus

f[n”—fr]fe>0 (10)
Now, note that & — 7zl is positive and is increasing since u is concave. Thus,

/[fr—nL]fe>0 (1)
by MLRP.

Thus, from (11) and (10),

[7se= [ 25> 7.

as required. 0O

19 The argument for this is as in the beginning of the proof of Lemma 6 where

[u(r' ) —u(@W)], =[J (! +utey.e) = 10" +p1uy.0)], <o0.
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Proof of Proposition 7. By Lemma 2,

fﬂelew”(e)—ufuw)fee

=uc’(e) + / uu’ (7w)mwyFee (using integration by parts)

fFee
fe

where the last equality follows since 7y =0 over [0, X], and for x € [%, 1], uu'(7) = %
Plugging into (8) we obtain

=puc’(e)+ | mx

Ce=pc"(e) + | mx f}:ee +/7Tfe

e

F
ffee —/ane (using integration by parts)
e

:uc”(e)+/<f;“ - Fe>7rx.

Multiplying and dividing by 1 — F and using the definition of T = t(x, e) gives

Ce=pc"(e +/[ [Fee _ _Fe ][1—F]n
e =MC (e) fod—F) 1—F X

=uc’(e) +/r[1 — Flmy

=puc’(e)+ | mx

1
= uc'(e) + / 7[1 - Flmy,

X

where the last equality follows since my =0 for x < X.
Differentiating by m gives

1
Cem = fimc" (€) — XmT (X, €)[1 — F(X|e)|mx(X, e) + f T[1 — Fl7xm
1
> —XmT(X,e)[1 — F(Xle)]mx(X, €) + / T(x,e)[1 = F(x|e)]mxm(x, )

1
> —R&nt(X,e)[1 - F(Xle)|mx(X.e) + (X, e) /[1 — Flmtum,

where the first inequality follows since n, > 0 (Corollary 1) and ¢” > 0, and the second inequality follows since 7wy, > 0
(Lemma 5), 1 — F >0, and Condition I3. Hence,

1

Cem > T, e)|:—5<m[1 — F(Xle)]mx (X, e) + /[1 — F(x|e) | mxm (x, e):|

X
1

R d
=7(&, e)a—m/nx(x, e)(1— F(xle))
1
; +/71(x, e) f(xle) dx:| (using integration by parts)

X

=T, e)i m(x,e)(1—F(xle))
om
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1

=1(&, e)% —m(1 —F(&|e))+/71(x, e)f(xle)dx | (using thatm (X, e) =m)
1

=r($<,e)% —m+/n(x,e)f(x|e)dx (using that 7 (x) = m for x < &)
0

=1(X,e)[Cn —1].

But, from Proposition 3, when IR is not binding

Cm—lzfﬂf()qe)dx—l >0,

w(m(x,e))

where the inequality follows since u’(m) > u’(;r (x,e)) for all x and strictly so for x > X. Since 7(X,e) > 0 (by CDFC) we
conclude that Cer,;, > 0 as required. O
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