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Abstract

The paper examines how the market structure in which a firm operates affects
complementarity in its decisions to adopt service-oriented technologies. Adoption de-
cisions over multiple technologies often exhibit interdependence and the competitive
environment in which a firm operates can substantially affect such interdependence.
We use the case of hospital adoption of SPECT and PET diagnostic imaging tech-
nologies to illustrate the effects of market structure on profit complementarity between
decisions. A monopolist hospital faces strong cannibalization of SPECT service utiliza-
tion by adopting PET as well. With one or more competing hospitals in the market for
SPECT service, the potential for self-cannibalization diminishes, and hence we would
expect complementarity to increase.

We test for changes in profit complementarity between the adoption of SPECT and
PET technologies using a static discrete choice framework that accounts for the strate-
gic nature of adoption among market rivals. Specifically, we use observed variation in
joint versus separate adoption of the two technologies across rival adoption strategies to
infer changes in the relative profitability of joint versus separate adoption. We account
for the endogeneity of a rival hospital’s adoption decisions using a recursive approach
based on alternating parameter estimation and equilibrium solution. We find evidence
that hospitals in more competitive hospital markets face greater profit complementar-
ity between their adoption decisions; however, the primary motivation for adopting
these technologies appears to be patient feeding rather than direct service profit maxi-
mization. We discuss implications for inference about technology adoption in strategic
settings. In particular, we argue that neglecting variation in profit complementarity
across market structures can result in biased estimates, even when only the adoption
of one technology is of interest.
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1 Introduction

This paper examines firm adoption decisions over multiple, service-oriented technologies
that are crucially tied to the firm’s participation in related service markets. We focus on
the interaction of hospitals’ decisions to adopt single-photon emission tomography (SPECT)
and positron emission tomography (PET) and how hospital market structure affects this
interaction. With both diagnostic imaging technologies, one can view the adoption decision
as synonymous with the decision to enter the associated service market. Hence, the mar-
ket forces that affect the profitability of each service also influence the adoption payoffs.
Importantly, the manner in which the profitability of the two services interacts gives rise
to complementarity or anti-complementarity between the two adoption decisions. Market
conditions will affect the interaction in profits between the two services and hence the com-
plementarity between the adoption decisions. In this manner, the case of SPECT and PET
illustrates how market structure influences the degree of complementarity among a firm’s
decisions.

The substitutability of SPECT and PET scans for most consumers will drive down the
complementarity between a monopolist hospital’s decisions to adopt the technologies, even
when we allow the hospital to price discriminate. The downward pressure on complementar-
ity stems from the presence of one service cannibalizing usage of the other. If a competing
hospital adopts SPECT technology and offers scanning services, then its presence in the
SPECT submarket will draw away some of those SPECT consumers that a monopolist
would otherwise lose by offering PET as well. Hence, we expect that the source of anti-
complementarity faced by the hospital should weaken as one of the submarkets becomes
more competitive.

We test this intuition empirically with a discrete choice framework that takes into
account both the interaction between the two adoption decisions and the interaction among
competing hospitals in a market. We model the adoption decisions as a choice over bundles
of the two technologies, using an approach similar to Gentzkow (2005) in his work on
print and online newspapers. To incorporate the strategic considerations, we employ the
Nested Pseudo-Likelihood (NPL) method developed by Aguirregabiria and Mira (2004).
The results of the structural estimation suggest that profit complementarity is affected by
the number of hospitals in the market, rather than expectations regarding rival adoption.
In the end, the estimated parameters provide stronger evidence for patient-feeding as the
motive for adopting these technologies, rather than direct service profit maximization.

Multi-product oligopolies present distinct challenges to the study of imperfect compe-
tition, both in its theoretical and empirical branches. Researchers confront the dilemma
that there are very few firms that make decisions with consideration of only one product;
however, the multi-product nature of most firms adds considerable complexity to our mod-
els, especially when strategic factors are present. When the product line of a multi-product
firm is linked to its technological adoption decisions, the same strategic considerations that
affect the firm’s product choices also affect these adoption decisions. In such situations,
the market environment will have an impact not only on the profitability of each adoption
decision in isolation, but also on the interaction of the decisions in the firm’s overall profits.

Several important factors complicate the decision problem of a multi-product firm rel-
ative to that of a single-product firm. A firm offering multiple products that consumers
view as substitutes faces the prospect of cannibalization of its revenues in one submarket
through its operation in another. If the firm enjoys enough market power, it may partially,
and in some cases completely, ameliorate such cannibalization through price discrimination.
Of course, if consumers view the products offered by the firm as complements, then the
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firm’s operation in one submarket may expand demand in others. Furthermore, products
may also interact in production, generating economies or diseconomies of scope.

The notion of profit complementarity is a cumulative measure of the these various
effects. Demand-side complementary products and economies of scope will generate positive
profit complementarity, whereas demand-side substitution and diseconomies of scope will
generate negative profit complementarity. The precise definition of profit complementarity
would vary by context; however, for a dual technology adoption situation like that under
study, it suffices to define the two adoption choices as profit complements if adoption of one
technology increases the profitability of adopting the other ceteris paribus.1 This definition
corresponds to strategic complementarity among the components of a firm’s own strategy.
Note that we use the term negative profit complementarity, or anti-complementarity, for
the opposite case, rather than profit substitutability.

The use of profit complementarity to aggregate cost and demand factors is well-suited
to contexts where the econometrician observes limited information about the post-adoption
play among market rivals. In the empirical investigation, we use a strategic discrete choice
model to infer changes in profit complementarity between adoption decisions over market
structure. While we do not observe data on the prices, quantities, or profits that result from
the post-adoption competition, the observed adoption decisions, along with data on hospi-
tals and markets, provide insight into how market conditions affect profit complementarity
between SPECT and PET adoption.

The market forces that drive the adoption of technologies and the selection of services
provided by hospitals has attracted a great deal of attention over the last several decades.
Given the critical importance of the hospital services sector to the economy, the relative
availability of data pertaining to this sector, and the host of intriguing economic phenomena
that appear, the level of interest comes as no surprise. Along with the bundle of issues
specific to the industry, such as the medical arms race, physician-induced demand, and
third-party payment, the hospital services industry provides insights into broader questions
of imperfect competition. In particular, the variety of interacting services supplied by a
given hospital presents an application and test of models of multi-product oligopoly.

Among the many services provided by hospitals, diagnostic imaging services are among
the most technologically intensive. This feature, combined with the relative availability
of data on markets for these services, has led to a number of empirical investigations on
the role of competitive factors in technological choice that have focused on these markets.
The works of Trajtenberg (1989), Baker (2001), and Schmidt-Dengler (2005) exemplify the
types of questions that economists have tried to address by examining diagnostic imaging
technologies. Trajtenberg (1989) examines the market for computed tomography (CT)
scanners to discern the welfare gains from the diffusion of product innovations using discrete
choice analysis of hospital purchase decisions. Baker (2001) and Schmidt-Dengler (2005)
study a dynamic model of the timing of adoption of magnetic resonance imaging (MRI) by
hospitals. While Baker (2001) investigates the effect of HMO penetration on diffusion of
the technology into markets, Schmidt-Dengler (2005) focuses on strategic factors stemming
from the oligopoly structure of most hospital markets.

The difference in the present study from these earlier works extends beyond the par-
ticular choice of diagnostic scanner. The lack of detailed purchase data does not permit
the evaluation of these technologies from a welfare perspective as Trajtenberg (1989) does.

1A more general definition of profit complementarity (or better yet, payoff complementarity) between two
choice variables would be that the objective function be supermodular (for positive profit complementarity)
or submodular (for negative profit complementarity) in those variables. See Milgrom and Roberts (1990b)
for formalization and discussion of this concept.
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Instead, this paper, like those of Baker (2001) and Schmidt-Dengler (2005), concentrates
on the market factors that affect hospital’s decisions to adopt these technologies. However,
unlike these papers, we focus on the complementarity of multiple adoption decisions, rather
than on the timing of a single adoption. We certainly do not claim that adoption timing
is not important; rather, we highlight another feature present in these contexts. In this
respect, the present study complements the previous literature. Ideally, one should consider
both adoption timing and complementarity because each has implications for the other. We
neglect the dynamic considerations present mainly for simplicity.

The remainder of the paper proceeds as follows. We first present an analytical framework
for the effects of market structure on profit complementarity. We then illustrate how the
nature of competition among rivals may affect profit complementarity between adoption
decisions. Turning to our empirical context, we describe the two technologies under study
and the data used in our estimation. We then present the econometric specification and
the estimation procedure. After discussing the results and directions for further work, we
conclude with a discussion of implications for inference regarding technology adoption in
strategic settings.

2 Structure and Examples

2.1 Basic game structure

We model adoption of the SPECT and PET as a static, two-stage game among hospi-
tals. While neglecting potentially important features of the dynamic version, the static
approximation of the adoption game adequately highlights the primary elements of how
the competitive environment can affect profit complementarity.

A market consists of n firms that may adopt neither, one, or both of two technologies.
Much of the intuition presented here extends to cases of three or more technologies; however,
the analysis becomes far more cumbersome. The set of firms in the market, and hence the
set of potential adopters of both technologies, is exogenous to the model. This restriction is
sensible for our context because SPECT and PET services are relatively small components
of a hospital’s overall operations, and hence adoption of these technologies should have a
negligible effect on the entry or exit decisions of hospitals as a whole. In the first stage of the
game, each of the n firms chooses whether to adopt each of the two technologies. The choice
set of each firm consists of the four possible combinations of adoption/non-adoption of the
individual technologies, denoted A ≡

{
(0, 0), (0, 1), (1, 0), (1, 1)

}
. The adoption decisions of

all firms are made simultaneously.
After the adoption decisions are made in the first stage, all firms observe these decisions.

Those that have adopted at least one of the technologies then compete in the market for
diagnostic imaging services. The outcome of this second-stage oligopoly game determines
the final payoffs to the firms. The precise nature of the interaction within each service
submarket and between the two submarkets is left unspecified for most purposes; however,
we will consider specific examples of the second-stage subgames below. We do impose the
following assumption throughout:

Assumption 1. There exists a unique equilibrium in all of the second-stage subgames.
The equilibrium resulting from each market structure generated by the first-stage decisions
is known to the firms in the first stage.

Assumption 1 permits the specification of the firms’ payoffs to adoption decisions di-
rectly as a function of the outcome of the first stage, without regard to the details of the
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subsequent play. The payoff function faced by firm i is denoted πi : A × An−1 → R. The
payoff to adopting neither technology, regardless of the decisions of the other firms, is fixed
at zero. One should then interpret the payoffs of the other options as differences from the
non-adoption option. This normalization imposes a substantive restriction given the dy-
namic nature of the true adoption game. In the dynamic game, the payoff to non-adoption
is the value of waiting, which may differ across firms and, more importantly, across ri-
val strategies. Nevertheless, since the normalization is required for identification of the
econometric model, we impose it here as well for simplicity.

We measure profit complementarity by how much better or worse the firm would do by
adopting both technologies than would two identically situated firms each specializing by
adopting one technology. We denote the profit complementarity by Γi(a−i) and define it
as:

Γi(a−i) = πi
(
(1, 1), a−i

)
− πi

(
(1, 0), a−i

)
− πi

(
(0, 1), a−i

)
(1)

One should not infer from the use of the term complementarity any restriction that Γi

be positive. The case of negative profit complementarity is certainly plausible in many
contexts, especially if the two service types are substitutes to consumers.

The changes in the complementarity of the adoption decisions across different opponent
decision profiles is our particular interest. That is, if a−i,1 and a−i,2 are two opponent
adoption profiles such that a−i,2 > a−i,1, then we investigate conditions under which we
can predict the sign of Γi(a−i,2) − Γi(a−i,1).2 In particular, what conditions should be
present for which we can claim that firm i’s adoption decisions exhibit stronger (more
positive) complementarity when an opponent has adopted a technology versus when that
opponent has not?

One may see a connection between the basic game structure presented here and the
theory of supermodular games developed by Topkis (1979), Vives (1990), and Milgrom and
Roberts (1990b). However, only under special circumstances is the game supermodular
or submodular. If we select the standard component-wise ordering as the strategy set’s
partial order, then a firm’s profit function is supermodular if and only if Γi(a−i) > 0 for
all a−i.3 We should reiterate, however, that we do not assume that Γi is always positive.
Furthermore, even if this were the case, the profit functions need not satisfy the increasing
differences property also required for supermodularity of the adoption game. The results
for supermodular games may apply to special cases, and may apply to the second-stage
subgames; however, the first-stage adoption games are not in general supermodular.

Because of the agnostic view of behavior in the second-stage subgames, the structure
imposed can encompass a large class of oligopoly models. The cost, of course, is that we can
determine in general neither the sign of the complementarity at a particular rival decision
profile, nor how the complementarity changes over rival decision profiles. We consider
examples below that illustrate how assumptions regarding the second-stage play can permit
predictions regarding both the level and change in profit complementarity. We reiterate
that we do not impose the restrictions described below in the empirical investigation; rather,
we use the intuition that these examples provide to generate predictions and interpret the
results.

2The notation a > b for vectors a and b denotes the condition that all entries of a are no less than the
corresponding entries of b and that at least one entry of a is strictly greater.

3Given the size and structure of the choice set, the condition that Γi is positive is a necessary and
sufficient condition for the defining inequality of the supermodularity property to be satisfied for all ai ∈ A
at a fixed a−i. All other combinations of ai, ai′ ∈ A would satisfy the inequality trivially.
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2.2 Sources of Profit Complementarity

We can decompose profit complementarity in a manner that highlights its contributing
sources. Specifically, we isolate the effects of self-cannibalization of revenues and cost
interactions that together constitute profit complementarity. At any rival decision profile
a−i, the profit complementarity faced by firm i can be expressed:

Γi(a−i) = ∆Ri
1(a

−i) + ∆Ri
2(a

−i) + SCi(a−i) + F i
0 (2)

Appendix A holds the derivation of the decomposition. If the two services enabled
by the technologies are substitutes to consumers, then the term ∆Ri

1(a
−i) captures the

degree to which the firm cannibalizes its net revenues from adopting the first technology by
adopting the second as well. If the two services are complements, then this term instead
reflects the additional net revenues from the first technology that the firm enjoys by also
adopting the second. The term ∆Ri

2(a
−i) accounts for the analogous effect on the firm’s

revenues from the second technology from its adoption of the first. Any variable economies
or diseconomies of scope present in the joint production of the two technological services
are given by SCi(a−i). Lastly, F i

0 represents a shared component of adoption costs that
the firm occurs only once when adopting one or both of the two technologies. Note that
we assume that rival adoption does not affect this shared adoption cost.

Consider the case where consumers view the two technological services as substitutes
and assume that there are no variable economies of scope so that SCi(a−i) = 0 for all
a−i. If a firm faces no rival adopters of either technology, then ∆Ri

1 and ∆Ri
2 are both

nonpositive. To see this, note that when the monopolist adopts only the first technology,
it then chooses quantity (or price) to maximize its net revenues in the first service market,
given that it has already incurred the relevant adoption costs. Since no quantity of the
second service is produced and since no other firm produces any of the first service, the
firm faces its most favorable demand curve for the first service under this situation. The
maximum net revenues from the first service can therefore not be less than if the firm also
produced some of the second service. By adopting the second technology and providing the
associated service, the monopolist cannibalizes its net revenues in the first service market.
The situation is analogous for the second service market. Hence, if a monopolist does enjoy
positive profit complementarity, this complementarity stems from a large shared component
of adoption costs.

Now consider the effect of rival adoption of one of the technologies in the above situation.
Since we have assumed that the shared component of adoption costs does not depend on
rival behavior, how rival adoption affects the profit complementarity depends wholly on
how it affects the degree to which the firm cannibalizes its own technology-specific net
revenues by offering both services. The first example below illustrates that if equilibrium
price-cost margins are relatively insensitive to adoption, then the dominant effect of rival
adoption is that the cross-firm cannibalization of revenues reduces the potential within-firm
cannibalization of revenues and hence profit complementarity increases. This is not to say
that the firm benefits overall from rival adoption. While the firm’s technology-specific net
revenues are reduced, the complementarity between its service operations increases. On
the other hand, if price competition among rivals is very intense, then rival adoption can
compound the ability of the firm to cannibalize its net revenues through joint adoption.

Allowing for scope economies or diseconomies in variable costs complicates the determi-
nation of profit complementarity and its changes considerably. Hence, the examples below
neglect this source of the profit complementarity. Nevertheless, one should note that these
economies or diseconomies of scope can be an important source of profit complementarity in
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some contexts. In fact, as Bulow et al. (1985) demonstrates, cost interactions may generate
profit complementarity or anti-complementarity even where demands for the service types
are independent.

2.3 Examples

We present two polar examples that illustrate how the rules of the game will affect whether
profit complementarity is increasing or decreasing as rival firms adopt more technologies.
The examples are chosen for their relative ease in deriving the equilibrium of each post-
adoption subgame and the clarity with which they highlight the sources of change in com-
plementarity. The first example removes any post-adoption strategy by firms to show how
the effect of cross-firm revenue cannibalization on potential within-firm cannibalization will
lead to increasing profit complementarity. The second example, on the other hand, demon-
strates that very sensitive prices (as in the Bertrand model) will result in decreasing profit
complementarity.

We also provide a variation on the first example suited to our empirical context. This
third example extends the first by considering an additional source of adoption profits from
feeding diagnostic imaging patients into a hospital’s treatment services.

2.3.1 Example with exogenous price-cost margins

We start with a particularly tractable, albeit restrictive, example to illustrate one of the
primary sources of change in profit complementarity over market structure. The key feature
of the example is that service price-cost margins do not vary over the first-stage decisions
of any firm. By fixing these margins, we are able to highlight the roles that within-firm
cannibalization and cross-firm cannibalization play in the determination of profit comple-
mentarity. We also assume constant marginal costs and disregard cost interactions in order
to focus on the cannibalization effects; however, we consider including shared adoption
costs below. The basic result is that cross-firm cannibalization reduces potential within-
firm cannibalization, and hence adoption by rivals will increase the profit complementarity
that a firm faces in its own adoption decisions.

In this environment, there are no strategic considerations in the post-adoption sub-
games. So long as a firm’s price exceeds marginal cost, the firm will produce to meet
demand at that price if it has adopted the relevant service technology. Consumers in the
market may purchase at most one unit of either type of service. The fixed-prices restriction
assures that a consumer’s preference ordering over the four firm-service pairs does not de-
pend on the adoption decisions of the firms in the first stage. These adoption decisions only
determine the budget set from which consumers may choose. We assume that consumers
have heterogeneous preferences over the firm-service pairs and show that with sufficient
heterogeneity, the profit complementarity faced by a firm will increase with rival adoption.

We find some justification for these assumptions from our empirical context. In a market
with very high Medicare penetration, the assumption here of a fixed price-cost margin may
be a reasonable approximation. Furthermore, if a hospital is part of a larger hospital
system that interacts with HMOs on a national or regional level, the exogeneity of prices
to the local market structure again seems sensible. Lastly, if hospitals provide these types
of diagnostic services merely to feed patients into profitable treatment services, we may
interpret the margin instead as an expected profit term per patient scan, dependent on
factors exogenous to the SPECT/PET market structure.

One can find the details of the result in Appendix A. Under the stated assumptions,
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the adoption decisions of a firm will exhibit negative profit complementarity for any fixed
adoption decisions of the other firms. The negative profit complementarity stems from the
fact that the hospital will cannibalize utilization of one service by offering the other as well.
That is, ∆Ri

1(a
−i) and ∆Ri

2(a
−i) are both negative. However, if a rival adopts an additional

technology, then the complementarity faced by the firm is greater than if the rival chose
not to adopt that technology. This latter result arises because the rival’s adoption, in
cannibalizing usage of the incumbent’s services, can only reduce the incumbent’s potential
self-cannibalization. Again, the effect of cross-firm cannibalization on potential within-firm,
cross-service cannibalization drives the result. The rival adopter takes customers from the
pool that would otherwise purchase either service offered by the original firm. While this
makes the original firm worse off, it reduces the ability of the firm to harm itself further by
offering both services.

While adoption by a rival increases the profit complementarity between the two adoption
decisions, the profit complementarity remains negative in this example without shared
adoption costs. In the presence of adoption costs that are common to the two technologies,
the complementarity for a fixed opponent decision profile may be driven positive; however,
the change in complementarity will be unaffected. A large enough adoption cost shared
between the two technologies could outweigh the self-cannibalization of quantity demanded
brought about by adoption of an additional technology. However, the independence of
this adoption cost to the decision of rivals ensures that it has no effect on the change in
complementarity across rivals’ decisions.4

2.3.2 Example with Bertrand competition

One should suspect that the increase in profit complementarity from rival adoption in the
previous example depends substantially on the lack of pricing strategy. A monopolist has no
ability to adjust prices when offering both services so as to reduce the self-cannibalization
effect through price discrimination. Furthermore, adoption of a rival of the same tech-
nology does not induce competition that drives down the service price-cost margins and
exacerbates the cross-firm cannibalization of revenues. We turn now to another polar case
to illustrate how intense price competition among adopters may lead to decreasing profit
complementarity. We shall see that Bertrand competition in the individual services, and
substitution between the services, will lead to decreasing profit complementarity from rival
adoption.

The source of the decreasing profit complementarity in this example is very similar to
the result described in the introductory example of Judd (1985). If one firm adopts both
technologies and the other adopts one of them, the price war in the service provided by
both firms will not only destroy the profitability of offering that service, but the low prices
will also draw consumers away from the other service, hence doubly hurting the profits of
the firm that provides both. In Judd’s example, the incumbent firm would even be willing
to incur a positive exit cost to get out of the submarket in which the other firm entered.
This willingness to pay is a fairly good indicator that the rival’s strategy has negatively
affected the profit complementarity between the two decisions.

In Appendix A, we provide the details of this example with Bertrand competition within
service markets and Hotelling competition across service markets to illustrate that rival

4One can certainly imagine situations where adoption costs do change as the markets see higher numbers
of competing adopters, in which case this latter result may change. For instance, if a hospital needs
regulatory approval to purchase the scanners or provide these services, it may incur additional lobbying
costs to persuade regulators that its adoption is not redundant.
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adoption in the presence of intense price competition drives down complementarity between
a firm’s adoption decisions. Prices for any service that both firms provide will be driven
down to marginal cost, as in the Bertrand model. Note that this result holds even if one
of the firms also provides the other service because that firm can undercut the price of the
other without significantly affecting the relative prices of the two services. A monopolist
having adopted both technologies will be able to reduce the self-cannibalization in the
services through price discrimination, although there will still be some cannibalization with
travel costs in the assumed range. The resulting price war from adoption of one technology
by the other firm destroys the ability of the firm that operates in both to price discriminate.
Furthermore, the low prices that result from the price war draw away consumers from the
neighborhood of the other service. We have then that the presence of a rival exacerbates
the ability of a firm to cannibalize its revenues from adopting one technology by adopting
the other.

2.3.3 Example with patient feeding

Since the investigation focuses on medical diagnostic imaging technology, one should con-
sider that a hospital may be motivated to adopt these technologies primarily by the prospect
of feeding patients into its treatment services. Under such a motivation, a hospital may
care far less about the direct profits from providing the diagnostic services. The analysis
of this scenario closely resembles that with exogenous price-cost margins. However, the
present case predicts that profit complementarity is affected by the number of hospitals
in the market, not only on their adoption decisions. While rival adoption of additional
technologies increases profit complementarity just as before, profit complementarity also
increases with the number of hospitals in the market.

Appendix A presents a stylized example of patient feeding to illustrate that profit com-
plementarity is increasing not only in rival adoption, but also in the number of hospitals
in the market. The example differs from Example 2.3.1 in that the increase in profit com-
plementarity stems not only from reduced self-cannibalization in quantity, but also from a
reduction in the value of each patient in the cannibalized quantity. Since patients in mar-
kets with more hospitals have more options for treatment services, the expected value to a
hospital of each scanned patient decreases as the number of hospitals increases. While again
this hurts the profitability of the individual technologies, it serves to increase the profits
to joint adoption relative to specialized adoption by reducing the self-cannibalization of
technology-specific revenues.

2.4 Testing for Changes in Profit Complementarity

The level of profit complementarity significantly affects the equilibria that tend to arise in
a multi-product oligopoly game, as illustrated by Shaked and Sutton (1990). In contexts
with positive complementarity, equilibria where fewer firms adopt both technologies will be
more common. With negative complementarity, one would expect equilibria where a larger
number of firms adopt only one of the technologies.

One may then use observations of the equilibrium patterns across markets to infer
whether profit complementarity is positive or negative, subject to the limitations discussed
in Section 4. If one observes that firms tend to adopt either both technologies or neither
of them, then we may infer positive profit complementarity. Alternatively, if one sees a
tendency of firms to adopt either one technology or the other, then we may infer negative
complementarity. The accuracy of these inferences, of course, depends crucially on one’s
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ability to control for other forces at work, especially correlation in the profitability of the
individual adoption decisions.

Similarly, one may observe changes in equilibrium patterns across market structures
to infer changes in profit complementarity. If profit complementarity increases with rival
adoption, then we should see a stronger tendency toward firms adopting one technology
or the other in less competitive markets and toward firms adopting both technologies or
neither in more competitive markets. From the examples above, we suspect that contexts
for which price competition is limited in intensity would tend to exhibit increasing profit
complementarity.

One could, of course, impose structural assumptions on the second-stage subgames that
generate increasing or decreasing profit complementarity and use this structure to reduce
the degrees of freedom in testing other hypotheses regarding the model. Alternatively, one
could take a “black box” approach to the second-stage subgames and use the estimated
changes in profit complementarity to make inferences regarding the nature of competition
within and across the submarkets.

The latter approach appears preferable for the case of hospital diagnostic imaging ser-
vices. Competition among hospitals is thought to depart somewhat from conventional
models of imperfect competition. The presence and strength of both insurance and inter-
mediaries between the providers and consumers of hospital services, and the fact that most
hospitals are non-profit organizations, have led market observers to question whether tradi-
tional models of competitive behavior among firms should be applied to hospitals. Papers
such as Noether (1988) and Gaynor and Vogt (2003) find ambiguity in whether hospitals
compete in price, quantity, or quality. Luft et al. (1986) find that the effect of rivalry on
provision of specialized clinical services depends significantly on whether the services are
intended to directly attract patients, such as twenty-four hour emergency care, or are in-
tended to attract physician affiliations and feed patients into further treatment services, as
would likely be the case for diagnostic imaging. A hospital may even have a greater in-
centive to provide a service also provided by a rival, independent of complementarity with
other decisions, if the Medical Arms Race hypothesis holds.

We turn now to the estimation of adoption decisions regarding SPECT and PET scan-
ners. Before considering the econometric specification, we examine the two technologies,
the dataset, and assumptions on the data used in the estimation.

3 Empirical Context

3.1 SPECT and PET

The two diagnostic imaging technologies present an appropriate setting for the study of
profit complementarity in multi-product oligopolies. For many diagnostic purposes, either
technology may be used; however, the optimal technology varies across diagnostic proce-
dures, especially considering their relative operating costs. In general, PET scans provide
the radiologist with substantially better resolution, whereas SPECT scans cover larger areas
of the body, utilize a wider variety of radiopharmaceuticals, and have a clear cost advantage.

Both SPECT and PET fall within the category of nuclear medicine imaging, or ra-
dionuclide imaging. Whereas CT and MRI scanners provide only a structural view of the
inner anatomy, nuclear medicine imaging provides functional and physiological informa-
tion. Rather than emitting radiation beams through the patient, as conventional X-rays,
mammographs, and CT scanners do, nuclear imaging involves the injection of radiopharma-
ceuticals (“tracers”), which emit gamma rays as the small amounts of radioactive material
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decays in the body. The scanner detects these gamma rays emanating from the patient
to reconstruct a two- or three-dimensional image of the organs under study.5 For exam-
ple, since cancer cells divide rapidly, they exhibit high rates of metabolic activity. They
therefore absorb more of the radionuclide material than typical cells and hence show up in
nuclear images as “hotspots” or “coldspots.” This information enables detection of cancer-
ous areas sooner than does either CT or MRI scanning, which look for tumors that have
formed in the tissue. Furthermore, these scans can, in some instances, substitute for inva-
sive diagnostic surgery, such as biopsy. However, radionuclide imaging has not yet reached
the resolution possible with CT and MRI scans, and hence they are not widely used in
areas such as mammography and are often preceded by a CT or MRI scan.

Scanning technologies involving radioisotopes actually predate even CT scanning. How-
ever, the advent of CT and MRI rendered obsolete the need to inject patients with radioac-
tive materials. Recently, however, as technology has made the process safer and more
useful, nuclear imaging has found an important place in early diagnosis of cancer, epilepsy,
cardiac disease, and other particular maladies.

SPECT is the cheaper and more widely available of the two technologies. The SPECT
scanners form the organ image using a gamma camera that detects the gamma rays emitted
from the decay of the radioisotope that has been injected into the patient. While the prin-
cipals of SPECT imaging were developed in the 1960s and prototypes had been developed
by the late 1970s, the SPECT scanner did not become a clinically available technology until
the late 1980s.

PET scanners detect gamma rays from two emission sources. They therefore tend to
have better resolution and give more precise functional information than SPECT scanners.
However, whereas PET scans primarily employ the fluorine-18 deoxyglucose (FDG) tracer,
SPECT scans can use a variety of tracers, which allows improvements in the sensitivity
of the scan by adapting the tracer to the targeted organ. The first PET scanner was
introduced in 1977 and had made only limited diffusion into hospitals as of 1998, the year
of our data. Because PET scans involve the use of a tracer with a very high rate of decay,
PET scanners must be located very near a cyclotron that generates these radioisotopes.
This contributes to the very substantial costs of providing PET service.

Both scanners are manufactured by essentially the same set of firms, dominated by
GE and Siemens. Given the oligopoly structure of the scanner market, one may question
whether adoption costs are invariant to the hospital market structure as we have assumed.
Since the suppliers of these machines enjoy substantial market power, they may employ
price discrimination based on the market environment in which the purchasing hospital
operates. If we assume, intuitively, that the suppliers wish to sell as many types of machines
to as many hospitals as it can, then the suppliers would likely partially compensate for any
profit complementarity between the adoption decisions. That is, a supplier may be aware
that a hospital facing no rivals in either technology faces stronger self-cannibalization in
joint adoption. The supplier may then offer the dual-technology bundle to such a hospital
at a substantial discount over that for a hospital facing rivals with one or more of the
technologies. The data provides no means of controlling for this effect because we do not
observe the make or price of the scanner purchased by the hospital. If this effect is present,
then it will diminish the changes in profit complementarity over market structures. That
is, the presence of this effect, and the inability to control for it, would bias the apparent
changes in profit complementarity towards zero.

5See Lopes and Chepel (2004) and Spencer et al. (1995) for a detailed description and comparison of the
two imaging techniques.
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The fixed costs of adopting the two technologies differ enormously. While SPECT facil-
ities can be constructed for under one million dollars, PET facilities, especially given that
an on-premises cyclotron is often required to generate the tracer, are far more expensive.
Keppler and Conti (2001) estimate the costs of building a PET facility as ranging from
$1.4 to $6.2 million, depending on the quality of the scanner and whether a cyclotron is
installed. Furthermore, the average variable costs of PET scans typically exceed those of
SPECT scans, although the costs of both vary substantially over diagnostic procedures.
One should note that Berger et al. (2003) finds little difference in the average cost of PET
scans between those for which the FDG tracer was manufactured on premises for those for
which the FDG tracer was purchased from a local manufacturer.

Given the substantial fixed costs of providing each service, one would speculate that
substantial economies of scale are present in the provision of each if typical utilization is
below capacity. Indeed, both Berger et al. (2003) and Keppler and Conti (2001) argue
that per-scan PET costs decrease strongly with quantity. While SPECT scans would also
exhibit strong economies of scale at lower production levels, the utilization rates of this
technology tend to be higher, even reaching capacity at some institutions.

The substantial fixed costs shared between adoption of the two technologies is as an
important feature of this context. The adoption of either technology generally requires the
development of a nuclear medicine division of the hospital’s radiology department; however,
this cost would occur only once when adopting both technologies. Furthermore, radiologists
and technicians trained in the one of the technologies are most likely trained in the other
as well, reducing the incremental cost of recruiting personnel. These shared fixed costs
contribute to economies of scope in the joint provision of the two services. On the other
hand, that the two services share labor input of radiologists and technicians implies likely
diseconomies of scope in variable costs that counter the economies of scope from fixed costs.

An economist may be tempted to view the two technologies as vertical substitutes.
PET technology, given its better resolution and far higher cost, would be seen as the high
quality scanner, whereas SPECT technology would be seen as the low quality, cost-saving
technology. While not a bad approximation when analysis is restricted to specific diagnostic
areas, one should be cautious about imposing this view in general. Several studies, including
Bairey Merz and Berman (1997) and Spencer et al. (1995), have identified cases for which
SPECT is the superior diagnostic technology. The Spencer et al. (1995) study demonstrates
even quality variation within diagnoses of similar types of pathoses (e.g. types of epilepsy).
For the most part, the analysis and estimation of hospital adoption decisions takes an
agnostic view regarding the precise substitution patterns present on the demand-side. We
do assume that consumers view the services as substitutes; however, both vertical and
horizontal differentiation should generate the sort of profit complementarity patterns that
we investigate.

In particular, one should note the prevalence of SPECT use in cardiological diagnostics
during the late 1990s. Bairey Merz and Berman (1997) conclude that the gain in resolu-
tion from PET over SPECT does not justify the difference in cost. Furthermore, Medicare
reimbursement for PET diagnostics was more or less limited to oncology. The very few
cardiological PET diagnostic procedures eligible for reimbursement, such as mycardial via-
bility, were eligible only when a previous SPECT scan was inconclusive. We will exploit the
dominance of SPECT in cardiology to aid in identification through exclusion restrictions
for cardiology services on PET profitability.
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3.2 Data

Hospital markets are defined using the 802 Health Service Area (HSA) divisions delineated
by Makuc, et al. (1991). This partition of U.S. counties has been utilized in other studies
on medical technology, including Baker (2001), Dafny (2003), and Schmidt-Dengler (2005).
Because HSA’s were designed to approximate markets for hospital-based health care ser-
vices, they form a more appropriate definition than the more general-purpose divisions
such as the Metropolitan Statistical Areas used in Noether (1988). However, one should
note that HSA’s were constructed from data on Medicare patient flow between counties for
routine medical services. As SPECT and PET service are beyond routine care, this market
definition is likely too narrow. One would expect that a patient would be willing to travel
a farther distance for a technologically intensive service like diagnostic imaging than for
routine health services. Hence, the definition used presumably understates the true extent
of the market for these services. Alternative approaches include markets based on a fixed
radius, as in Robinson and Luft (1985) and Luft et al. (1986), or markets that account for
flow from neighboring markets, as in Dranove, Shanley, and Simon (1992).6 Certainly, no
definition perfectly captures the true reach of strategic interaction among hospitals. The
HSA is chosen as the definition mainly because it was designed to estimate markets for
hospital services, despite the fact that the markets for SPECT and PET service are proba-
bly broader than the markets for basic services. In addition, that the HSA’s are defined as
groups of counties facilitates aggregation of county-level data to obtain the relevant market
characteristics.

We assume that the set of hospitals in each market is exogenous to the adoption deci-
sions. That SPECT and PET services are relatively small components of a hospital’s overall
operations justifies this assumption. We then have in each market a fixed, observable set
of potential adopters of the two technologies. One qualification that arises is the question
of whether there exist free-standing SPECT and PET diagnostic imaging centers that may
compete with hospital-based services. While the number of free-standing clinics providing
SPECT and PET service has grown in recent years, they did not have a substantial enough
presence in the late 1990’s to pose a problem to our estimation.

County-level data was acquired from the Area Resource File (ARF), which combines
demographic data obtained from the U.S. Census with specialized data related to health care
from the American Medical Association, the Centers for Medicare and Medicaid Services,
and other sources. Data from 1998 on population size, median household income, HMO
penetration, and Medicare penetration were aggregated up to the HSA level to form the
market characteristics.

Hospital characteristics, including whether or not SPECT and PET are offered, are
drawn from the 1999 AHA Guide, which was compiled from the 1998 American Hospital
Association (AHA) Annual Survey. The guide provides a directory listing of almost all
hospitals in the United States in 1998. The relevant information for this study include the
hospital’s county, control type, service type, system membership, exogenous characteristics
of the hospital such as bed size and outpatient visits, and list of facilities. To be included
in the sample, the institution must be a non-federal general medical and surgical hospital
located in the forty-eight continental states.7 In addition, hospitals with missing informa-
tion were not included. Of the over six thousand entries in the directory, only 3135 were
admissible based on this criteria.

6See Dranove, Shanley, and Simon (1992) for a discussion of how market definition in studies of hospital
competition may bias estimation.

7Hospitals in Alaska, Hawaii, and the U.S. territories were not assigned Health Service Area (HSA) codes.
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The AHA Guide (1999) provides listings for three types of associations among hospitals
that may indicate joint decision: systems, networks, and alliances. A system is defined by
the Guide as “two or more hospitals that are owned, leased, sponsored, or contract managed
by a central organization.” A network is defined as “a group of hospitals, physicians, other
providers, insurers, and/or community agencies that work together to coordinate and deliver
a broad spectrum of services to their community.” Finally, an alliance is defined as “a formal
organization, usually owned by shareholders/members, that works on behalf of its individual
members in the provision of services and products and in the promotion of activities and
ventures.” While all three associations indicate a certain degree of coordination that may
affect provision of diagnostic services, we assume that adoption decisions are coordinated at
the the hospital system level. One should note that there appears to be strong correlation
in the composition of the three associations, with many networks and alliances consisting
only or principally of hospitals within the same system. While hospital networks have
attracted scrutiny recently from antitrust agencies as possibly enabling some degree of
price coordination, Burgess, Carey, and Young (2005), in their study of California hospital
networks, find that evidence for joint pricing is strongest in networks of hospitals under
the same system and find only weak evidence of price coordination in networks of hospitals
across systems.8

Given our focus on strategic interaction among hospital oligopolists, the presence of
markets with a large number of competing hospitals complicates our analysis. In such
markets, hospitals most likely compete with only a subset of the other hospitals; however,
the data does not permit us to distinguish hospitals that are linked strategically in these
markets. Furthermore, because we model strategic interaction as a simultaneous game of
imperfect information regarding opponents’ adoption, to assume that all hospitals compete
with all others raises quite exorbitantly the dimensionality of the computation of expected
opponent adoption in these large markets. Therefore, we limit our sample to those markets
for which we observe no more than seven hospitals.

This restriction to small markets leaves 2011 observations in 641 markets. In the sample,
there are 125 monopoly hospital markets, 172 duopolies, 155 triopolies, and decreasing
numbers of hospitals in markets of four to seven rival hospitals. Note that these figures
count rival hospitals: that is, hospitals from distinct hospital systems. For example, eight
of the monopoly markets contained more than one hospital, all of which were managed by
the same hospital system.9

With only six percent of the sample adopting PET, and only one and a half percent
adopting PET without also adopting SPECT, the low variation in this component of the
dependent variable is cause for concern. Nevertheless, there should be sufficient variation
in the choice proportions across market structures to enable estimation, so long as we are
parsimonious with the characteristics that enter PET profitability and the profit comple-
mentarity between the two services.

One should also note that the sample substantially underrepresents teaching hospitals
because of our exclusion of large hospital markets. When these markets are included,
teaching hospitals constitute six percent of the hospitals, whereas in the sample used for

8As Burgess, Carey, and Young (2005) note, hospitals already in the same system may form networks to
better share information and coordinate decisions among employees.

9The market comprised of the Minnesota counties Cottonwood, Jackson, Murray, and Nobles contained
five hospitals, all of which were run by Sioux Valley Hospitals and Health System of Sioux Falls, SD. The
market comprised of the Iowa counties Cerro Gordo, Franklin, Hancock, Kossuth, Winnebago, and Worth
contained four hospitals, all run by Mercy Health Services of Farmington Hills, MI. The other six monopoly
markets contained two hospitals.
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estimation, they constitute little more than two percent.

4 Estimation

4.1 Econometric Specification

Consider hospital i with characteristics given by the vector wi, which for now may include
characteristics that are observed or unobserved, exogenous or endogenous, and hospital-
specific or market-specific. For estimation, we use an indexed version of the choice set
rather than the form used in Section 2. The discrete dependent variable ai takes values
in A ≡ {0, 1, 2, 3}, representing the choices respectively to adopt neither technology, adopt
only SPECT service, adopt only PET service, and adopt both technologies. The payoff to
firm i from choosing j ∈ A is:

π̃i
j = πj(wi) + εij (3)

Each εij is independently and identically distributed as a Type I Extreme Value random
variable. Without further details, the specification follows the standard multinomial logit
model (MNL). However, the Independence of Irrelevant Alternatives (IIA) property well-
known to the MNL model does not fit with our interpretation of the choice set. We should
expect that the unobserved heterogeneity in preferences exhibits correlation between options
1 and 3 because both entail the adoption of SPECT, and between 2 and 3 because both
entail the adoption of PET. Furthermore, the nested logit model would not be appropriate
either, because no a priori ordering of the SPECT and PET nests appears any more
appropriate than the others if the decisions for the two services are made jointly. Rather,
we maintain the assumption that the εij are independently distributed and account for the
likely correlation in unobserved heterogeneity through our treatment of the mean payoff
function.

Two features of the specification permit a richer preference structure than the standard
multinomial logit. First, the mean payoff function for the option denoting the joint bundle
is defined as in the model detailed in Section 2. That is, the mean payoff term πj in (3) is
specified differently for the dual-adoption option than for the others. Specifically, the mean
payoff to the third option is:

π3(wi) = π1(wi) + π2(wi) + Γ(wi) (4)

where the Γ(wi) term captures the complementarity between SPECT and PET adoption.
The treatment here of the third option takes into account its economic interpretation. Fur-
thermore, this specification is convenient given our aim to estimate the effects of hospital
market structure on the complementarity between the decisions. This approach was pro-
posed by Gentzkow (2005) in his study of complementarity in consumer decisions regarding
print and on-line newspapers. The approach has also been used in Augereau, Greenstein,
and Rysman (2005) in their study of 56K modem standards.

The mean payoff of providing neither service is normalized to zero, as is necessary
given that only the payoff differences determine the observation’s choice. It remains then
to define the mean payoffs for the individual service options and for the complementarity
term. We account for the likely correlation patterns through the specification of these
mean payoff terms in a manner similar to that used in Gentzkow (2005). That is, among
the hospital’s characteristics are a pair of unobserved characteristics (νi

1, ν
i
2) that capture

the heterogeneity among hospital preferences for adopting SPECT and PET individually.
In particular, νi

1 does not enter the mean payoff for option 2 and νi
2 does not enter that
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for option 1. We assume that these characteristics are independently distributed across
hospitals; however, the two characteristics for the same hospital need not be independent
of each other.

Combined with our treatment of the mean payoff of the dual-adoption option, the terms
(νi

1, ν
i
2) will allow for correlation in unobserved heterogeneity among the options. To see

this, consider an expression of payoffs where these terms have been removed from wi and
πj :

π̃i
1 = π1(wi) + νi

1 + εi1

π̃i
2 = π2(wi) + νi

2 + εi2

π̃i
3 = π1(wi) + π2(wi) + Γ(wi) + νi

1 + νi
2 + εi3

Even though εi1 and εi3 are independent, the unobserved preference for SPECT (νi
1 + εi1)

will correlate with that of both SPECT and PET (νi
1 + νi

2 + εi3), and likewise for those of
PET and both SPECT and PET. Correlation in unobserved preferences for SPECT and
PET would be captured by correlation between νi

1 and νi
2.

We assume that νi
1 and νi

2 follow a bivariate normal distribution with zero means,
variances σ2

1 and σ2
2, and correlation parameter ρ. A positive value of ρ would indicate

that hospitals that tend to be more profitable in adopting SPECT also tend to be more
profitable in adopting PET, even if no profit complementarity exists between the two.
Such positive correlation would also capture unobserved heterogeneity among hospitals in
the preference for technology overall. Negative correlation, on the other hand, may imply
unobserved gains from specialization in one of the imaging services. The correlation actually
presents an identification problem in that correlation between νi

1 and νi
2 has a similar effect

on the payoffs as the complementarity term Γ. This issue will be discussed further in the
subsection on identification below. The other random terms, the εij ’s, capture the remaining
idiosyncratic preferences over the alternatives.

To capture the strategic nature of the decisions, let ri
1 and ri

2 denote the number of rival
hospitals in hospital i’s market that adopt SPECT and PET respectively. Note that these
variables count neither hospital i nor any hospital in the same system as i. The question of
endogeneity with respect to the variables ri

1 and ri
2 immediately arises. In hospital markets

with favorable unobserved conditions for SPECT, we would expect to see higher numbers
of firms operating in this submarket. These same conditions would make hospital i more
likely to adopt SPECT. Since these conditions are unobserved, the problem becomes one of
omitted variable bias that induces correlation between ri

1 and εi1 or νi
1. The same problem

of course arises between ri
2 and εi2 or νi

2.
To address this issue, we take the approach of Seim (2004) and model the strategic

interaction among rival hospitals as a simultaneous discrete game of imperfect information.
Instead of observing the number of rival adopters, hospital i forms beliefs regarding the
choice probabilities, P−i, of its rivals and uses these beliefs to construct expectations of
how many rivals it would face in each service. With these beliefs and the hospital’s observ-
able exogenous characteristics xi, the expected profitability of the individual adoptions are
specified:

π1(xi, P−i, ν
i) = α1 + x′iβ1 + δ11E

[
ln(1+ri

1)
∣∣P−i

]
+ δ12E

[
ln(1+ri

2)
∣∣P−i

]
+ νi

1

π2(xi, P−i, ν
i) = α2 + x′iβ2 + δ21E

[
ln(1+ri

1)
∣∣P−i

]
+ δ22E

[
ln(1+ri

2)
∣∣P−i

]
+ νi

2 (5)

The use of the logarithm in (5) gives the payoffs the desirable property that the marginal
effect on profits of additional rival adoption decreases with the number of rivals. That is,
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the adoption by a third firm would have less of an effect on profits than the adoption by a
second firm, and so on. This functional assumption was proposed by Berry (1992) and has
become fairly standard in discrete choice entry models.

The complementarity term is similarly specified:

Γi(P−i) = α3 + x′iβ3 + δ31E
[
ln(1+ri

1)
∣∣P−i

]
+ δ32E

[
ln(1+ri

2)
∣∣P−i

]
(6)

In the actual estimation, we exclude from the complementarity term the exogenous char-
acteristics xi, with the exception of the number of rival hospitals present in the hospital
market. These restrictions are not innocuous, as it is conceivable that many of the same
characteristics that effect the profitability of providing SPECT or PET service also effect
the degree to which the two services interact. Nevertheless, given that our focus is on the
effects of the strategic variables, these exclusions are reasonable in the interest of parsimony.

One might ask why Equations (5) and (6) do not include a term dependent on the
number of rivals in both submarkets. Such a term is excluded mainly for simplicity. The
specifications of the profitability of the individual services and the complementarity between
them represent an environment where a hospital loses some business to each rival in each
submarket, but is unaffected by the identities of these rivals and their other enterprises. A
richer model of the underlying competition may take into account a hospital’s incentives to
signal quality through the provision of multiple services and even some coordination among
rival firms that operate together in both submarkets. In such cases, the inclusion of a term
for the number of hospitals that operate in both markets may be appealing, even if the
identities of the rivals are still brushed aside. In the present context, however, we envision
that a hospital does not care that a rival is present in both markets, only that the rival is
stealing business in each of the submarkets.

Equations (5) and (6) complete the specification of the option payoff functions:

π0(xi, P−i, ν
i) = 0

π1(xi, P−i, ν
i) = α1 + x′iβ1 + δ11E

[
ln(1+ri

1)
∣∣P−i

]
+ δ12E

[
ln(1+ri

2)
∣∣P−i

]
+ νi

1

π2(xi, P−i, ν
i) = α2 + x′iβ2 + δ21E

[
ln(1+ri

1)
∣∣P−i

]
+ δ22E

[
ln(1+ri

2)
∣∣P−i

]
+ νi

2

π3(xi, P−i, ν
i) = π1(xi, P−i, ν

i) + π2(xi, P−i, ν
i) + Γ(P−i) (7)

A hospital’s beliefs about its rivals’ choice probabilities will be determined by what
information about the rival the hospital observes. The following assumption characterizes
the information available to hospitals.

Assumption 2. All exogenous market characteristics and hospital characteristics of each
hospital in the market (i.e. all xi) are observable to every hospital in the market. The
terms νi

1, ν
i
2, and εij for j ∈ A are privately known to hospital i.

Assumption 2 effectively states that rivals to hospital i observe no more information
about i than does the econometrician.10 The assumption is admittedly strong. We would
expect that hospitals would have better information about their rivals, having interacted
with them in the market repeatedly, than does an outside observer. One might desire to
model this informational feature by allowing rival hospitals to observe νi

j , perhaps imper-
fectly, and allow hospital i to retain εij as private information. For our purposes, such an
embellishment would come at great computational cost because we would have to integrate

10In fact, they observe less because they do not see ai.
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the equilibrium choice probabilities over the distribution of (νi
1, ν

i
2). We retain the interest-

ing case of allowing rivals to observe some of the unobserved characteristics of the hospital
as a subject for future research.

We assume that in equilibrium, the conjectured beliefs match the actual choice probabil-
ities implied by the observed exogenous characteristics. Let ψ(P−i;xi) denote the mapping
that gives a hospital’s best response choice probabilities conditional on its characteristics
vector xi and the choice probabilities of its rivals P−i. Note that the range of ψ is the three-
dimensional unit simplex. Entry j of ψ(P−i;xi), denoted ψj(P−i;xi), is the probability that
option j ∈ A is the best response of hospital i to the rival choice probabilities P−i, given
its own characteristics xi. The probabilistic nature of the hospital’s best response reflects
the fact that the econometrician does not observe the hospital’s private information, and
therefore can not determine with certainty whether any option is or is not optimal. Given
our assumptions regarding payoff equations and the distribution of εij , the best response
mapping is:

ψj(P−i;xi) =
∫

νi

exp
[
πj(xi, P−i, ν

i)
]∑3

k=0 exp
[
πk(xi, P−i, νi)

] fν(νi) dνi (8)

where fν is the bivariate normal probability density function with mean parameters 0 and
with variance and correlation parameters given by σ2

1, σ
2
2, and ρ.

For a market of n hospitals, let Ψ(P ) ≡
(
ψ(P−i;xi)

)n

i=1
denote the mapping that

provides the best response choice probabilities for all hospitals in the market given that
hospitals take their beliefs regarding rivals from P . An equilibrium is a vector of choice
probabilities P that is a fixed point of the mapping Ψ: that is, Ψ(P ) = P .

The presence of multiple equilibria stands as a fundamental problem of discrete strategic
models of this type. Depending on the hospital characteristics and model parameters,
there may exist several fixed points of Ψ. For instance, suppose that there are two rival
hospitals A and B in the market and that the parameters and characteristics are such
that the option payoffs are symmetric among the hospitals. In this case, there will exist a
symmetric equilibrium; however, there may also exist other equilibria. If hospital A believes
B will adopt SPECT with a high probability, and if B’s adoption reduces the profitability
of adopting SPECT, then A will likely adopt that technology with only low probability.
Given that A will adopt with only low probability, B would likely find adoption of SPECT
profitable, and hence choose to adopt with high probability. Of course, the roles could also
be reversed. Furthermore, the presence of two technologies presents the opportunity for
equilibria where A adopts both and B adopts neither (or vice-versa), and where A adopts
one and B the other (or vice-versa). We address this issue in Section 4.2 below.

We will estimate the parameters of the model using a variation on maximum likelihood
estimation. Let θ ≡ (α′, β′, δ′, σ1, σ2, ρ)′ denote the parameters to be estimated. Let the
sample consist of L hospital markets, where market l consists of nl hospitals, so that the full
sample consists of n ≡

∑L
l=1 nl observations. Let al denote the vector of observed choices

of the hospitals in the market, let X l denote the matrix of their characteristics, and let
a and X denote the full sample counterparts to al and X l. The log-likelihood function is
then:

lnL (θ; a,X) =
L∑

l=1

nl∑
i=1

3∑
j=0

1{al
i = j} · lnψj

(
P l
−i(θ,X

l);xl
i, θ

)
(9)

where

ψj(P l
−i;x

l
i, θ) =

∫
νi

exp
[
πj(xl

i, P
l
−i, ν

i; θ)
]∑3

k=0 exp
[
πk(xl

i, P
l
−i, ν

i; θ)
] fν(νi; θ) dνi (10)
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and where P l(θ,X l) = Ψ
(
P l(θ,X l); θ,X l

)
.

4.2 Identification

Before discussing the estimation procedure, we must address the issue of identification of
the model. For this purpose, we consider first the identification of the parameters when the
true equilibrium choice probabilities are known. We then consider the additional challenges
brought about the fact that we do not observe these choice probabilities.

Suppose first that we knew the true choice probabilities P l∗ that characterize the equilib-
rium of each market l. If this were the case, P l∗ would be a fixed point of the best-response
mapping at the true parameter values θ∗. If θ∗ is the only parameter vector such that
P l∗ = Ψ(P l∗; θ∗, X l) for all l, then these parameters are identified by the fixed-point map-
ping. However, if there exists another parameter vector θ 6= θ∗ such that P l∗ = Ψ(P l∗; θ,X l)
for all l, then the model is not identified. Indeed, the log-likelihood function in (9) would
evaluate to the same values at both θ∗ and θ when evaluated at the true choice probabilities.
A necessary condition for identification is therefore:

Assumption 3. There exists a unique vector of parameters for which the true choice
probabilities constitute an equilibrium. That is, there exists θ∗ ∈ Θ such that for all θ ∈ Θ,
θ 6= θ∗, there exists l ∈ {1, . . . , L} such that P l∗ 6= Ψ(P l∗; θ,X l).

One issue, as mentioned above, concerns the constant in the complementarity term
(α3) and the correlation parameter (ρ) between the unobserved profitability shocks to
SPECT and PET. As noted above, and discussed in Manski (1993), Athey and Stern
(1998), Gentzkow (2005), and Augereau, Greenstein, and Rysman (2005), these two pa-
rameters have a very similar effect on the choice probabilities. If hospitals tend to provide
both services or neither of them, then this could imply either positive complementarity or
positive correlation in νi

1 and νi
2. Likewise, tendency toward specialization in individual

services may be generated by negative complementarity or negative correlation. While the
non-linearity of the choice model may permit separate identification of α3 and ρ, we would
not want to rely on this source because it is sensitive to functional form. We observe hos-
pital characteristics related to cardiology services that may comfortably be excluded from
the profit equation of PET adoption, and these exclusions will aid in separating the effects
of the complementarity and the correlation.

The complementarity constant and correlation term, however, are of less interest than
the parameters δ31 and δ32, which capture the effects of rival entry on complementarity. If
the correlation in unobserved heterogeneity changes across market structure, then we have
an identification problem with respect to these parameters as well. For identification of
these parameters, we require the following assumption:

Assumption 4. The correlation between νi
1 and νi

2 is not affected by number of rival
hospitals faced by i, nor by the probabilities with which they enter the two submarkets.

The assumption states that market structure has no effect on the unobserved hetero-
geneity that generates a tendency for a hospital that is more profitable in one market to be
more or less profitable in the other market. If we imagine that such unobserved heterogene-
ity stems from some hospitals being better suited to employ medical technology because of
personnel or experience, then the assumption appears reasonable. Once this assumption is
imposed, the identification problem presented by the correlation in unobserved heterogene-
ity is contained to the identification of the constant level of complementarity between the
two services.
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For separate identification of the complementarity constant and the correlation param-
eter, we exclude the indicators for cardiology treatment services from PET profitability.
With these restrictions, any apparent effect of variation in cardiology services on PET
adoption will stem from complementarity between the adoption of the technologies. To
see this, suppose first that there is no complementarity between the two technologies and
that the presence of cardiology services increases the profitability of SPECT adoption.
We should then see that hospitals that offer cardiology services would more likely adopt
SPECT. However, there would be no such effect on PET adoption, regardless of whether
the unobserved preferences are correlated. Now suppose that there is positive complemen-
tarity between the adoption decisions. Although the presence of cardiology services does
not directly affect the profitability of PET adoption, the indirect effect through the increase
in SPECT adoption and positive complementarity will serve to increase the likelihood of
PET adoption.

The fact that we do not observe the true choice probabilities presents additional issues
with respect to identification. In particular, as with many strategic models, the presence of
multiple equilibria at some parameter values complicates the identification question. If for
some X l and θ, the mapping Ψ(· ; θ,X l) has multiple fixed points, then the log-likelihood
function in (9) is not well-defined at these values. In such cases, the different equilibria will
likely generate different values for the log-likelihood function and, without an equilibrium
selection mechanism, we can not distinguish the “correct” value. If there are multiple
equilibria at the true parameter values θ∗, then again the log-likelihood function at the
true parameters is not well defined and the model is not identified.

We therefore require that the equilibrium at the true parameters be unique. We justify
this assumption by noting the exogenous asymmetry of hospitals in the markets that con-
stitute our sample. Multiple equilibria are far more likely in markets for which the firms are
nearly symmetric than for markets where substantial asymmetries exist. For example, in a
market with one large hospital and one small hospital, the profits of the large hospital are
likely far less sensitive to rival adoption than those of the small hospital. In the extreme,
the hospitals in a simultaneous entry game behave as they would in a sequential adoption
game where the large hospital moves first. In general, the more exogenous variation in the
hospital characteristics among rivals in a market, the more dominating these characteris-
tics are relative to the strategic effects in determining the best-response choice probabilities,
and hence the less likely two different vectors of choice probabilities would constitute an
equilibrium. To check the validity of this assumption, we check that the equilibrium is
unique at the estimated parameter values.

While multiple equilibria at other parameter vectors clearly present challenges to the
search for the parameters, the model is identified so long as the equilibrium at the true
parameters is unique and Assumption 3 holds. To see this, consider the following function:

Υ
(
P ; a,X

)
=

L∑
l=1

nl∑
i=1

3∑
j=0

1{al
i = j} · ln pl

ij

where pl
ij is the choice probability of option j for hospital i in market l under the choice

probabilities P . If P 6= P ∗, then there exists a sample of observed choices a such that
Υ(P ; a,X) 6= Υ(P ∗; a,X).

If we allow for multiple equilibria at θ 6= θ∗, then the log-likelihood in (9) becomes a
correspondence. That is, lnL (θ; a,X) =

{
Υ(P ; a,X) : P = Ψ(P ; θ,X)

}
. Since P ∗ is the

only equilibrium at θ∗, lnL (θ∗; a,X) is single-valued. For identification, we must have that
for any θ 6= θ∗, there exist samples for which ` 6= lnL (θ∗; a,X) for all ` ∈ lnL (θ; a,X).
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So long as P ∗ 6= Ψ(P ∗; θ,X), then there exists a sample of observed choices such that
Υ(P ; a,X) 6= Υ(P ∗, a,X) for all P that are equilibria under θ 6= θ∗. By Assumption 3, P ∗

is an equilibrium only under θ∗, and hence ` 6= ln L (θ∗; a,X) for all ` ∈ lnL (θ; a,X).
One can think of the estimation problem as jointly estimating the parameters and the

choice probabilities. Sufficient variation in the observed choices will prevent other choice
probabilities from appearing equally likely as the true probabilities. Sufficient variation
in the exogenous hospital characteristics ensures that only the true choice probabilities
constitute an equilibrium under the true parameters and that only the true parameters will
generate the true choice probabilities as an equilibrium.

We now consider the procedure used to estimate the parameters of the SPECT and
PET adoption game. We choose an approach that is robust to the presence of multiple
equilibria at intermediate parameter values and that is computationally tractable.

4.3 Nested-Pseudo Likelihood Estimation

To estimate the structural parameters, we employ the Nested Pseudo-Likelihood (NPL)
algorithm described in Aguirregabiria and Mira (2004) and Aguirregabiria (2004a). The
procedure involves recursively maximizing a pseudo-likelihood function with respect to the
parameters, holding rival choice probabilities fixed, and then updating rival choice proba-
bilities by finding an equilibrium under the optimal parameters. An alternative approach,
such as in Seim (2004), is to find an equilibrium at every guess of the parameter vector
and then evaluate the likelihood function using those choice probabilities. The NPL has
two advantages over the nested fixed-point method. First, the pseudo-likelihood function,
unlike the actual likelihood function, is always well-defined, even in the presence of multiple
equilibria at a particular parameter vector. Secondly, the NPL reduces the number of fixed
point searches considerably, resulting in substantial computational gains.

While Aguirregabiria and Mira (2004) consider the estimation of a dynamic model with
discrete exogenous characteristics, we use the approach for the estimation of a static model
with some continuous characteristics present. The use of the procedure for static models
involving a fixed-point search is described in Aguirregabiria (2004a) and Aguirregabiria
(2004b). The fact that we include continuous characteristics does not alter the properties
of the estimator. The requirement of characteristics with a discrete support is needed in
dynamic models because such settings require the construction of a global state transition
matrix. However, we have no need of such transition matrices in static settings.

We define the pseudo-likelihood function similarly to the actual likelihood function in
(9). The pseudo-likelihood function takes fixed choice probabilities as an argument, rather
than having them implicitly defined as a fixed point of the equilibrium mapping under the
input parameters and data, as in the actual likelihood function. The function is then:

lnL P (θ;P, a,X) =
L∑

l=1

nl∑
i=1

3∑
j=0

1{al
i = j} · lnψj

(
P l
−i;x

l
i, θ

)
(11)

The gain from fixing the choice probabilities as an explicit argument is that the pseudo-
likelihood function is always well-defined. Of course, a parameter vector that maximizes
lnL P at arbitrary choice probabilities is not the maximum likelihood estimate.

How the procedure works is best illustrated by first considering a simpler two-stage
estimator. The first stage involves consistently estimating the choice probabilities non-
parametrically, which with continuous explanatory variables would require the use of kernel
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methods. Let P̂ denote this estimator. In the second stage, we then choose θ̂ as:

θ̂ = argmax
θ∈Θ

lnL P (θ; P̂ , a,X) (12)

Aguirregabiria and Mira (2004) show that this two-stage estimator is consistent and asymp-
totically normal. Notice that this estimator overcomes the problem of multiple equilibria by
looking to the data, including the observed choices, to select choice probabilities. Note also
that it does not require an equilibrium search. The two-stage estimator, while convenient,
may suffer from severe finite sample bias if the choice probabilities are poorly estimated. In
contexts with many explanatory variables, like the present one, non-parametric estimators
of the choice probabilities, while consistent, may be very imprecise. The precision of the
resulting parameter estimates will suffer as a result.

By iterating further, we not only improve on the two-stage estimator, but we are also
able to drop the requirement that the initial estimator of the choice probabilities be consis-
tent. Starting with an initial guess of the choice probabilities P̂ 0, we maximize the pseudo-
likelihood function in (12) to obtain a parameter vector θ̂1. We then find an equilibrium P̂ 1

by finding a fixed point of the equilibrium mapping under θ̂1. We repeat this process until
further iterations do not change the guess of the equilibrium choice probabilities. Upon
convergence of the algorithm, we have an estimate of the parameter vector θ̂ and of the
equilibrium choice probabilities P̂ . We initialize the search at multiple initial guesses and
if these initial guesses result in convergence to different points, we choose as the estimate
the resulting parameters and choice probabilities that have the highest pseudo-likelihood
value.11

One should note that convergence of the NPL is not guaranteed in general. That
is, the search could potentially enter a cycle among several parameter vectors and choice
probabilities. In most of the specifications and trials run for the present investigation, the
algorithm converged. In cases where it did enter a cycle, the culprit always was lack of
separate identification of the parameters due to the limitations of the sample.

If the NPL does converge, then the resulting estimator (θ̂, P̂ ) is consistent and asymp-
totically normal. One can find the full proof of these properties in Aguirregabiria and Mira
(2004) and we summarize the argument for consistency in Appendix B. The asymptotic
covariance matrix, however, is a cumbersome function of the pseudo-score variances and
the Jacobian of the choice probabilities. The standard errors can also be estimated via a
bootstrap method, which will also provide a better idea of the finite sample variance.

To implement the NPL algorithm, we use successive approximations to find a fixed
point of Ψ for each market, given the current values of the parameters. In both computing
the pseudo-likelihood and updating the choice probabilities through the mapping Ψ, we use
Monte Carlo integration to approximate the integral in (8). Specifically, for each observa-
tion, we draw S realizations from the bivariate normal distribution under the parameters
(σ2

1, σ
2
2, ρ) and compute the approximated integral as:

ψ̂S
j (P−i;xi, ν

i) = S−1
S∑

s=1

exp
[
πj(xi, P−i, ν

i
s)

]∑3
k=0 exp

[
πk(xi, P−i, νi

s)
] (13)

One should note that the simulated maximum likelihood approach used exhibits sim-
ulation bias in the evaluation of the log-likelihood function. While ψ̂S

j is an unbiased

11This rule was never binding. All starting choice probabilities in each experiment resulted in convergence
to the same choice probabilities and parameters.
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estimator for ψj , the estimator ln ψ̂S
j , while consistent, is biased for lnψj with a finite num-

ber of replications. Note that this bias does not appear in the equilibrium search because
the the equilibrium search uses the level of the choice probabilities rather than the loga-
rithm. To reduce the simulation bias, we draw the simulated characteristics using Halton
sequences as described in Train (1999). We use 500 replications in the actual estimations
and note that the parameter estimates do not change substantially by increasing the number
of replications beyond this level.

One can find further details regarding the implementation in Appendix B. The al-
gorithm performed very well in most cases. The successive approximations equilibrium
search rarely took more than a handful of iterations through the hospitals. The rapidity
likely stems from the use of the logistic form for the choice probabilities, the wide varia-
tion in exogenous hospital characteristics, and the additional smoothing provided by the
technology-specific errors. Even with rather strict convergence criteria, the outer NPL loop
rarely exceeded thirty iterations.

5 Results

Given that most consumers view these scanning services as substitutes, and given that
price competition among hospitals for diagnostic imaging services is likely low relative
to conventional markets, we expect that profit complementarity increases as each service
market becomes more competitive. The intuition again is that the additional cross-hospital
cannibalization in quantity that comes from adoption by rivals decreases the potential for
self-cannibalization from offering both services as opposed to only one. The additional price
competition from rival adoption should not be intense enough to counter this effect. The
level of complementarity for monopolist hospitals will depend on how strong the shared
adoption costs are relative to the self-cannibalization effect. If the shared component of
fixed adoption costs is not too high relative to the self-cannibalization effect, then we
would expect profit complementarity to be negative for hospitals in monopoly markets and
to grow toward zero as the hospitals face more competitors in each of the service markets.
Otherwise, we would expect profit complementarity to start positive for monopolists and
grow as we see more rival adoption.

Both profit equations for the individual technologies include as explanatory variables
the log values of bed size and outpatient visits. These continuous variables provide a high
degree of exogenous variation among hospitals in a market.12 In addition, indicators for
non-profit status and community hospital status were included in both equations, private
for-profit hospitals being the reference group.

An indicator for whether the hospital offers oncology services is included in the profit
equations of both technologies. Hospitals that offer cancer treatment services will likely ben-
efit more from offering these technologies, which tend to perform well and are commonly
used in cancer diagnosis. Adopting these technologies and offering cancer-related diagnos-
tic services will feed patients into the treatment services, hence raising the profitabilities
relative to hospitals that do not offer oncology services. Indicators for cardiac catheteri-
zation laboratory (CCL), angioplasty, cardiac intensive care, and open-heart surgery were
included in SPECT profitability, but excluded from the profitability of PET, reflecting the

12One may argue that outpatient visits has an endogenous component because they are affected by
the adoption decisions. However, the contribution of SPECT and PET services to the overall number of
outpatient visits and to overall expenditure is sufficiently small that the exogeneity of these variables is very
reasonable.
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far greater usage of SPECT in cardiology. The presence of these indicators implies that
a hospital is strong in cardiology. Since SPECT technology tends to perform better in
cardiology diagnostics, we would expect that these hospitals would be more likely to adopt
SPECT. On the other hand, the presence of these services should have no substantive direct
effect on PET profitability, and are therefore excluded from PET profitability. As discussed
in Section 4.2, these exclusion restrictions help to separately identify the complementarity
constant from the correlation in unobserved preferences.

An indicator for teaching hospitals was included in the SPECT equation; however, it
could not be included in the PET equation because of collinearity with the constant term
in PET profitability (no teaching hospital in the sample adopted only PET).

Both equations include the log values of population and median household income and
the levels of HMO and Medicare Part B penetration as exogenous market characteristics.
These variables capture heterogeneity among hospital markets that may affect the prof-
itability of adopting each technology. Larger and wealthier hospital markets should raise
the profitability of adopting each technology by raising prospective utilization. Rival hos-
pitals in markets with relatively high HMO penetration may engage in more intense price
competition, and hence we would expect that higher HMO penetration reduces the prof-
itability of providing SPECT or PET service. Note that while Medicare covered a variety
of diagnostic procedures relating to SPECT, Medicare PET coverage had just been intro-
duced in 1998 and was limited to a very restricted group of cancer-related diagnostic groups.
A patient covered by Medicare would therefore face higher opportunity costs in getting a
PET scan as opposed to a SPECT scan relative to non-Medicare patients. Higher Medicare
penetration should therefore shift the demand curve for PET and make the provision of
this service, and hence adoption of this technology, less profitable.

As we have discussed, patient-feeding behavior on the part of hospitals would predict
that both the profitability of the individual technologies and the complementarity between
them will be affected by the number of hospitals in the market. We include the log of the
number of hospitals in the individual profitability equations and in the complementarity
equation. Given that much of the effect of an increase in the number of hospitals on the
profitability of an individual technology likely stems from the additional competition in
treatment services, the effect on the two individual profitabilities should be symmetric. To
improve the precision of our estimates, we impose this restriction.

For the endogenous characteristics, we include the expected number of rival adopters of
the SPECT and the expected number of rival adopters of PET in both profit equations. We
include the cross terms because the services are substitutes to consumers and therefore rival
adoption of one technology should affect the profitability of adopting the other, independent
of profit complementarity between the technologies. These expectations are also included
in the profit complementarity equation. All three equations contain constant terms.

5.1 Bivariate Probit Estimation

Before presenting the results of the structural estimation, we first consider a bivariate pro-
bit estimation of the adoption decisions. This first specification does not account for any
complementarity between the two technologies. If there exists profit complementarity, then
this complementarity will affect the estimate of the correlation parameter of the bivariate
error distribution. We look for changes in profit complementarity by running the estima-
tion over restricted samples: that is, we run the estimation for disjoint samples consisting
of markets with one through four hospital systems present. If profit complementarity in-
creases as hospital markets become more competitive, we should see higher estimates of the
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correlation parameter in markets with more rival hospitals present. Under Assumption 4,
the actual correlation in unobserved heterogeneity is not affected by the competitive envi-
ronment. Apparent changes in correlation across market structure will stem from changing
profit complementarity.

Only a subset of the variables used in the main specification could be included in the
bivariate probit estimation on restricted samples. We observe only 139 observations in
monopoly markets and this subsample lacks sufficient variation in several of the variables
to enable estimation of the full set of parameters. For the sake of comparison, we maintain
the same set of variables for all subsamples.

Table 1 holds the parameter estimates for the bivariate probit specification. Of par-
ticular interest is the estimate of the correlation parameter. For monopoly markets, the
estimate is negative, though not significantly so. For the duopoly subsample, the estimated
parameter is positive, but only marginally significant. However, for the subsamples of mar-
kets with three and four rivals, the correlation is very significantly positive. While the lack
of precision for most of the parameter estimates for the monopoly subsample make inference
problematic, the fact that the correlation between the profitability of the two technologies
appears to increase provides at least preliminary evidence that complementarity between
the two technologies is greater in more competitive markets.

Note that we can not separately identify the contributions of the complementarity and
the correlation in unobserved preferences factor in any single subsample using this speci-
fication. However, only the complementarity should change as the market becomes more
competitive. If the individual profitabilities are positively correlated, then the more strongly
negative profit complementarity in monopoly markets counters this actual correlation and
decreases the apparent correlation for these markets. For the subsamples with three or four
rivals in each market, the self-cannibalization effect is less strong and hence the level of
profit complementarity has less effect on the apparent correlation. Again, precise inference
is difficult in this specification; however, the change in the estimated correlation across
these subsamples fits the pattern we would expect.

Since this specification does not explicitly include the strategic variables in the specifica-
tion, one may wonder whether the changes in the individual profitabilities of the technologies
over market structure, rather than the profit complementarity between the technologies,
could be driving the apparent change in correlation. Adoption by a rival of even just one
of the technologies should decrease the profitability of adopting both technologies because
the two imaging services are substitutes to consumers. Hospitals in markets with more
rivals should expect more rival adoption of one or both of the technologies, and hence their
expected profitability from adoption of both technologies will be lower. However, since the
individual profitabilities move in the same direction, the effect of additional rivals on the
individual profitabilities should not influence the estimate of the correlation between the
two technologies.13

5.2 NPL Estimation

Table 2 presents parameter estimates for the structural specification. One should note an
important qualification of the results. The reported standard errors are those based on
the Hessian of the pseudo-likelihood function at the final parameter estimates. These are

13If the Medical Arms Race hypothesis holds, then adoption by a rival of one of the technologies may
provide greater incentive to adopt that technology and the other. If this is the case, then the profitability
of adoption of both will appear to increase with rival adoption. The same logic applies: the key is that the
profitabilities of the individual technologies move in the same direction.
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Table 1: Bivariate Probit Specification

ρ n = 1 n = 2 n = 3 n = 4 all

-0.037 0.307 0.600 0.468 0.345
(0.236) (0.155) (0.108) (0.137) (0.075)

SPECT n = 1 n = 2 n = 3 n = 4 all

Constant -7.458 -3.690 -5.358 -6.807 -6.024
(8.313) (5.358) (4.103) (5.329) (2.553)

Beds(log) 0.182 0.030 0.267 0.299 0.208
(0.251) (0.133) (0.105) (0.120) (0.063)

Outpat.(log) 0.285 0.445 0.178 0.227 0.244
(0.206) (0.116) (0.084) (0.101) (0.052)

Community -0.218 -0.044 -0.163 -0.210 -0.164
(0.275) (0.170) (0.142) (0.165) (0.084)

Oncology 0.754 0.474 0.649 0.307 0.506
(0.301) (0.184) (0.154) (0.179) (0.092)

Heart Surg. 0.269 0.402 0.216 0.077 0.221
(0.373) (0.237) (0.188) (0.205) (0.111)

Pop. (log) 0.256 0.217 -0.152 0.321 0.097
(0.213) (0.178) (0.132) (0.233) (0.081)

HMO -0.651 0.005 -0.734 -0.487 -0.411
(1.530) (0.702) (0.679) (0.666) (0.368)

Medicare 5.771 -3.318 0.326 1.539 0.551
(3.986) (2.982) (2.097) (2.697) (1.299)

Income (log) -0.064 -0.378 0.314 -0.131 0.066
(0.755) (0.475) (0.373) (0.478) (0.230)

PET n = 1 n = 2 n = 3 n = 4 all

Constant 6.459 -7.197 1.204 11.949 0.943
(11.139) (8.066) (6.516) (10.684) (4.013)

Beds(log) 0.011 0.209 -0.027 0.527 0.184
(0.358) (0.213) (0.169) (0.255) (0.104)

Outpat.(log) 0.190 -0.083 -0.054 -0.477 -0.124
(0.300) (0.166) (0.135) (0.178) (0.079)

Community -0.460 0.045 0.060 -0.240 -0.099
(0.431) (0.288) (0.233) (0.314) (0.140)

Oncology 0.263 0.435 0.470 0.529 0.404
(0.460) (0.356) (0.292) (0.392) (0.171)

Heart Surg. 0.209 0.711 1.055 0.666 0.711
(0.476) (0.315) (0.269) (0.372) (0.157)

Pop. (log) -0.159 0.178 0.334 -0.065 0.036
(0.323) (0.275) (0.251) (0.433) (0.137)

HMO -0.573 0.641 -1.321 0.535 -0.106
(2.023) (0.979) (1.117) (1.389) (0.591)

Medicare -8.644 1.983 -7.968 3.248 -3.634
(6.265) (4.254) (4.166) (5.184) (2.239)

Income (log) -0.699 0.258 -0.507 -1.121 -0.234
(0.996) (0.706) (0.594) (0.995) (0.362)

Obs. 139 384 521 385 1429

Notes: Standard errors are in parentheses.
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not the best estimates of the standard errors for the NPL estimator. The best asymp-
totic approximation to the standard errors would take into account the Jacobian matrix
of equilibrium mapping with respect to both the input choice probabilities and the param-
eters. The use of the bootstrap method for the estimation of these standard errors both
appears more practical and will provide a better idea of the finite sample variance. Future
development of this work will include bootstrapped standard errors.

The primary parameters of interest are the coefficients on the strategic terms, and in
particular, the coefficients on the strategic terms that enter the profit complementarity
equation. While these coefficients have the predicted sign, the lack of precision with which
they are estimated renders them insignificant. This lack of precision in these coefficients
may stem from the low proportion of the sample that adopts only PET technology. The
standard errors on the estimates of the strategic coefficients that enter PET profitability
(δ̂21 and δ̂22) and on those that enter the profit complementarity (δ̂31 and δ̂32) indicate that
the sample does not provide sufficient variation to separate these parameters precisely. One
might restrict δ21 and δ22 to zero in order to improve the precision of δ̂31 and δ̂32; however,
we could not be sure that resulting estimates reflect the effect of rival adoption on PET
profitability or on the complementarity between SPECT and PET.

Another possibility is that we may have overestimated the degree of substitutability
between the two technologies for consumers. If the two scanning technologies are only
weakly substitutable, then any profit complementarity between the adoption decisions stems
from the shared adoption costs. Since this cost does not vary over rival adoption, we would
see very little difference in profit complementarity from rival adoption.

We find that the number of hospitals in the market has a significant negative effect on
the profitability of the individual technologies. Furthermore, the number of hospitals has a
significant positive effect on the profit complementarity between the adoption decisions.
These results are consistent with the predictions of patient-feeding behavior. Patient-
feeding finds additional support in the estimates of coefficients on treatment services. The
most significant predictor of both SPECT and PET adoption appears to be whether or
not the hospital offers oncology services. Since both SPECT and PET are used heavily
in cancer diagnosis, hospitals that offer oncology treatment have a greater incentive to
adopt both technologies. Furthermore, the coefficients on cardiac intensive care and cardiac
catheterization laboratory (CCL) in SPECT profitability are also significant, supporting the
contention that SPECT service feeds patients into cardiology treatment services.

The coefficients on hospital characteristics that provide exogenous asymmetry to the
adoption game among rivals are also significant. The estimated coefficients on outpatient
visits and bed size in SPECT profitability are also positive, indicating that larger hospitals
are more likely to adopt SPECT. The effect of hospital size on PET adoption is less clear:
bed size appears to positively affect adoption whereas outpatient visits negatively so.

Non-profit status has a significant, negative effect on SPECT profitability. Further-
more, community hospitals are significantly less likely to adopt SPECT even compared to
other non-profit hospitals. Neither indicator appears to have a significant effect on PET
profitability.

The coefficients on the market characteristics are overall less significant than those
on the hospital characteristics. Hospitals in markets with higher HMO penetration are
significantly less likely to adopt SPECT technology; however, no such effect appears with
regard to PET technology.

The imprecision of the estimates of the parameters on technology-specific unobserved
heterogeneity make interpretation difficult. The estimated values appear reasonable; how-
ever, the standard errors are rather large.
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Overall, the estimates best support patient-feeding as being the primary motivation for
adoption of these technologies. The presence of relevant treatment services appears to be the
best predictor of whether or not a hospital adopts either SPECT or PET. Furthermore, an
increase in the number of hospitals has the effect that this behavior would predict. Namely,
adding a hospital to the market decreases the profitability of the individual technologies,
but increases the profit complementarity between them.

The overall goodness of fit is rather good. The likelihood ratio test statistic for the hy-
pothesis that all parameters except the constants and unobserved heterogeneity parameters
are restricted to zero is 257.16, which is large even for the thirty-six degrees of freedom in
the test statistic.

6 Discussion

6.1 Bias from Neglecting Changes in Complementarity

While estimation of the effect of market structure on profit complementarity is of interest
to economists in itself, one should also take this effect into account even when one desires
to estimate only the level of complementarity between two decisions. Clearly, if market
structure systematically affects profit complementarity, then an estimate of the level that
neglects this factor will be rather sensitive to the market structures present in a sample.
Suppose that we were interested in estimating only the level of profit complementarity
between SPECT and PET in order to infer the strength of the self-cannibalization effect
present when offering both services. Samples that over-represent monopoly hospital markets
would lead us to overestimate the strength of this self-cannibalization because it neglects
the reduction in self-cannibalization brought about by the presence of rivals. By accounting
for the change in profit complementarity, the inferences are more robust to the distribution
of market structures in the sample.

Furthermore, neglect of changing profit complementarity will lead to biased estimates
of the strategic coefficients, which are often of great interest in entry or adoption contexts.
To see this, consider an expansion of the profit equation for the dual-adoption option from
(7):

π3(xi, P−i, ν
i) = (α1 + α2 + α3) + x′i(β1 + β2) + y′i(δ1 + δ2 + δ3) + (νi

1 + νi
2) + ε3

where yi ≡
(
E

[
ln(1+ri

1)
∣∣P−i

]
, E

[
ln(1+ri

2)
∣∣P−i

])′ and δj = (δj1, δj2)′ for j = 1, 2, 3. Now
imagine omitting y′iδ3 from the specification. If the two parameters in δ3 are positive, then
the omission will induce positive correlation between the rival adoption expectation terms
and the error term for this option, which would be ε̃3 = ε3 + y′iδ3. The omissions in this
case will bias upward the estimators for the coefficients on the rival adoption expectation
terms in the SPECT and PET profitability equations (δ̂1 and δ̂2). The strength of this bias
will increase with the proportion of observations that adopt both technologies. If the true
parameters in δ1 and δ2 are all negative, then the bias will bring the estimates in δ̂1 and
δ̂2 closer to zero and may lead us to believe that the hospitals are more isolated from each
other than they really are and that the two technologies are more differentiated from each
other than they really are. If δ1 and δ2 are really positive, because of a medical arms race
effect for example, then the bias will lead us to believe this the arms race effect is stronger
than it actually is.

In fact, even if one is interested only the adoption of one of the technologies, the neglect
of changes in profit complementarity may result in biased estimates. Suppose that we want
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Table 2: Parameter Estimates from NPL Estimation

Variable SPECT PET Γ

Constant -1.731 -0.164 0.928
(3.268) (6.724) (0.546)

Exp. SPECT competition 0.935 0.169 1.302
(0.383) (1.302) (1.567)

Exp. PET competition -0.475 -0.620 0.121
(1.540) (6.207) (7.358)

Number of hospitals -0.692 -0.692 1.662
(0.169) r (0.476)

Oncology 2.137 0.986
(0.126) (0.346)

Cardiac IC 0.539
(0.108)

Open heart surgery 0.288
(0.231)

CCL 0.313
(0.144)

Angioplasty 0.611
(0.222)

Beds 0.505 0.521
(0.100) (0.196)

Outpatient visits 0.887 -0.357
(0.083) (0.149)

Non-profit hospital -0.372 -0.119
(0.176) (0.348)

Community hospital -0.735 0.267
(0.128) (0.262)

Teaching hospital -0.227
(0.346)

Population 0.136 0.034
(0.090) (0.167)

Median income -1.332 -0.273
(0.315) (0.653)

Medicare penetration -1.152 -2.509
(1.911) (4.421)

HMO penetration -1.253 -0.126
(0.476) (0.988)

Unobserved Heterogeneity σ1 σ2 ρ
3.630 1.025 0.716

(6.191) (4.523) (8.389)

Observations 2011
Log-likelihood -1595.8
LRI 257.16

Notes: The variables bed size, outpatient visits, population, me-
dian income, and number of hospitals are measured included in
log form. The “SPECT” and “PET” columns denote the re-
spective individual profitability equations and the “Γ” column
denotes the profit complementarity equation. Standard errors
are in parentheses.
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only to estimate the parameters that enter the PET adoption decision. If we assume, in
contrast to the rest of the paper, that the decision to adopt SPECT technology is exogenous
to the PET adoption decision, we may model the PET adoption decision as a binary choice
logit with the payoff to adoption (ai2 = 1) derived from the main specification in (7):

π̃i1 = α2 + x′iβ2 + δ21 ln(1+ri
1) + δ22E

[
ln(1+ri

2)
∣∣P−i

]
+ α3ai1 + δ31ai1 ln(1+ri

1) + δ32ai1E
[
ln(1+ri

2)
∣∣P−i

]
+ ε̃i1 (14)

where ai1 ∈ {0, 1} is the indicator of SPECT adoption and where ε̃i1 is a logistic error.
Note that we drop the unobserved heterogeneity term νi

1 because it is redundant when
estimating only a single adoption decision. Suppose that we neglected the terms associated
with changes in profit complementarity and instead specified the payoffs to adoption as:

π̃′i1 = α2 + x′iβ2 + δ21 ln(1+ri
1) + δ22E

[
ln(1+ri

2)
∣∣P−i

]
+ α3ai1 + ε̃i1 (15)

The specification in (15) accounts somewhat for profit complementarity between the
two technologies by its inclusion of the SPECT indicator. However, by omitting the other
terms, we again induce bias in the estimators for δ21 and δ22. If profit complementarity is
increasing with rival adoption of PET (δ32 > 0), then the estimator of δ22 will be biased
upward. Again, this bias will become stronger as a larger portion of those hospitals that
adopt PET have also adopted SPECT. For our sample, this proportion is very large and
hence the estimator for δ32 will have a mean close to δ22 + δ32. Note that the bias here is
not limited to the finite samples: the omission will cause the estimators to be inconsistent
as well.

6.2 Extensions and Policy Implications

We have focused on demonstrating how profit complementarity among a firm’s decisions
is influenced by the market structure under which it operates. This analysis is only a first
step; however, it highlights a feature of multi-product oligopolies that has previously been
neglected. We consider now avenues where future research may use these ideas to contribute
further to the study of imperfect competition.

While we have modeled adoption using a static approximation to a repeated game
among firms, the effect of market structure on profit complementarity has implications for
a dynamic game of technological adoption. In a dynamic game, not only will the decisions
whether to adopt the technologies jointly or separately be affected by the competitive
environment, but the decisions when to adopt them will as well. Consider the case of service-
oriented technologies like SPECT and PET. A firm facing no rivals in either submarket may
have an incentive to adopt one technology and wait on adopting another until its acquisition
cost falls below a threshold where the second adoption is profitable. This threshold will
take into consideration the self-cannibalization of revenues from the first technology. If a
rival adopts the first technology as well, then the reduction in potential self-cannibalization
may induce the firm to adopt the second technology earlier than it otherwise would. More
adoption of one technology would spill over into more (or at least quicker) adoption of the
other, even though the technologies provide substitutable services. As a consequence, we
may witness different diffusion patterns among the technologies across markets with varying
competitive structures.

That market structure affects profit complementarity among adoption decisions also
provides a further link between competition policy and technological diffusion. Policies
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that stimulate adoption of one technology by competing firms will also stimulate adop-
tion of substitutable technologies, so long as price competition among adopters is not too
intense. In the health care industry, policymakers often worry about adoption of duplica-
tive technologies. While SPECT and PET each have clear advantages over each other for
specific diagnostic purposes, concern over redundancy arises because of the large overlap
in their usage (as well as the high cost of PET). If the policy goal were to avoid joint
adoption in these technologies, then the relative permissiveness of antitrust enforcement
to hospital mergers may be further justified by this end. By reducing the set of potential
rivals, hospital consolidation may reduce the incentive to joint adoption by ensuring that
the self-cannibalization effect will remain strong. On the other hand, the same end may
potentially be reached through policies that intensify price competition among hospitals.
For example, policies conducive to greater HMO penetration may serve this end. While
one should doubt that hospitals will act as aggressively as in the Bertrand example pre-
sented, it is conceivable that with high HMO penetration, hospitals may compete in prices
aggressively enough so that rival entry actually exacerbates the self-cannibalization from
joint adoption.

Beyond technological adoption, the framework presented here is useful for models of spa-
tial competition and market entry. Firms that consider entry into multiple nearby markets
face self-cannibalization prospects that may be ameliorated by cross-firm cannibalization
from rival entry. While we have limited our attention to two submarkets for simplicity, the
framework and intuition carry over to the larger choice sets that would likely be present
in spatial contexts. The decomposition introduced by Gentzkow (2005) for multivariate
discrete choice payoffs is valid for an arbitrary number of component choices; however, the
number of terms grows substantially as the number of component choices increases. One
could reduce the dimensionality by imposing distance bands, as in Seim (2004), so that all
submarkets within a particular radius have the same coefficients. That we would be able
to consider centrally managed entry decisions by multi-market firms provides a promising
application of our approach.

7 Conclusion

This paper has investigated the effect of market structure on profit complementarity in
the context of adoption of substitutable service-oriented technologies. Factors influencing
these changes include the degree of price competition among firms and the substitutabil-
ity of services. We first outlined a framework for analyzing profit complementarity in a
technological adoption or market entry context. We then examined how rival adoption can
increase profit complementarity when no pricing strategies exist. On the other hand, very
intense price competition among firms, as in a Bertrand setting, will lead to decreasing
profit complementarity from rival adoption. That rival adoption of one technology may
decrease the potential for self-cannibalization from joint adoption provides an important
source of increasing profit complementarity; however, whether rival entry has this effect
depends on the intensity of price competition among firms.

To test whether profit complementarity changes based on rival adoption decisions, we
looked to the case of SPECT and PET diagnostic imaging technologies. We tested this
model on data of hospitals’ decisions to adopt these imaging technologies. We estimated
a model of joint adoption of the two technologies in an oligopolistic setting, allowing for
technology specific heterogeneity and strategic interaction among hospitals. Given possible
patient-feeding motives in provision of these services, we also looked for the effect of the
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number of hospitals in the market on adoption decisions.
The results support patient feeding as the primary concern in the adoption of these

technologies. The number of hospitals in the market decreases the profitability of adoption
of the individual technologies and increases the profit complementarity between the adop-
tion decisions. Furthermore, hospitals with related treatment services are significantly more
likely to adopt either technology. In contrast, expected rival adoption of the technologies
does not appear to have a significant effect on the adoption decisions.

Previous studies of multiple technological adoption decisions have treated the comple-
mentarity among adoption decisions as constant. The primary contribution of this paper is
in demonstrating how models of oligopoly competition would predict different levels of profit
complementarity for different market environments. While we have focused our attention
on service-oriented technologies, where the associated services are viewed as substitutes
by consumers, analogous effects of market structure on profit complementarity should be
generated in other contexts.

A Derivations and Examples

A.1 Profit Complementarity Decomposition

Let variable production costs for firm i when it produces qi
1 of service 1 and qi

2 of service
2 be given by Ci(qi

1, q
i
2), where Ci(0, 0) = 0. The firm incurs fixed costs of F i(ai) from

its adoption decision. The costs in F i include both actual costs of adoption and any
unsunk fixed costs in production of the associated service. Note that these fixed costs
are assumed not to depend on rival decisions. We specify fixed costs as F i((0, 0)) = 0,
F i((1, 0)) = F i

0 + F i
1, F

i((0, 1)) = F i
0 + F i

2, and F i((1, 1)) = F i
0 + F i

1 + F i
2, where all terms

are nonnegative. Note that F i
0 represents a shared component of adoption costs that the

firm occurs only once when adopting one or both technologies. This shared adoption cost
becomes an important source of profit complementarity, whereas the technology-specific
adoption costs F i

1 and F i
2 cancel out in the determination of profit complementarity.

Let pi
j(a

i, a−i) and qi
j(a

i, a−i) be firm i’s price and quantity of service j = 1, 2 in the
equilibrium of the subgame generated by the adoption decisions (ai, a−i). If firm i does
not adopt the technology for service j, then clearly it produces none of that service, and
hence qi

1

(
(0, 1), a−i

)
= qi

2

(
(1, 0), a−i

)
= 0. Firm profits in the equilibrium of the (ai, a−i)

subgame are then:

πi(ai, a−i) = pi
1(a

i, a−i) · qi
1(a

i, a−i) + pi
2(a

i, a−i) · qi
2(a

i, a−i)

− Ci
(
qi
1(a

i, a−i), qi
2(a

i, a−i)
)
− F i(ai)

Let Ri
j(a

i, a−i) denote the net revenues earned by firm i from its operations in service
j in the equilibrium of the (ai, a−i) subgame. These net revenues account for variable
production costs specific to service j; however, they account for neither cost interactions
nor adoption costs. These net revenues are defined as:

Ri
1(a

i, a−i) = pi
1(a

i, a−i) · qi
1(a

i, a−i)− Ci
(
qi
1(a

i, a−i), 0
)

Ri
2(a

i, a−i) = pi
2(a

i, a−i) · qi
2(a

i, a−i)− Ci
(
0, qi

2(a
i, a−i)

)
Note that even with adoption of both technologies, the variable costs in Ri

1((1, 1), a−i)
are evaluated with the quantity of the second service set at zero (and analogously for
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Ri
2((1, 1), a−i)). This feature allows for easier comparison of these service-specific net rev-

enues across decision profiles. We account for cost interactions with an economies of scope
term SCi defined below.

The profits to specialized adoption reduce to πi
(
(1, 0), a−i

)
= Ri

1

(
(1, 0), a−i

)
− F i

1 − F i
0

and πi
(
(0, 1), a−i

)
= Ri

2

(
(0, 1), a−i

)
− F i

2 − F i
0. Profit complementarity is then decomposed

as:
Γi(a−i) = ∆Ri

1(a
−i) + ∆Ri

2(a
−i) + SCi(a−i) + F i

0

where

∆Ri
1(a

−i) ≡ Ri
1

(
(1, 1), a−i

)
−Ri

1

(
(1, 0), a−i

)
∆Ri

2(a
−i) ≡ Ri

2

(
(1, 1), a−i

)
−Ri

2

(
(0, 1), a−i

)
SCi(a−i) ≡ −

[
Ci

(
qi
1((1, 1), a−i), qi

2((1, 1), a−i)
)

− Ci
(
qi
1((1, 1), a−i), 0

)
− Ci

(
0, qi

2((1, 1), a−i)
)]

Note that the term SCi(a−i) is defined so that economies of scope in variable costs will
contribute positively to profit complementarity.

A.2 Details for Example 2.3.1

We demonstrate the result for the case of two firms and note that the argument extends
easily to the case of three or more firms. We denote the two firms as A and B and consider
the profit complementarity faced by firm A.

Assume that the cost functions of both firms exhibit constant marginal costs and no
economies of scope or fixed costs. Assume further that the price of each service from each
firm is invariant to the adoption decisions of the firms. We have then that if a firm adopts
the technology for service j = 1, 2, it receives an average profit of ϕi

j = pi
j−cij , regardless of

quantity. We restrict attention to the case where each price is set above the corresponding
marginal cost so that ϕi

j > 0.
Let A1 denote the option to buy service 1 from firm A and let A2, B1, and B2 represent

the analogous options. Let 0 denote the option not to consume any service. When both
firms adopt both technologies, then the consumers face the budget set {0, A1, A2, B1, B2}.
Under other adoption decisions, consumers face a nonempty subset of this budget set, where
option 0 is always present.

Let qi
j(a

A, aB) denote the quantity demanded of service j from firm i when consumers
are presented the budget set generated by the adoption decisions (aA, aB). The profits to
firm i under the adoption decisions (aA, aB) can be expressed:

πi(aA, aB) = ϕi
1 · qi

1(a
A, aB) + ϕi

2 · qi
2(a

A, aB) = Ri
1(a

A, aB) +Ri
2(a

A, aB)

Using the decomposition of profit complementarity in Equation (2), we have that the
self-cannibalization faced by A with respect to the first service as:

∆RA
1 (aB) = ϕA

1 ·
[
qA
1

(
(1, 1), aB

)
− qA

1

(
(1, 0), aB

)]
Consider the bracketed difference term: that is, the difference in quantity demanded

of service 1 when A provides both services and when A provides only service 1, given B’s
adoption choices. By offering both services, firm A expands the choice set of consumers by
adding to it A2. All consumers who would choose A1 when A2 is also available would also
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choose A1 when A2 is not available, assuming that preferences satisfy the independence
axiom. Hence, firm A can not increase the quantity demanded of service 1 by offering
service 2 as well. For the quantity demanded to decrease requires only that there is at least
one consumer who prefers A2 to A1, but prefers A1 to 0 and to any service offered by firm
B under aB. So long as there is at least one such consumer, and so long as ϕA

1 > 0, we
have that ∆RA

1 (aB) < 0. The analogous argument shows that ∆RA
2 (aB) ≤ 0 and that the

inequality is strict if there is at least one consumer that prefers A1 to A2 and A2 to other
options in the budget set. Therefore, if either of these consumer types exist, then we have:

ΓA(aB) = ∆RA
1 (aB) + ∆RA

2 (aB) < 0

To see that A’s profit complementarity increases asB adopts more technologies, compare
ΓA(1) to ΓA(0). We have:

∆RA
1 ((1, 0))−∆RA

1 ((0, 0)) = ϕA
1

·
[[
qA
1

(
(1, 1), (1, 0)

)
− qA

1

(
(1, 0), (1, 0)

)]
−

[
qA
1

(
(1, 1), (0, 0)

)
− qA

1

(
(1, 0), (0, 0)

)]]
The second difference, qA

1

(
(1, 1), (0, 0)

)
− qA

1

(
(1, 0), (0, 0)

)
, is composed of those con-

sumers with preferences that satisfy A2 � A1 � 0. The first difference is composed of
those consumers with preferences that satisfy A2 � A1 � 0, and A1 � B1. Notice that the
second group of consumers contains the first, and hence ∆RA

1 ((1, 0))−∆RA
1 ((0, 0)) ≥ 0. If

there is at least one consumer for whom A2 � B1 � A1 � 0, then the first difference is
strictly smaller in absolute value than the second, and therefore ∆RA

1 ((1, 0))−∆RA
1 ((0, 0))

is strictly positive. By the analogous argument, ∆RA
2 ((1, 0))−∆RA

2 ((0, 0)) is nonnegative,
and is strictly positive if there exists at least one consumer for whom A1 � B1 � A2 � 0.
We then have that ΓA((1, 0))− ΓA((0, 0)) ≥ 0, where the inequality is strict if at least one
of the consumers types discussed are present.

Similar reasoning shows that the complementarity differences ΓA((0, 1)) − ΓA((0, 0)),
ΓA((1, 1)) − ΓA((1, 0)), and ΓA((1, 1)) − ΓA((0, 1)) are all nonnegative and that sufficient
heterogeneity in consumer preferences would make them positive. Note, however, that
additional restrictions would be necessary to establish the sign of ΓA((0, 1))− ΓA((1, 0)).

A.3 Details for Example 2.3.2

While consumers have heterogeneous preferences over services, they view firms providing
a particular service as homogeneous. To keep the example tractable, we model product
differentiation between the two services via the linear city with linear travel costs. We fix
the locations of the two services at the endpoints of the city, whose length is normalized to
unity. If both firms offer a service, all consumers purchase from the one offering the lower
price. Demand is split evenly if the firms offer the same price. The consumer at location
x ∈ [0, 1] that faces market prices (p1, p2) for the two services receives the following net
utilities from purchasing one unit of the services:

u1(x, p1, p2) = v1 − p1 − τx u2(x, p1, p2) = v2 − p2 − τ(1− x)

where v1 > 0 and v2 > 0 are the consumers’ valuations of the services if there were no
travel costs and where τ > 0 is the marginal disutility of travel to consumers. We reiterate
that the heterogeneity here is in the two types of services, not in the firms.

Firms again have no fixed costs and constant marginal costs, and we assume that these
costs are identical over firms for a given service; however, they may differ across the two
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services. Since we allow the two services to have different valuations, we normalize the costs
to zero and interpret the valuations and equilibrium prices as net of marginal costs. The
results presented here are robust to the inclusion of positive marginal costs so long as these
costs do not exceed the valuations of the services.

We deal only with the case where travel costs are not so high relative to the valuations
that the two service markets are effectively isolated. However, we assume that travel costs
are high enough so that a monopolist, having adopted both technologies, would not want
to cover the market with only one of the services. We satisfy both these conditions by
restricting the travel cost to the range

∣∣v1 − v2
∣∣ < τ < 1

2

[
v1 + v2

]
. We also assume that

τ > 1
2v1 and τ > 1

2v2 to avoid multiple forms of the equilibrium profit functions; however,
these are technical restrictions that do not affect the qualitative results.

The consumer at location x ∈ [0, 1] that faces market prices (p1, p2) for the two services
receives the following net utilities from purchasing one unit of the services:

u1(x, p1, p2) = v1 − p1 − τx u2(x, p1, p2) = v2 − p2 − τ(1− x)

Let pA
1 (aA, aB) denote firm A’s price of service j in the equilibrium of the subgame

generated by the adoption decisions (aA, aB). If firm A adopts only the first technology
and B does not adopt either technology, then A will charge a price of pA

1

(
(1, 0), (0, 0)

)
= 1

2v1
and will earn profits of πA

(
(1, 0), (0, 0)

)
= v2

1/(4τ). Likewise, if A adopts only the second
technology and B adopts neither, then pA

2

(
(0, 1), (0, 0)

)
= 1

2v2 and πA
(
(0, 1), (0, 0)

)
=

v2
2/(4τ). If A adopts both technologies and B adopts neither, then with travel costs in the

assumed range, the monopolist will serve the entire market and will sell positive quantities of
both services. We have pA

1

(
(1, 1), (0, 0)

)
= 3

4v1+ 1
4v2−

1
2τ , p

A
2

(
(1, 1), (0, 0)

)
= 3

4v2+ 1
4v1−

1
2τ ,

and πA
(
(1, 1), (0, 0)

)
= 1

2(v1 + v2 − τ) + (v1 − v2)2/(8τ). The profit complementarity faced
by the monopolist is then:

ΓA((0, 0)) =
−(2τ − v1 − v2)2

8τ
(16)

Now suppose that B adopts the first technology. If A adopts only the the first technol-
ogy, then the Bertrand result will prevail: price will be driven down to marginal cost, or zero
in this case. Hence, we have πA

(
(1, 0), (1, 0)

)
= 0. If A adopts only the second technology,

then the Hotelling duopoly equilibrium results. We have pA
2

(
(0, 1), (1, 0)

)
= τ + 1

3(v2 − v1)
and πA

(
(0, 1), (1, 0)

)
= (3τ + v2 − v1)2/(18τ).

If A adopts both technologies and B adopts only the first, then one may question
whether A’s incentive to out-bid B in the price of service 1 is as strong as if A were
providing only that service. Even though A is aware of the substitution effect that a price
war in the first service will have on its service 2 business, it will still compete as a Bertrand
competitor in service 1 if it has already adopted that technology. To see this, consider any
candidate equilibrium where 0 < pB

1 < pA
1 : that is, where B charges a lower service 1 price

than does A and hence captures the entire market demand for service 1. By undercutting
pB
1 by an infinitesimal amount, as in the standard Bertrand model, firm A will steal the

demand for service 1 without effectively changing the relative market prices of the two
services, and hence not affecting the demand for service 2. So long as pB

1 > 0, A has
an incentive to undercut B’s price, regardless of whether or not A also offers the second
service. We therefore have pA

1

(
(1, 1), (1, 0)

)
= 0. Given this result, the pricing decision for

the second service may take the equilibrium price of the first service as exogenous. We then
have that pA

2

(
(1, 1), (1, 0)

)
= 1

2(τ +v2−v1) and πA
(
(1, 1), (1, 0)

)
= (τ +v2−v1)2/(8τ). The
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profit complementarity faced by A when B adopts the first technology is therefore:

ΓA((1, 0)) =
5(v2 − v1)2

72τ
− v2 − v1

12
− 3τ

8
(17)

From Equations (16) and (17), we derive the change in profit complementarity as:

ΓA((1, 0))− ΓA((0, 0)) =
7v1
12

+
5v2
12

− 7τ
8
− v2

1

18τ
− v2

2

18τ
− 7v1v2

18τ
(18)

Transforming Equation (18) into a quadratic in τ , we can see that the parabola opens
downward. Inspection of the quadratic shows that it becomes positive for some τ only if
v1 is very large relative to v2 (or the reverse if ΓA((0, 1))− ΓA((0, 0)) is analyzed).14 Even
where this is true, visual inspection has failed to locate cases where the positive portion
overlaps with the range of τ for which the derivations are valid. At least for cases where
the two service valuations are in the same ballpark, profit complementarity decreases with
rival adoption.

A.4 Details for Example 2.3.3

For simplicity, we assume that hospitals care only about indirect profits from feeding pa-
tients into treatment services and do not value direct profits from diagnostic service pro-
vision. The combination of this case with that of Example 2.3.1 is straightforward and
generates the same qualitative results.

Suppose that there are n hospitals in the hospital market that provide treatment services
for a particular disease for which SPECT and PET are appropriate diagnostic technologies
(e.g. non-pulmonary lung cancer). All hospitals provide both diagnostic and treatment
services for this disease, even if they do not adopt SPECT or PET.15 However, a hospital
that has a SPECT or PET facility is able to attract more patients for diagnosis. We
assume that patients are more likely to consume treatment service from a hospital if they
were diagnosed at that hospital than if they were not.

Let qi
j

(
ai, a−i, n

)
denote the quantity of patients that elect to use hospital i’s SPECT

(j = 1) or PET (j = 2) diagnostic service in the equilibrium under the adoption profile
(ai, a−i). Note that unlike in the previous examples, we allow the equilibrium quantities to
depend on the number of hospitals in the market, not just the adoption decisions. Since
all hospitals provide at least a primitive diagnostic service, patients in markets with more
hospitals have more diagnostic options, so we assume that qi

j

(
ai, a−i, n+1

)
≤ qi

j

(
ai, a−i′, n+

1
)
.16

Let ψi
j(n) denote the expected profit in treatment service for each patient scanned by

i’s SPECT or PET machine. This expected per-patient treatment profit accounts for the
probability that a scanned patient is diagnosed with the disease, the probability that the
diagnosed patient returns to i for treatment, and the profit to i from the patient’s use of its
treatment service. Note that this term depends on the number of hospitals in the market,
but does not depend on adoption decisions. In particular, we assume that ψi

j(n+1) < ψi
j(n)

for all n ∈ N. As the number of hospitals in the market increases, diagnosed patients have
14Specifically, in order for the parabola to have real roots, we must have v1(v1 − 42v2) > v2

2 , which
necessitates that v1 be much larger than v2.

15One can suppose that all hospitals have a less effective diagnostic technology for the disease, such as a
CT scanner.

16If the inequality holds when the additional hospital does not adopt either technology, then it holds for
all decisions of that hospital.
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more treatment options and hence the probability that a diagnosed patient will return to i
for treatment diminishes. Furthermore, the additional competition in the treatment service
market may lower the profits from the patient’s use of i’s treatment service.

Since we have assumed that all hospitals provide at least a basic diagnostic service,
let qi

0

(
ai, a−i, n

)
and ψi

0(n) respectively denote the quantity demanded and expected per-
patient profit for this basic diagnostic service. We assume for simplicity that the quantity
demanded and expected per-patient profit for this basic diagnostic service are small enough
relative to those of SPECT and PET that the indirect profits from this basic service can
safely be ignored in the following analysis.

The self-cannibalization effect for SPECT in this situation is given:

∆Ri
1(a

−i, n) = ψi
1(n)

[
qi
1

(
(1, 1), a−i, n

)
− qi

1

(
(1, 0), a−i, n

)]
and the self-cannibalization effect for PET is given analogously. Note that for a fixed n,
the effect of additional rival adoption on ∆Ri

j follows that described in Example 2.3.1. We
will therefore have that additional rival adoption increases profit complementarity for the
same reason as in that example. Here, however, we are more interested on the effect of
increasing the number of hospitals in the market. This effect on SPECT cannibalization is
given:

∆Ri
1(a

−i′, n+1)−∆Ri
1(a

−i, n)

= ψi
1(n+1)

[
qi
1

(
(1, 1), a−i′, n+1

)
− qi

1

(
(1, 0), a−i′, n+1

)]
− ψi

1(n)
[
qi
1

(
(1, 1), a−i, n

)
− qi

1

(
(1, 0), a−i, n

)]
Pivoting the right-hand side, we have:

∆Ri
1(a

−i′, n+1)−∆Ri
1(a

−i, n) (19)

=
[
ψi

1(n+1)− ψi
1(n)

]
·
[
qi
1

(
(1, 1), a−i′, n+1

)
− qi

1

(
(1, 0), a−i′, n+1

)]
+ ψi

1(n)
{[
qi
1

(
(1, 1), a−i′, n+1

)
− qi

1

(
(1, 0), a−i′, n+1

)]
−

[
qi
1

(
(1, 1), a−i, n

)
− qi

1

(
(1, 0), a−i, n

)]}
(20)

Since ψi
1(n+1) − ψi

1(n) < 0, the first term on the right-hand side is positive. The
difference in differences inside the curly brackets can be shown to be positive as well with
sufficient heterogeneity in patient preferences by the same logic as in Example 2.3.1. Since
this same effect can be demonstrated for ∆Ri

2, we have that profit complementarity is
increasing in n, as well as in rival adoption.

The intuition for this result is slightly different than that for Example 2.3.1. In the pre-
vious example, the source of increasing complementarity came from rival cannibalization of
quantity that decreased the potential for self-cannibalization of quantity. A similar quan-
tity effect is present here as well, given by the second term in (19). However, an additional
source of increasing complementarity stems from the devaluing of the self-cannibalization
of quantity. Since an increase in the number of hospitals decreases the expected per-patient
profit, the self-cannibalized quantity is not only reduced, but each patient in this quantity
is worth less as well.
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B Estimation Details

B.1 Consistency of the NPL Estimator

Let lnL P
n be the pseudo-likelihood function for a sample of n observations and let lnL P

∞
be the limiting counterpart as n → ∞. The estimator (θ̂n, P̂n) converges to an estimator
(θ̄, P̄ ) that satisfies the following properties. First, θ̄ ∈ argmaxθ∈Θ lnL P

∞(θ, P̄ ). Secondly,
P̄ = Ψ(P̄ ; θ̄). Finally, ln L P

∞(θ̄, P̄ ) ≥ lnL P
∞(θ, P ) for all (θ, P ) that satisfy the first two

properties. Note that the true parameters and choice probabilities (θ∗, P ∗) satisfy these
three properties. Furthermore, the true parameters and choice probabilities are the only
ones that satisfy these three properties. Too see this, suppose (θ̄, P̄ ) 6= (θ∗, P ∗). If P̄ =
P ∗, then by Assumption 3, θ̄ = θ∗ because P ∗ is an equilibrium only under θ∗. Hence,
(θ̄, P̄ ) 6= (θ∗, P ∗) necessitates that P̄ 6= P ∗. The Kullback-Leibler Information Inequality
then implies that lnL P

∞(θ̄, P̄ ) < lnL P
∞(θ∗, P ∗). Hence, even if (θ̄, P̄ ) satisfy the first two

properties, they will not satisfy the last.

B.2 Implementation of the NPL Method

B.2.1 Equilibrium Search

Given a parameter vector θ and sample characteristics X, we find an equilibrium for each
market l using the method of successive approximations. To reduce the chance that the
search bounces between choice probabilities without settling on an equilibrium, we iterate
through the firms in a market and immediately update the best response choice probabilities
of each firm for use in the best response computation of later firms in the sequence. The
approach is analogous to the Gauss-Seidel method for solving systems of linear equations.

With a market of n firms with characteristics given by X l, we initialize the choice
probabilities with those resulting from the search during the previous NPL iteration. With
these choice probabilities P l

0,0, we compute the first firm’s best response choice probabilities
as pi

0,1 = ψ(P l
−i,0,0;xi, θ) and replace firm i’s entries in P l

0,0 with those from pi
0,1 to get P l

0,1.
We then do the same for each subsequent firm, again updating the choice probabilities as
soon as new guesses are available. After completing the sequence of firms, we have P l

1,0 as
the new candidate equilibrium. If the change in choice probabilities falls within the desired
tolerance, then we use P l

1,0 as the equilibrium. If not, then we repeat the procedure until
such convergence is achieved.

While we have found aberrant cases where the search did not converge, the method
overall provides a reliable means of locating a market equilibrium. Of course, neither this
method nor any other search method guarantees that the equilibrium found is unique.

B.2.2 Computation of Expectations

Given rival choice probabilities P−i for a firm with n rivals, we need to compute the expected
log number of entrants that the firm expects in each submarket. For each rival, we first
transform the choice probabilities over the four bundles into simple Bernoulli probabilities
of entry into each submarket. Let pk

1 denote rival k’s probability of entering the first
submarket. The density function of the random variable r giving the number of rivals that
firm i would face in the first submarket is that of a sum of independent but heterogeneous
Bernoulli random variables. The density function is given by:

Pr{r1 = m} =
1∑

a1=0

· · ·
1∑

an=0

1
{∑n

k=1 a
k = m}

}∏n
k=1(p

k
1)

ak
(1− pk

1)
1−ak
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where 1{·} is the indicator function.
With this density computed, the expected log number of firms operating in the first

submarket (conditional on firm i operating in that submarket) is simply:

E
[
ln(1+r1)

]
=

n∑
m=0

Pr{r1 = m} ln(1+r1)

B.2.3 Monte Carlo Integration

In both the equilibrium search and the evaluation of the log-likelihood function, the integral
in (8) is computed via simulation. To simulate the integral, we need to draw S realizations
of the random variables (νi

1, ν
i
2) for each realization. This pair of random variables follows

the bivariate normal distribution with mean zero and covariance matrix:

Σ =
(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
Bivariate normal random variables have the convenient property that if u1 and u2 are

two independent draws from the standard normal distribution, then (ν1, ν2)′ = Σ1/2(u1, u2)′,
where Σ1/2 is the Cholesky root of the covariance matrix, will follow the desired bivariate
normal distribution.

To implement the simulation, we replicate each observation S times and augment its
characteristics matrix with two columns, filled with independent draws from the standard
normal distribution. The coefficients on these characteristics will be the entries in the
Cholesky root of the covariance matrix. Once these coefficients are estimated, we undo
the Cholesky decomposition to obtain the estimated standard deviation and correlation
parameters. The standard errors on these estimators are computed via the delta method.
Note that the standard errors of all parameter estimators are computed using the actual
sample size, not the replicated sample size.

References

Aguirregabiria, Victor. 2004(a). “Pseudo Maximum Likelihood Estimation of Structural
Models Involving Fixed-Point Algorithms,” Economic Letters, v.84, pp.335-340.

Aguirregabiria, Victor. 2004(b). “Alternative Estimators of Parametric Models where the
Distribution of Endogenous Variables is Implicitly Defined as a Fixed-Point,” mimeo,
Boston University.

Aguirregabiria, Victor and Mira, Pedro. 2004. “Sequential Estimation of Dynamic Discrete
Games,” mimeo, Boston University.

American Hospital Association. 1999. AHA Guide to the Health Care Field, Chicago: Amer-
ican Hospital Association.

Area Resource File. February 2004. US Department of Health and Human Services, Health
Resources and Services Administration, Bureau of Health Professions, Rockville, MD.

Athey, Susan and Stern, Scott. 1998. “An Empirical Framework for Testing Theories About
Complementarity in Organizational Design,” NBER Working Paper 6600.

38



Augereau, Angelique; Greenstein, Shane; and Rysman, Marc. 2005. “Coordination vs. Dif-
ferentiation in a Standards War: 56K Modems,” RAND Journal of Economics, forth-
coming.

Bairey Merz, C.N. and Berman, D.S. 1997. “Imaging Techniques for Coronary Artery Dis-
ease: Current Status and Future Directions,” Clinical Cardiology, v.20, n.6, pp.526-532.

Baker, Laurence. 2001. “Managed Care and Technology Adoption in Health Care: Evidence
from Magnetic Resonance Imaging,” Journal of Health Economics, v.20, pp.395-421.

Berger, Magdalena; Gould, Michael; and Barnett, Paul. 2003. “The Cost of Positron Emis-
sion Tomography in Six United States Veterans Affairs Hospitals and Two Academic
Medical Centers,” American Journal of Roentgenology, v.181, pp.359-365.

Berry, Steven. 1992. “Estimation of a Model of Entry in the Airline Industry,” Economet-
rica, v.60, n.4, pp.889-917.

Berry, Steven; Levinsohn, James; and Pakes, Ariel. 1995. “Automobile Prices in Market
Equilibrium,” Econometrica, v.63, n.4, pp.841-890.

Bulow, Jeremy; Geanakoplos, John; and Klemperer, Paul. 1985. “Multimarket Oligopoly:
Strategic Substitutes and Complements,” Journal of Political Economy, v.93, n.3, pp.488-
511.

Burgess, James; Carey, Kathleen; and Young, Gary. 2005. “The Effect of Network Arrange-
ments on Hospital Pricing Behavior,” Journal of Health Economics, v.24, pp.391-405.

Curran, Colleen. 2003. “Dollars and Sense: The Economics of PET,” Medical Imaging, June
2003.

Dafny, Leemore. 2003. “Entry Deterrence in Hospital Procedure Markets: A Simple Model
of Learning-by-Doing,” Working Paper #0037, Center for the Study of Industrial Orga-
nization.

Dranove, David; Shanley, Mark; and Simon, Carol. 1992. “Is Hospital Competition Waste-
ful?” RAND Journal of Economics, v.23, n.2, pp.247-262.

Dye, Mark. 2005. “PET & SPECT: Happy Together,” Medical Imaging, June 2005.

Gaynor, Martin and Vogt, William. 2003. “Competition Among Hospitals,” RAND Journal
of Economics, v.34, n.4, pp.764-785.

Gentzkow, Matthew. 2005. “Valuing New Goods in a Model with Complementarity: Online
Newspapers,” mimeo, University of Chicago GSB.

Gorman, Ian. 1985. “Conditions for Economies of Scope in the Presence of Fixed Costs,”
RAND Journal of Economics, v.16, n.3, pp.431-436.

Gouriéroux, Christian and Monfort, Alain. 1996. Simulation-Based Econometric Methods.
New York: Oxford University Press.

Judd, Kenneth. 1985. “Credible Spatial Preemption,” RAND Journal of Economics, v.16,
n.2, pp.153-166.

39



Keppler, Jennifer and Conti, Peter. 2001. “A Cost Analysis of Positron Emission Tomog-
raphy,” American Journal of Roentgenology, v.177, pp.31-40.

Spetz, Joanne and Baker, Laurence. 1999. Has Managed Care Affected the Availability of
Medical Technology. San Fransisco, CA: Public Policy Institute of California.

Lopes, M.I. and Chepel, V. 2004. “Detectors for Medical Radioisotope Imaging: Demands
and Perspectives,” Radiation Physics and Chemistry, v.71, pp.683-692.

Luft, Harold; Robinson, James; Garnick, Deborah; Maerki, Susan; and McPhee, Stephen.
1986. “The Role of Specialized Clinical Services in Competition Among Hospitals,” In-
quiry, v.23, pp.83-94.

Makuc, Diane; Haglund, Bengt; Ingram, Deborah; Kleinman, Joel; Feldman, Jacob. 1991.
“Health Care Service Areas for the United States,” Vital Health Statistics, Series 2,
No.112, PHS 92-1386. Washington, DC: National Center for Health Statistics.

Manski, Charles. 1993. “Identification of Endogenous Social Effects: The Reflection Prob-
lem,” v.60, n.3, pp.531-542.

McFadden, Daniel and Train, Kenneth. 2000. “Mixed MNL Models for Discrete Choice
Response,” Journal of Applied Econometrics, v.15, n.5, pp.447-470.

McKelvey, Richard and Palfrey, Thomas. 1995. “Quantal Response Equilibria for Normal
Form Games,” Games and Economic Behavior, v.10, pp.6-38.

Milgrom, Paul and Roberts, John. 1990. “The Economics of Modern Manufacturing: Tech-
nology, Strategy, and Organization,” American Economic Review, v.80, n.3, pp.511-528.

Milgrom, Paul and Roberts, John. 1990. “Rationalizability, Learning, and Equilibrium in
Games with Strategic Complementarities,” Econometrica, v.58, n.6, pp.1255-1277.

Milgrom, Paul and Roberts, John. 1994. “Comparing Equilibria,” American Economic
Review, v.84, n.3, pp.441-459.

Nevo, Aviv. 2001. “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econo-
metrica, v.69, n.2, pp.307-342.

Noether, Monica. 1988. “Competition Among Hospitals,” Journal of Health Economics,
v.7, pp.259-284.

Panzar, John and Willig, Robert. 1981. “Economies of Scope,” American Economic Review,
v.71, n.2, pp.268-272.

Robert, G. and Milne, R. 1999. “Positron Emission Tomography: Establishing Priorities
for Health Technology Assessment,” Health Technology Assessment, v.3, n.16.

Robinson, Joan. 1953. “Imperfect Competition Revisited,” Economic Journal, v.63, pp.575-
593.

Robinson, James and Luft, Harold. 1985. “The Impact of Hospital Market Structure on
Patient Volume, Average Length of Stay, and the Cost of Care,” Journal of Health
Economics, v.4, pp.333-356.

40



Schmalensee, Richard. 1978. “Entry Deterence in the Raedy-to-Eat Breakfast Cereal In-
dustry,” Bell Journal of Economics, v.9, pp.305-327.

Schmidt-Dengler, Philipp. 2005. “The Timing of New Technology Adoption: The Case of
MRI,” mimeo, Yale University.

Seim, Katja. 2004. “An Empirical Model of Firm Entry with Endogenous Product-Type
Choices,” mimeo, Stanford University GSB.

Shaked, Avner and Sutton, John. 1990. “Multiproduct Firms and Market Structure,”
RAND Journal of Economics, v.21, n.1, pp.45-62.

Smith, Rick. 2000. “PET and SPECT: Partners in the Battle Against Cancer,” Decisions
in Imaging Economics, September/October 2000.

Spencer, Susan; Theodore, William; and Berkovic, Samuel. 1995. “Clinical Applications:
MRI, SPECT, and PET,” Magnetic Resonance Imaging, v.13, n.8, pp.1119-1124.

Topkis, Donald. 1979. “Equilibrium Points in Nonzero-Sum n-Person Submodular Games,”
SIAM Journal of Control and Optimization, v.17, pp.773-787.

Train, Kenneth. 1999. “Halton Sequences for Mixed Logit,” mimeo, Department of Eco-
nomics, Univeristy of California at Berkeley.

Trajtenberg, Manuel. 1989. “The Welfare Analysis of Product Innovation, with an Appli-
cation to Computed Tomography Scanners,” Journal of Political Economy, v.97, n.2,
pp.444-479.

Villas-Boas, Miguel. 1997. “Comparative Statics of Fixed Points,” Journal of Economic
Theory, v.73, n.1, pp.183-198.

Vives, Xavier. 1990. “Nash Equilibrium with Strategic Complementarities,” Journal of
Mathmatetical Economics, v.19, n.3, 305-321.

Wolinksy, Asher. 1986. “The Nature of Competition and the Scope of Firms,” Journal of
Industrial Economics, v.34, n.3, pp.247-259.

41


