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Abstract. The cost of effort often increases in past effort. In sales, for

example, the first few sales of a quarter are easier to make than the

last ones – the pool of easy customers is depleted. In an agency setting

with unobservable effort, dynamic increase in costs complicates the opti-

mal contract problem. If the agent shirks today, his cost tomorrow will

be lower. The main result to date is that the one-shot-deviation prin-

ciple does not extend to this setting. I show that the optimal contract

does satisfy a one-shot-deviation condition and characterize the resulting

contract as a dynamic quota contract. The results are obtained by the

construction of a dynamic dual representation of dynamic moral hazard

problems. The dynamic dual problem has monotonicity and comparative

static properties that the standard problem does not, which allows novel

results. The findings are consistent with the use of quotas and convex

incentive schemes for sales agents.

1. Introduction

Increasing marginal costs is a standard component of economic analysis. In organi-

zational settings, the increase in cost often has a dynamic motivation – the worker gets

tired or, as in the example below, the cost of improving outcomes increases. This paper

considers optimal long term contracts when effort is unobserved and costs increase with

past effort. The main result in the current literature for related settings is negative –

Fernandes and Phelan (2000) show that the one shot deviation principle cannot be used.

Using a different dynamic representation of the problem, I show that the first deviation

is the most profitable in any optimal contract. This simplifies the problem and allows a

characterization of the optimal contract.

To fix ideas, consider incentives for a sales person. Sales performance is measured over

a period, typically quarter or year.1 As the quarter progresses, the agent depletes all

the “easy” sales leads and must exert more effort to generate later sales. Sales effort is

inherently hard to monitor and pay is often performance based.2 If the firm would know

the agent’s true cost, it may want to increase incentives towards the end of the quarter.

However, agents may “game the system” – delay some easy sales leads and use them
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only at the end of the quarter. Indeed, several authors (e.g. Oyer (1998); Larkin (2007);

Misra and Nair (2009)) suggest that most incentive schemes reward late effort too much

and provide compelling evidence that agents indeed “game the system” in their timing

of sales.3 The authors observe that the main features of the reward scheme are inefficient

(i.e. too early) stochastic termination and excessive rewards. If the agent is unlucky in

the first part of the quarter, he is very unlikely to make enough sales to obtain a high

commission. In response, he stops exerting effort for the remainder of the quarter. In

contrast, an agent that obtains a 20% commission on several million dollars deals in a

quarter is probably being compensated for more than his efforts on the deal.

I study a simple model to capture the effect of increasing costs. Every day a risk neutral

agent either exerts costly effort or not. The probability of success (a sale) increases with

effort. The cost of effort today is a convex function of past effort. Effort is unobserved

and the principal can commit to a contract at the outset.

To see why increasing costs provide stronger incentives to shirk, suppose that the

probability of a sale each day is 1
2 if the agent exerts effort on a customer and zero

otherwise, and that the agent’s cost for making the n-th effort is n. If both the principal

and the agent consider only current day incentives, a contract paying the agent 2n for

a sale in day n is incentive compatible and provides the agent zero expected utility –

clearly first best. However, if the agent considers future payoffs, this contract is no

longer incentive compatible. Shirking in the first period and then working whenever

asked obtains the agent an expected utility of 1 each period. By shirking today the agent

increases his rents from any future contract. The optimal contract must account for this

additional incentive to shirk: the agent’s utility difference between success and failure

must increase.

The optimal contract is characterized by the two features cited from the sales literature

– very high volatility of the work length and seemingly excessive rewards for succesfull

agents. The optimal contract can be informally described as a dyanmic quota: the agent

starts in an evaluation stage and eventually moves to a compensation stage. In the

compensation stage the agent is rewarded a fixed piece-rate for each sale and works for

an additional fixed time that is independent of any new outcomes. In the evaluation

stage the agent is rewarded only by changes to the expected fixed piece-rate, the length

of the compensation stage and the conditions for entering the compensation stage. If the

agent had enough early successes, his compensation per sale later in the quarter will be

high. If the agent did not accumulate enough early successes, the contract encourages

the agent to stop working. Formally, during the evaluation stage, the contract is a list of

contingent compensations. For example: “succeed in the next period and move to a four

period compensation stage”, “fail next period and then succeed – move to a two period

compensation stage”, “fail in the next two periods and you’re fired”.

The analysis departs from the existing literature by formulating the original problem as

a linear program, deriving its dual and then obtaining a recursive dynamic representation

of the dual. The dual analysis transforms the multiple deviation incentive constraints

to a single constraint for different agent “types”. This allows using standard mechanism

3In a recent study of a software maker, Larkin (2007) documents that a sales-person obtains a 2%

commission on the first sale of the quarter but a 20% commission for any revenue above $6M.
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design techniques to prove that the worst type of agent for any optimal contract in any

history is the agent that never deviated in the past. Thus, local deviations are sufficient.

The dynamic dual formulation of the moral hazard problem is the main methodological

contribution of the paper. The value of the dynamic dual problem at each history is the

increase in expected profit at time zero from comitting to the history’s contract terms.

In contrast, the primal dynamic value in a history is the expected continuation value (see

e.g. Spear and Srivastava (1987)). The difference between the two is most striking in

periods in which the agent is “given the firm”. The principal’s continuation profit – the

primal value – may be negative in such periods. However, the utility obtained by the

agent in such periods was used to motivate past work. The dual analysis adds this utility

to the history’s value. As a result, the dual value of a work period is never negative.

The control variable for the period is the shadow price for the IC. This is the “credit

in the firm” that is at risk in the period. If the agent succeeds, he may use the credit

to provide liability – buy the firm. If the agent fails, he will have to use future credit to

offset his losses.

The dual state variables measure the degree of agency frictions. The model has two

agency frictions - limited liability and information asymmetry. Each defines a variable

that is updated as a function of the credit at risk in the period and the period’s outcome.

For example, the limited liability control decreases whenever the agent succeeds and

increases whenever the agent fails.

There are several advantages to thinking about the dynamic relationship through the

progression of agency frictions. The main advantage is that the principal’s value is now

monotonic in each state variable – a lower limit on liability is better, less information

asymmetry is better. This is not typically the case in the standard recursive formulation.4

The agent’s expected continuation utility is obtained as the derivative of the dual value

function with respect to the liability friction, and is also monotonic in the state. Thus,

the dual analysis recovers the monotonic relation between the value of the period and the

agent’s utility.

The dynamic dual analysis provides natural interpretation of the optimal contract. As

in the standard dynamic models with a limited liability agent, the optimal contract uses

future credit to motivate effort. If the agent obtains enough credit to buy the firm, it is

no longer possible to use any future credit. Instead, the contract “gives the firm to the

agent” in exchange for his credit. However, the outcome of each period affects both the

agent’s liability limit and the information asymmetry. If the agent shirked in the past,

costs are lower and the firm is worth more to the agent than the principal believes. If

the principal ignores this when giving the firm to the agent, the agent has an incentive to

shirk early on and increase his future gains. The contract controls for this incentive by

comitting to reduce the value of the firm at the end of each period by an amount exactly

sufficient to counter this extra shirking incentive. When the firm is “given” to the agent,

it is given under terms that lower surplus as required.

4Following Spear and Srivastava (1987), dynamic moral hazard analysis uses the agent’s continuation
utility as the state. If the agent’s continuation utility is exactly his outside option, the contract must
typically terminate and the principal obtains his outside option. If the agent’s continuation utlity is
very high, the principal must either give away the firm (in limited liability settings, see e.g. Clementi
and Hopenhayn (2006)), or provide the agent costly insurance. In all cases, the principal’s expected

continuation value is highest for some expected agent’s continuation utility between the two extremes.
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The dynamic dual representation allowed extending moral hazard theory to a new

setting – increasing marginal cost. However, dynamic dual analysis may also be useful

for the more standard dynamic moral hazard models as well. While the development

(but not the economic intuitions or analysis) relies heavily on the duality property of

linear programming, the basic duality arguments generalize to concave programs as well

(see Rockafellar (1997)). Moreover, as the current model, some existing dynamic moral

hazard models may be transformed into a linear program.

Following a short literature review, section 2 lays out the dynamic production model,

formulates it as a linear problem and identifies a condition for the sufficiency of local

deviations. Section 3 develops and analyzes the dual problem and its dynamic formula-

tion considering only local deviations. Section 4 extends the dynamic dual to multiple

deviations and proves the sufficiency of local deviations. Section 5 concludes.

1.1. Relation To Existing Literature.

Of the models that consider history independent technology, the agency setting and

result characterization here is closest to Clementi and Hopenhayn (2006) and DeMarzo

and Fishman (2007). Both consider a risk neutral agent subject to limited liability. The

two papers emphasize that long term contracts increase surplus by allowing the principal

to reward outcomes today with future rents instead of current utility. This allows the

agent to provide “de-facto” liability - his unpaid effort - in return for future equity in

the firm. Once the agent fully paid for the firm through effort, it is effectively sold to

the agent for free - the agent is promised the full fruits of all future labor.5 In these

models, the contract is always in one of three states, either (i) the agent is given the firm

or (ii) the contract is terminated or (iii) the contract is in the process of resulting in one

of the two other states. Positive period outcomes move the contract towards the first

state (giving the firm) and negative period results move the contract towards the second

(termination).

The current analysis shows the effects of private-history dependence of technology on

this intuition. The optimal contract destroys some surplus after each period to prevent

shirking, with the destruction much larger after a failure. While I have not attempted

to provide additional insights from using duality to the history independent production

setting, one would expect it is possible to do so.6

This paper contributes to recent progress in dynamic agency theory with private his-

tory dependent technology. Fernandes and Phelan (2000) consider a agency settings in

which today’s information or effort affects tomorrow’s productivity but limit the history

dependence to one last period via a Markov assumption. Nevertheless, the result in Fer-

nandes and Phelan (2000) for moral hazard settings is negative - whenever today’s effort

affects tomorrows productivity, the one-shot-deviation principle does not apply.

Several recent papers follow the modeling approach of Fernandes and Phelan (2000)

to analyze dynamic moral hazard settings with payoff relevant private histories. In a

recent working paper, DeMarzo and Sannikov (2008) extend the aggregation problem of

5Earlier models with similar intuitions for a risk averse agent with unlimited liability are Rogerson
(1985) and Spear and Srivastava (1987). There, however, the risk aversion of the agent introduces other

considerations.
6Adding a discount factor β to the model and setting c (n) = c generates a binary action choice history

independent model.
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Holmstrom and Milgrom (1987) to settings in which where the agent also obtains pri-

vate shocks to his productivity that are correlated with past effort. While DeMarzo and

Sannikov (2008) is closest to the setting studied here, the additional aggregation problem

restricts the results. Appendix C outlines an implementation of the duality method with

the aggregation problem in discrete time. Another working paper, Tchistyi (2006), main-

tains the Markov structure in Fernandes and Phelan (2000) and devises a transformation

of the agent continuation payoffs under deviations to obtain sufficiency of local deviations

in the presence of unobservable utility shocks to the agent. Williams (2011) focuses on

dynamic adverse selection – the agent only reports his income. Bergemann and Hege

(2005) and Bonatti and Hörner (2011) consider the case that surplus is private history

dependent but the principal only cares about the first success. This simplifies the agency

problem, and restores the one-shot-deviation principle as there is only a single instance

in which rewards need to be provided. As a result, more involved questions – alternative

contracting frameworks and collaboration between multiple agents can be studied.

The paper’s contribution to this literature is twofold. First, it provides new and positive

results for an important setting. Second, it introduces an approach that separates the

different agency frictions and may be useful to other applications.

Related dual approaches to dynamic problems have been suggested before in other

contexts. Benveniste and Scheinkman (1982) consider a macro-economic equilibrium

model in continuous time and the classic text by Rockafellar (1997) considers several

examples that suggest the methods introduced here should apply to the standard concave

(non-linear) moral hazard models. Both of these texts predate the dynamic moral hazard

analysis. More recently, Vohra (2011) extends the analysis of static adverse selection

models by analyzing the dual of the classic adverse selection problem. Among the many

new results provided by Vohra (2011), the closest to ours regard the sufficiency of local

deviations with respect to the agent’s type. Vohra’s analysis considers a much richer

type and allocation space than ours, but does not consider moral hazard or long term

contracts.

2. Model

2.1. The Setting.

There is a principal and an agent, both risk neutral. Both have an outside option

set to zero. The agent has limited liability – i.e. money can only be transferred to the

agent. Time is discrete. In each period the agent either works or not. The agent’s work

is costly to the agent and unobservable to the principal. The cost of effort in a period is

cn for a commonly known function c : N → R+ where n denotes the number of periods

in which the agent works in the past. The analysis will focus on the case that cn is an

increasing and convex function. However, most parts of the analysis, and specifically the

derivation and analysis of the dynamic problem, apply to any general cn. In particular,

the methodology developed can be used to characterize the optimal contract if cn is fixed

or decreasing.

Assumption 1. cn is increasing and convex

A period’s production outcome is either success or failure, denoted by y ∈ Y = {s, f}.
The principal earns a revenue of v from each success and zero from a failure. The proba-

bility of the outcome s (resp. f) in a period in which the agent works is p ∈ (0, 1) (resp.
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1− p). If the agent does not work, p is replaced with p0 ∈ [0, p). To prevent the principal

from making free profits, assume the principal incurs a cost of v · p0 for every period in

which the contract is still active.7

As costs are increasing, the surplus from working becomes negative after enough effort

was exerted. Let NFB denote the maximum number of periods in which consecutive work

increases surplus:

NFB = maxn : cn ≤ v (p− p0) .

The increase in costs is sufficient to prevent an infinite contract from being optimal.

Therefore, the analysis is simplified without loss by assuming that the agent and principal

do not discount the future. Section 3.4 adds a common discount factor and shows the

effect amounts to a simple accounting exercise.

By the revelation principle, consider contracts that specify for each period a work

decision and a wage based on the period’s history. Before defining the contract, the

following result simplifies the exposition and notation. Given the risk-neutrality and

no-discounting assumptions, the proof is straightforward and omitted.

Lemma 1. (1) The optimal contract provides incentives for the agent to work for at

most NFB periods

(2) In the optimal contract, the required work decision is a stopping decision: if the

agent is ever asked not to work, the contract terminates.

(3) The optimal contract never pays the agent in a period without work or with out-

come f .

The dynamic dual formulation that will be developed is simplified by the finiteness

of the contract but can be easily extended to accommodate infinite horizon models with

discounting.

Given lemma 1, the space of (payoff or contract relevant) pubic histories H is the space

of past outcomes:

H =

NFB⋃
n=0

Y n .

A public history h ∈ H denotes a sequence of outcomes. Let nh denote the length of

h (i.e. the number of past periods.) The agent’s private information is, for every past

period, whether he did actually work. The agent deviated in a period if he did not work.

As the cost to the agent of working in a period is a function of the number of periods

in which the agent actually worked in the past, the only information in the agent’s private

history that is payoff relevant is the number of past deviations:

Definition 1. The agent’s private history (h, d) is the public history h and the number

of past deviations d.

Cost depends on the private history. With a slight abuse of notation let ch−d ≡ cnh−d

denote the cost for any history h with past deviations d and ch ≡ ch−0. As the difference

in cost between two work periods will play an important role, let δh−d ≡ cnh−d− cnh−d−1

denote the cost difference if the agent shirked d times in the past and δh ≡ δh−0. To

simplify the notation later on, set δ0 = c0.

7This assumption only simplifies the exposition and is without loss of generality.
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The analysis makes extensive use of histories following and preceding other histories.

Let h =
〈
h1, h2

〉
denote the history h1 followed by the history h2. That is, the sequence of

outcomes h1 happened and then the sequence h2 happened. For example, if the current

history is h, then the next history will be either 〈h, s〉 or 〈h, f〉. Say that the history〈
h1, h2

〉
follows history h1 and denote the “follows” relation by �. That is

h̃ � h ⇐⇒ ∃ĥ ∈ H : h̃ =
〈
h, ĥ

〉
.

The set H also includes the empty set and thus h � h.

2.2. The Contract.

By the revelation principle, consider contracts that specify in each period whether the

agent works and the resulting wage. Lemma 1 allows simplifying further and considering

the work decision as a stopping rule. Let (1− αh) denote the probability that the contract

is terminated in history h, if h is reached. Rather than specifying the contract in terms

of the conditional stopping rule α, the contract specifies the ex-ante probability that a

complying agent is still asked to work in history h, denoted qh:

q〈h,s〉 = qh · p · α〈h,s〉 ;(2.1)

q〈h,f〉 = qh · (1− p) · α〈h,f〉.

To define the payment, let ωh denote the payment to the agent if he is asked to work

in history h and succeeds. By lemma 1 the payment to the agent in history h is zero if

he is either not asked to work or fails. Thus there is no loss of generality in having the

contract specify the ex-ante expected wage for success in the history:

(2.2) wh = qh · ωh .

Definition 2. A contract is a pair of functions 〈q, w〉, with q : H → [0, 1] specifying for

each history h the ex-ante probability that the agent will be asked to work in the period

and w : H → R+ specifying the ex-ante expected payment to the agent for a success in

history h.

A special type of contracts will play an important role in the solution:

Definition 3. A contract is fixed to N from history h if once the contract reaches history

h the agent works exactly until period N ≤ NFB regardless of new outcomes and is paid
cN
p−p0 for success in all remaining periods.

The wage cN
p−p0 is optimal in a single period game with cost cN . Thus if the agent faces

a fixed contract to N from h, he gets paid in all remaining periods the static optimal

for period N . Lemma 12 shows that the optimal contract becomes fixed after the first

payment is made.

2.3. The Optimal Contract Problem.

If the agent complies with the contract (i.e. works when asked to), the ex-ante expected

revenue for the principal from a history h is the probability that the history is reached

and the contract did not terminate, qh, multiplied by the expected revenue from work

v ·p less the principal’s direct costs v ·p0. The ex-ante expected payment in a period h for

a compliant agent is simply p · wh. Thus, the principal’s expected profit from a contract
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the agent complies with is

V (q, w) =
∑
h∈H

[qh (p− p0) v − whp] .(2.3)

The agent’s strategy specifies, for each private history, the probability that the agent

works when asked to. Given lemma 1, there is no loss in considering an agent’s effort plan,

e ∈ E, with a typical element eh ∈ {0, 1} that specifies the agent’s pure action at each

public history h if the agent is asked to work in the history. As the agent is risk neutral,

given lemma 1 there is no loss in assuming the agent does not mix. As the agent can fully

reconstruct the private history h, d at any period using the past effort plan and public

history h, letting e be only a function of the public history is without loss of generality.

Let U (h, d; q, w, e) denote the agent’s expected continuation profit from effort plan e,

starting from private history h, d , having been asked to work in the history and facing

the contract q, w.8 Let U c (h, d; q, w) be the agent’s expected continuation utility from

complying with the contract in all remaining periods, starting at private history h, d.

Note that it is not required that history h, d could be reached if the agent follows the plan

e from the start of the relationship. Specifically U c (·) is well defined even if the agent

deviated in the past (d > 0).

Let ∅ denote the starting (null) history. The optimal contract problem is:

(2.4)

V ∗ = max
q≥0,w≥0

∑
h∈H [qh (p− p0) v − whp]

q∅ ≤ 1 (Probability at h = ∅)

∀h q〈h,s〉 ≤ qhp (Probability after success)

∀h q〈h,f〉 ≤ qh (1− p) (Probability after failure)

∀h, e U c (h, 0; q, w) ≥ U (h, 0; q, w, e) (IC)

∀h U c (h, 0; q, w) ≥ 0 (IR)

The first three constraints follow directly from the definition of q in equation 2.1. The

analysis will refer to these as the “Probability” constraints as they reflect the upper bound

on the probability of work. As any plan e may detail several deviations, there is no loss

in restricting the IC to histories in which the agent never shirked.9 The IR constraint

is presented for completeness. However, as the agent always has a possible effort plan –

never work – that provides non-negative expected payoff, it is redundant given IC and

thus will be subsequently ignored.

It can be shown that by specifying the contract in ex-ante terms using qh and wh

rather than in conditional terms (the αh and ωh used in deriving qh and wh) allows

writing the IC constraint for every possible alternative effort plan e as a linear inequality.

Thus, problem 2.4 is a linear program. As in any linear program, the difficulty lies in

identifying the binding set of constraints. Specifically, the set of IC is too large and the

8If the agent is not asked to work in the history, his continuation profit is exactly zero.
9As the agent is risk neutral, the IC and IR constraint may be written for only h = ∅. However, this
does not simplify the problem and writing the IC for all histories simplifies the analogy to the alternative

problems developed below.
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main problem is to identify the relevant subset to consider. This will be the set of Local

Deviation Incentive Constraints (LDIC).

To define the local deviations constraints, let UD (h, d; q, w) be the agent’s expected

continuation profit starting at a period with private history h, d if the agent deviates in

the current period and complies with the contract in all following periods.10

Definition 4. The set of Local Deviation Incentive Constraints (LDIC) is

∀h : U c (h, 0; q, w) ≥ UD (h, 0; q, w) (LDIC)(2.5)

The set LDIC is a clear relaxation of the IC as it limits the agent to a single deviation.

The problem would be simpler if the set LDIC was sufficient to imply IC. However,

not all contracts that satisfy LDIC are IC.11 Instead, I will show that the set of optimal

solutions to the problem considering only LDIC does satisfy all IC and thus there is no loss

in considering the relaxed problem. To show this, I first define a larger set of constraints,

the Final Deviations Incentive Constraints (FDIC). These constraints require that there is

no private history h, d such that the agent prefers deviating in history h, d and complying

with the contract in all remaining periods to complying in history h, d and all remaining

periods.

Definition 5. The set of Final Deviations Incentive Constraints IC (FDIC) is

∀h, d : U c (h, d; q, w) ≥ UD (h, d; q, w) (FDIC)

As a first step, the next lemma shows that FDIC is a stricter set of constraints then IC.

Intuitively, any most profitable non-compliant plan must have some period in which it is

profitable to make a last deviation and thus violate some FDIC. The proof is standard

and relegated to appendix B.1.

Lemma 2. If a contract is FDIC it is IC

As FDIC is stricter than IC and LDIC is weaker than IC, the following simple result

provides a criterion for the sufficiency of the LDIC.

Corollary 1. If any optimal contract subject to LDIC satisfies FDIC, then any optimal

contract subject to LDIC is optimal subject to IC.

2.4. Deriving the FDIC and LDIC.

This section derives all FDIC as linear inequalities. The LDIC are the subset of FDIC

with d = 0. As the contract terms 〈q, w〉 are identical for all continuation utilities they

are omitted from the parametrization of UD (·) and UC (·).
The FDIC in history h, d requires that the agent’s expected continuation utility from

following the contract at history h, d is at least his expected continuation utility from

making a final deviation in the history. If the agent will never be asked to work in history

h (qh = 0) then his expected continuation utility is zero for all continuation effort plans

and the FDIC trivially holds at h for all d.

For qh > 0 , working has three effects. First, at the current period, work costs the

agent ch−d and increases the expected payment from p · wh to p0 · wh. Second, working

affects the transition probabilities into the next public history. If the agent shirks the

10Formally, UD (h, d; q, w) is defined only for d ≤ nh.
11Appendix A provides an example.
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next ′p′ in the ex-ante probability of arriving to history 〈h, s〉 is replaced with the lower

probability of success p0 , and similarly, for 〈h, f〉 1−p is replaced by 1−p0. Finally, work

today increases the agent’s costs in all continuation periods. If the agent would shirk, his

cost in all future periods will be lower. The FDIC requires that the total of these effects

will be positive. As the agent is risk neutral, the FDIC can be evaluated at the outset of

the contract. Accounting for all these, the FDIC for private history h, d is:12

(p− p0)wh − qhch−d(2.6)

+ (p− p0)
(
q〈h,s〉
p U c (〈h, s〉 , d)− q〈h,f〉

1−p U
c (〈h, f〉 , d)

)
+p0

q〈h,s〉
p (U c (〈h, s〉 , d)− U c (〈h, s〉 , d+ 1))

+ (1− p0)
q〈h,f〉
1−p (U c (〈h, f〉 , d)− U c (〈h, f〉 , d+ 1)) ≥ 0

The first line is the simple static tradeoff. Note that wh also accounts for the ex-ante

probability that the contract arrives to history h and is not terminated. The second line

is the incentive effect of continuation utilities, ignoring the change in costs. I will call this

the “naive” dynamic incentive. The third and fourth lines are the expected losses due to

higher future costs from working, adjusted for the correct continuation probabilities. I

will call this the “dynamic information rent”.

All continuation utility terms, U c (·), in the FDIC (2.6) are the ex-ante continuation

utility from complying with the contract starting at some history 〈h, y〉 (〈h, s〉 or 〈h, f〉)
with some private number of deviations d. Thus, they may be directly defined using the

model’s primitives. For any history 〈h, y〉, the continuation utility is simply the expected

wages less costs:

q〈h,y〉 · U c (〈h, y〉 , d) =
∑

h̃�〈h,y〉

pwh̃ −
∑

h̃�〈h,y〉

qh̃ch̃−d .(2.7)

Note that only the expected costs depend on the private information d, but the expected

payment is unaffected by d. This implies that the information rent terms (the last two

lines of 2.6), are determined only through the lower costs:

q〈h,y〉 (U
c (〈h, y〉 , d+ 1)− U c (〈h, y〉 , d)) =

∑
h̃�〈h,y〉

qh̃
(
ch̃−d − ch̃−d−1

)
(2.8)

=
∑

h̃�〈h,y〉

qh̃δh̃−d

To evaluate separately the impact of the “information rent” dynamic incentive, add to

the FDIC an exogenous parameter θ ∈ [0, 1] that multiplies the “information rent” (lines

3-4) part of (2.6). Using (2.7) and (2.8) in (2.6), adding the parameter θ and changing

sides to prepare for the dual obtains the final form of the FDIC:

12Appendix B.2 provides a detailed derivation.
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(2.9)

FDIC : − (p− p0)wh + qhch−d

−p−p0p

∑
h̃�〈h,s〉 pwh̃ + p−p0

p

∑
h̃�〈h,s〉 qh̃ · ch̃−d

+p−p0
1−p

∑
h̃�〈h,f〉 pwh̃ −

p−p0
1−p

∑
h̃�〈h,f〉 qh̃ch̃−d

+θ · p0p
∑
h̃�〈h,s〉 qh̃ · δh̃−d

+θ · 1−p0
1−p

∑
h̃�〈h,f〉 qh̃ · δh̃−d ≤ 0

The FDIC is linear in the q and w variables. The complete linear program 2.4 subject

to the FDIC (2.9), parametrized by θ , is given by :

V FD (θ) = max
q≥0,w≥0

∑
h∈H [qh (p− p0) v − whp](2.10)

s.t.

qh0
≤ 1

∀h q〈h,s〉 − qhp ≤ 0

∀h q〈h,f〉 − qh (1− p) ≤ 0

∀h, d FDIC (2.9)

The Local-Deviations Problem is problem 2.10 with the FDIC limited to d = 0. Prob-

lem (2.10) with θ = 1 is the original problem subject to FDIC.

Before deriving the dual, the following lemma establishes a useful result. Recall defi-

nition (3) of a fixed contract – the agent works from history h to period N regardless of

new outcomes and is paid cN
p−p0 for success in all remaining periods. A work plan is fixed

if it can be part of a fixed contract.

Lemma 3. If the work plan is fixed to N from history h, the contract that minimizes

the agent’s continuation utility is fixed to N from history h. The agent is paid cN
p−p0 for

success in all remaining histories. All remaining LDIC bind and all remaining FDIC for

d > 0 are slack.

Proof. Suppose the work plan is fixed from h to N . As the information rent depends only

on the work plan the agent’s gain from shirking is given by (see equation 2.8):

q〈h,y〉U
c (〈h, y〉 , d+ 1)− q〈h,y〉U c (〈h, y〉 , d+ 1) =∑N−d

n=nh+1−d (cn−d − cn−d−1) = cN−d − cnh−d .

A fixed work plan also implies that any difference in continuation utilities between

〈h, s〉 and 〈h, f〉 depends only on wages. Because the agent is risk neutral, any incentive

compatible future wage difference can be incorporated into the current period wage. Thus

there is an optimal contract such that if the work plan is fixed,

U c (〈h, s〉 ; q, w) = U c (〈h, f〉 ; q, w)

Finally, if the work plan is fixed and the contract is not terminated at the end of the

period, q〈h,s〉 = pqh and q〈h,f〉 = (1− p) q〈h,y〉. The FDIC in period h is thus simply:

(p− p0)wh − qhch−d − θqh (p0 + (1− p0)) (cN−d − ch−d) ≥ 0 .
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Which simplifies to
wh
qh
≥ θcN−d + (1− θ) ch−d

p− p0
.

If θ = 1 – the agent is fully cognizant of the dynamic effects of shirking – only the

cost in the last period of work matters. By definition of wh, the payment to the agent for

success in history h is exactly wh

qh
. Observe that the constraint for wh does not depend

on any future wage. As cn−d decreases in d, all but the LDIC (in which d = 0) must be

slack. The contract that minimizes the agent’s continuation utility minimizes the total

payments. Thus, all LDIC bind and the payment to the agent for success in history h

with θ = 1 is
wh
qh

=
cN

p− p0
.

�

3. The Dual Dynamic Analysis

Dynamic moral hazard analysis typically proceeds by restating the Optimal Contract

Problem 2.4 (or its Local/Finite Deviations alternatives) as a dynamic problem. The

agent’s continuation utility from complying with the contract is the state for period h

and the incentive constraint is written in terms of the difference between the continuation

utility after success and after failure. In case of history dependent costs, the agent’s utility

if he deviated once in the past is added as a control (see e.g. Fernandes and Phelan (2000)

).

Instead, I derive a dynamic program for the dual of the LDIC and FDIC optimal

contract problems.13 The dynamic dual program allows a relatively straightforward proof

for the sufficiency of local deviations. It is sufficient to show that the agency frictions in

any period are largest if the agent never shirked in the past. This is clearly the case for

the limited liability friction as the agent’s cost this period is largest if he never shirked.

The information asymmetry friction is largest when the agent never shirked in the past if

the marginal gain for the agent from shirking is largest in the first shirk. This is indeed

the case whenever costs are convex – the first shirk generates the largest cost difference

in each period. Thus, it will be sufficient to consider only local deviations.

To ease the economic interpretation, the derivation and analysis of the dual is done

in two steps. This section derives and analyzes the dual of the local deviations problem.

Section 4 adds to the dual all possible final deviations and proves that the local deviations

problem is sufficient. Therefore, section 4 proves that the analysis of this section describes

the optimal contract.

3.1. The LDIC Dual – An Intuitive Derivation.

The derivation of the Dual requires intensive notation. To make the reasoning more

explicit, the analysis start with a two period example and then apply a recursive argument

to add more periods. A formal derivation of the LDIC and FDIC dynamic dual problems

is provided in appendix B.4.

3.1.1. The Two Period Model.

In a two period model, the possible public histories are h ∈ {∅, s, f}. The primal linear

problem subject only to LDIC is

13See appendix B.3 for a review of the basic duality concepts.
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max
(qh,wh)≥0

(q∅ + qs + qf ) v (p− p0)− p (w0 + wf + ws)

s.t.

q∅ ≤ 1

qs − pq∅ ≤ 0

qf − (1− p) q∅ ≤ 0

LDIC h = ∅ − (p− p0)w∅ + q∅c0

−p−p0p pws + p−p0
p qsc1

+p−p0
1−p pwf −

p−p0
1−p qfc1

+θ p0p qsδ1 + θ 1−p0
1−p qfδ1 ≤ 0

LDIC h = s − (p− p0)ws + qsc1 ≤ 0

LDIC h = f − (p− p0)wf + qfc1 ≤ 0

3.1.2. The Dual Two Period Problem.

Let µh for h ∈ {∅, s, f} be the shadow variable on the probability constraints and λh

the shadow variable on the LDIC. As only the left-hand side of the probability constraint

for ∅ is not zero, the objective for the dual is

minµ∅

Each primal variable defines a dual constraint. Consider first the wage constraint for w∅.

w∅ appears with a coefficient −p in the objective and with a coefficient − (p− p0) in the

LDIC for h = ∅. The dual constraint is therefore:

− (p− p0)λ∅ ≥ −p .

ws appears in the LDICs for histories ∅ and s, with a coefficient − (p− p0) in both.

The constraint is thus:

− (p− p0)
(
λs + λ∅

)
≥ −p .

wf appears in the LDICs for histories ∅ and f . The coefficient in the first is − (p− p0)

and on the second p−p0
1−p p. The constraint is thus

− (p− p0)

(
λf − λ∅ p

1− p

)
≥ −p .

q∅ appears in all the probability constraints and in the LDIC for ∅. The constraint for q∅

is:

µ∅ − pµs − (1− p)µf + λ∅c0 ≥ v (p− p0) .

qs appears in its probability constraint, in the two FDIC for s, and twice in the FDIC for

the preceding history ∅ – once for the continuation utility term and once for the shirking

gains term. The constraint for qs is

µs +
p− p0

p
c1λ
∅ + θ

p0

p
δ1λ
∅ + λsc1 ≥ v (p− p0) .
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The same procedure obtains the probability constraint for qf :

µf − p− p0

1− p
c1λ
∅ + θ

1− p0

1− p
δ1λ
∅ + λfc1 ≥ v (p− p0)

It will be convinient to divide the wage constraints by − (p− p0). Summarizing, the dual

is

min(µ,λ)≥0 µ
∅(3.1)

s.t.

(q∅) : µ∅ − pµs − (1− p)µf + λ∅c0 ≥ v (p− p0)

(qs) : µs + p−p0
p c1λ

∅ + θ p0p δ1λ
∅ + λsc1 ≥ v (p− p0)

(qf ) : µf − p−p0
1−p c1λ

∅ + θ 1−p0
1−p δ1λ

∅ + λfc1 ≥ v (p− p0)

(w∅) : λ∅ ≤ p

p− p0

(ws) : λs + λ∅ ≤ p

p− p0

(wf ) : λf − λ∅ p
1−p ≤ p

p− p0

3.1.3. A Recursive Formulation for the Second Period Dual.

The objective for (3.1) is to minimize µ∅. The dual constraint for q∅ shows that µ∅

is minimized if the lowest values for µs and µf are obtained for any λ∅ . In turn, the

constraints for qs and qf show that it is possible to consider the problems of minimizing

µs and µf separately for any λ∅ . Isolating µs in the constraint for qs :

µs
(
λ∅
)

= max
[
0,minλs≥0 v (p− p0)− p−p0

p c1λ
∅ − θ p0p δ1λ

∅ − λsc1
]

s.t.

λs + λ∅ ≤ p
p−p0

Replacing λs with λf , the problem for µf only differs in the coefficients for λ∅:

µf
(
λ∅
)

= max
[
0,minλf≥0 v (p− p0) + p−p0

1−p c1λ
∅ − θ 1−p0

1−p δ1λ
∅ − λfc1

]
s.t.

λf − p
1−pλ

∅ ≤ p
p−p0

It would be convinient to solve the same problem for both second period histories. For

that, define rs
(
λ∅
)
≡ θ p0p λ

∅ , rf
(
λ∅
)
≡ θ 1−p0

1−p λ
∅ , ls

(
λ∅
)
≡ −p−p0p λ∅ , and lf

(
λ∅
)
≡

p−p0
1−p λ

∅ . The second period problem becomes

(3.2)

µ (n = 1, l, r) = max [0,minλ≥0 v (p− p0) + lc1 − rδ1 − λc1]

s.t. λ ≤ p
p−p0 (1 + l)

Observe that µ (1, l, r) only depends on the l, r and the period number. The optimal

solution will always set λ to the maximum feasible and

µ (n = 1, l, r) = max

[
0, v (p− p0)− c1

p− p0
(p− p0l)− rδ1

]
3.1.4. The LDIC Recursive Formulation.
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Given the second period problems, the first period problem is defined by the q∅ and

w∅ dual constraints:

minλ≥0 µ
∅

s.t.

(q∅) : µ∅ − pµs (λ)− (1− p)µf (λ) + λc0 ≥ v (p− p0)

(w∅) : λ ≤ p

p− p0

The q∅ constraint may be written using the definitions of lh and rh used to derive problem

3.2 to construct µs and µf :

µ∅ ≥ pµ

(
1, l − p− p0

p
λ, r + θ

p0

p
λ

)
+ (1− p)µ

(
1, l +

p− p0

1− p
λ, r + θ

1− p0

1− p
λ

)
+v (p− p0)− c0λ

Therefore, one can set

µ∅ = µ (0, 0, 0)

and suggest the following formulation:

Definition 6. The LDIC Dual is

(3.3)

µ (n, l, r) = max

[
0,min
λ≥0

µ (n, l, r, λ)

]
s.t.

µ(n, l, r, λ) = pµ

(
n+ 1, l − p− p0

p
λ, r + θ

p0

p
λ

)
+ (1− p)µ

(
n+ 1, l +

p− p0

1− p
λ, r + θ

1− p0

1− p
λ

)
+v (p− p0)− c0λ+ c0l − δ0r

λ ≤ p

p− p0
(1 + l)

With µ (n, l, r) = 0 for all n > NFB . The law of motion for the state variables is defined

implicitly in 3.3 . The following definitions formalize the state variables and suggest their

economic content.

The liability limit in the public history h is lh, defined by:

(3.4) lh = (p− p0)

 ∑
h̃:h�〈h̃,f〉

λh̃

1− p

−
 ∑
h̃:h�〈h̃,s〉

λh̃

p

 .

The information rent in the public history h is rh, defined by:

(3.5) rh = θ

 ∑
h̃:h�〈h̃,s〉

p0

p
λh̃

+ θ

 ∑
h̃:h�〈h̃,f〉

1− p0

1− p
λh̃


The state variables’ names are motivated in the next section, together with the interpre-

tation of the other components of the problem. The next lemma completes the recursive

formulation.

Lemma 4. For every h, µh = µ
(
nh, l

h, rh
)
. Specifically,µ (0, 0, 0) and the corresponding

optimal λ’s are a solution to the dual of the LDIC problem.

Proof. A formal proof is provided in appendix B.4. An intuitive exposition follows. �
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Given the two period example, it is left to show that the formulation of problem 3.3

remains valid when considering a longer horizon than just the first two periods. To see

the intuition, consider the effect of extending work to a new history ,
〈
h̃, y
〉

for y ∈ {s, f},
on all the LDIC in the existing work histories. Clearly, the new history only affects the

incentives in histories that preceed it. For these histories, the effect amounts to adding two

linear terms - the change in expected utility from complying and the gain from arriving

to
〈
h̃, y
〉

having shirked once in the past. The added terms on the preceeding LDICs

depend only on whether
〈
h̃, y
〉

follows a success or a failure in the preceeding history,

and on the cost at
〈
h̃, y
〉

. Therefore, the incentive effect of extending work to
〈
h̃, s
〉

is

identical to the incentive effect of extending work to
〈
h̃, f

〉
on all histories except for h̃.

Moreover, adjusting for costs, it is the same as the incentive effect of h̃. Therefore, if the

state at h̃ captures the total incentive effects up to it, the analysis can proceed as if h̃ is

the first period with state l, r.

3.2. Analysis of the Optimal LDIC Contract.

This section analyzes the optimal solution to the LDIC Dual, defined by problem 3.3.

The analysis first interprets the components. The analysis refers to the optimal LDIC

contract as simply the optimal contract. Theorem 1 in section 4 proves the two are indeed

equal. The proof is independent of the analysis in this section but is relegated to the next

section as it requires more involved notation.

The following standard simplification of the notation will reduce clutter. Function

variables are omitted when these are obvious (i.e. µ refers to µ (n, l, r)). Subscripts (e.g.

µl) denote partial derivatives. A superscript s or f will denote the optimal continuation

values. For example ls is the optimal continuation value for l after a success in the state

(n, l, r). Combining the three, µfr is the partial derivative
∂µ(n+1,lf ,rf)

∂r . Note first the

following standard result.

Lemma 5. µ (n, l, r) is continuous and convex in (l, r). µ (n, l, r, λ) is continuous and

convex in λ for every l, r.

Proof. The constraints in problem 3.3 are convex, the problem is a recursive minimization

problem that stops at some N and the non-recursive part of the objective is linear.

Therefore, the result is standard. A detailed proof is provided in appendix B.6 �

3.2.1. Interpreting the Dual.

The key element in interpreting µ (n, l, r) and the optimal solution follows from the

Duality Theorem.

Lemma 6. µ (0, 0, 0) is the principal’s expected profit from the optimal LDIC contract.

Proof. µ (0, 0, 0) is the solution to the dual problem of the LDIC. It is immidiate that

µ (0, 0, 0) exists and is bounded. The Duality Theorem (Dantzig (1963)) applies. �

In a general history, µh is the multiplier on the feasibility constraint. Technically,

µh is the marginal value of increasing the ex-ante probability of work in the history.

Economically, this is the marginal value, calculated at time zero, of committing to work

in the history h. Recall that in the standard dynamic formulation, the value at each

state (denoted V (h)) is the expected continuation profit. While µ (0, 0, 0) = V (∅), the



DYNAMIC COSTS AND MORAL HAZARD 17

two values differ at all other histories: µ (n, l, r) accounts for the change in total expected

profits, starting at the first period, from increasing the probability of work in the history,

while V (h) accounts only for the continuation profits starting at history h. The zero lower

bound on µ reflects the fact that the contract only asks the agent to work in periods in

which working increases the total expected profit. The difference between µ and V is most

striking in periods in which the agent is “given the firm”. The principal’s continuation

profit, V (h), may be negative in such periods.14 However, all the utility obtained by the

agent in such periods was used to motivate past work. Therefore, lemma 12 will show

that µ in such periods takes into account the agent’s continuation utility, and is positive.

The state variable l is derived from the multiplier on the continuation utility effect in

the IC (2.9). The agent obtains rents from working. If work today is conditional on past

outcomes, today’s utility is used as an incentive in the past instead of wages. If work

today is allowed after a failure in the past, today’s rent reduces past incentives to work. l

measures this effect of work in the current history on past incentives. Conditioning work

on past outcomes reduces surplus. The optimal contract does this to relax the limited

liability constraint. A negative change in continuation utility is equal, for the agent,

to a negative wage. If the agent could be forced to pay in case of negative outcomes,

manipulating the continuation utility would be sub-optimal. Therefore, I call l the liability

limit.

The state variable r is derived from the multiplier on the “dynamic information rent”

effect in the IC. This is the agent’s incentive to shirk in the past in order to obtain the

secret cost reduction δh from working in the current history h. Extending work to history

h requires increasing the agent’s incentives in all past histories that may lead to h to

balance the shirking incentive. The agent is paid the information rent in all histories

that preceed h to exactly compensate him for the δh extra utility he would obtain this

period by shirking in a previous period.

By lemma 5, the value function µ is differentiable w.r.t. l, r almost everywhere and the

first order condition is necessary and sufficient. However, due to the zero lower bound, µ

has kinks. Let λ (n, l, r) be the optimal λ for state (n, l, r) and ω (n, l, r) the payment for

success in the period. The first order effect of increasing λ, µλ+ is given by

(3.6) µλ = (p− p0)
(
µfl+ − µ

s
l−

)
+ p0µ

s
r+ + (1− p0)µfr− − cn + ω (n, l, r) (p− p0)

Lemma 5 implies the following:

Lemma 7. In any state along the optimal contract:

λ (n, l, r) = min

[
p

p− p0
(1 + l) , sup {λ : λ ≥ 0, µλ ≤ 0}

]
.(3.7)

If λ < p
p−p0 (1 + l), ω = 0. If λ = p

p−p0 (1 + l), ω (n, l, r) is set so the inequality is an

equality:

ω = −
(p− p0)

(
µfl+ − µ

s
l−

)
+ p0µ

s
r+ + (1− p0)µfr− − cn

p− p0

Proof. The first order condition is necessary and sufficient given convexity. The wage paid

for success is the multiplier on the wage constraint. If λ < p
p−p0 (1 + l) the constraint

does not bind and therefore ω = 0. If the constraint does bind, ω is set so that the

14See section 3.2.3.
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first order condition is exactly zero. The original constraint was divided by − (p− p0)

when constructing the dual and so the standard wage variable is multiplied by the same

amount. �

The first order condition 3.6 is suspiciously similar to the LDIC in equation 2.6. To save

on notation, let Uh ≡ U c (h, 0) denote the continuation utility from complying starting

at history h given no shirks in the past. Let Dh ≡ U c (h, 1)− U c (h, 0) denote the extra

gains to the agent starting at history h from having shirked once in the past. The LDIC

may be written as

(p− p0)
(
ωh + U 〈h,s〉 − U 〈h,f〉

)
−p0D

〈h,s〉 − (1− p0)D〈h,f〉 − cn ≥ 0(3.8)

Observe that if we let µyl = −U 〈h,y〉 and µyr = −D〈h,f〉, the term in 3.8 is exactly

µλ whenever all derivatives exist. Thus, the problem is to find in each state the smallest

feasible λ that does not violate the IC. λ is the “credit at risk” for the agent in the current

period. The agent’s credit balance increases or decreases whenever the period outcome

is, respectively, a success or a failure. As any credit can be used to provide liability, this

balance is the negative of the liability limit l. The credit is eventually used to “sell the

firm to the agent”. If the agent obtained enough credit to completely compensate for

his limited liability, no more credit can be offered. This is captured by the dual wage

constraint. The foc 3.6 shows that the optimal contract finds the minimal credit at risk λ

in each period that is required to satisfy IC. If stronger incentives are required, the wage

constraint kicks in and the agent is paid the difference.

However, as µ may have kinks, the first order condition inequality 3.6 in some states

will not be an equality and the two values will diverge. Thus, to formally relate the

continuation utilities to the dual derivatives, one must either refer to superdifferentials

or a smooth approximation for µ (n, l, r).15 I show in appendix XX (to add) that a

continuous time version of the model in which the termination decision must be smooth

results in such a smooth approximation, and retains all the intuitive interpretation of the

discrete time model.

Definition 7. The ε-smooth variation of the model is a related model that obtains

µ̃ (n, l, r) smooth and for all (n, l, r), |µ̃ (n, l, r)− µ (n, l, r)| ≤ ε .

Lemma 8. In the ε-smooth model, as ε→ 0, µ̃hl → −Uh and µ̃hr → −Dh.

Proof. In any last period the result is immidiate. Appendix B.7 shows that backward

induction implies the desired result whenever the envelope theorem applies. �

3.2.2. Monotonicity.

A key advantage of the dual dynamic analysis is that it restores monotonicity in the

state variables. Each of the state variables l, r reflects the degree of agency frictions

– limited liability and information asymmetry. Intuitively, as frictions increase, profits

decrease. Thus, profit should decrease in both l and r. I now show this is the case.

For the information asymmetry state r, this is evident by observing problem 3.3: r only

decreases the objective and thus decreases profits. For l, one expects that as the agent’s

liability becomes more limited (l increases), the principal’s profit decreases. However,

this is not immediately observable as the coefficient on l is positive in the period return.

15From here to the end of the next proof – needs polishing.
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Nevertheless, profits decrease with l because a low limit on liability reduces the need to

provide the agent with an incentive today through λ. The agent expects to “own” the firm

soon and so values credit towards a share in the firm more. Technically, every increase in

the liability limit l increases period profits by cn but allows an increase of p
p−p0 > 1 in λ

that decreases period profits by more than cn.

Lemma 9. Period value , µ (n, l, r; θ) is strictly decreasing in l, r and θ whenever µ > 0.

Proof. See above for intution and appendix B.8 for details. �

The agent works only in a period in which µ (n, l, r) > 0. By the law of motion, both

state variables are higher after a failure than after success. The previous lemma implies

then that µ (n+ 1, ·) is lower after failure than after success. Therefore, if µ (n+ 1, ·) = 0

after success, the same is also true after failure.

Corollary 2. If the contract terminates after success, it terminates after failure.

Monotonicity of µ also implies that whenever feasible, λ > 0. This is intuitive. If the

wage constraint does not bind at λ = 0 , then when λ = 0 the agent works for free – the

continuation contract is not affected by outcomes today and the wage for success is zero.

Formally, at λ = 0, the inequality in the first order condition 3.6 is always strict. As

λ is the multiplier on the LDIC, complementary slackness implies that the LDIC binds

whenever l > −1.

Lemma 10. Whenever l > −1, λ > 0. Thus, the LDIC binds whenever l > −1.

Proof. Suppose λ = 0 is optimal and l > −1. The f.o.c. 3.6 therefore implies that

0 = arg inf
λ≥0

(p− p0)
(
µfl+ − µ

s
l−

)
+ p0µ

s
r+ + (1− p0)µfr− − cn ≥ 0

At λ = 0, lf = ls = l and rf = rs = r. If µ (n+ 1, l, r) is smooth w.r.t. l, the proof is

done as µyr ≤ 0. If µfl+ > µsl− is not smooth, by continuity of µ (n+ 1, l, r) there is some

λ > 0, such that the continuation values are arbitrarily close to zero while cn > 0. (need

to write this nicer). �

Consider now the effect of each friction (l or r) on the other. Suppose the agent’s

liability limit friction (l) decreases. This means the agent’s credit is larger. Intuitively,

this means the firm is more likely to be sold to the agent. Therefore, the relative profit

impact of any past commitments to destroy surplus, which is the value of r, increases.

The next lemma establishes this:

Lemma 11. l, r are substitutes: µ (n, l, r) is sub-modular in (−l, r).

Proof. In any last period, λ = p
p−p0 (1 + l) and

µ (n, l, r) = min

[
0, v (p− p0)− p

p− p0
cn −

p0

p
cn · l − δnr

]
The marginal effect of l and r is either fixed and strictly negative or, if µ (n, l, r) = 0, it

is zero.

(1) As l (resp. r) increases, the marginal effect of r (resp. l) increases from −δn
(resp. −p0p cn) to zero. Therefore, in any last period, µ (n, l, r) is sub-modular in

(−l, r).
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(2) Now suppose that for ñ > n, µ (ñ, l, r) is sub-modular in (−l, r). Then both

continuation values are sub-modular in (−l, r) and so is the period return. The

positive weights sum of sub-modular functions are sub-modular and therefore

µ (n, l, r, λ) is sub-modular in (−l, r) for any λ. As the feasible set defines a

lattice, the sub-modularity is preserved under minimization w.r.t. λ (Theorem

2.7.6 of Topkis (1998)).

�

To see the implication of lemma 11, suppose µ (n, l, r) is smooth at (n, l, r) and consider

µl. Lemma 11 implies that µl increases in r. As µ (n, l, r) is convex, µl also increases

in l. As µl < 0 , this implies that the magnitude of µl decreases as frictions increase.

Exactly the intuition provided above. Recall that in the smooth variation of the model

(see definition 7), −µl and −µr are, respecitvely the agent’s expected continuation utility

(U (n, l, r)) and gains from shirking (D (n, l, r)). Thus, both U and D are decreasing in

the state variables, just as the period value µ.

As a higher state implies more frictions, it is natural that the expected efficiency of

the contract decreases with the state. A simple case in which this result is direct, is if cn

is linear. In this case δn is fixed at δ and the agent’s expected gains from a past shirk, D,

are δ times the expected number of work periods. As D decreases in the state variables,

it follows that the expected number of work periods decreases.

Corollary 3. In the smooth variation, a change in l, r has the same qualitative effect on

the period’s value to the principal,µ, the agent’s expected payoff starting from the period,

U , and the agent’s expected gains from one past shirk, D. If cn is linear, a higher state

implies a weakly lower expected continued efficiency.

** A stronger result is pending (no need for smoothness or linear costs) **

** Results on λ (n, l, r) are pending. Conjecture is that λ increases with r and θ **

3.2.3. Selling the Firm and Dynamic Quotas.

Suppose that the wage constraint binds – the agent is paid for success in this period.

As both the principal and agent are risk neutral, this implies the principal could not

offer the agent any more credit. The agent has earned enough credit to “buy the firm”.

The value of the firm depends on past effort. If the agent worked less than the principal

believes he did, future costs are lower and the value of the firm is higher. As a result, if

the agent expects to be rewarded in the future by “getting the firm” he has an incentive

to shirk. To counter this incentive, the principal limits the agent’s work after selling the

firm, so that any possible gains from shirking are countered by the reduction in surplus.

This need to reduce surplus is only a function of the information asymmetry r, but not

the limited liability, l. Therefore, the terms of the contract after giving the firm to the

agent will be determined only by r.

Formally, if the agent is paid for success in history h, by complementary slackness, the

wage constraint binds. Thus λ = p
p−p0 (1 + l). The law of motion for l ( ls = l− p−p0

p λ ),

now implies that in history 〈h, s〉, l = −1 . The only feasible value for λ in 〈h, s〉 is zero

– no more credit under risk. Intuitively, if the agent earned enough credit to be paid, it

is impossible to offer any more credit as future incentives. As a result, in all remaining
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periods l and r remain unchanged regardless of new outcomes. The period profit is

π (n, r) = v (p− p0)− cn − rδn(3.9)

l and λ are fixed and therefore do not affect the period profit as variables.

As both cn and δn are positive and increasing, eventually period profit will become

negative and production will stop. It follows that the continuation work plan is fixed and,

as there is no reason to provide the agent more utility than necessary, lemma 3 implies

that the contract is fixed.

Lemma 12. In the optimal contract, if the agent is paid for success in history h, then

starting in history 〈h, s〉 the contract is fixed to N (r), given by

N (r) = maxn : v (p− p0)− cn − r · δn ≥ 0 .

All remaining LDIC bind and the agent wage in any following history h̃ � 〈h, s〉 is

ωh̃ =
(1− θ) ch̃ + θcN(r)

p− p0
.

Proof. The discussion above shows that the work plan after payment is fixed and continues

to N (r). Lemma 3 implies that the contract after a payment that provides the lowest

utility to the agent is as stated here. As the agent is paid for success in the current period

and is risk neutral, any additional utility can be provided as payment in the current period

and the optimal continuation contract is fixed. �

The number of periods is determined by considering the information asymmetry cost

r · δh as an additional cost to the current period. The contract is implemented by paying

the agent a wage as if production cost is at the highest value for which the agent should

still work. This guarantees the agent will only work the desired number of remaining

periods.

Lemma 12 implies the dynamic quota interpretation. The contract can be divided to

two stages. If the agent was not yet paid, he is in the evaluation stage. Outcomes affect

the state variables and through them the probability that the wage constraint would soon

bind. Once the agent is paid, the contract moves to the compensation stage. The agent is

paid in all remaining periods as if his cost is the highest cost for which he is still expected

to work. This last cost is determined in the evaluation stage.

This implies an important separation result. In the evaluation stage, incentives are

provided only through changes to the ensuing work plan. In the compensation stage,

incentives are provided only through wages.

Corollary 4. The period outcome affects the future work plan iff the agent was never

paid so far.

An important implication of the information assymetry is that the ex-ante variance

of the expected work plan is larger when the cost increase is private and not public

information. The possibility to obtain lower cost requires a stronger incentive for the

agent to work. As incentives in the evaluation stage are provided only by means of

changes to the ensuing work plan, the variance must be larger in the private cost setting.

Corollary 5. In the evaluation stage the difference between the work plan after failure

and after success is larger when if θ = 1 (the true cost is private information) than if

θ = 0 (the true cost is public information).
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The implication of private information on the compensation stage is twofold. If there

was no information asymmetry (θ = 0 and so r = 0), the standard solution applies –

the agent works while efficient and is paid the true cost each period (cn). In contrast,

private information both implies concerns about past shirking (through r) and a stronger

incentive for future shirking. The additional incentive to shirk in the past to lower costs

this period, r · δn, is simply considered an additional cost by the contract. Thus, as r

increases, the continuation contract after selling the firm to the agent is less efficient and

provides the agent less utility. However, even if r = 0, the agent can still increase his

utility by shirking in the future and lowering costs. As a result, the agent is paid as if the

cost each period is the cost in the last period of work cN(r)and not the current period cn.

Thus, the forward looking effect of private information increases the agent’s utility from

the contract after payment.

3.2.4. Termination Without Payment.

If the agent’s liability is sufficiently unlimited, the agent is “given” the firm, albeit for

less periods than is efficient. Suppose the agent was not paid so far, and so l > −1. Let

λ ≡ p
p−p0 (1 + l) > 0 denote the remaining credit the agent needs to “get” the firm. As

the information rent increases by at least p0
p λ each period, it will increase by at least p0

p λ

before the agent will get the firm. Thus, when the agent will get the firm, the information

rent will be at least r + θ p0p λ = r + θ p0
p−p0 (1 + l). For future promises to have any value

to the agent it must be that production is not shut down when the agent gets the firm:

(3.10) v (p− p0)− cn+1 −
(
r + θ

p0

p− p0
(1 + l)

)
δn+1 ≥ 0

Suppose now that l and r are sufficiently large so that 3.10 is violated:

(3.11)

(
p0

p− p0
lθ + r

)
δn+1 ≥ v (p− p0)− cn+1 − θ

p0

p− p0
δn+1 .

Then the information rent in any period after giving the firm to the agent is too large

and the contract will stop immidiately after a payment to the agent. Any promise of

“future credit in the firm” is worthless. If he works, the agent must be paid for success

in this period and then the contract stops. As the work plan starting in this period is

fixed – work only in the current period – lemma 12 can be applied to determine that the

wage is cn
p−p0 . The wage constraint binds and so λ = λ . To determine whether the agent

works in this period, evaluate the µ knowing that the agent cannot work in any future

periods:

µ (n, l, r) = v (p− p0)− p

p− p0
(1 + l) cn + lcn − rδn

= v (p− p0)− p

p− p0
cn −

p0

p− p0
lcn − rδn

The agent will work in this period if and only if µ (n, l, r) ≥ 0. Thus, the agent will not

work whenever

(3.12)
p0

p
lcn + rδn > v (p− p0)− p

p− p0
cn

Lemma 13. For any state (n, l, r):

(1) If (3.11) but not (3.12), the contract terminates at the end of the period regardless

of outcomes. The agent works in the period and is paid the spot wage for success.

(2) If (3.11) and (3.12) the contract terminates at the start of the period.
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Proof. Suppose (3.11) in state (n, l, r). Setting λ so that the wage constraint binds this

period minimizes the period return.

(1) The continuation values are zero:

(a) µ (n+ 1, ls, rs) ≤ 0 : this is exactly the right hand side of 3.10. By condition

3.11 the inequality 3.10 is violated and so µ (n+ 1, ls, rs) = 0

(b) µ
(
n+ 1, lf , rf

)
≤ 0 : l, r are both are larger after failure and µ is decreasing

in both.

(2) If 3.12 is violated, the period return is still negative and so the agent works in

the period. The wage is determined from the first order condition for µ (n, l, r):

cn − ω (p− p0) = 0

(3) If also (3.12) then maxλ V (n, l, r, λ) > 0 and so the optimal is to not work –

V (n, l, r) = 0

�

*** The lemma above stated sufficient conditions for termination. Necessary conditions

are pending. ***

3.3. More Information May be Less Efficient - Two Period Example.

This section solves the optimal contract for any last two periods. This allows us to

evaluate the effect of private information in more detail. The first subsection defines

and solves a complete information benchmark. The second subsection solves the origi-

nal problem and compares the solutions. The main result is that under some sensible

parametrizations the agent is expected to work less under complete information – private

information increases efficiency.

This happens when the second period work is only profitable as an incentive for first

period effort. In such cases, the optimal contract under complete information may ran-

domize the second period work after success so that the agent is exactly rewarded for

his first period effort by the expected utility in the second period. The agent’s expected

utility in this contract is exactly zero. Therefore, if shirking affects second period costs,

the agent has nothing to lose by shirking. This causes the optimal contract to pay the

agent some wage in the setting with private information in the last two periods. The

wage cost in the first period decreases with the probability of work in the second period

more than the expected second period loss. Therefore, the private information contract

never randomizes second period work after first period success.

3.3.1. Two Periods – The Complete Information Benchmark.

Suppose that the cost of effort cn depends on the number of past periods rather than

past effort. Thus, the second period cost is c1 regardless of histories and the first period

cost is c0. To rule out trivial solutions, assume that work in the second period increases

surplus: v (p− p0) > c1.

Let µ̂ (1, l) denote the second period value in this case. µ̂ (1, l) may be obtained by

placing r = 0 in 3.2 and observing that the optimal λ is the highest possible:

µ̂ (1, l) = max

[
0, v (p− p0)− p

p− p0
c1 − lc1

p0

p− p0

]
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The first period problem is given by adapting problem (3.3) to the case that ry = 0 :

µ̂ (0, l) = max

[
0,min
λ≥0

µ̂ (0, l, λ)

]
s.t.

µ̂ (0, l, λ) = pµ̂

(
1, l − p− p0

p
λ

)
+ (1− p) µ̂

(
1, l +

p− p0

1− p
λ

)
+v (p− p0)− c0λ+ lc0

λ ≤ p

p− p0
(1 + l)

Letting w denote the multiplier on the constraint, the f.o.c. for µ̂ (0, l, λ) is

λ0 (l) = arg inf
λ∈

[
0, p

p−p0
(1+l)

] (p− p0)

(
µ̂l+

(
1, l +

p− p0

1− p
λ

)
− µ̂l−

(
1, l − p− p0

p
λ

))
−c0+w (p− p0) ≥ 0

µ̂ (1, l) is piecewise linear with one kink (when µ̂ (1, l) becomes zero) and is decreasing

in l. If both continuation values are non-zero, the partial derivatives cancel each other.

If both continuation values are zero, both partial derivatives are also zero. As µ̂ (1, l) is

decreasing in l , the only other possibility is µ̂
(
1, lf

)
= 0 and µ̂ (1, ls) > 0 and so

(p− p0)

(
µ̂l+

(
1, l +

p− p0

1− p
λ

)
− µ̂l−

(
1, l − p− p0

p
λ

))
= p0c1

Suppose that there is some λ such thatµ̂
(
1, lf

)
= 0 and µ̂ (1, ls) > 0 . Then if p0c1 ≥ c0,

the optimal contract is defined by the lowest λ such that µ̂
(
1, lf

)
= 0. If p0c1 < c0, then,

as increasing λ only increases µs the wage constraint must bind and µs > 0. The next

items summarize the optimal contract, letting l0 denote the state at the start of the first

period.

(1) If µ̂
(

1, l0

1−p + p
1−p

)
≥ 0, the agent works in both periods regardless of outcomes

(µf > 0 at λ = p
p−p0 (1 + l).) The agent is paid cn

p−p0 for success in period

n ∈ {0, 1}.
(2) If v (p− p0) − pc1

p−p0 ≤ 0 the second period work is profitable only because of

incentive effects on the first period. This implies µ̂ (1, 0) ≤ 0. As µ̃ (1, l) decreases

in l, it follows that the agent never works in the second period if he fails in the

first. However, by assumption µ̂
(

1,− p
p−p0

)
> 0 and so the agent will work after

success. There are two possible cases:

(a) If p0c1 < c0 working only after success is profitable to the principal even if it

requires increasing the agent’s first period wage. Then λ = p
p−p0 , the agent

works in the second period if and only if he succeeds in the first period. The

agent is paid w = c0−p0c1
p−p0 for success in the first period and c1

p−p0 for success

in the second period.

(b) If p0c1 ≥ c0 working after success increases first period profits only while it

decreases the first period wage. The agent is paid nothing for success in the

first period and c1
p−p0 for success in the second period. The probability of

work after success αs is determined by the IC:

(p− p0)αs
p0c1
p− p0

= c0

αs =
c0
p0c1

.
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(3) If v (p− p0) − pc1
p−p0 ≥ 0 the second period work is profitable in itself. As

µ̂
(

1, l0

1−p + p
1−p

)
≤ 0, (see case #1) there is some λ∗ such that second period

work after failure becomes too costly. There are two possible cases:

(a) If p0c1 < c0 then λ = p
p−p0 is optimal. The agent is paid w = c0−p0c1

p−p0 for

success in the first period and works in the second period iff he succeeds in

the first.

(b) If p0c1 ≥ c0 then λ∗ is optimal. The agent is not paid for success in the

first period. The agent is paid c1
p−p0 for success in the second period. The

probability of work after failure αf is determined by the IC

(p− p0) (1− αf )
p0c1
p− p0

= c0

αf = 1− c0
p0c1

3.3.2. Two Periods With Private Histories.

The second period value is µ (1, l, r) given in equation (3.2). It is piecewise linear with

one kink (when µ (1, l, r) becomes zero) and is decreasing in l and r. The first period

problem is given by problem (3.3), with the first order condition (3.6). As in the common

information case, if both continuation values are non-zero – the agent always works in

the second period, the partial derivatives in the first order condition cancel each other. If

both continuation values are zero, both partial derivatives are also zero. Therefore, the

only possibility in which the wage constraint does not bind is that the value of work after

failure is negative while the value of work after success is positive. In this case the first

order condition is

p0c1 − p0δ1 − c0 + w (p− p0) ≥ 0

However, by definition δ1 = c1 − c0 and so

p0c1 − p0δ1 − c0 = p0c1 − p0c1 + p0c0 − c0 = − (1− p0) c0 < 0

Therefore, the wage constraint must bind. This is an important difference between the

common and private information cases. Working after success is always profitable if it

increases surplus (subject to the past state variables). Thus, the optimal contract always

sets λ = p
p−p0 . Letting l0, r0 denote the starting state, the possible solutions are

(1) If µ
(

1,−1, r0 + p0
p−p0

(
1 + l0

))
≤ 0 , the optimal contract is the optimal single

period contract for the first period. This is the case that second period total value

is lower than the added first period shirking incentive

v (p− p0)− c1 ≤ δ1 ·
(
r0 +

p0

p− p0

(
1 + l0

))
(2) If µ

(
1, l0 + p

1−p
(
1 + l0

)
, r0 + 1−p0

1−p
p

p−p0

(
1 + l0

))
≥ 0 the optimal contract is

fixed from the starting history to the second period. This is the case that sec-

ond period profit is higher than the added first period shirking incentive from

committing to always work in the second period.

(3) If µ
(

1,−1, r0 + p0
p−p0

(
1 + l0

))
≥ 0 ≥ µ

(
1, l0 + p

1−p
(
1 + l0

)
, r0 + 1−p0

1−p
p

p−p0

(
1 + l0

))
the agent works in the second period only if he succeeds in the first period. The

agent is paid c0(1−p0)
p−p0 for success in the first period and c1

p−p0 for success in the

second period.
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Comparing the two solutions, there are several cases in which the optimal contract is

more efficient for the public case. This is not surprising - more frictions should reduce

efficiency.

However, the opposite may also be true – the potential for private information increases

surplus. Specifically, let l0 = r0 = 0, so the first period may be the first period of the

contract and suppose that p0c1 ≥ c0. Under common information, the second period work

after success is only used to decrease first period wages. As a result, the work decision is

randomized just enough for the agent to be indifferent between working and shirking for

no wages in the first period. Under private information, the additional information rents

force the principal to always pay the agent in the first period to prevent shirking. As

increasing the probability of work after success decreases first period wages, it is never

profitable for the principal to randomize the work decision after payment. Therefore,

Lemma 14. In any two period setting, the optimal contract is more efficient for private

case iff p0c1 > c0

v (p− p0) ∈
[
pc1−p0c0
p−p0 , pc1

p−p0

]
Proof. By construction, l0 = r0 = 0. In the private case, the agent works in the second

period after success whenever

v (p− p0)− c1 −
p0

p− p0
δ1 ≥ 0

Replacing δ1 = c1 − c0 and collecting terms the condition is

v (p− p0) ≥ pc1 − p0c0
p− p0

In the common knowledge case, if the second period work is not statically profitable

and p0c1 ≤ c0 , case 3b applies and the work after success is with probability less than

one. This is equivalent to

v (p− p0) ≤ pc1
p− p0

.

Thus, under the condition of the lemma, work after success is more likely in the private

history setting.

By observation of the remaining conditions, in all other cases the public history work

plan implies more work than the private history work plan. �

3.4. Discounting.

Suppose the principal and agent discount the future by a factor β ∈ (0, 1). Discounting

requires some technical adjustments – accounting for the right value of future utility and

shirking gains, and allows the principal to punish the agent by delaying work. I first

consider the required technical adjustments. Suppose the contract is still limited to

stopping contracts – the principal is not allowed to “pause” work. Then we can adjust

the definition of qh from (2.1) to

q〈h,s〉 = β · qh · p · α〈h,s〉 ;(3.13)

q〈h,f〉 = β · qh · (1− p) · α〈h,f〉.

The discount factor has two effects on the remaining analysis.

First, in the primal probability constraints, qh is multiplied by β. The technical impli-

cation for the dual is simple: in the objective for V (n), the continuation values V (n+ 1, ·)
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are multiplied by the discount factor. As V (n, l, r) is concave, it is clear that the optimal

contract never delays work (asks the agent not to work for a period and then work in

the next period). As both the agent and principal are risk neutral and have the same

discount factor, this is equivalent to increasing the probability of termination in a period.

As the latter is never optimal without discounting, so is the former.

Corollary 6. If the principal and the agent have a common discount factor β ∈ (0, 1),

the optimal contract is still a finite stopping contract.

Second, the derivation of the wage contract for a fixed plan in lemma 3 used the

relevant part of the primal problem assuming qh = 1. This must be updated to account

for the discounting as qh = βnh . The resulting problem is

maxwn

∑N(r)
n=n0

−βn−n0pwn

s.t.

(p− p0)wN(r) ≥ cN(r)

∀n1 ∈ {n0, ..., N (r)− 1} (p− p0)n ≥ cn +
∑N(r)
n=n1+1 β

n−n1 (cn − cn−1)

It is immediate that all constraints still bind. Standard calculations obtain the wage for

a fixed contract with discount factor β.

Lemma 15. If the principal and agent have a common discount factor β ∈ (0, 1), then

the optimal contract after payment is fixed through N (r), where N (r) is determined as

in lemma 12 and the wage is given by:

wN(r) =
cN(r)

p− p0

wn = βwn+1 + (1− β)
cn

p− p0

4. Sufficiency of Local Deviations

This section establishes that it is sufficient to consider only local deviations. Intuitively,

the construction of the dual for the FDIC problem can be thought of as considering, in

each public history, which private history requires the strongest incentives, keeping the

state variables fixed. Local deviations are sufficient if the strongest incentives to shirk are

when the agent never shirked in the past. Intuitively, if the agent did shirk in the past, his

costs this period are lower (cn is increasing) and the effect of his shirking on future costs

is lower (δn is increasing). Therefore, if the agent did shirk in the past lower incentives

are sufficient. This section formalizes this intuition. I first identify the relation between

the dual variables and the sufficiency of local deviations. Then, a “summation by parts”

exercise allows qualitative comparison and makes the sufficiency argument transparent.

4.1. The Dual Variables and Sufficiency of Local Deviations.

Recall that the dual problem assigns a non-negative variable (the shadow price or

multiplier) to each constraint, and a constraint to each of the original variables. Let µh

be the dual variable associated with the probability constraint in problem 2.10 in which

qh appears with coefficient one. Let λhd be the dual variable associated with the FDIC for

h, d.

I first establish the formal relation between the λ variables and the sufficiency of local

deviations. For this, let D-FDP denote the dual of problem 2.10. Observe that the dual of
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problem 2.10 subject only to LDIC is equivalent to D-FDP with the additional constraint

(4.1) ∀h,∀d > 0 : λhd = 0 .

Lemma 16. If every solution to D-FDP satisfies also the constraint 4.1, then any optimal

solution subject to LDIC is an optimal contract in the original problem.

Proof. If every solution to D-FDP satisfies also the constraint 4.1, then every optimal

solution to D-LDP is optimal to D-FDP. By the Duality theorem of Linear Programming

it follows that any optimal contract subject to LDIC is feasible subject to FDIC. Thus,

the condition of Corollary 1 holds. �

4.2. From λ to Λ – Private Information and Summation By Parts.

Recall that the different λ in the same period reflect different possible private histories.

Equivalently, one may think of each private history as an agent type. The analysis tries to

determine which agent type requires the strongest incentives – for which type the incentive

constraint binds first. It is known from adverse-selection models that integration by parts

over the agent’s types is useful in answering such questions. The same will apply here.

To see why summation by parts is required, consider the two period problem given in

section 3.1, but add the two FDIC for the second period histories s and f , with d = 1.

These are simply

∀y ∈ {s, f} : − (p− p0)wy + qyc0 ≤ 0

Letting λd denote the multiplier on the FDIC for d ∈ {0, 1}, the resulting second period

dual problem is

(4.2)

µ (n = 1, l, r) = max
[
0,min(λ0,λ1)≥0 v (p− p0) + lc1 − δ1r − λ0c1 − λ1c0

]
s.t. λ0 + λ1 ≤ p

p−p0 (1 + l)

As c1 > c0, it is immidiate that λ1 = 0. However, there are two drawbacks to this

formulation. First, the feasible space of λ × l is not a sub-lattice.16 This will create

difficulties when conducting monotone comparative statics analysis. Second, λ0 and λ1

have the same sign in the objective. This would complicate determining that λ0 > 0

while λ1 = 0: if the problem is super-modular in λ0, it is super-modular in λ1.

These problems are averted by redefining the period control variables and the resulting

state variables using partial sums. Let Λh be a vector of length nh + 1 such that Λhm for

m = {0, ..., nh} is the sum of the last nh −m elements of λh. That is:

(4.3) Λhm ≡
n∑

d=m

λhd .

Note that in the local-deviations problem both λ and Λ have just one element (d = 0)

and are equal to each other. For the FDIC problem, the following additional constraints

16That is, it may very well be that

λ0 + λ1 ≤
p

p− p0
(1 + l)

and

λ̂1 + λ̂1 ≤
p

p− p0

(
1 + l̂

)
,

but

max
[
λ̂0, λ0

]
+ max

[
λ̂1, λ1

]
>

p

p− p0

(
1 + max

[
l̂, l
])

.
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verify that λhd ≥ 0 :

Λhm − Λhm+1 ≥ 0(4.4)

Λhm ≥ 0 .

The condition (4.1) is equivalent to the condition

(4.5) ∀h, Λh1 = 0 .

Corollary 7. If every solution to D-FDP satisfies also the constraint 4.5, then any

optimal contract subject to LDIC is optimal in the original problem.

To see the effect on the recursive formulation, in the two period setting, the second

period problem is now

(4.6)

µ (n = 1, l, r) = max
[
0,min(Λ0,Λ1)≥0 v (p− p0) + lc1 − δ1r − Λ0c1 + Λ1 (c1 − c0)

]
s.t. Λ0 ≤ p

p−p0 (1 + l)

Λ0 − Λ1 ≥ 0

The sufficiency of local deviations is now simpler than it was in problem 3.2. Λ0 decreases

the objective while Λ1 increases it, and setting Λ1 = 0 does not impose a limit on Λ0 .

Note also that the space of Λ× l that are feasible is a lattice.

4.3. The Multiple Periods FDIC Dual.

To make the difference between the LDIC and FDIC duals explict, denote the FDIC

recursive dual by F (·). Deriving a recursive formulation of the multi-period FDIC dual

F (·) for a general history h is mostly a technical extension of previous steps. I first

extend the LDIC dual to account for all the FDIC, and then apply the summation by

parts exercise described above. This section states the resulting problem and outlines the

intuition. The technical steps are provided in appendix B.4.

To derive the multiple periods Dual of the FDIC problem, observe that the only dif-

ference from the LDIC is the introduction of the new λhd variables. The variables in the

primal are identical for the FDIC and LDIC problems. The dual problem for the FDIC

has exactly the same constraints as the LDIC, with the additional variables λhd . For every

history h, observe that the FDIC for d > 0 is exactly the same as of d = 0, with only the

subscripts on cn and δn changing to n− d. Letting λ be a vector of length n+ 1 and l, r

be vectors of length n defined using the same law of motion as in the LDIC formulation,

the dual qh constaint is

µh ≥ pµ〈h,s〉 + (1− p)〈h,f〉 + v (p− p0)−
n+1∑
d=0

λdcn−d +

n∑
d=0

(ldcn−d − rdδn−d) .

Now apply the summation by parts exercise from above on λ as well as l and r. That

is, using Λ as defined above we let

Lm ≡
n∑

d=m

ld ; and Rm =

n∑
d=m

rd .

As summation by parts is perserved under summation, it may be verified that the laws

of motion of L and R w.r.t. Λ are the same as those of l and r w.r.t. λ. The constraint
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is rewritten as

µh ≥ pµ〈h,s〉 + (1− p)µ〈h,f〉 + v (p− p0)− Λ0cn +

n+1∑
m=1

Λm (cn−m+1 − cn−m)

+L0cn −R0δn −
n∑

m=1

(Lm (cn−m+1 − cn−m)−Rm (δn−m+1 − δn−m)) .

Therefore, define the FDIC period return, f (n,L,R,Λ):

(4.7)

f (n,L,R,Λ) ≡ v (p− p0)− cn (Λ0 − L0)− δnR0

+

nh∑
m=1

[δn−m (Λm − Lm) + (δn−m+1 − δn−m)Rm] .

And the FDIC dual is

F (n,L,R) = max

[
0,min

Λ≥0
F (n,L,R,Λ)

]
(4.8)

s.t.

F (n,L,R,Λ) = pF

(
n+ 1, L− p− p0

p
Λ, R+ θ

p0

p
Λ

)
+ (1− p)F

(
n+ 1, L+

p− p0

1− p
Λ, R+ θ

1− p0

1− p
Λ

)
+f (n,L,R,Λ)

s.t.

Λ0 ≤
p

p− p0
(1 + L0)

Λm − Λm+1 ≥ 0

Lemma 17. For every h, µh = F
(
nh, L

h, Rh
)
. Specifically,F (0, 0, 0) and the corre-

sponding optimal Λ’s define a solution to the dual of problem (2.10).

Proof. See appendix B.4. �

4.4. Sufficiency Of Local Deviations.

This section proves that in the solution for the problem F (0, 0, 0), Λm = 0 for all

m > 0. Thus, corollary 7 applies and local deviations are sufficient. Again note the

convexity result:

Lemma 18. F (n,L,R) is convex in (L,R). F (n,L,R,Λ) is convex in Λ for every L,R.

Proof. The proof is identical to the proof of lemma 5 �

Next, note the following, which may be verified directly and is also an application of

part (d) of example 2.6.2 in Topkis (1998).

Lemma 19. For any x, x
′ ∈ Rn, let x ∧ x′ denote the meet (pairwise minimum) of x

and x
′
and ∨ denote the join (pairwise maximum). For every two pairs L,Λ and L

′
,Λ
′

such that Λ is feasible for L and Λ
′

is feasible for L
′
, it must be that Λ∧Λ

′
is feasible for

L ∧ L′ and Λ ∨ Λ
′

is feasible for L ∨ L′ .

Proof. See part (d) of example 2.6.2 in Topkis (1998). �
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Suppose first that θ = 0. Intuitively, one can imagine that while shirking affects future

costs, the agent only realizes this “after the fact” and not while considering his actions.

The next lemma proves that in this problem, the optimal LDIC contract is FDIC. This is

not surprising – the strongest incentives are required to prevent shirking with the highest

cost.17

Lemma 20. If θ = 0 then Λm = 0 for all m > 0.

Proof. As θ = 0 , in all periods R = 0. As the proof will apply monotone comparative

static results, it will be easier to consider G (n,L) ≡ −F (n,L, 0), which is defined by:

G (n,L) = min
[
0,max

Λ
G (n,L,Λ)

]
s.t.

G (n,L,Λ) = pG

(
n+ 1, L− p− p0

p
Λ

)
+ (1− p)G

(
n+ 1, L+

p− p0

1− p
Λ

)
+g (n,L,Λ)

Λ0 ≤
p

p− p0
(1 + L0)

Λm − Λm+1 ≥ 0

With

g (n,L,Λ) = −v (p− p0) + cn (Λ0 − L0)−
nh∑
m=1

δn−m (Λm − Lm)

As F (n,L,R) is convex in (L,R) and F (n,L,R,Λ) is convex in Λ for every L,R, G (n,L)

is concave in L and G (n,L,Λ) is concave in Λ for any L.

(1) For any m > 0, G (n,L) is super-modular in (−L0, Lm):

(a) L0 and Lm have opposite signs in g (n,L,Λ) and the feasible set is a sub-

lattice. Thus, by Theorem 2.7.6 in Topkis (1998) g (n,L,Λ) is super-modular

in (−L0, Lm) (corollary 2.7.3 in Topkis (1998) is also sufficient).

(b) By backward induction, G (n,L) is the max of a positive weights sum of

super-modular functions in (−L0, Lm): G
(
n+ 1, L− p−p0

p Λ
)

, G
(
n+ 1, L+ p−p0

1−p Λ
)

and g (n,L,Λ) and is thus super-modular in (−L0, Lm) (see corollary 2.7.3

in Topkis (1998)).

(2) For any m, let GL+
m

(n+ 1, L) and GL−m (n+ 1, L) denote the directional partial

derivatives. By concavity, both exist everywhere, are equal almost everywhere

and

GL+
m

(n+ 1, L) ≤ GL−m (n+ 1, L)

(3) Suppose Λ = 0. If the wage constraint binds, Λ = 0 is the only solution and the

proof is done. So, suppose the wage constraint does not bind.

17However, this is not trivial either. See the second example in appendix A.
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(a) For any m > 0 , the effect of a marginal increase for Λm at Λ = 0 on

G (n,L,Λ)is

(4.9)

GΛm>0
(n,L,Λ = 0) = (p− p0)

(
−GL−m (n+ 1, L) +GL+

m
(n+ 1, L)

)
− δn−m

≤ δn−m < 0

(b) For m = 0, the effect of a marginal increase for Λ0 is either positive or

negative, and is positive whenever G is smooth at L0:

GΛ0
(n,L,Λ = 0) = (p− p0)

(
−GL−0 (n+ 1, L) +GL+

0
(n+ 1, L)

)
+ cn

(4) By convexity, if GΛ0
(n,L,Λ = 0) ≤ 0, the optimal solution is Λ = 0. So it

remains to prove that if GΛ0
(n,L,Λ = 0) > 0, Λm>0 = 0

(5) If Λ0 > 0 and Λm = 0 for all m > 0 , then the marginal effect of an increase

for Λm at Λ is negative. Therefore, by G (n,L,Λ) concave in Λ, the solution sets

Λm = 0 for all m > 0 :

(a) By the law of motion for L, as Λ ≥ 0, L0 is lower after success (the first

derivative) than after failure (the second derivative).

(b) By G (n,L) sub-modular in (−L0, Lm) as L0 decreases the marginal effect of

Lm increases: GLm

(
n+ 1, L− p−p0

p Λ
)
≥ GL−m (n+ 1, L) ≥ GL+

m
(n+ 1, L) ≥

GLm

(
n+ 1, L+ p−p0

1−p Λ
)

. Therefore

−GLm

(
n+ 1, L− p− p0

p
Λ

)
+GLm

(
n+ 1, L+

p− p0

1− p
Λ

)
≤ −GL−m (n+ 1, L)+GL+

m
(n+ 1, L)

(c) For any m > 0 , the effect of a marginal increase for Λm at Λ on G (n,L,Λ)is

GΛm>0 (n,L,Λ) = (p− p0)

(
−GLm

(
n+ 1, L− p− p0

p
Λ

)
+GLm

(
n+ 1, L+

p− p0

1− p
Λ

))
− δn−m

≤ (p− p0)
(
−GL−m (n+ 1, L) +GL+

m
(n+ 1, L)

)
− δn−m < 0

�

Consider now the effect of information asymmetry by increasing θ. As the agent

considers the effect of shirking on his future costs, the value of the first shirk relative to

any following shirks increases. The marginal effect of the first shirk is an extra δh in all

future periods while the marginal effect of the second shirk is only an extra δh−1 < δh.

Thus it is always the case that the private history with no past shirking is the one that

requires strongest incentives, which implies the sufficiency of local deviations. Formally,

the problem is monotonic increasing in R0 and monotonic decreasing in Rm6=0. As Λm

increases rm, the marginal effect of Λm 6=0 decreases in θ. As this value is negative at

θ = 0, it remains negative at θ = 1.

Lemma 21. For any θ ≥ 0, Λm = 0 for all m > 0 and Λ0 > 0 whenever feasible.

Proof. The claim is true for θ = 0 by the previous lemma.

(1) Whenever θ > 0, F (·) is decreasing in R0 and increasing in Rm for m > 0.

(a) Neither R nor θ affect any constraint.
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(b) By the period return function f (·) (equation 4.7) the period effect is negative

for R0 as δn > 0 and positive for Rm 6=0 as δn ≥ δn−1 by c (n) convex.

(c) The same proof as for the LDIC case for r now applies (see appendix B.8).

(2) For any m > 0, Λm = 0 whenever θ > 0:

(a) This is true for θ = 0 from the previous lemma.

(b) In any last period, the marginal effects of Λ are unaffected by θ.

(c) In any period before last, for any Λ such that Λ0 ≥ 0 and Λm>0 = 0, the

marginal effect of increasing Λm is negative:

(i) If θ = 0 the previous lemma applies.

(ii) If θ > 0 the marginal effect of increasing Λm for m > 0 also includes

the effect of increasing Rm>0 in both continuations. As F (n+ 1, L,R)

decreases in Rm>0, this effect is negative.

�

Concluding:

Theorem 1. Any optimal contract subject to LDIC is an optimal contract.

Proof. From lemma 21, at θ = 1, Λm = 0 for all m > 0 and Λ0 > 0 whenever feasible.

Corollary 7 now implies the result. Specifically, Λm = 0 for all m > 0 implies that any

solution to the dual considering only local deviations is feasible in when considering all

final deviations and thus IC. �

5. Conclusion

This paper evaluated the optimal contract for an agent exerting unobservable effort

that affects future costs. The optimal contract responded to two agency frictions – limited

liability and asymmetric information.

The contract handled the limited liability friction as usual in dynamic moral hazard

settings. The agent first works for credit in the firm. When the credit is too negative the

agent is fired. When the credit is larger than the forward looking value of the firm, the

agent is given the firm in return for his credit.

The asymmetric information friction forced the contract to artificially reduce the value

of the firm after each period, depending on the period’s outcome. This guaranteed that

the agent never gains by creating a discrepancy between his private information and the

public information.

The optimal contract explains features of real world contracts that puzzled economic

observers. The variance in the expected total effort is larger with private cost information

than without. Such large variation in ex-post incentives and effort across agents is ineffi-

cient and led several authors (see e.g. Oyer (1998); Larkin (2007); Misra and Nair (2009))

to suggest that there is significant room for improvement in either the design of real world

incentives or models of the moral hazard setting. The model shows that this variance

allows the firm to provide sufficient incentives for effort when it is relatively cheap and

to provide high powered incentives when those are required without fear that agents mis-

represent their effort (delay “easy sales” to the end of the period). The optimal contract

must balance between efficiency (having the agents work longer) and profitability. While

a high linear commission would guarantee all agents make the efficient level of effort, the
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firm’s profits would all be provided as rents. Consistent with the model, in the firm doc-

umented by Larkin (2007) the top end of the reward scale provides the salesperson a 25%

commission on revenues, a figure very close to the industry’s accounting profit margins.

The analysis used duality based arguments to design a dynamic program that separates

the two frictions. There is reason to hope that a duality based approach to dynamic moral

hazard should prove fruitful in many additional settings as well.

The model abstracted from several important aspects of dynamic agency settings. I

briefly review the main abstractions and consider their implications.

It was assumed there is no information aggregation problem, as in Holmstrom and

Milgrom (1987) and DeMarzo and Sannikov (2008). The aggregation problem occurs

if the principal only learns of the aggregate outcome at some final period N ≤ NFB .

Critically, the actual order of successes becomes private information. The aggregation

problem in the current setting is thus equivalent to constraining the wage to depend only

on the number of successes. I show in appendix C that the problem may still be written as

a linear problem and form the resulting dynamic dual problem. Interestingly, preliminary

analysis suggests that the optimal contract in such settings is exactly the convex reward

scheme.

The possible action and outcome space per period was constructed to be the simplest

possible – binary effort and binary outcomes. It may be possible to extend the model

in these dimensions without breaking any of the assumptions, as in Rogerson (1985).

However, the resulting model is very involved notationally. A more promising approach

may be to use duality theory of convex programming (see e.g. Rockafellar (1997)) to

apply similar methodology using the more convenient first order approach.

It was assumed the principal could commit to a long term contract. Renegotiation

with private histories creates issues on many levels that merit further research.

The structure imposed also implied that the optimal contract is finite. However, all

the methodology used in creating the dynamic dual problem can be equally applied to

infinite horizon models with discounting. Finally, the agent is assumed to be risk neutral,

an assumption that clearly simplifies the analysis and was critical to writing the IC as

linear inequalities.

The interaction between private history and current technology has several organiza-

tional implications for future research. Perhaps the main one is the increased gains from

sequential division of labor. In moral hazard settings in which only the public history

affects current technology, the space of incentive compatible contracts increases when

considering the agency relationship as a long term one. It is always possible to offer the

agent the optimal short-term contract each period, and the agent will comply. However,

when the private history affects current technology, as it does here, contracts that are

incentive compatible in the short term may not be incentive compatible in the long term

– the agent may have a strict incentive to shirk only to improve his future utility. Thus,

the set of long term incentive compatible contracts no longer includes the set of short

term incentive compatible contracts. If private history has a significant effect, it may

be profitable to ex-ante limit the duration of the contract, perhaps shifting production

to another agent. Such sequential division of labor – an incentive based hierarchy – can

allow the principal to extract the agent’s private information without paying the high

information rent. I explore these ideas in related work.
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Finally, conceptually, the principal in this paper attempts to base incentives on histories

– pay more when costs should be higher. This is closely related to the “ratcheting”

approach, that has been traditionally considered problematic (Berliner (1957) introduced

the famous “ratchet effect”). Theoretic studies of ratcheting however tended to assume

a specific mechanism and study its shortcomings. In the closest related paper, Weitzman

(1980) identifies the effort distortion in an intuitive sub-optimal ratcheted contract for a

production setting in which the agent privately observes a production shock each period.

In contrast, the current paper identifies what can be interpreted as the optimal ratcheting

mechanism and shows that it improves on the optimal no-ratcheting – fixed – alternative.
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Appendix A. Example – LDIC does not imply IC

A.1. Full Model. Suppose cn = n, p = 1
2 and p0 = 0 and consider the following contract.

The agent stops if he succeeds in any of the first two periods. If the agent fails in the

first two periods, he is asked to work for eight more periods regardless of new outcomes

and is paid 20 for each success. The agent is paid 48 for success in any of the first two

periods.

To verify that the contract is LDIC, note that in the last eight periods, the contract

is fixed and the agent is paid as if his cost is 10. Lemma 3 establishes the optimality of

this wage plan. Letting Un (d) denote the agent’s continuation utility after being asked

to work in period n having shirked d times in the past:

U3 (d) =

10∑
n=3

1

2
· 20−

10∑
n=3

(n− d) = 80− 52 + 8 · d = 28 + 8d

Now consider the agent’s problem if he is asked to work in the second period.

(1) If the agent did not shirk in the first period (d = 0), he works whenever

1

2
· 48 +

1

2
· U3 (0)− 2 ≥ U3 (1)

24 +
28

2
− 2 ≥ 28 + 8

Which holds as an equality

(2) If the agent did shirk in the first period (d = 1), he works whenever

1

2
· 48 +

1

2
· U3 (1)− 1 ≥ U3 (2)

24 +
28

2
+

8

2
− 1 ≥ 28 + 8 + 8

As the agent works more after failing than after succeeding, the previous shirk

is worth more after failing than after succeeding. As a result, the left hand side

increased less than the right hand side and the IC is violated.

It is easy to verify that the first period IC just binds:

U2 (0) = 24 +
28

2
− 2 = 36

U2 (1) = 24 +
28

2
+

8

2
− 1 = 41

1

2
· 48 +

1

2
· U2 (0)− 1 = 24 + 18− 1 = U2 (1) .

A.2. “Naive” Agent. Suppose now that θ = 0 – the agent is “naive” about the effect

of his shirking. The next example shows that LDIC still does not imply FDIC. For this,
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consider the contract that has the same work plan as in the previous sub-section but pays

the agent 2n in period n. The LDIC in this setting may be written as

1

2
· 2n+

1

2
U c (〈h, s〉 , d) +

1

2
U c (〈h, f〉 , d)− (n− d) ≥ U c (〈h, f〉 , d)

It is immediate that U c (h, 0) = 0 for all h and so the contract is LDIC. The agent

expects zero rents in all future periods and so is willing to work for zero rents today.

To see why this contract is not FDIC, first observe that the agent’s continuation utility

after being asked to work in the third period having shirked d times in the past is U3 (d) =

8d. Now suppose the agent shirked in the first period and consider the second period FDIC

for d = 1. If he succeeds, the agent is paid 4. If he fails, he obtains a future utility of 8 –

double his pay for success. Thus, the IC is violated:

1

2
· 4 +

1

2
· 0 +

1

2
· 8− 1 = 5 < 8

Appendix B. Detailed Proofs and Derivations

B.1. Proof that FDIC implies IC.

Lemma 22. If a contract is FDIC it is IC

Proof. Suppose the contract q, w is not IC. Then it violates FDIC:

(1) As the set of possible work plans for the agent is finite and the agent’s expected

profit is well defined and bounded for each work plan given q, w, there is a set

Ê (q, w) of most profitable work plans given q, w.

(2) Take ê ∈ Ê, ê 6= ec be a most profitable deviating work plan.

(3) Consider the set of histories Ĥ in which the agent makes a “final deviation”

according to ê . That is, ĥ ∈ Ĥ if êĥ = 0 and for every h � ĥ, h 6= ĥ, either

qh = 0 or êh = 1. Let d̂ be the number of past deviations at ĥ according to ê.

Clearly, if the agent profits from making this final deviation, the FDIC for ĥ, d̂ is

violated and the proof is complete.

(4) If the agent does not profit from making this final deviation then the effort plan

that complies in this last period provides at least the same expected profit to the

agent. Thus, the effort plan with êĥ = 1 provides at least the same expected

profit for the agent. We can now repeat the process of searching for a profitable

final deviation after setting êĥ = 1. As H is a finite set, the process ends either

in finding a history in which FDIC is violated or if we change all periods in which

êh = 0 to êh = 1 while weakly increasing the agent’s expected profit, implying

that ê was not more profitable than ec.

�

B.2. Longer Derivation of the FDIC. As the contract is fixed, I omit 〈q, w〉 from

the definition of UD (·) and UC (·). The FDIC in history h, d requires that the agent’s

expected utility from following the contract at history h, d is at least his expected utility

from making a final deviation in the history. Write this in the form convenient for taking

the dual later:

(B.1) UD (h, d)− U c (h, d) ≤ 0 .

If the agent will never be asked to work in history h (qh = 0) then U c (·) = UD (·) = 0

and (B.1) trivially holds at h for all d. For qh > 0 , it will be convenient to write U c (h, d)
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and UD (h, d) in recursive form. The agent’s expected utility from complying with the

contract when asked to work in history h, d is his expected payment in the period less

the cost, plus the expected continuation utility from complying after success and after

failure:

(B.2)

U c (h, d) =
1

qh

[
pwh − qhch−d + q〈h,s〉U

c (〈h, s〉 , d) + q〈h,f〉U
c (〈h, f〉 , d)

]
.

To construct UD (h, d), observe that shirking has three effects. First, it saves the agent

the cost ch−d in the current period. Second, it replaces the success probability p with

p0. This changes the term p · wh to p0 · wh. It also changes the conditional probability

of arriving to the public history 〈h, s〉 from p to p0 and the probability of moving to the

history 〈h, f〉 from 1 − p to 1 − p0. As the term q〈h,s〉 (resp. q〈h,f〉) assumes the correct

probability p (resp. 1 − p), it must be multiplied by p0
p (resp. 1−p0

1−p ). Lastly, in the

continuation utilities, the total deviations increase by one and so d is replaced with d+ 1:

(B.3)

UD (h, d) =
1

qh

[
p0wh +

p0

p
q〈h,s〉U

c (〈h, s〉 , d+ 1) +
1− p0

1− p
q〈h,f〉U

c (〈h, f〉 , d+ 1)

]
.

To facilitate comparison between U c (h, d) and UD (h, d), note that for any history, the

continuation utility after shirking d + 1 times in the past equals the continuation utility

after shirking d times in the past, plus the utility increase from the last shirk:

U c (〈h, y〉 , d+ 1) = U c (〈h, y〉 , d) + (U c (〈h, y〉 , d+ 1)− U c (〈h, y〉 , d)) .

Thus, we may write

(B.4)

UD (h, d) =
1

qh

[
p0wh +

p0

p
q〈h,s〉U

c (〈h, s〉 , d) +
1− p0

1− p
q〈h,f〉U

c (〈h, f〉 , d)

]
+

1

qh

[
p0

p
q〈h,s〉 (U

c (〈h, s〉 , d+ 1)− U c (〈h, s〉 , d))

]
+

1

qh

[
1− p0

1− p
q〈h,f〉 (U

c (〈h, f〉 , d+ 1)− U c (〈h, f〉 , d))

]
Placing (B.2) and (B.3) in the FDIC B.1 and multiplying by qh > 0 obtains the linear

inequality

p0wh + p0
p q〈h,s〉U

c (〈h, s〉 , d) + 1−p0
1−p q〈h,f〉U

c (〈h, f〉 , d)

+p0
p q〈h,s〉 (U

c (〈h, s〉 , d+ 1)− U c (〈h, s〉 , d))

+ 1−p0
1−p q〈h,f〉 (U

c (〈h, f〉 , d+ 1)− U c (〈h, f〉 , d))

−
(
pwh − qhch + q〈h,s〉U

c (〈h, s〉 , d) + q〈h,f〉U
c (〈h, s〉 , d)

)
≤ 0 .
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As the first and last rows have the same terms, collect terms to obtain:

− (p− p0)wh + qhch−d +(B.5)

−p−p0p q〈h,s〉U
c (〈h, s〉 , d)

+p−p0
1−p q〈h,f〉U

c (〈h, f〉 , d)

+p0
p q〈h,s〉 (U

c (〈h, s〉 , d+ 1)− U c (〈h, s〉 , d))

+ 1−p0
1−p q〈h,f〉 (U

c (〈h, f〉 , d+ 1)− U c (〈h, f〉 , d))

≤ 0 .

Which is identical to the FDIC (2.6)

B.3. Duality - Main Theorems. The classic reference is Dantzig (1963). The results

are given in current textbooks on static optimization (see e.g. Vohra (2005)). Any linear

problem may be written as

(B.6) max
x≥0

c · x s.t. Ax ≤ b .

With c a vector of coefficients and A a matrix that holds in each row the coefficients

on a constraint. The dual of the problem is

min
y≥0

y · b s.t. yA ≥ c

The main results of interest are:

(1) The Duality Theorem: If x∗ and y∗ are optimal, y∗ · b = c · x∗ whenever both

exist and are finite; and

(2) Complementary Slackness: If y∗i = 0 then the constraint associated with the i-th

row in A never binds when solving the primal.

The linearity of the objective then implies:

(1) If y∗i = 0 then the constraint associated with the i-th row in A can be ignored

when solving the primal.

While this last result may not have a formal name, it is a combination of the Comple-

mentary Slackness result and the Fundamental Theorem of Linear Programming. See e.g.

the discussion in Vohra (2005) preceding theorem 4.10 (Complementary Slackness).

B.4. The Dual LDIC Dynamic Program - Detailed Derivation.

This section proves that the dual of the optimal contract problem subject to LDIC is

given by the LDIC dynamic dual (problem 3.3).

B.4.1. Prelimiary Definitions.

For convinience, the relevant definitions that will be used in the proof are reproduced

here. The optimal contract problem subject only to LDIC is given in problem 2.10, with
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the FDIC replaced by the relaxed LDIC:

V LD (θ) = max
q≥0,w≥0

∑
h∈H [qh (p− p0) v − whp]

s.t.

qh0 ≤ 1

∀h q〈h,s〉 − qhp ≤ 0

∀h q〈h,f〉 − qh (1− p) ≤ 0

∀h LDIC .

The LDIC for history h is given by setting d = 0 in 2.9:

− (p− p0)wh + qhch(B.7)

−p−p0p

∑
h̃�〈h,s〉 pwh̃ + p−p0

p

∑
h̃�〈h,s〉 qh̃ · ch̃

+p−p0
1−p

∑
h̃�〈h,f〉 pwh̃ −

p−p0
1−p

∑
h̃�〈h,f〉 qh̃ch̃

+θ · p0p
∑
h̃�〈h,s〉 qh̃ · δh̃

+θ · 1−p0
1−p

∑
h̃�〈h,f〉 qh̃ · δh̃ ≤ 0 .

The dynamic representation 3.3 of the dual for the LDIC problem V LD is

µ (n, l, r) = max

[
0,min
λ≥0

µ (n, l, r, λ)

]
s.t.

µ(n, l, r, λ) = pµ

(
n+ 1, l − p− p0

p
λ, r + θ

p0

p
λ

)
+ (1− p)µ

(
n+ 1, l +

p− p0

1− p
λ, r + θ

1− p0

1− p
λ

)
+v (p− p0)− c0λ+ c0l − δ0r

λ ≤ p

p− p0
(1 + l) .

The dynamic problem implicitly defines the state variables l and r. It will facilitate

the proof to recall the explicit definition of the state variables (equations 3.4 and 3.5):

lh = (p− p0)

 ∑
h̃:h�〈h̃,f〉

λh̃

1− p

−
 ∑
h̃:h�〈h̃,s〉

λh̃

p

 .

and

rh = θ

 ∑
h̃:h�〈h̃,s〉

p0

p
λh̃

+ θ

 ∑
h̃:h�〈h̃,f〉

1− p0

1− p
λh̃

 .

B.4.2. Derivation of the wh constraint.

Lemma 23. The dual constraint associated with wh in the LDIC is:

(B.8) ∀h : λh ≤ p

p− p0

(
1 + lh

)
Proof. For any h, the right hand side of the wh constraint is the coefficient on wh in the

objective: −p. To construct the left hand side, observe that wh appears with a coefficient

− (p− p0) in each LDIC (B.7) for h. The variable wh also appears with a coefficient
p−p0
p p = (p− p0) in all FDIC for h̃ such that h �

〈
h̃, s
〉

and with a coefficient p−p0
1−p p in
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all FDIC for h̃ such that h �
〈
h̃, f

〉
. Summing up, the constraint is:

∀h − (p− p0)λh − (p− p0)

 ∑
h̃:h�〈h̃,s〉

λh̃

+ (p− p0)
p

1− p

 ∑
h̃:h�〈h̃,f〉

λh̃

 ≥ −p .

Collecting terms:

∀h − (p− p0)λh + p · (p− p0)


 ∑
h̃:h�〈h̃,f〉

λh̃

1− p

−
 ∑
h̃:h�〈h̃,s〉

λh̃

p


 ≥ −p .

Observe that the p in the second term is exactly multiplying lh (given in equation 3.4),

and so:

− (p− p0)λh + plh ≥ −p .

Dividing by − (p− p0) obtains B.8 �

B.4.3. Derivation of the qh constraint.

Lemma 24. The dual constraint associated with qh in the LDIC is:

µh − (1− p)µ〈h,f〉 − pµ〈h,s〉 + chλ
h − chlh + δhr

h ≥ v (p− p0) .(B.9)

Proof. The variable qh appears in the objective with coefficient v (p− p0). In the primal

constraints, qh appears in the three probability constraints and in all the LDIC for histo-

ries that h follows. The probability constraints generate the continuation value terms:

(B.10) µh − (1− p)µ〈h,f〉 − pµ〈h,s〉

To simplify the rest of the derivation, I consider each case that qh appears in an LDIC

separately.

(1) In the LDIC for history h, qh appears with a coefficient ch . This generates the

term

(B.11) chλ
h

(2) The variable qh also appears twice in each of the LDIC for h̃ such that h � h̃,

once as part of the continuation utility term (in either the second or third row of

B.7) and once as part of the future gains from shirking term (in either the fourth

or fifth row of B.7). The continuation utility term will determine the coefficient

on l. The shirking gains term will determine the coefficient on r.

(a) In the continuation utility term in the LDIC for all histories that h follows,

the coefficient for λh̃ is the cost at history h multiplied by the same coefficient

as the wage: p−p0
p ·ch if h �

〈
h̃, s
〉

and −p−p01−p ch if h �
〈
h̃, f

〉
. Summarizing

these terms obtains the sum:

ch (p− p0)


 ∑
h̃:h�〈h̃,s〉

λh̃

p

−
 ∑
h̃:h�〈h̃,f〉

λh̃

1− p


 .

By the definition of lh, this is simply

(B.12) ch
(
−lh

)
.
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(b) In the shirking gains term in the LDIC for all histories that h follows, the

coefficient for λh̃ is θ p0p δh−d if h �
〈
h̃, s
〉

and θ 1−p0
1−p δh−d if h �

〈
h̃, f

〉
.

Again the coefficients depend only on whether h follows a success or failure

in h̃ . The sum is:

δh ·

p0

p

 ∑
h̃:h�〈h̃,s〉

λh̃,d

+
1− p0

1− p

 ∑
h̃:h�〈h̃,f〉

λh̃,d


 .

By the definition of rh, this is simply

(B.13) δhr
h .

Combining B.10,B.11,B.12 and B.13 obtains the left hand side of B.9. �

B.4.4. The LDIC Dual.

Lemma 25. The LDIC dual is

min(µ,λ)≥0 µ
∅(B.14)

s.t.

∀h : λh ≤ p
p−p0

(
1 + lh

)
(wage constraint)

∀h : µh ≥ v (p− p0) + (1− p)µ〈h,f〉 + pµ〈h,s〉 − chλh + chl
h − δhrh (q constraint)

subject to the definitions of lh and rh given above.

Proof. The only primal constraint with a non negative right hand side is q∅ ≤ 1. This

establishes the objective. The constraints and state variables were established in the

previous two lemmas. �

B.4.5. Recursive LDIC and Principle of Optimality.

Lemma 26. For every h, µh = µ
(
nh, l

h, rh
)
. Specifically,µ (0, 0, 0) and the corresponding

optimal λ’s are a solution to the dual of problem (B.14).

Proof. In steps:

(1) By the definition of lhand rh (equations 3.4 and 3.5, reproduced at the beginning

of this section): If lh = l rh = r and λh = λ then l〈h,s〉 = l− p−p0
p λ, l〈h,f〉 = p−p0

1−p λ,

r〈h,s〉 = θ p0p λ, r〈h,f〉 = θ 1−p0
1−p λ.

(2) The q constraint in the dual B.14 binds whenever µh > 0.

(a) Suppose not. Let h be the first history in which the q constraint does not

bind.

(b) If h = ∅ then decrease µ∅ . This decreases the objective. Therefore, the

constraint binds.

(c) For any other h , decrease µh by ε. As the constraint in the previous period

binds, this allows decreasing the previous history’s µ by either ε·p or ε (1− p).
Continuing backwards, this will decrease µ∅. This decreases the objective.

Therefore, the constraint binds.

(3) Let µ∗ (n, l, r) be the optimal solution for the problem 3.3 starting from µ (0, 0, 0).

By the principle of optimality, µ∗ (n, l, r) exists and is unique. Let µh∗ be

an optimal solution to problem B.14 . It remains to show that for every h,

µ∗
(
nh, l

h, rh
)

= µh∗
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(4) Suppose that for some h this is not true. As the contract is finite, choose h so

that there is no future h̃ � h such that µ∗
(
nh̃, l

h̃, rh̃
)
6= µh̃∗. Let λ∗

(
nh, l

h, rh
)

be the recursive problem’s optimal solution at
(
nh, l

h, rh
)

and λh∗ be given by

the optimal solution to problem B.14.

(a) If µ∗
(
nh, l

h, rh
)
> µh∗ replace λ∗

(
nh, l

h, rh
)

with λh∗:

(i) The dual wage constraint is equivalent to the constraint in problem

3.3 and thus λh∗ is feasible at
(
nh, l

h, rh
)
.

(ii) By construction, µ∗
(
nh, l

h, rh
)

is now exactly µh∗

(iii) As µ∗
(
nh, l

h, rh
)
> µh∗ and λh∗ is feasible at

(
nh, l

h, rh
)
, it must be

that µ∗
(
nh, l

h, rh
)

was not optimal.

(b) If µ∗
(
nh, l

h, rh
)
< µh∗then replace λh∗ with λ∗

(
nh, l

h, rh
)

:

(i) The dual wage constraint is equivalent to the constraint in problem

3.3 and thus λ∗
(
nh, l

h, rh
)

does not violate the wage constraint.

(ii) The change does not affect any previous periods, except through µh .

(iii) For the future periods, by constructiont µ〈h,y〉
∗

= µ∗
(
n〈h,y〉, l

〈h,y〉, r〈h,y〉
)

(iv) Thus, µh∗ is now exactly µ∗
(
nh, l

h, rh
)

(v) As µ∗
(
nh, l

h, rh
)
< µh∗ the decrease in µh∗ allows a decrease in the

previous period’s µ and so on by backward induction up to µ∅. There-

fore, setting µh∗ > µ∗
(
nh, l

h, rh
)

cannot be optimal.

�

B.5. Derivation of the FDIC Dual. This section derives the recursive dual of the

FDIC problem. Formally, it proves that This section proves that V FD (θ) = F (0, 0, 0; θ)

where V FD (θ) is given in problem 2.10 and F (n,L,R; θ) is given in problem 4.8.

B.5.1. Preliminary Definitions.

For convinience, the relevant definitions that will be used in the proof are reproduced

here. The primal V FD (θ) is :

V FD (θ) = max
q≥0,w≥0

∑
h∈H [qh (p− p0) v − whp]

s.t.

qh0
≤ 1

∀h q〈h,s〉 − qhp ≤ 0

∀h q〈h,f〉 − qh (1− p) ≤ 0

∀h, d FDIC (2.9)

The FDIC is (2.9) is:

FDIC (2.9) : − (p− p0)wh + qhch−d

−p−p0p

∑
h̃�〈h,s〉 pwh̃ + p−p0

p

∑
h̃�〈h,s〉 qh̃ · ch̃−d

+p−p0
1−p

∑
h̃�〈h,f〉 pwh̃ −

p−p0
1−p

∑
h̃�〈h,f〉 qh̃ch̃−d

+θ · p0p
∑
h̃�〈h,s〉 qh̃ · δh̃−d

+θ · 1−p0
1−p

∑
h̃�〈h,f〉 qh̃ · δh̃−d ≤ 0 .
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The recursive dual is given in problem 4.8:

4.8 :

F (n,L,R) = max

[
0,min

Λ≥0
F (n,L,R,Λ)

]
s.t.

F (n,L,R,Λ) = pF

(
n+ 1, L− p− p0

p
Λ, R+ θ

p0

p
Λ

)
+ (1− p)F

(
n+ 1, L+

p− p0

1− p
Λ, R+ θ

1− p0

1− p
Λ

)
+f (n,L,R,Λ)

s.t.

Λ0 ≤
p

p− p0
(1 + L0)

Λm − Λm+1 ≥ 0

with f (n,L,R,Λ) given in 4.7:

f (n,L,R,Λ) ≡ v (p− p0)− cn (Λ0 − L0)− δnR0

+

nh∑
m=1

[δn−m (Λm − Lm) + (δn−m+1 − δn−m)Rm] .

Problem F (n,L,R) is a recursive formulation of the dual of problem V FD.

Λ, L,R are vectors for each history h. The control variables, Λ are the partial sums

of the dual variables for the FDIC, λhd . For a detalied exposition see section 4.3. Λh is

defined in equation 4.3:

(4.3) : Λhm ≡
n∑

d=m

λhd

The state variables L,R are implictly defined in problem 4.8. The proof is clearer if these

are given in explicit form:

Lhm = (p− p0)

 ∑
h̃:h�〈h̃,f〉

Λh̃m
1− p

−
∑

h̃:h�〈h̃,s〉

Λh̃m
p

(B.15)

Rhm = θp0

 ∑
h̃:h�〈h̃,s〉

Λh̃m
p

+ θ (1− p0)

 ∑
h̃:h�〈h̃,f〉

Λh̃m
1− p

(B.16)

B.5.2. Derivation of the wh constraint.

Lemma. The constraint associated with wh in the FDIC dual is

(B.17) ∀h Λh0 ≤
p

p− p0

(
1 + Lh0

)

Proof. The right hand side of each constraint is the coefficient on wh in the objective of

V FD: −p. To construct the left hand side, observe that wh appears with a coefficient

− (p− p0) in all the FDIC (2.9) for h. The variable wh also appears with a coefficient
p−p0
p p = (p− p0) in all FDIC for h̃ such that h �

〈
h̃, s
〉

and with a coefficient p−p0
1−p p in
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all FDIC for h̃ such that h �
〈
h̃, f

〉
. Summing up:

(B.18)

∀h
∑nh

d=0

[
− (p− p0)λhd − (p− p0)

(∑
h̃:h�〈h̃,s〉 λ

h̃
d

)
+ (p− p0) p

1−p

(∑
h̃:h�〈h̃,f〉 λ

h̃
d

)]
≥ −p .

Insert the summand into the right hand side of B.18 and factor out −p as in the LDIC

to get

− (p− p0)

nh∑
d=0

λhd + p (p− p0)


 ∑
h̃:h�〈h̃,f〉

nh∑
d=0

λh̃d
1− p

−
 ∑
h̃:h�〈h̃,s〉

nh∑
d=0

λh̃d
p


 ≥ −p .

Using the definition of Λ (4.3) for the summation over λhd obtains

− (p− p0) Λh0 + p (p− p0)


 ∑
h̃:h�〈h̃,f〉

Λh̃0
1− p

−
 ∑
h̃:h�〈h̃,s〉

Λh̃0
p


 ≥ −p .

The definition of L (B.15) can now be applied as was l in the LDIC dual to obtain B.17 �

B.5.3. Derivation of the qh constraint.

Lemma 27. The constraint associated with qh in the FDIC dual is

(B.19)

µh − (1− p)µ〈h,f〉 − pµ〈h,s〉 + chΛh0 − chLh0 + δhR
h
0

−
nh∑
m=1

[
δh−m

(
Λhm − Lhm

)
+ (δh−m+1 − δh−m)Rhm

]
≥ v (p− p0)

Proof. The variable qh appears in the objective with coefficient v (p− p0). In the primal

constraints, qh appears in the three probability constraints and in all the FDIC for his-

tories that h follows. The probability constraints generate the continuation value terms:

(B.20) µh − (1− p)µ〈h,f〉 − pµ〈h,s〉

To simplify the rest of the derivation, I consider each case that qh appears in an FDIC

separately.

(1) In all the FDIC for history h (i.e., for each d), qh appears with a coefficient ch−d

. This generates the term
nh∑
d=0

ch−dλ
h
d .

To obtain the term in Λ, apply summation by parts:∑nh

d=0 ch−dλ
h
d =

chΛh0 −
∑nh

m=1 (ch−m+1 − ch−m) Λhm =

chΛh0 −
∑nh

m=1 δh−m+1Λhm .(B.21)

(2) The variable qh also appears twice in each of the FDIC for h̃, d such that h � h̃,

once as part of the continuation utility term (in either the second or third row of

2.9) and once as part of the future gains from shirking term (in either the fourth

or fifth row of 2.9). The continuation utility term will determine the coefficients

on L. The shirking gains term will determine the coefficients on R.
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(a) In the continuation utility term in the FDIC for all histories that h follows,

the coefficient for λh̃d is the current cost multiplied by p−p0
p if h �

〈
h̃, s
〉

and

by−p−p01−p if h �
〈
h̃, f

〉
. Summarizing these terms obtains the sum:∑nh

d=0
ch−d

p (p− p0)
[(∑

h̃:h�〈h̃,s〉 λ
h̃
d

)
− p

1−p

(∑
h̃:h�〈h̃,f〉 λ

h̃
d

)]
.(B.22)

For the FDIC, use by “summation by parts”:18

nh∑
d=0

ch−d · λh̃d = ch ·
nh∑
d=0

λh̃d −
nh∑
d=1

(ch−d+1 − ch−d) ·

(
nh∑
m=d

λh̃d

)

= chΛh̃0 −
nh∑
d=1

δh+1−dΛ
h̃
d

Thus, rewrite B.22

(p− p0) · ch
[(∑

h̃:h�〈h̃,s〉
Λh̃

0

p

)
−
(∑

h̃:h�〈h̃,f〉
Λh̃

0

1−p

)]
− (p− p0)

∑nh

m=1 δh+1−m

[(∑
h̃:h�〈h̃,s〉

Λh̃
m

p

)
−
(∑

h̃:h�〈h̃,f〉
Λh̃

m

1−p

)]
.

As should be expected, the terms in the square brackets are the agent’s

liability limit Lhm. Using the definition of Lhm in (B.15) to replace the internal

summations, the continuation utility term becomes

(B.23) −chLh0 +

nh∑
m=1

δh−m+1L
h
m

(b) Finally, consider the terms reflecting the information rents in each FDIC

constraint (the last two rows in 2.9). The coefficient for λh̃d is θ p0p δh−d if

h �
〈
h̃, s
〉

and θ 1−p0
1−p δh−d if h �

〈
h̃, f

〉
. Again the coefficients depend only

on whether h follows a success or failure in h̃ . Combine these to obtain

(B.24)

nh∑
d=0

δh−d · θ

p0

p

 ∑
h̃:h�〈h̃,s〉

λh̃d

+
1− p0

1− p

 ∑
h̃:h�〈h̃,f〉

λh̃d


 .

Summation by parts can be used to obtain

nh∑
d=0

δh−d · λh̃d = δh

nh∑
d=0

λh̃d −
nh∑
d=1

(δh−d+1 − δh−d) ·

(
nh∑
m=d

λh̃d

)
.

= δhΛh̃0 −
nh∑
d=1

(δh−d+1 − δh−d) · Λhd

Thus, rewrite B.24 as:

θδh

(
p0
p

(∑
h̃:h�〈h̃,s〉 Λh̃0

)
+ 1−p0

1−p

(∑
h̃:h�〈h̃,f〉 Λh̃0

))
θ
∑nh

d=1 (δh−d+1 − δh−d)
(
p0
p

(∑
h̃:h�〈h̃,s〉 Λh̃d

)
+ 1−p0

1−p

(∑
h̃:h�〈h̃,f〉 Λh̃d

))

18This may be verified directly. Intuitively, this is the same as letting λ be the derivative of Λ and δ the

derivative of c. Then ˆ nh

0
ctλ

h
t dt = Λhcnh −

ˆ nh

0
δtΛtdt
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Applying the definition of R in B.16 obtains the “information rent” term:

(B.25) δhR
h
0 −

nh∑
m=1

(δh−m+1 − δh−m)Rhm

Combine B.10 , B.21, B.23 and B.25 to obtain the dual constraint for qh B.19. �

B.5.4. The FDIC Dual.

Lemma 28. The dual problem for V FD (θ) is

minΛh≥0 µ∅(B.26)

s.t., for every h ∈ H

The state variables B.15, B.16

λhd ≥ 0 : Λhm − Λhm+1 ≥ 0

The qh dual constraint B.19

The wh dual constraint ??

Proof. The only primal constraint with a non negative right hand side is q∅ ≤ 1. This

establishes the objective. The constraints and state variables were established in the

previous two lemmas. �

B.5.5. Recursive Derivation.

Lemma 29. For every h, µh = F
(
nh, L

h, Rh
)
. Specifically,F (0, 0, 0) and the corre-

sponding optimal Λ’s are a solution to problem (B.26).

Proof. The proof is a step by step repitition of the proof in section B.4.5, with the variables

renamed. For clarity, I repeat the steps with the adjusted notation. The same arguments

as in B.4.5 apply. �

(1) The definition of Lhand Rh (equations B.15 and B.16) are consistent with the

law of motion for the state variables given in the definition of F (n,L,R)

(2) The q constraint in the dual B.26 binds whenever µh > 0.

(3) Let F ∗ (n,L,R) be the optimal solution for the recursive dual problem 4.8 starting

from F (0, 0, 0). By the principle of optimality, F ∗ (n,L,R) exists and is unique.

Let µh∗ be an optimal solution to problem B.26 . It remains to show that for

every h, F ∗
(
nh, L

h, Rh
)

= µh∗

(4) Suppose that for some h this is not true. As the contract is finite, choose h so that

there is no future h̃ � h such that F ∗
(
nh̃, L

h̃, Rh̃
)
6= µh̃∗. Let Λ∗

(
nh, L

h, Rh
)

be the recursive problem’s optimal solution at
(
nh, L

h, Rh
)

and λh∗ be given by

the optimal solution to problem B.14.

(a) If F ∗
(
nh, L

h, Rh
)
> µh∗ replace Λ∗

(
nh, L

h, Rh
)

with those given by λh∗.

Obtain that F ∗
(
nh, L

h, Rh
)

is not optimal.

(b) If F ∗
(
nh, L

h, Rh
)
< µh∗, replace λh∗ with those given by Λ∗

(
nh, L

h, Rh
)

.

Obtain that µh
∗

cannot be optimal.

B.6. Proof for Lemma 5.

Lemma 30. µ (n, l, r) is continuous and convex in (l, r). µ (n, l, r, λ) is continuous and

convex in λ for every l, r. The optimal λ is continuous in l and r.
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Proof. Separately for each claim.

(1) For µ (n, l, r):

(a) In any last period, µ (n, l, r) is linear and thus continuous and convex.

(b) Assume that µ (n+ 1, l, r) is continuous and convex. As the positive sum of

three continuous and convex functions is continuous and convex, for every λ,

V (n, l, r, λ) is convex in (l, r). As the feasible set is convex and the objective

is to minimize a convex function, µ (n, l, r) is continuous and convex.

(2) For µ (n, l, r, λ), the period return π is linear in λ and so it is sufficient to show

that the continuation is convex in λ. I show this for the continuation after success

– µ
(
n+ 1, l − p−p0

p λ, r + p0
p λ
)
. The same proof applies for the continuation after

failure. Let λ1 and λ2 be feasible solutions. Then by convexity of µ (n+ 1, l, r)

for any α ∈ (0, 1):

αµ
(
n+ 1, l − p−p0

p λ1, r + p0
p Λ1

)
+ (1− α)µ

(
n+ 1, l − p−p0

p λ2, r + p0
p Λ2

)
≤

µ
(
n+ 1, α

(
l − p−p0

p λ1
)

+ (1− α)
(
l − p−p0

p λ2
)
, α
(
r + p0

p λ
1
)

+ (1− α)
(
r + p0

p λ
2
))

=

µ
(
n+ 1, l − (p− p0)

(
αµ1 + (1− α)µ2

)
, r + α p0p µ

1 + (1− α) p0p µ
2
)

(3) Given the previous result, the optimal λ is either unique or an interval. Continuity

in both cases is standard.

�

B.7. Proof for Lemma 8.

Lemma. 8 In the ε-smooth model, as ε→ 0, µ̃hl → −Uh and µ̃hr → −Dh.

Proof. I prove that if µ is everywhere differentiable, µl = −U and µr = −D. The proof

applies backward induction.

(1) If the agent does not work in a period, µ = µl = µr = −U = −D = 0.

(2) For every last period in which the agent works, all the continuation terms in the

first order condition are zero. Therefore,

µλ = −cn + ω · (p− p0)

As cn > 0, it is always the case that ω > 0 and so by complementary slackness,

λ (n, l, r) = p
p−p0 (1 + l) and the agent is paid cn

p−p0 for success. Therefore, the

agent’s utility is

U =
pcn
p− p0

− cn =
p0cn
p− p0

and

D = δn

Placing λ in µ in 6 obtains

µ (n, l, r) = min

[
0, v (p− p0)− cn

p

p− p0
− cnl

(
p

p− p0
− 1

)
− rδn

]
= min

[
0, v (p− p0)− cn

p

p− p0
− cnl

(
p0

p− p0

)
− rδn

]
(a) If µ > 0

µl = −cn
p0

p− p0
= −Uh

µr = −δn = −Dh



DYNAMIC COSTS AND MORAL HAZARD 49

(b) If v (p− p0) − cn p
p−p0 − cnl

(
p0
p−p0

)
− rδn = 0 then let ∂µl and ∂µr denote

the sub-differentials. Then −Uh ∈ ∂µl and −Dh ∈ ∂µr
(3) For every non last period, suppose the relation holds for all future periods. If µis

smooth, the envelope theorem applies and

µl = pµsl + (1− p)µfl + cn −
p

p− p0
ω · (p− p0)

= p
(
−U 〈h,s〉

)
+ (1− p)

(
−Uf

)
+ cn − pω

= −Uh

and

µr = pµsr + (1− p)µfr − δn

= p
(
−D〈h,s〉

)
+ (1− p)

(
−D〈h,f〉

)
− δn

= −Dh

�

B.8. Proof for Lemma 9: µ (n, l, r; θ) decreases in l, r, θ.

Proof. I first show the result for r and then for l. The proof for θ is identical. To simplify

the notation, assume θ = 1.

• For r:

– In any last period if µ (n, l, r) > 0, µr = −δn < 0.

– Suppose µ (n+ 1, l, r) weakly decreases in r . Then for any ε > 0, it must

be that µ (n, l, r + ε) < µ (n, l, r):

Let λ∗ be optimal at the state (n, l, r). As the constraint is not affected by

r, λ∗ is feasible for (n, l, r + ε). Therefore

µ (n, l, r + ε) ≤ pµ

(
n+ 1, l − p− p0

p
λ∗, r + ε

p0

p
λ∗
)

+ (1− p)µ
(
n+ 1, l − p− p0

1− p
λ∗, r + ε

1− p0

1− p
λ∗
)

+v (p− p0)− λ∗cn + lcn − rδn − εδn

< µ (n, l, r)

Therefore, for whenever µ (n, l, r) > 0, µ strictly decreases in r .

• For l:

– In any last period, if µ (n, l, r) > 0, µl = − p0
p−p0 cn < 0

– Suppose µ (n+ 1, l, r) weakly decreases in l . Then for any ε > 0, it must be

that µ (n, l + ε, r) < µ (n, l, r):

Let λ∗ be optimal at the state (n, l, r). Then λ∗ + p
p−p0 ε is feasible for

(n, l + ε, r). Therefore
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µ (n, l + ε, r) ≤ p · µ
(
n+ 1, l + ε− p−p0

p λ∗ − ε, r + p0
p λ
∗ + ε p0

p−p0

)
+ (1− p) · µ

(
n+ 1, l + ε+ p−p0

1−p λ
∗ + p

1−pε, r + 1−p0
1−p λ

∗ + ε 1−p0
1−p ·

p
p−p0

)
v (p− p0)− cn

(
λ∗ + ε p

p−p0 − l − ε
)
− rδn

≤ p · µ
(
n+ 1, l − p−p0

p λ∗, r + p0
p λ
∗
)

+ (1− p) · µ
(
n+ 1, l + p−p0

1−p λ
∗, r + 1−p0

1−p λ
∗
)

v (p− p0)− cn
(
λ
′ − l′ + p

p−p0 ε
)

+ rδn

= µ (n, l, r)− cnε p
p−p0

The second inequality removes the added ε terms on ry and ly as they are positive and

so increase the function by the result on r and the induction assumption. �

B.9. Contract After Payment.

Lemma. 12 In the optimal contract, if the agent is paid for success in history h, then

starting in history 〈h, s〉 the contract is fixed to N (r). All remaining LDIC bind and if

θ = 1, the agent is paid
cN(r)

p−p0 for each additional success.

N (r) = maxn : v (p− p0)− cn − r · δn ≥ 0

Proof. The discussion in the text show that after a payment, λ = 0 and the period profit

is π (n, r) as in equation (3.9). As both cn and δn are increasing, eventually period profit

will become negative and production will stop. It therefore remains to show that the

principal does not gain by randomizing in any last period. As π (n, r) is independent of

any new outcomes, this is always true. To see this, write the dual for the last two periods

in explicit form:

min
µh,µ〈h,s〉,µ〈h,f〉

µh

s.t.

µh − pµ〈h,s〉 − µ〈h,f〉 ≥ π (n, r)

µ〈h,s〉 ≥ π (n+ 1, r)

µ〈h,f〉 ≥ π (n+ 1, r)

With π (n, r) ≥ 0 and π (n, r + 1) < 0. The primal is simply

max
q≥0

qhπ (n, r) +
(
q〈h,s〉 + q〈h,f〉

)
π (n, r + 1)

s.t.

qh ≤ 1

q〈h,s〉 ≤ pqh

q〈h,f〉 ≤ (1− p) qh

It is immediate that if π (n, r + 1) < 0 the optimal solution sets q〈h,y〉 = 0 and as

π (n, r) ≥ 0, an optimal solution is to set qh = 1 . �

Appendix C. Aggregation Model

Suppose the principal only observes the aggregate outcome after NFB periods. This

section outlines the implications for the model. It is clear that the wage scheme can
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only depend on the number of outcomes. I state without proof that this constrains the

contract enough to imply that LDIC are sufficient for IC.

Let ωh denote the extra wage for a success in a period h. Then if the agent is supposed

to work also at 〈h, f〉, ωh = ω〈h,f〉. If the agent will not be asked to work at 〈h, f〉,
ω〈h,f〉 = 0 and requiring ωh ≥ ω〈h,f〉 does not constrain the contract. As the optimal

contract minimizes wages, I can relax the constraint ωh = ω〈h,f〉 to19

ωh ≥ ω〈h,f〉 .

The model uses wh = ωhqh. We assume that q〈h,f〉 ∈ {(1− p) qh, 0} and so whenever

q〈h,f〉 6= 0, the constraint may be written as

wh
qh
≥
w〈h,f〉

q〈h,f〉
=

w〈h,f〉

qh (1− p)

Multiplying by qh obtains the following additional set of constraints to the linear problem:

∀h wh (1− p) ≥ w〈h,f〉

Call this the aggregation constraint. To obtain the constraint in the most similar form to

the wage constraints, multiply it by (p− p0) and collect sides:

∀h (p− p0)
(
w〈h,f〉 − wh (1− p)

)
≤ 0 .

Let φh be the multiplier on the aggregation constraint in which wh appears with

coefficient (p− p0) (1− p).
For any history h, let φ− denote the value of φ in the previous period. Recall that the

dual wage constraint is multiplied by (−1). The aggregation constraint adds to the wage

constraint of every period that follows a failure the term :

(p− p0)
(
−φ− + (1− p)φh

)
,

and to every period that follows a success the term

(p− p0) (1− p)φh .

It can be shown that in this setting any LDIC contract is IC – the payment for success

cannot depend on the period in which the effort was exerted and so the agent has no

informational gain from shirking. Then ammend the LDIC problem 3.3 to account for

the added constraint by adding the state variable f (for “fixed” wage):

µ (n, f, l, r) = max

[
0, min
λ,φ≥0

µ (n, f, l, r, λ)

]
s.t.

µ (n, f, l, r, λ) = pV

(
n+ 1, 0, l − p− p0

p
λ, r + θ

p0

p
λ

)
+ (1− p)V

(
n+ 1, φ, l +

p− p0

1− p
λ, r + θ

1− p0

1− p
λ

)
v (p− p0)− λcn + l · cn − rδn

λ+ (1− p)φ ≤ p

p− p0
+ l + f

19It is possible to verify later that indeed in the optimal solution this will bind when q〈h,f〉 = 1.
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Paying a higher wage today increases the feasible wage tomorrow. As a result, the only

effect of φ is an increase in the f after failure. As f only relaxes the wage constraint,

it is immidiate that Vf ≥ 0. Thus φ is set to the highest possible value and the wage

constraint binds in all periods – every success earns the agent a direct increase in pay.


