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Abstract

This paper explores the role of regulation of new product entry when product
quality is uncertain but market participants learn over time. We develop a model
that captures the fundamental regulatory tradeoff between information generation,
access, and risk: weak regulation inhibits learning and exposes consumers to the
risk of unproven new products, but overzealous regulation increases entry costs
and reduces access to a narrow choice set. Using new data and exogenous varia-
tion between EU and US medical device regulatory rules, we document patterns
consistent with our model, and then take a structural approach to estimate the
welfare implications of current and alternative regulatory policies. For the set of
devices on which we have data, we estimate that both the US and EU are close to
the optimal policy (though for the EU depends critically on free-riding off of US
trials). We also estimate that embracing recent calls for more active “post-market
surveillance” could further increase total surplus by as much as 19 percent. Rely-
ing on private incentives instead of regulator mandated trial lengths tends to lead
to over-investment in information among the highest quality products.
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Wharton, and Yale for helpful comments. The Wharton Dean’s Research Fund and Indian School of
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1 Introduction

Most innovative new products are brought to the market because their makers believe

they provide new value. However, once in the hands of consumers, there is always some

chance that the product will not operate as hoped and fail. The consequence of this fail-

ure ranges from the consumer losing her product expenditures to death. When product

failure poses significant safety risks, products often must go through pre-market test-

ing and become approved/certified by a formal body before entering the marketplace.

The standard that this regulatory body uses to approve products has the potential to

fundamentally alter market outcomes. In setting its product approval criteria, the regu-

lator must weigh the benefits of reducing risk against the effect on product access (and

potentially prices). We argue that a key decision the regulator makes is the informa-

tion it requires the manufacturer to generate for the product to be approved. As first

highlighted by Peltzman (1973) in the context of pharmaceuticals, higher informational

standards increase product specific learning and lower consumption risk but also result in

delayed access to fewer products and higher entry costs conditional on approval. Today

such certification processes exist and are often a source of controversy in areas as diverse

as electronics, airplanes, automobiles, finance, health care, and toys.1

This paper uses new data and exploits exogenous regulatory differences between the

US and EU to quantify the tradeoff between access and risk for a large set medical

devices introduced between 2004-2013. In the US medical devices are regulated by the

Food and Drug Administration (FDA) while in the EU device approval is performed

by organizations that contract with the EU called Notified Bodies. Importantly, the

different regions apply different standards to medical device approval. Very roughly,

the US applies a “safe and effective” standard while the EU only certifies safety of the

product. This difference is material. Meeting the “effectiveness” standard often requires

manufacturers to generate product performance information through randomized clinical

trials. These trials are costly in both time and expense. Medical device manufactures

(the vast majority of which are US-based) generally introduce their products in the EU

well before they cross the Atlantic and seek FDA approval, if they decide to introduce

the product in the US at all. According to the Boston Consulting Group, between 2005

and 2011, the average high risk and likely high value medical device was introduced in

the US four years later than in the EU. The differences between the US and the EU

1See, for example in electronics “European Environmental Rules Propel Change in U.S.”, The New
York Times, July 06, 2004; in airplanes “Boeing Acknowledges Tests Underestimated 787 Battery Risks”,
The New York Times, April 23, 2013; in automobiles “U.S. Sues Chrysler After Auto Maker Refuses to
Recall Cars”, The New York Times, June 5, 1996; in finance “An FDA for Securities Could Help Avert
Crises”, Bloomberg, April 2, 2012; in toys “Toy Makers Fight for Exemption From Rules”, The New
York Times, September 28, 2010.
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in the medical device approval process have led to calls for reform in both regions. In

the US, the FDA has faced attacks from both sides, with some claiming that a slower,

tougher approval process is crippling innovation; and others claiming that the approval

process is too lax, allowing too many dangerous devices into the market.2 Also, as rising

incomes in the developing world lead to both greater incidence of “western” diseases and

greater ability to afford the most advanced technologies, the debate on how to regulate

medical devices has taken on global significance, drawing the interest of the UN and

WHO.3

Despite the importance of the information and the access/risk tradeoff in markets

where research and development leads to new products with uncertain quality, empirical

research has been limited by two major difficulties: (1) assembling data that can quantify

the returns from increased information relative to the cost of decreased access; (2) finding

exogenous variation in regulatory regimes that can identify the tradeoff between these

competing forces. In this study we address the second challenge by exploiting the fact

that the EU approval process is both faster and less costly than the US process for any

given device, and this difference is due largely to historical political processes. This

allows us to measure the access/risk tradeoff using a newly constructed, detailed data

set for a variety of medical devices available in the US and EU from 2004-2013.

The ideal way to address the first challenge would be to combine data on market

outcomes (quantities and prices) with data on health and safety outcomes. Unfortu-

nately, even in a highly regulated and documented industry such as medical devices,

health outcome and safety data are not available at the product level. This forces us

to ask what can be inferred with more commonly available data such as market prices

and quantities, to which our answer is a substantial amount. We begin by constructing

a theoretical model where products are invented with uncertain quality, market entry is

regulated, and the market learns about product quality over time. The key feature of

our model is that the rate of learning in premarket clinical trials can be greater than

the rate of learning after market entry. This introduces a tradeoff where more regulation

leads to more learning and less risk, but also delayed access and higher entry costs for

innovative new products. The model clarifies patterns in the data that one should ex-

pect as a function of the distribution of product qualities invented, the rates of learning,

consumer preferences, and regulatory rules.

Our data comes from Millennium Research Group (MRG), a medical device consult-

2For an example arguing the FDA is too lax “Report Criticized F.D.A. on Device Testing”, The
New York Times, January 15, 2009; and too tight “FDA Seeks to Toughen Defibrillator Regulations”,
The New York Times, March 22, 2013.

3“UN: Western Diseases a Growing Burden on Developing World,” The Wall Street Journal, May
14, 2010. “Global Forum to Improve Developing Country Access to Medical Devices,” press release,
WHO, September 9, 2010.
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ing firm. MRG collects detail, high frequency, hospital-product-level data for medical

devices on prices, volumes and number of diagnostic procedures for hospitals in the US

and the EU. Our analysis focuses on the market for coronary stents. We chose this

segment as the coronary stent market is large an important with excellent market data

and with constant innovations introduced over time. Coronary stents treat ischemic

heart disease – the narrowing of the coronary artery cause by fatty deposits. Ischemic

heart disease is the leading cause of global death accounting for 7 million deaths in 2010

(Lozano, 2012). In 2011 total, world-wide sales of coronary stents exceeded $7 billion

with the vast majority of those sales occurring in the US and the EU.4

Our data analysis begins by documenting multiple patterns consistent with the model.

Our analysis shows that the EU enjoys greater access to the best new medical technolo-

gies, while also bearing greater risk by allowing entry of a wider range of device qualities,

earlier in each device’s lifecycle. The greater access in the EU is evident in the fact that

on average 47 percent of the stents used in the EU are unavailable in the US at that

point in time. The greater risk in the EU is evident in the facts that on average products

in the EU experience less usage overall and higher variance in usage patterns when first

introduced, with this usage discount and variance decreasing and stabilizing over the first

two years on the market (the US, by contrast, exhibits no such patterns). Differential

learning rates between clinical trials and market use are identified by differential usage

patterns over time for products with and without ongoing clinical trials.

To develop welfare measures and address policy questions regarding optimal regu-

lation, we then proceed with a structural approach. We combine the data with our

learning model of product choice to estimate the distribution of product qualities and

risk between the EU and the US, as well as the speed of learning and preferences of

consumers in the marketplace. With these parameters in hand, we estimate the impact

of different regulatory rules on product introductions and consumer welfare.

We estimate that total surplus is maximized when the average premarket clinical trial

is six months longer than the current EU requirements and four months shorter than

current US requirements. Because total surplus as a function of time spent in premarket

testing is relatively flat around the optimal, US policy is statistically equivalent to the

optimal. By contrast, it at first appears that the EU could make welfare gains of up to

40 percent by increasing its standards—until one realizes that the EU is able to free-ride

off of the information being generated in trials for US entry, which makes current EU

policy a best-response to current US policy.

Related to this issue of information generation after product approval, we also an-

alyze a commonly suggested policy change that would relax premarket requirements

4Source: BCC Research.
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but increase “post-market surveillance”. We estimate that if it is possible to achieve

post-approval learning rates close enough to those we observe from clinical trials at a

comparable cost, the further benefits from such a policy change could be as high as 19

percent of total surplus. In the extreme case where post-approval learning is informative

and not too costly, the optimal policy is to require no pre-approval trials at all.

Finally, we turn from optimal government policy to the question of manufacturers’

private incentives to invest in information generation without regulatory mandates. This

is an empirical question because theory suggests that firms may over invest because of

business stealing incentives or underinvest because private returns are only a fraction of

total social returns. We find evidence of both—firms with the highest quality products

will tend to over invest while those with lower quality products will under invest.

Because our data collection, research design, and modeling efforts are focused on

the issue of information generation, risk, and access, our analysis should be interpreted

as holding other roles of the regulator—such as setting standards for what constitutes

what constitutes acceptable evidence and verifying the information produced in trials—as

fixed. Together, our results suggest that on the dimension of clinical trial requirements,

the US and EU are both very close to optimal (in the EU case, conditional on US trials

as a source of post-market information), at least for the product categories we have the

data to analyze. We also discuss how our empirical results and theoretical model could

inform extrapolation to a broader set of product categories.

Our work builds on recent empirical research on optimal regulation (Timmins 2002;

Miravete, Seim, and Thurk 2013) and consumer learning (Roberts and Urban 1988; Er-

dem and Keane 1996; Ackerberg 2003; Crawford and Shum 2005; Ching 2010), and

to our knowledge is the first to combine these two. This combination is essential in

allowing us to address the policy question at the heart of this paper. Of course, Peltz-

man’s (1973) pioneering work laid the foundation for our analysis. Using pre-/post-

analysis, he argues that the 1962 FDA act which require clinical trials for pharmaceu-

ticals prior to their introduction to the market harmed consumers as it reduced access

to drugs without off-setting increases in product information. As our approach relies

on established models and data that is relatively easily available, we hope provides an

approach that future researchers might find useful in the area of entry regulation via

product approval/certification processes. We also see this work as complementary to

recent empirical research on the impact of patent length (another regulatory tool that

impacts entry) on product introductions (Filson 2012) and innovative activity (Budish,

Roin, and Williams 2013) as well as the literature on quality disclosure (Dranove and

Jin, 2010).

Our analysis of the impact of different regulatory regimes not only speaks to the broad
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questions of the economics of product quality regulation but to also informs policy with

potentially large welfare consequences. The amount of economic activity regulated by

the FDA and the Notified Bodies is significant. In the US the medical device market sales

exceeded $150B in 2010 or 6% of total national health expenditures and approximately

$130B in the EU or 7.5% of total health expenditures.5. Furthermore, the introduction of

new medical technologies are responsible for much of the recent reductions in mortality

and in so far as different regulatory regimes affect the availability of these technology,

the welfare impact of these regulations likely extends beyond their direct impact on

commerce.

The remainder of the paper is organized as follows: The next Section discusses the

institutional background of medical device regulation in the US and EU. Section 3 de-

velops a general model that captures the tradeoffs involved in regulating market entry

of products with uncertain quality and derives testable predictions. Section 4 then tests

these predictions in the data, finding evidence in support of the model. Section 5 takes

a structural approach, explicitly estimating the parameters of the model and deriving

welfare estimates for current as well as counterfactual regulatory regimes.

2 Medical Device Regulation in the US and the EU

Medical device regulation in the US began on May 28, 1976 with the passage of the

Medical Device Amendments Act of 1976. This law established the regulator pathway

for medical devices in the US, placing oversight authority within the Food and Drug

Administration (FDA). The criteria the FDA is mandated to use is “safe and effective.”

Prior to the passage of the Act, medical devices were essentially unregulated. The

Act established three classification of devices (I, II and III) which are assigned to each

device based on the perceived risks associated with using the device. Class III devices are

defined as those used in in supporting or sustaining human life, of substantial importance

in preventing impairment of human health, or presents a potential unreasonable risk of

illness or injury. Class I and Class II devices are lower risk devices for which there is

a sufficient body of evidence demonstrating a performance standard for the design and

manufacturing of the device.

There are two basic regulatory pathways within the FDA to bring a device to mar-

ket: Pre-Market Approval (PMA) and the 510(k). The PMA process applies to Class III

devices, while the 510(k) process generally applies to Class II and some Class I devices.

Under the 510(k) process the manufacturer needs to demonstrate that the device is ‘sub-

stantially equivalent’ to a predicate device. Generally, bench testing data and perhaps a

5Donahoe and King, 2012; Medtech Europe, 2013
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very small clinical study is all that is necessary for a device to demonstrate equivalency.

While there is no standard timetable for 510(k) clearance, a straightforward clearance

can typically be obtained within several months.

However, the approval process is much more complicated and costly for PMA devices.

Approval of a PMA device requires the sponsor to provide data from a pivotal study.

These are large, multi center, randomized clinical trials. These studies involve hundreds

of patients and cost tens of millions of dollars to complete. PMA submission often reach

thousands of pages in length. According to the Boston Consulting Group, the average

cost of a PMA application approaches $100 million and often takes several years for the

FDA to make a decision after the initial submission has been made. In 2012, only 37

PMAs were approved by the FDA.

In the EU the device approval process for Class III devices is very different than in

the US.6 Medical devices are regulated by three EU Directives. The main Directive is

the Medical Devices Directive which has been adopted by each EU member state and

passed in June, 1993. A medical device is approved for marketing in the EU once it

receives a ‘CE mark’ of conformity. The CE mark system relies heavily on third parties

know as “notified bodies” to implement regulatory control over devices. Notified Bodies

are independent commercial organizations that are designated, monitored and audited

by the relevant member states via “competent authorities.” Currently, there are more

than 70 active notified bodies within the EU.7 A firm is free to choose any notified body

designated to cover the particular type of device under review.8 To obtain an CE mark a

Class III medical device needs to only demonstrate safety and performance. Compliance

with this standard usually can be demonstrated with much simpler and cheaper clinical

trials than required by the FDA.

The differences in the two regulatory regimes is largely a consequence of different

histories that lead up to the passing of the primary medical device legislation in the two

regions. The Medical Device Directive, the centerpiece of the EU medical device regu-

latory framework, was passed in 1993 when there was keen interest in a new approach

to harmonization regulatory frameworks across the member states. The EU had just

undertaken a long and frustrating harmonization process for food and drugs. This new

approach sought to avoid detailed and bureaucratic government approval processes, par-

ticularly duplicative approvals and was applied to other products including toys, pressure

vessels and personal protective equipment. In contrast, the US medical device regula-

6Actually, there are four different classes of medical devices in the EU(Classes I, IIa, IIb and III).
Class III devices in the EU closely map into Class III devices in the US.

7Recent regulatory reform of the Medical Device Directive now limits the ability of Notified Bodies
to outsource their device reviews.

8See Guidelines Relating to Medical Devices Directives, http://ec.europa.eu/health/medical-
devices/documents/guidelines/.
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tory framework was established after the Dalkon Shield injured several thousand women.

The FDA already had oversight on some aspects of medical devices and expanding that

role was the most viable political option. At that time, a non-governmental approach to

device regulation was never seriously considered by the Congress.

The differences between the two systems is the focus of a number of consulting, lob-

bying organizing and government reports. For example, a series of Boston Consulting

Group reports shows that there is no difference in recalls between devices that are mar-

keted in both the US and the EU. Of course, as we show below, the mix of devices that

are introduced into the US is different and thus it is unclear what this study says about

the impact of counterfactual regulations on device safety. In fact, the FDA countered

the BCG study with their own case study of 10 devices that were approved in the EU

that were not approved by the FDA and these devices lead to significant adverse events

in patients. Of course, the FDA study only focused on the negative consequences of

the EU’s relatively lax regulatory standards and does not acknowledge the benefits of

greater access to devices in the EU.

While the consequences of the different regulatory regimes has generated significant

policy debate, what is less controversial is the there are significant lags in the introduction

of devices between the US and the EU. Conditional on entry into both the US and the

EU, BCG documents that medical devices are introduced into the US approximately

four years after their EU introduction.9 In the next section we develop a theoretical

framework for assessing the trade-offs inherent in the different regulatory approaches.

A notable advantage of our model is that the key parameters can be directly estimated

from commonly available data, and thus the welfare of counterfactual policies can be

assessed.

3 A Model of Quality Uncertainty, Learning, Entry

Regulation, and Consumer Choice

In this Section, we develop a model that captures the tradeoff between risk and access

involved in regulating market entry of products with uncertain quality. In our model,

products are developed with uncertain quality; this uncertainty is resolved over time via

exogenous signals (e.g. from clinical trials or other research); a regulator restricts entry

by requiring costly premarket clinical trials to accelerate learning about product quality;

and risk-averse consumers choose from the available products in the market at any point

in time.

9BCG (2012) Regulation and Access to Innovative Medical Technologies.
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Our model captures many of the salient features of medical device markets and the

role of the regulator, however the medical device sector is complicated and there are

notable institutional features that we purposefully ignore in order to keep the model

tractable and parsimonious. In particular, we do not model the possibility that the regu-

lator will reject a device. We do, however, model manufacturers’ optimal entry decisions

in the face of clinical trial and entry costs. This amounts to an implicit assumption

that no firm would want to enter with a product the regulator would want to reject.

We believe this is reasonable because these costs are non-negligible for the majority of

products.

We have also considered and decided not to study here other roles for medical device

regulation. As we have modeled, medical device quality is uncertain and if manufacturers

are differentially informed about their devices quality, device regulation could solve a

lemons problem (Leland 1979). At the extensive margin of whether to have any regulation

at all, the lemons problem is surely relevant. However, our focus is on the appropriate

standards of that regulation not on whether the regulation should exist. The variation

that we exploit aligns with this focus. The EU is more lax in their standard relative to

the US yet we are unaware of any significant evidence that the device market in the EU

‘unravels’ more than in the US. In fact, the presences of many more device offerings in

the EU strong suggests that the variation in regulations between the US and EU is not

a margin that would induce a lemons type market failure.

The next several subsections lay out the model. Section 3.1 describes how market

participants learn about product quality over time, Section 3.2 describes consumer be-

havior and how it is affected by uncertainty about product quality, Section 3.3 turns to

supplier pricing and entry, and finally Section 3.4 lays out the role for a regulator to

affect total surplus via information requirements and their effect on risk and access.

3.1 Modeling Learning

The key element of the model is the uncertainty over product quality and structure of

learning over time. Our specification explicitly models the impact of clinical trials on

the information set that physicians use to assess which product they should implant into

their patients. Assume innovative new devices j are each developed with quality Qj

according to a distribution Ft(Q)10:

Qj ∼ Ft(Q) := N(Qt, σ
2
Q). (1)

10For simplicity, we assumed the prior and signal process to be normally distributed. In principle,
these processes can be specified and empirically identified non parametrically. In practice, however, data
limitations make a more parametric specification desirable, and we find that the simple normal model
fits the data quite well with a small number of parameters.
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where the subscript t allows for technological advancement over time.

Over time, unbiased but noisy signals A arrive regarding the product’s quality as

new data (from ongoing clinical trials and real world usage) are released and this infor-

mation diffuses into the market (where here age a refers to the time since product j was

introduced to the market, not the calendar month):

Aja = Qj + νja where νja ∼

{
N(0, σ2

Ac) if in clinical trials

N(0, σ2
A) if not

(2)

Given these signals, beliefs about product quality are updated via Bayes’ rule, and

due to the normally distributed prior and signal, posterior beliefs are also distributed

normal with mean:

Qja+1 =
σ2
ja

σ2
ja + σ2

Aja+1

Aja+1 +
σ2
Aja+1

σ2
ja + σ2

Aja+1

Qja (3)

and variance:

σ2
ja+1 =

σ2
Aja+1

σ2
ja + σ2

Aja+1

σ2
ja. (4)

With this uncertainty and learning as a backdrop, the regulator must make a decision

regarding the required length of clinical trials, trading off the costs of later access versus

the benefits of reduced risk. Once a product has been subjected to the required clinical

trials, it is released to the market, and consumers (doctors and patients) make decisions

about which product to use, given the current available choice set and information.

Because the regulator weighs the implications for total surplus in it’s decision, we begin

with the consumers’ problem and work backwards.

3.2 Modeling Consumer Choice

In the market, each device’s perceived quality and uncertainty can be mapped into choice

probabilities and welfare via a utility function that specifies the utility to patient/doctor

combination i from using device j at time t (where here subscript t refers to the calendar

month, which will be associated with different product age a for different products). We

assume that the ex-ante expected (indirect) utility function takes the form

uijt = Qjt −
ρ

2
σ2
jt + ǫijt, (5)

where ρ is the coefficient of risk aversion, and ǫijt is an i.i.d. error term capturing the

deviation of doctor preferences and/or patient appropriateness for device j relative to the

population average. In our empirical exercise, we do not find price to be a statistically
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significant determinant of demand. Because of this and the fact that we do not explicitly

model supply, we leave price out of the specification here.

Assuming consumers choose the product j that maximizes expected utility from the

set of products Jt available, the set of patients for whom a doctor chooses product j (in

month t) is then Ajt := {i|j = argmaxk∈Jt uikt}. Then expected market shares are given

by the choice probabilities:

sjt = Pr[j = argmax
k∈Jt

uikt] =

∫

Ajt

ft(ǫ)dǫ =
eQjt−

ρ
2
σ2
jt

∑
k∈Jt

eQkt−
ρ
2
σ2
kt

, (6)

where the last equality obtains from the standard “logit” assumption that ǫ is distributed

i.i.d. extreme value type I with unit variance. The choice set always includes an outside

option j = 0, with utility normalized to zero.

In a world where doctors and patients make choices with full information, the gains

to greater access are unambiguous. However, the fact that product quality is uncertain

at the time of regulatory approval and only revealed over time introduces distortions

in choices and realized welfare due to lack of information and potentially risk aversion.

The realized total surplus (not including fixed costs; in logit utils) over time periods

t = 1, · · · , T will be given by

T̃ S =
T∑

t=1

∫

Ajt

uijtft(ǫ)dǫ =
T∑

t=1

ln

(
∑

j∈Jt

eQjt−
ρ
2
σ2
jt

)
, (7)

where the final equality obtains from the logit distributional assumption on ǫ.

3.3 Modeling Supplier Pricing and Entry

Fixed costs of market entry (in particular clinical trial costs) are substantial relative to

the lifetime profits of the average medical device, making the decision to proceed with

testing and launching a new product an important one. Once in the market, quantities

are determined via consumer preferences as in the previous Section, and prices for the

device are typically negotiated at the hospital or regional level.

We follow work by Grennan (2013) in medical devices and other recent work in

negotiated price markets (Crawford and Yurukoglu 2012; Gowrisankaran, Nevo, and

Town 2013; Ho and Lee 2013) in modeling prices as the outcome of a Nash Equilibrium

of bilateral Nash Bargaining processes (Horn and Wolinsky 1988):

pjrt = cjrt +
bjt(r)

bjt(r) + brt(j)
[TS(Jrt)− TS(Jrt \ {j})] , (8)
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where pjrt is the price of product j in region r in month t, c is marginal cost, and

b denotes Nash Bargaining weights. The pricing equation says that each product will

capture a fraction
bjt(r)

bjt(r)+brt(j)
of its marginal contribution TS(Jrt) − TS(Jrt \ {j}) to

overall surplus. Because price does not enter demand (an assumption here that is born

out in the empirical section), total surplus does not depend on how the surplus is split,

making this a transferable utility game.

Given expected prices and demand, each product’s manufacturer will only decide to

launch the product in a region if the expected profits of the product’s expected lifetime

Ajr will cover the fixed costs (including those associated with clinical trials) of entry

FCr(T
c
r ):

enter iff

Ajr∑

a=1

qjrt(pjrt − cjrt) > FCr(T
c
r ) . (9)

3.4 Modeling the Regulator’s Tradeoffs

The total surplus equation 7 illustrates the main tradeoff between access and risk: the

longer time T c that products spend in premarket clinical trials, the lower the risk from

uncertainty about product quality in the market σjt, but the less new technologies avail-

able in the consumer choice set Jt at any point in time and greater costs of entry. This

tradeoff can be formalized mathematically by writing total surplus as a function of time

spent in premarket clinical trials and considering the marginal return to increasing the

amount of time spent in premarket testing to T c + 1:

TS(T c+1)−TS(T c) =

T∑

t=1

ln

(∑
j∈Jt(T c+1) e

Qjt−
ρ
2
σ2
jt(T

c+1)

∑
j∈Jt(T c) e

Qjt−
ρ
2
σ2
jt(T

c)

)
−FC(1) |Jt(T

c + 1) \ Jt(T
c)| .

(10)

One way to very clearly see the tradeoff between access and risk as a function of learning is

to consider the simplest scenario where there is no observational learning once a product

enters the market and where there is no direct cost of premarket testing. In this case,

the per-period marginal return to increasing premarket testing simplifies to

TS(T c + 1)− TS(T c)

T
=

ρ

2
(σ2

T c − σ2
T c+1)−

1

T
ln

(∑
j∈J0(T c+1) e

Qj0

∑
j∈JT (T c) e

QjT

)
, (11)

where the first term captures the per period utility gain from decreased risk, and the sec-

ond term captures the total surplus generated by the rate of technological improvement

in product quality over time.
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4 Data and Preliminary Analysis of Access/Risk in

US and EU

In this Section we introduce the data on product entry, usage, and pricing; and we

document patterns in the data consistent with the model in Section 3 and suggesting the

EU enjoys greater access to quality new devices, but also greater risk from lower quality

products and the approval of products early on when quality is more uncertain.

The data used in this study consists of quantities and prices at the product-hospital-

month level, collected by Millennium Research Group’s (MRG) MarketTrack survey of

hospitals across the US and EU from 2004-2013. This survey—covering approximately

10 percent of total market activity—is the main source of detailed market intelligence

in the medical device sector, and its goal is to produce representative estimates of the

distribution of market shares and prices by region. Though we use the hospital level

data for some relevant summary statistics, for the majority of our analysis we aggregate

the data to the region (US and EU) level in order to obtain accurate measures of market

entry and overall usage of each device within a region.

4.1 The EU has Access to More, Newer Technologies

Table 1 and Figure 1 demonstrate the extent to which the EU enjoys greater access to

medical devices than the US. During the time of our sample, the EU has over three times

as many manufacturers and products in the market. For those products that eventually

enter the US, the average lag time between EU and US introduction is 10 months (19

months for the more technologically advanced DES). Many of the products to which the

EU has greater access are important, high-quality products. In the average month, 47

percent of the stents used in the EU are unavailable in the US at that point in time, and

32 percent will never be available in the US.

Table 1: Entry of manufacturers and products across US and EU

US EU
Mean manufacturers in market 4 14

Mean products in market 11 32
Total products in market (2004-13) 24 113
Mean months from EU to US entry 10 -

Mean months from EU to US entry (DES) 19 -
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Figure 1: EU market share of products not available in US.
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4.2 The EU Also Grants Access to More Technologies with

Lower and More Uncertain Quality

Several statistics from the data suggest that the greater access enjoyed by the EU comes

along with greater risk in the form of more low quality devices and more uncertainty

regarding device quality at the time market access is granted.

The patterns from the data shown in Figure 2 suggest that the EU consumers bear

more risk than those in the US by introducing a larger number of devices earlier in their

life cycles with less information imparted about the quality of those devices. The left

panel shows that in the EU the mean inclusive share, ( 1
Ja

∑
j ln(sja/s0a)), of a product is

lower upon introduction, and gradually increasing with age until reaching a stable level

after about two years in the market, whereas the mean inclusive share is constant with

product age in the US. The right panel shows that the variance in inclusive shares across

hospitals ( 1
H

1
Ja

∑
h

∑
j

(
ln(sjha/s0ha)− ln(sjha/s0ha)

)2
) is larger early in a product’s

life, and gradually decreasing to a stable level over time. Again, this statistic is constant

over the product lifetime in the US. Both of these patterns are consistent with greater

uncertainty regarding product quality early in the product lifetime in the EU, which

is gradually resolved over time via learning. The fact that the mean inclusive share

14



Figure 2: Evidence of Greater Risk and Learning Upon Market Entry in
EU vs. US
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is lower early on further suggests that consumers are risk averse, discounting products

whose quality is more uncertain.11

4.3 Regulatory Differences Don’t Appear to be Driven by Dif-

ferences in Disease or Treatment in EU vs. US

There is little evidence that these differences in usage patterns are being driven by other

factors such as differences in disease incidence, preferences for angioplasty and stents,

or price differences across the US and EU. If anything, the evidence and economic logic

suggest that the differences documented in Figures 3 and 4 are results of the different

market structures induced by the regulatory differences, rather than causes of regulatory

differences. For example, the average ischemic heart disease mortality rate is very sim-

ilar between the US and the EU suggesting that the disease incidences is also similar.

Ischemic heart disease is caused by the accumulation of fatty deposits lining the inner

wall of a coronary artery and coronary stents are used in treatment of this disease. The

2010 mortality rate in the US for ischemic heart disease was 126.5 deaths per 100,000.

The corresponding figure for the EU is 130.0 per 100,000.12 While there is significant

variation across member countries in the EU and across states in the US in the prevalence

of heart disease, there is little indication that there are meaningful differences between

11An alternative explanation of the patterns over the first few years after EU entry might be a
ramping up of distribution and marketing over time. We find this explanation unlikely due to the fact
that market entry and the subsequent product rollout is a highly anticipated event by manufacturers
and consumers, and also due to the fact that we do not see a similar pattern upon US introduction.

12OECD Health at a Glance, 2013.
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average disease prevalence across the two regions.

Figure 3: Comparison of diagnostic procedure patterns, EU vs. US.
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Figure 4: Comparison of usage and price patterns EU vs. US.

(a) DES Share of All Stents
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Prior to performing an angioplasty in which a stent may be inserted, the patient

must undergo a diagnostic angiography. In this procedure, the blood flow through the

coronary artery is visualized and this information is used to determine whether the

patient should receive a stent or some other medical intervention. If the difference in

the number of different stents available between the EU and the US was driven by

higher demand for stents, then it should show up in the data with the EU performing

a larger number of angiographies or having a higher rate of stenting conditional on the

angiography rate. Figure 3 documents the distributions of the number of diagnostic
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angiographies performed across the hospitals in our data and percent of those diagnostic

procedures resulting in a stenting procedure across hospitals in the US and EU samples.

The distributions are close to identical statistically, with the EU having a few more small

volume hospitals and hospitals that are more likely to place a stent conditional upon a

diagnostic procedure. In the EU, 32 percent of patients received a stent conditional on an

angiography while in the US that figure was 28 percent. This modest differential seems

unlikely to account for the stark differences of entry rates between the two regions.

Figure 4 documents that DES usage as a percentage of all stents used lower in the

EU but follow similar patterns to the US over time. If the increased DES entry in the

EU was driven by higher demand, we would expect the opposite pattern. Figure 4 also

shows that the prices and hence profits per stent sold are lower in the EU. This is true for

both BMS and DES and is true over our entire sample period. Both of these patterns are

likely the result of lower reimbursement levels overall, lower DES reimbursement levels

in particular, and more competing devices in the EU market. These results suggest that

conditional upon FDA approval, average variable profit in the US is higher making it

a more attractive entry target than the EU. This in turn suggests that the differential

entry rates is driven by differences in regulation and not underlying demand.

5 Structural Identification, Estimation, and Results

The statistics presented in the previous Section are consistent with the model of regula-

tion and learning developed in Section 3 and suggest that the EU is indeed less stringent

than the US in regulating the entry of new medical devices. In this Section we estimate

the parameters of our model in order to better understand the impact of this differential

regulation. Using the quantity and price data across markets and over time, we estimate

the distribution of product quality for innovations that could be introduced in the US

and EU, the rates of learning over time, and risk aversion. We then use the model to

quantify the welfare generated under different premarket clinical testing requirements

(including those observed in the EU and US) and under a proposed alternative policy

that would relax premarket requirements but increase the rate of observational learning

through increased post-market approval data collection and reporting.

5.1 Demand and Learning Model Estimation

The parameters of the utility function—and by extension the parameters of the device

quality distribution and learning process—can be estimated by a revealed preference

assumption and data on device market shares in each month. Matching the choice
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probabilities implied by utility maximization and the market share data, and inverting

the system as in Berry (1994) to recover the mean utility parameters gives

ln(sjt/s0t) = δjt := Qjt −
ρ

2
σ2
jt := Qj −

ρ

2
σ2
jt + ξjt , (12)

where the unobservable ξjt in the final equation includes any errors in the current ex-

pected quality estimate Qjt as well as any idiosyncratic market preferences. The main

challenge here is that none of the variables on the right hand side of this equation are

directly observed in the data. Our strategy will be to use variation over time and across

products in a region to estimate the product qualities Qj, the mean Q and variance σ2
Q of

the product quality distribution, the signal variances σ2
A and σ2

Ac , and the risk aversion

parameter ρ.

5.1.1 Identification and Estimation of Demand and Learning

We estimate the parameters via a generalized method of moments algorithm (detailed in

Appendix A). A simple and semi-parametric way to estimate equation 12 would be to

regress the inclusive shares ln(sjt/s0t) on product and age fixed effects (age fixed effects

interacted with whether a product is in clinical trials or not to allow for differential

learning rates from trials and observation). The age fixed effects would then capture

the combined effect of learning and risk aversion on utility. However, because we are

interested in questions that involve altering the observed learning rates, we need to add

structure via the learning model to disentangle these forces. Comparison to the fixed-

effect model provides a useful benchmark for assessing the fit of the more parsimonious

and parametric learning model.

Like all learning models, the identification of the signal variance depends on fitting

the model to the shape of how choice behavior changes with the age of the product.

The risk aversion parameter is then identified as the multiplicative shifter that best fits

that shape to the observed choices. Despite the fact that data only exists post market

approval, we are able to separately estimate the rates of learning in clinical trials σAc

and observationally σA because we observe all products post market approval in the

EU, and a subset of these products are concurrently involved in clinical trials required

for eventual FDA approval. The learning and risk parameters are estimated using the

within-product variation, as they are all conditional on the product fixed effects whose

parameters provide estimates of the product qualities Qj.

We use the empirical distribution of the product fixed effects estimated from the EU

data to estimate the mean and variance of the distribution of product qualities developed.

This amounts to an assumption that all products that a firm might want to introduce
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to the market are in fact introduced in the EU. This is plausible as the EU has some

products with very low market shares and profits that are likely near the threshold at

which fixed costs of product development and entry are just covered.

5.1.2 Results of Demand and Learning Estimation

Table 2: Structural parameter estimates of learning model

µQ σ2
Q 1/σ2

A 1/σ2
Ac ρ

-5.72 1.37 0.00 0.12 0.58
(0.01) (0.01) (0.02) (0.02) (0.02)
N = 3252. Standard errors clustered at the month level (NT = 103).

The parameters estimates from the model are presented in Table 2. The first ob-

servation is that the coefficient of variation on the distribution of product quality, |
σ2
Q

µQ
|

is relatively high at 0.24. There is meaningful underlying variation in product quality

that exposes consumers to risk. The second observation is that the learning rates vary

according to whether the product is under clinical trial or not. Interestingly, the param-

eter estimate indicate that there is virtually no experiential market learning occurring.

Finally, the implied coefficient of risk aversion is quite sensible. The parameter estimate

in Table 2 is not directly interpretable as it is in utility units. However, if we convert that

estimate into a dollar equivalent by normalizing the total surplus per stenting procedure

to $50,000 (the estimated dollars in quality adjusted life years from the procedure), then

the estimated risk aversion parameter is ρ$ = 1.4 · 10−4. This is within the range of

estimates of risk aversion in other studies such as Cohen and Einav (2007).

Figure 5: Comparison of estimates from fixed effect and learning models.
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Figure 5 shows the estimated distribution of product qualities Qj and uncertainty

discounts −ρ

2
σ2
jt for both the learning model and the more flexible model with product

and age fixed effects. Despite its parsimony, the simple learning model fits the data

nearly as well as the much more nonparametric fixed effects model (RMSE of 0.946 vs.

0.955). Said somewhat differently, our highly parameterized model does not seem to be

imposing structure on the problem that is inconsistent with the patterns in the data.

5.2 Pricing and Entry Model Estimation

5.2.1 Results of Pricing ad Entry Model Estimation

Table 3: Structural parameter estimates of supply model

mean TS ($) mean AV ($) γBMS ($) γDES ($) µb σb FCUS

50,000 1303 100 325 0.47 0.30 30,221,774
(6,040) (2) - - (0.00) (0.00) (126,940)

N = 3252. Standard errors clustered at the month level (NT = 103).

Table 3 summarizes several estimates from the demand model that are important

inputs to supply estimation as well as the supply parameter estimates themselves. Be-

cause we find that price does not influence demand, we do not have the standard price

coefficient available to scale demand estimates from logit utils to dollars. Instead we take

advantage of the fact that like many medical technologies, the procedure of angioplasty

with a stent has been subject to numerous studies attempting to value the average qual-

ity adjusted life years added by the procedure in dollar terms. We use $50,000 (published

estimates range from $32,000 to $80,000) to calibrate the mean total surplus generated

per procedure into dollars. Then the marginal contribution (sometimes also called added

value) AV = TS(Jrt) − TS(Jrt \ {j}) to be bargained over is a realistic $1303 for the

average stent in the market. Our bargaining parameter estimates indicate that on aver-

age the supplier obtains nearly half of this surplus, but there is a great deal of variation

with standard deviation of 0.30.

As noted in Grennan (2013), the large added values and final prices make cost esti-

mation difficult because their is very little data near the intercept of the pricing equation.

Because we have the advantage of having price data for many more devices, we do ob-

tain some situations with prices in the range of what industry insiders estimate marginal

costs to be. Thus we calibrate marginal costs to be equal to the minimum BMS and DES

prices observed in the data, respectively. All of our main results and policy implications

are robust to marginal costs as low as zero.

Having data on products that enter the EU but not US, and further having EU price
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and quantity data, provide us with an especially good setting for estimating fixed costs

of US entry. The resulting value of 30 million dollars predicts entry in the data almost

perfectly, and matches well with what industry publications estimate to be the costs of

various launch phases (in particular of the Makower et. al. (2010) survey that reports

the average pivotal trial required by the FDA to cost 1.6 million dollars per month, and

our average EU-US entry lag of 10 months).

5.3 Welfare Implications of Regulatory Policy

With the model and estimated structural parameters, we can examine the impact of

different regulatory regimes on welfare. The first exercise we perform is examining the

optimal regulatory standard for clinical trail length. Figure 6 plots expected total surplus

per patient treated in the market,
∑T

t=1 ln
(∑

j∈Jt(Tc)
eQjt−

ρ
2
σ2
jt(Tc)

)
, versus the required

length of time spent in clinical testing (relative to the current EU required clinical test-

ing). The results suggest that the optimal tradeoff of access vs. risk is reached at

approximately T ∗
c = 5 months of premarket clinical testing. An interesting feature of

the estimated total surplus as a function of time in premarket clinical testing is that it

is relatively flat for a wide range of trial lengths near the optimum—for trial lengths

between four and twelve months, total surplus remains within five percent of the max-

imum obtained at five months. Thus the US average of TUS
c = 10 extra months spent

in clinical testing after EU introduction seems too burdensome, although because of the

flatness in the total surplus as a function of trial time in this range, the US policy is not

statistically different from the optimal.

Figure 6: Estimated Total Surplus as a Function of Time in Premarket
Clinical Testing
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Outside of the flat range, however, surplus drops rapidly with zero month trials and

twenty month trials both resulting in an almost 40 percent drop in surplus relative to the

optimal. At first this seems to suggest that the EU could make welfare gains of up to 40

percent by increasing its standards—until one realizes that the EU is able to free-ride off

of the information being generated in trials for US entry, which makes current EU policy

a best-response to current US policy. In effect, the EU is getting free post-approval

learning. This issue of “post-market surveillance” and the learning it could induce post-

approval has actually been on the policy table in the US, and so in the next section we

use our model to conduct a more rigorous examination of its merits.

5.4 Alternative Policy: Shorter Trials with Increased Post-

market Learning

We estimated the post market approval observational learning rate is zero for the set

of products in our data. There are several potential reasons for the lack of post-market

approval learning. For some products, observational learning from real world use (not

having the randomization into treatment and control as in a clinical trial) may make it

difficult to infer product quality. For other products, though—and likely for those in

our sample—the problem is simply a lack of systematic data collection and sharing of

information.

One frequently suggested regulatory policy is to relax requirements on premarket

clinical trials but increase requirements on post-market surveillance, including data col-

lection, analysis, and reporting. This policy has a direct connection to our model in

the sense that it’s intention is to increase the rate of post-market approval observational

learning—in the language of our model, this means decreasing the variance σ2
A of the sig-

nals that arrive outside of clinical trials. We analyze this policy by taking the estimated

model, varying σ2
A, and calculating the corresponding optimal trial length T ∗

c (σA) and

total surplus generated TS(σA, T
∗
c (σA)). Figure 7 displays the results.

When observational learning is as fast as clinical trial learning, there is no reason

to run clinical trials at all, and total surplus is highest–19 percent higher than with no

observational learning–because there is no tradeoff to be made between access and learn-

ing. As the noise of observational learning increases (relative to clinical trial learning),

it becomes optimal to require longer clinical trial periods prior to market access in order

to take advantage of the faster learning rate of clinical trials. This transition happens

relatively rapidly. Once the noise of observational learning has a standard deviation of

three times that of clinical trial learning (σA = 3σAc), the optimal clinical trial length

is seven months and total surplus is only four percent higher than the no observational
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Figure 7: Optimal Trial Length and Total Surplus as a Function of Obser-
vational Learning

(a) Optimal Trial Length, T ∗

c (σA)

0
2

4
6

8
10

O
pt

im
al

 C
lin

ic
al

 T
ria

l L
en

gt
h 

(M
on

th
s)

1 2 3 4 5 6
Observational Learning Rate (Ratio of Noise Std Dev vs. Clinical)

(b) Total Surplus, TS(σA, T
∗

c (σA))

0
5

10
15

20
T

ot
al

 S
ur

pl
us

 P
er

 P
at

ie
nt

 (
%

 C
ha

ng
e 

fr
om

 N
o 

O
bs

. L
ea

rn
in

g)

1 2 3 4 5 6
Observational Learning Rate (Ratio of Noise Std Dev vs. Clinical)

learning case. After this point the gains flatten out, and for σA > 4.5σAc the gains from

observational learning are close to zero with an optimal clinical trial length of 10 months,

the same as in the case with no observational learning.

5.5 Alternative Policy: Allow Manufacturers to Determine Trial

Lengths

Why is a regulatory body required to regulate medical device entry? As mentioned

previously, the FDA and similar institutions serve functions beyond simply mandating

the amount of information (size and length of clinical trials) that must be generated

before a product is allowed on the market. Neither our data nor model provide the tools

to answer the full question of what the market might look like with no regulation at

all. However, we can consider a market where the amount of information generated is a

choice variable for each product, rather than for the regulator.

The fully specified game this induces among products is challenging to solve because it

involves a continuous choice variable over 113 products. To minimize the computational

burden, we begin to look at this problem by fixing the choice of all firms but one focal

firm, and looking at the best-response function of that focal firm. What we find is that for

higher quality products the business stealing incentive tends to lead to over-investment

in learning; whereas for lower quality products the fact that profits are only a fraction

of the social surplus created leads to under-investment. Figure ?? shows the results for

two representative products.
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Figure 8: Optimal Trial Lengths Based on Private Incentives
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6 Conclusion

The tradeoff between access and risk in regulating the market entry of new products

is important in a variety of industries, and in particular in medical devices, where it is

an active topic of policy debate in almost every country in the world. In this paper we

develop a model with products introduced when quality is still uncertain, learning over

time, and regulator (and manufacturer) decisions regarding market entry. We show that

the empirical predictions of the model are borne out in market share data in the US and

EU medical device markets and are consistent with the beliefs that the US regulatory

environment is more restrictive than the EU. We then estimate the structural parameters

of the model for use in welfare and counterfactual analysis.

For the set of devices on which we have data, we estimate that both the US and EU

are close to the optimal policy (though for the EU depends critically on free-riding off of

US trials). We also estimate that if it is possible to achieve post-market learning rates

close enough to those we observe from clinical trials at a comparable cost, then embracing

recent calls for more active post- market surveillance could further increase total surplus

by as much as 19 percent. Relying on private incentives instead of regulator mandated

trial lengths tends to lead to over-investment in information among the highest quality

products and under-investment among the lowest quality products.

Of course, our analysis is limited in the set of devices for which detailed market

data is available, and extrapolating to policy for all devices should be done with care.

The theoretical model we develop provides some guidance for how this extrapolation

should depend on the uncertainty in quality of new product introductions, the rate of

technological improvement, the learning rate in clinical trials, and the observational
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learning rate for any type of device being considered.

While estimating the welfare effects of the access/risk tradeoff for an exogenously

given set of innovations is an important step towards better understanding this phe-

nomenon, a more complete understanding would allow for the regulatory regime to effect

the types of innovations firms develop for the market. A more dynamic analysis of this

type would require a significant extension to the theory, and would also require detailed

data on innovative activities of the firms in a market.
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A Estimation Algorithm Details

A.1 Demand/learning estimation algorithm

1. Compute δjt = ln(sjt/s0t) for all product-months.

2. Construct an initial estimator for σQ using the empirical equivalent from the dis-

tribution of δjt.

3. Guess an initial value for σA.

4. Compute the full vector of σjt
2 =

σ2
A

ajtσQ
2+σ2

A

σQ
2.

5. Least squares then gives you an estimator for ρ and the product qualities Qj

as a function of the guess for σA, where [Qj ; ρ](σA) = (X ′X)−1X ′Y with X =

[1j,−
1
2
σjt

2] and Y = ln(sjt/s0t). (Here Qj represents the vector of coefficients on

product dummy variables, and 1j the matrix of product dummy variables.)

6. We need to make sure that the distribution of Qj is consistent with the prior σQ by

recomputing σQ from the current Qj from 5, and repeating 4-6 until σQ converges.

7. Compute the residuals ξjt = ln(sjt/s0t)−Qj +
ρ

2
σjt

2.

8. Evaluate GMM objective function based on E[ξ′Z] = 0 where Z =
[

1
ajt

1
a2jt

]
.

9. Repeat 4-8 until we find the value of σA that minimizes the GMM objective func-

tion.

B Direct and Indirect Costs of Clinical Trial Length

When clinical trials have a fixed cost that depends on trial length FC(Tc), then this cost

enters total surplus directly, and also indirectly through entry decisions and thus the set

of products available in the market Jt(Tc, FC(Tc)). Equation 13 incorporates both of

these:

TS(Tc) =
T∑

t=1

ln


 ∑

j∈Jt(Tc,FC(Tc))

eQjt−
ρ
2
σ2
jt(Tc)


− FC(Tc)| ∪

T
t=1 Jt \ J1| . (13)

The size of the effect of trial costs on total surplus will then depend on the size of

the fixed cost of a trial FC(Tc) relative to the distribution of product qualities (and thus

profits and total surplus) and the rate at which new products are created.
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Because profits of a product will typically depend on the set of other products avail-

able in the market, a full specification of pricing and entry models would

Figure 9: Distribution of Profits Over Time and Across Products.
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