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Abstract

This paper makes two related contributions to the study of Global Games. First, for general type

spaces, it characterizes rationalizable actions in terms of the properties of the belief hierarchies and shows

that there is a unique rationalizable action played whenever there is approximate common certainty of

rank beliefs, defined as the probability the players assign to their payoff parameters being higher than

their opponents’. We argue that this is the driving force behind selection results for the specific type

spaces in the global games literature. Second, applications of global games often assume players’payoff

parameters are derived from common and idiosyncratic terms with normal distributions. This paper

analyzes the alternative case that these terms have fat-tailed distributions. If the common component

has a thicker tails, then there is common certainty of rank beliefs, and thus uniqueness and equilibrium

selection. If the idiosyncratic terms has thicker tails, then there is approximate common certainty of

payoffs, and thus multiple rationalizable actions.

1 Introduction

Complete information games often have many equilibria. Even when they have a single equilibrium, they

often have many actions that are rationalizable, and are therefore consistent with common certainty of

rationality. The inability of theory to make a prediction is problematic for economic applications of game

theory.

Carlsson and van Damme (1993) suggested a natural perturbation of complete information that gives

rise to a unique rationalizable action for each player. They introduced the idea of “global games”– where

any payoffs of the game are possible and each player observes the true payoffs of the game with a small

amount of noise. They showed– for the case of two player two action games– that as the noise about payoffs

∗This paper incorporates material from a working paper of the same title circulated in 2007 (Morris and Shin (2007)). We

are grateful for comments from seminar participants at Columbia and Northwestern on this iteration of the project. The

views expressed in this paper reflects those of the authors and not necessarily those of the Bank for International Settlements.
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become small, there is a unique equilibrium; moreover, the perturbation selects a particular equilibrium

(the risk dominant one) of the underlying game. This result has since been generalized in a number of

directions and widely used in applications.1 When the global game approach can be applied to more general

games, it can be used to derive unique predictions in settings where the underlying complete information

game has multiple equilibria, making it possible to carry out comparative static and policy analysis. An

informal argument that has been made for this approach is that the "complete information" assumption

is an unrealistic one that makes it easier to support multiplicity, so the natural perturbation underlying

global games captures the more realistic case.

However, the global game selection result uses a particular form of perturbation away from "complete

information." Complete information entails the assumption that a player is certain of the payoffs of the

game, certain that other players are certain, and so on. Weinstein and Yildiz (2007) consider more general

perturbations, saying that a situation is close to a complete information game if players are almost certain

that payoffs are close to those complete information game payoffs, almost certain that other players are

almost certain that payoffs are close to those payoffs, and so on. Formally, they consider closeness in the

product topology on the universal belief space. They show that for any action which is rationalizable for

a player in a complete information game, there exists a nearby type of that player in the product topology

for whom this is the unique rationalizable action. Thus by considering a richer but also intuitive class of

perturbations, they replicate the global game uniqueness result but reverse the selection result.

In this paper, we identify the driving force behind global game uniqueness and selection results. In

particular, we do not want to take literally the (implicit) assumption in global games that there is common

certainty among the players of a technology which generates (conditionally independent) noisy signals

observed by the players. Rather, we want to argue that global game perturbations are a metaphor, or a

convenient modelling device, for a more general intuitive class of relaxations of common certainty. We

want to characterize and analyze the key property of that more general class, which must also be more

restriction than the product topology perturbations of Weinstein and Yildiz (2007).

Our analysis is carried out for a two player, binary action game. Each player must decide whether to

"invest" or "not invest". Payoffs are given by the following matrix:

invest not invest

invest x1, x2 x1 − 1, 0

not invest 0, x2 − 1 0, 0

(1)

Each player i knows his own payoff parameter, or return to investment, xi but may not know the other
1Morris and Shin (1998) analyzed a global game with a continuum of players making binary choices, and this case has

been studied in a number of later applications. See Morris and Shin (2003b) for an early survey of some theory and

applications of global games. Frankel, Morris, and Pauzner (2003) study global game selection in general games with strategic

complementarities.
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player’s payoff parameter. There are strategic complementarities, because a player has a loss of 1 if the

other player does not invest. If x1 and x2 are both in the interval [0, 1], then there are multiple equilibria,

both invest and both not invest, under complete information. In the symmetric case, with x1 = x2 = x,

the risk dominant equilibrium in this game is the equilibrium that has each player choose a best response

to a 50/50 distribution over his opponent’s action. Thus both invest is the risk dominant equilibrium if

x > 1
2 .

If x1 and x2 are both in the interval [0, 1], both actions remain rationalizable for player i if there is

approximate common certainty of payoffs. There is approximate common certainty of an event if both

believe it with probability close to 1, both believe with probability close to 1 that both believe it with

probability close to 1, and so on. This is a well known suffi cient condition for multiple rationalizable actions,

going back to Monderer and Samet (1989). But it is a strong condition. A key concept to understand

uniqueness in this setting is a player’s "rank belief"– that is, his belief about whether he has the higher

payoff parameter (so he has rank 1) or the lower payoff parameter (so he has rank 2). A player has the

uniform rank belief if he assigns probability 1
2 to each rank. If there is common certainty of uniform rank

beliefs, then a player has a unique rationalizable action. In particular, action invest is uniquely rationalizable

for a player if it is risk dominant. To see why this is true, let x∗ be the smallest payoff parameter such that

invest is uniquely rationalizable whenever there is common certainty of uniform rank beliefs for a player

with payoff parameter greater than or equal to x∗. If x∗ were strictly greater than 1
2 , a player with payoff

parameter close to x∗ (and common certainty of uniform rank beliefs) would assign probability close to
1
2 to his opponent investing and would therefore have a strict incentive to invest. Thus we would have a

contradiction. Thus x∗ must be less than or equal to 1
2 . This proves the result. This is the standard global

game argument. But because it is expressed for general situations– and, in particular, without reference

to noisy signals or one dimensional type spaces– it provides a primitive common belief foundation for

global game selection. One of our main results will be a formalization of an appropriate weakening of this

suffi cient condition: approximate common certainty of approximately uniform rank beliefs.

A second contribution of this paper is to identify new and insightful conditions under which either

approximate common certainty of payoffs and or approximate common certainty of approximately uniform

rank beliefs will emerge. Like the classical global games literature, we will consider the case where players

have one dimensional types that reflect both common and idiosyncratic components, and consider sequences

approaching complete information. Unlike the classical global games literature, we consider the case

where the common and idiosyncratic components have distributions with "fat tails," i.e., with greater

than exponential densities. Fat tails generate intuitive and insightful higher-order beliefs as complete

information is approached. In particular, close to the complete information limit, if a player observes a

payoff parameter which is surprisingly different from his prior expectation, does he attribute the difference

to the common component or the idiosyncratic component? Under fat tails, the most likely explanation
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is that either one or the other but not both had an extreme realization. If the idiosyncratic component

has a fatter tail, then a player attributes the difference to the idiosyncratic component. He thinks that the

common component was close to its mean, and thus expects that his opponent’s payoff type is closer to

that mean. Thus, as we approach the complete information limit, there is approximate common certainty

of payoffs. In that case, there will be multiple rationalizable actions whenever there are multiple equilibria

under complete information. But if the common component has a fatter tail, then he thinks that an unusual

realization of the common component accounts for the deviation, and thus he expects his opponent’s payoff

type to be close to his. He finds it equally likely that either player has the higher signal. Thus there is

approximate common certainty of uniform rank beliefs. This leads to unique selection of risk-dominant

equilibrium as in the global games literature. Thus global game uniqueness and selection is tied to whether

the players’idiosyncratic component has a thinner tail.

We can contrast these results to existing results in the global games literature. The leading exercise in

the global games literature is to consider a fixed prior about payoffs and have players observe conditionally

independent noise about payoffs (Carlsson and van Damme (1993), Morris and Shin (2003b) and Frankel,

Morris, and Pauzner (2003)). As the noise shrinks to zero, there is a unique equilibrium. The arguments

for these results rely on uniform convergence of conditional probability properties which, in the case of

symmetric settings, reduces to (variants of) common certainty of rank beliefs. Another leading exercise is

to examine what happens if there is normally distributed common payoff parameter, and players observe

the prior mean (a public signal) and also a conditionally independent normal private signal (Morris and

Shin (2001) and Morris and Shin (2003a)), and allow the variances of both the prior and the noisy private

signals to converge to zero. In this case, there is a unique equilibrium if and only if the noise in the

private signal shrinks suffi ciently fast relative to the public signal. Intuitively, relatively fast convergence

of private noise gives common certainty of rank beliefs in the limit while relatively slow convergence gives

approximate common certainty of payoffs.2 The critical condition turns out to be that the variance of

the private signal must shrink faster than the square of the variance of the public signal. However, this

rate condition is special to the normal distribution and our results highlight quite different properties that

determine limit behavior in general. We find the fat tail result more insightful and robust than the normal

distribution insights which two of us have highlighted in earlier work. This paper is the first to examine

what happens to higher-order beliefs or global game results without normality when both the prior and

private signals become concentrated.

These results shed light on when global game models can offer useful insights in applications. The one

dimensional normal model suggested the simple message that there will be unique rationalizable outcomes if

2As we will show in the body of the paper, common certainty of rank beliefs in the limit never arises in the normal case,

but a weaker condition - common certainty of rank beliefs conditional on undominated actions - is satisfied and suffi cient for

limit uniqueness.
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there is enough private information (measured by its precision) relative to the amount of public information.

This suggests that we can assess the relevance of the uniqueness prediction by focussing on whether private

signals have less variance than public signals (see, e.g., Svennson (2006)); and it suggests that uniqueness

results will be less relevant in settings where information is being endogenously generated in a public way

(see, e.g., Atkeson (2001)).3 Going beyond the one dimensional normal model (where precision is the

unique parameter characterizing the shape of the distribution) suggests more nuanced conclusions. Our

fat tail results highlight the importance of the shape of the tail of the distribution for determining the

relevant properties of higher-order beliefs. And, more generally, the common belief foundations results

focus attention on the properties of higher-order beliefs that matter for global game results rather than

the conditionally independent noisy signal story that generates them.

We present our results in the context of the simple, two player, strategic setting described above,

maintaining the common prior assumption. We do this in order to focus on the common belief foundations

rather than the details of the strategic setting. But we can then describe how our results can be mapped

back to more general settings considered in the global games literature.

Under the common prior assumption, if there is common certainty that players’beliefs about their

rank is r ∈ [0, 1], we must have r = 1
2 , i.e., what we refer to as uniform rank beliefs. However, if the

common prior assumption is dropped, common certainty of rank beliefs continues to lead to uniqueness

and selection, but the selected action now depends on the rank belief r. This observation provides common

belief foundations for the results of Izmalkov and Yildiz (2010).

We state our results for symmetric two player two action games, but they extend to symmetric many

player two action games. The common belief characterization of rationalizability becomes more complex,

because the relevant belief operators depend on beliefs about more than one event. However, the limit

uniqueness and multiplicity results extend cleanly. Morris and Shin (2003b) highlight that in many player

symmetric games, the selected equilibrium is the Laplacian one: each player is choosing a best response

to a uniform conjecture over the number of his opponents choosing each action. This selection is key in

the vast majority of applied papers. Common certainty of rank beliefs in the N player case corresponds

to assigning probability 1
N to exactly n players having higher payoff states, for each n = 0, 1, ..., N − 1,

and is a suffi cient condition for the global game selection of the Laplacian action. Multiplicity when there

is approximate common certainty of payoffs holds for general games, as shown by Monderer and Samet

(1989).

Most of the global games literature focusses on a "common values" case, where there is a common

payoff parameter of interest and each player observes it with idiosyncratic private noise. Our analysis

concerns a "private value" case, where the idiosyncratic shock is payoff relevant to the players. Results in

3See also Angeletos, Hellwig, and Pavan (2007), Angeletos and Werning (2006), Hellwig (2002) and Hellwig, Mukerji, and

Tsyvinski (2006).
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the private value case are close to those in the common value case when noise is small (see Morris and Shin

(2005) for some theory and Argenziano (2008) for an application of private value global games). Analogous

results could be obtained for the common value case, but at the expense of significantly more complicated

statements to account for the small amount of payoff uncertainty. Another convenient property of the

game we consider is the additive separability between a component of payoffs that depends on others’

actions and a component about which there is uncertainty. This gives a sharp separation between the role

of strategic uncertainty and payoff uncertainty. Again, this provides sharper results although qualitative

similar results would go through without this assumption.

However, the global game selection results reported in the paper rely on symmetric payoffs; in particular,

it is required for common certainty of approximately uniform rank beliefs to be the relevant suffi cient

condition for unique rationalizable actions. Higher-order belief foundations can be provided for asymmetric

global game results, but they are qualitatively different from those provided for symmetric games here.

We present a general characterization of rationalizable behavior in Section 2, reporting suffi cient condi-

tions, in general type spaces, for multiple rationalizable outcomes based on approximate common certainty

of payoffs and for unique rationalizable outcomes based on approximate common certainty of approxi-

mately uniform rank beliefs. In Section 3, we introduce and analyze the one dimensional model generated

by common and idiosyncratic payoff shocks with fat tails. In Section 4, we discuss extensions to more

general strategic settings and the relation to the global games literature.

2 General Type Spaces

2.1 Higher Order Beliefs

There are two players, 1 and 2. Let T1 and T2 be the sets of types for players 1 and 2, respectively. A

mapping xi : Ti → R describes a payoff parameter of interest to player i and a mapping πi : Ti → ∆ (Tj)

describes player i’s beliefs about the other player. We assume that Ti is endowed with a topology and

Borel sigma-algebra. We make a couple of minimal continuity assumptions: xi and πi are continuous,

and the pre-image x−1i ([a, b]) of every compact interval [a, b] is sequentially compact. This type space can

be arbitrarily rich, and in particular can encode any beliefs and higher-order beliefs, and thus our results

apply if the type space is the universal (private value) belief space of Mertens and Zamir (1985).4

We start with describing the belief and common belief operators, as in Monderer and Samet (1989).

4Mertens and Zamir (1985) constructed a space that encodes all beliefs and higher order beliefs about a common state

space. We maintain the assumption that the state space is a pair of payoff types of the players, where each player knows his

own payoff type. It is a simple adaption to the classic construction to build in this restriction, see for example Heifetz and

Neeman (2006). The classical construction assumes a compact state space. We need to allow the state space to be R2 but
instead impose sequential compactness.
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The state space is T = T1 × T2. An event is a subset of T . An event is simple if E = E1 × E2 where
Ei ⊆ Ti. For our game theoretic analysis, we will be interested in events that are simple and compact and
we restrict attention to such events in the analysis that follows. For any such simple and compact event

E, we write E1 and E2 for the compact projections of E onto T1 and T2, respectively. Now, for probability

pi, write B
pi
i (E) for the set of states where player i believes E with probability at least pi:

Bpi
i (E) = {(t1, t2) |ti ∈ Ei and πi (Ej |ti) ≥ pi} .

For a pair of probabilities (p1, p2), say that event E is (p1, p2)-believed if each player i believes event E

with probability at least pi. Writing B
p1,p2
∗ (E) for the set of states where E is (p1, p2)-believed, we have:

Bp1,p2
∗ (E) = Bp1

1 (E) ∩Bp2
2 (E) .

Say that there is common (p1, p2)-belief of event E if it is (p1, p2)-believed, it is (p1, p2)-believed that it

is (p1, p2)-believed, and so on. We write Cp1,p2 (E) for set of states at which E is common (p1, p2)-belief.

Thus

Cp1,p2 (E) = ∩
n≥1

[Bp1,p2
∗ ]n (E) .

An event is (p1, p2)-evident if it is (p1, p2)-believed whenever it is true. Generalizing a characteriza-

tion of common knowledge by Aumann (1976), Monderer and Samet (1989) provides the following useful

characterization.

Lemma 1 (Monderer and Samet (1989)) Event E is common (p1, p2)-belief if and only if there exists

a (p1, p2)-evident event F with F ⊆ Bp1,p2
∗ (F ).

In our formulation, we make the belief operators type dependent, and the above properties generalize

immediately to this case. For any fi : Ti → R, we say that event E is fi-believed by type ti of player i if he

believes it with probability at least fi (ti):

Bfi
i (E) = {(t1, t2) |ti ∈ Ei and πi (Ej |ti) ≥ fi (ti)} .

Clearly we can make richer statements about beliefs and higher-order beliefs in this language. We will

continue to write Bpi
i (E) for the original pi-belief operator, where pi is now understood as the constant

function of types taking the value pi. Note that we allow fi to take values below 0 and above 1. This

convention gives a special role to the events Bfi
i (∅) and Bfi

i (T ), since a player always believes an event

with probability at least 0 and never believes an event with probability greater than 1. Thus

Bfi
i (∅) = {(t1, t2) |fi (ti) ≤ 0}

Bfi
i (T ) = {(t1, t2) |fi (ti) ≤ 1} .
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These operators behave just like the type-independent ones. In particular, writing Bf1,f2
∗ (E) for the set of

states where E is (f1, f2)-believed, we have:

Bf1,f2
∗ (E) = Bf1

1 (E) ∩Bf2
2 (E) .

Say that there is common (f1, f2)-belief of event E if it is (f1, f2)-believed, it is (f1, f2)-believed that it is

(f1, f2)-believed, and so on. We write Cf1,f2 (E) for set of states E is common (f1, f2)-belief. An event is

(f1, f2)-evident if it is (f1, f2)-believed whenever it is true:

Cf1,f2 (E) = ∩
n≥1

[
Bf1,f2
∗

]n
(E)

The Monderer and Samet (1989) characterization immediately generalizes to our case.

Lemma 2 Event E is common (f1, f2)-belief if and only if there exists a (f1, f2)-evident event F with

F ⊆ Bf1,f2
∗ (F ).

2.2 Common-Belief Characterization of Rationalizability

In the baseline model, we consider the following action space and the payoff function:

invest not invest

invest x1, x2 x1 − 1, 0

not invest 0, x2 − 1 0, 0

Each xi is assumed to be a continuous function of type ti. Player i knows his own payoff parameter xi (ti)

but does not necessarily know the other player’s payoff parameter xj (tj). Moreover, he gets a return xi (ti)

if he invests but faces a penalty 1 if the other player does not invest. Hence, he only wants to invest if the

probability he assigns to his opponent investing is at least 1 − xi (ti). We now define rationalizability in

the context of this game (it corresponds to standard general definitions). Say that an action is (k + 1)th

level rationalizable if it is a best response to kth level rationalizable play of his opponent; and say that

any action is 0th level rationalizable. Write Rki for the set of types of player i for whom action invest is

kth-level rationalizable and let R0i = Ti.

We start with carefully describing the set R1i of types for whom invest is 1st-level rationalizable in

terms of our type-dependent belief operators. On the one hand, for any type ti of player i, action invest

is 1st-level rationalizable for ti if and only if xi (ti) ≥ 0; this is in response to the belief that his opponent

invests with probability 1. On the other hand, since player i always assigns probability 1 to T , he assigns

probability at least 1− xi (ti) to T if and only if xi (ti) ≥ 0. Thus,

R1i = B1−xii (T ) .
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That is, the types for which invest is first-level rationalizable coincide with those in B1−xii (T ).

Now, action invest is 2nd-level rationalizable for type ti of player i if, in addition, he assigns probability

at least 1− xi (ti) to xj (tj) ≥ 0; thus

R2i = B1−xii

(
B1−x1,1−x2∗ (T )

)
.

More generally, action invest is (k + 1)th-level rationalizable for a type ti if he (1− xi (ti))-believes that T

is kth-order (1− x1, 1− x2)-believed:

Rk+1i = B1−xii

([
B1−x1,1−x2∗

]k
(T )
)
.

Action invest is rationalizable if it is kth level rationalizable for all k. Thus, action invest is rationalizable

for both players exactly if T is common (1− x1, 1− x2)-believed:

R∞ = C1−x1,1−x2 (T ) . (2)

By a symmetric argument, action Not invest is rationalizable if T is common (x1, x2)-belief. The next

result states this characterization.

Proposition 1 Action invest is rationalizable for type ti if and only if

ti ∈ B1−xii

(
C1−x1,1−x2 (T )

)
;

action Not invest is rationalizable for type ti if and only if

ti ∈ Bxi
i (Cx1,x2 (T )) .

It is useful to note that, since R1i = B1−xii (T ), C1−x1,1−x2 (T ) corresponds to a high common belief

in the event that action invest is rational. Hence, each part of the proposition states that an action ai is

rationalizable for a type ti if and only if ti assigns suffi ciently high probability on a suffi ciently high common

belief in the event that ai is rational. That is, he finds it suffi ciently likely that the action is rational, finds it

suffi ciently likely that the other player finds it suffi ciently likely that the action is rational,. . . , ad infinitum.

The key innovation that yields such a simple characterization is taking the threshold for the suffi ciency

type dependent, depending on the payoff functions of the types throughout.

We report a many-player extension of this characterization in section 4.3.

2.3 Risk-Dominant Selection and Multiplicity

Our focus in this paper is on when both actions are rationalizable for both players and when one action

is uniquely rationalizable for both players– without loss of generality, we focus on uniqueness of action
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invest. Building on the characterization in the previous section, we present intuitive suffi cient conditions

for each case. Our first result characterizes the cases with multiplicity and uniqueness, as an immediate

corollary to the characterization in the previous section.

Corollary 1 Both actions are rationalizable for both players if and only if

(t1, t2) ∈ Cx1,x2 (T ) ∩ C1−x1,1−x2 (T ) .

Invest is the uniquely rationalizable action for a type ti if and only if

ti ∈ B1−xii

(
C1−x1,1−x2 (T )

)
\Bxi

i (Cx1,x2 (T )) .

The first part characterizes the cases with multiple rationalizable solutions. It states that both actions

are rationalizable if and only if there is suffi ciently high common belief that both actions are rational for

both players. The second part characterizes the cases in which invest is the only rationalizable solution.

It states that invest is uniquely rationalizable if and only if there is suffi ciently high common belief in

rationality of invest (i.e., ti ∈ B1−xii

(
C1−x1,1−x2 (T )

)
) but there is not suffi ciently high common belief in

rationality of Not invest (i.e., ti 6∈ Bxi
i (Cx1,x2 (T ))). Once again, we obtain such simple and straightforward

characterizations by taking the threshold for suffi ciency type-dependent.

While such characterizations are useful conceptually, they may not be practical. In the rest of this

section, we provide simple tractable suffi cient conditions for multiplicity and uniqueness. We start with a

result for multiplicity:

Proposition 2 Both actions are rationalizable whenever there is approximate common certainty that pay-

offs support multiple strict equilibria, i.e., for some ε ∈ [0, 1/2],

(t1, t2) ∈ C1−ε,1−ε (Mε)

where

Mε =
{(
t′1, t

′
2

) ∣∣ε ≤ xi (t′i) ≤ 1− ε for both i
}
.

If, in addition, x1 and x2 are bounded, then there exist pure-strategy Bayesian Nash equilibria s∗ and s∗∗

on T such that

s∗ (t) = (invest, invest) and s∗∗ (t) = (not invest, not invest)
(
∀t ∈ C1−ε,1−ε (Mε)

)
.

Proof. By definition, both actions are 0th-level rationalizable throughout C1−ε,1−ε (Mε). Towards an

induction, assume that both actions are kth-level rationalizable throughout C1−ε,1−ε (Mε). Now, for any

type ti ∈ B1−εi

(
C1−ε,1−ε (Mε)

)
and any action a, consider a belief of type ti that puts probability 1 on
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a kth-level rationalizable strategy of the other player j such that each tj ∈ B1−εj

(
C1−ε,1−ε (Mε)

)
plays

the action a. Observe that ε ≤ xi (ti) ≤ 1 − ε and that ti assigns at least probability 1 − ε on the other
player playing action a. Hence, a is a best response to that belief for ti, showing that a is (k + 1)th-level

rationalizable for ti. Therefore, both actions are (k + 1)th-level rationalizable for both players throughout

C1−ε,1−ε (Mε).

To show the second part, construct an auxiliary game by altering the payoffs of types in C1−ε,1−ε (Mε)

so that they get 1 from invest and 0 from not invest, making invest strictly dominant on C1−ε,1−ε (Mε).

The auxiliary game satisfies the suffi cient conditions of van Zandt (2010) and therefore has a pure strategy

Bayesian Nash equilibrim s∗ as in the proposition. But s∗ is also a Bayesian Nash equilibrium in the

original game because the types in C1−ε,1−ε (Mε) play a best response as in the first part of the proof and

the other types play a best response by construction. By the same token, we also have a Bayesian Nash

equilibrium s∗∗ as in the proposition.

Proposition 2 states that both actions are rationalizable whenever there is common (1− ε, 1− ε)-belief
that both actions would have been ε-dominant Nash equilibrium under complete information. This follows

a key observation in the robustness literature, going back to Monderer and Samet (1989) which states that

any p-dominant equilibrium of a game can be extended to a larger type space in which the original game

is (1− p)-evident. In the second part of the proposition, under additional boundedness condition, we use
the standard techniques in the robustness literature to construct Bayesian Nash equilibria on T so that

(invest, invest) is played throughout C1−ε,1−ε (Mε) in one equilibrium and (not invest, not invest) is played

throughout C1−ε,1−ε (Mε) in another equilibrium. One could use other technical conditions to obtain such

results. In the first part, we dispense with those technical conditions by using the weaker solution concept

of rationalizability.

We next turn to establishing suffi cient conditions under which there is a unique rationalizable action.

Our key concept will be approximate uniformity of "rank beliefs", which we now define. We will write

ri (ti) for the probability that a player assigns to his payoff parameter being greater than or equal to that of

the other player, and ri (ti) for the probability that it is strictly greater. We will refer to these expressions

as "rank beliefs" as they reflect the player’s belief about his rank if the players are ordered by the payoff

parameter. Formally, we define

ri (ti) = πi ({tj |xj (tj) ≤ xi (ti)} |ti) ,

ri (ti) = πi ({tj |xj (tj) < xi (ti)} |ti) ,

and

ri (ti) = (ri (ti) + ri (ti)) /2.
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We refer to ri (ti), ri (ti), and ri (ti) as the upper rank belief, the lower rank belief and the rank belief

of type ti, respectively. When xj (·) is atomless according to type ti, all these beliefs coincide: ri (ti) =

ri (ti) = ri (ti). We define upper and lower rank beliefs separately in order to deal with point masses. Such

point messes may arise, for example, under complete information.

Rank belief of a type ti is uniform if he finds it equally likely that either player’s value is higher.

Formally, we say that rank belief of a type ti is ε-uniform if

1

2
− ε ≤ ri (ti) ≤ ri (ti) ≤

1

2
+ ε.

We write URBε for the set of type profiles (t1, t2) where both players have ε-uniform rank beliefs:

URBε =

{
(t1, t2)

∣∣∣∣12 − ε ≤ ri (ti) ≤ ri (ti) ≤
1

2
+ ε for each i

}
.

We say that rank beliefs are approximately uniform if they are ε-uniform for some ε ≥ 0.

Our second concept is a strict version of risk dominance. We say that action invest is ε-strictly risk

dominant for ti if

xi (ti) ≥
1

2
+ ε.

We write SRDε for the set of type profiles for which invest is ε-strictly risk dominant for each player, so

SRDε =

{
(t1, t2)

∣∣∣∣xi (ti) ≥
1

2
+ ε for each i

}
.

We say that action invest is strictly risk dominant if invest is ε-strictly risk dominant for some ε ≥ 0.

Proposition 3 Invest is the uniquely rationalizable action for both players if it is ε-strictly risk dominant

for both players and there is common (1− ε)-belief of ε-uniform rank beliefs for some ε ≥ 0, i.e., if

(t1, t2) ∈ SRDε ∩ C1−ε,1−ε (URBε) .

We require only common (1− ε)-belief, not common certainty, of ε-uniform rank beliefs for this suffi cient
condition. But note that in cases where we use this result– to prove results in the fat tails model and to

explain the existing global games literature– we actually have common certainty.

Proposition 3 provides a useful suffi cient condition for uniqueness, identifying common features of

the uniqueness results in the global games literature. It states that invest is uniquely rationalizable if it

is strictly risk-dominant and it is common knowledge that the rank beliefs are approximately uniform.

Observe that our result establish this result without explicitly assuming some of the critical features of

global games, such as existence of dominance regions. Moreover, it allows arbitrary type spaces with

minimal continuity and compactness properties. In the rest of this section, we will further discuss our

result and present its proof.
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Although our game lacks the monotonicity assumptions in global games, we can use rank beliefs to

obtain bounds on rationalizable strategies. To this end, we define two cutoffs x∗ and x∗∗ with 0 ≤ x∗ ≤
x∗∗ ≤ 1:

x∗ = inf {z|z = xi (ti) ≥ ri (ti) for some i and ti}

x∗∗ = sup {z|z = xi (ti) ≤ ri (ti) for some i and ti} .

Here, x∗ is the lowest value for which any type of either player has that value and has a lower lower-rank

belief; and x∗∗ is the highest value for which any type of any player has that value and a higher upper-rank

belief. The next lemma establishes that invest cannot be rationalizable when the value is lower than x∗,

and Not invest cannot be rationalizable when the value exceeds x∗∗.

Lemma 3 Invest is uniquely rationalizable for any ti with xi (ti) > x∗∗ and Not invest is uniquely ratio-

nalizable for any ti with xi (ti) < x∗.

Proof. We will show that invest is not rationalizable when xi (ti) < x∗. In particular, let

x̂i ≡ inf {xi (ti) |ti ∈ R∞i }

and assume without loss that

x̂1 ≤ x̂2. (3)

By definition, there exists a sequence (t1,m) of types t1,m ∈ R∞1 such that x1 (t1,m) ∈ [x̂1, x̂1 + 1] for

each m and x1 (t1,m)→ x̂1. Since x−11 ([x̂1, x̂1 + 1]) is sequentially compact, there then exists a convergent

subsequence with some limit t̂1. Since x1 is continuous and x1 (t1,m)→ x̂1, we have

x̂1 = x1
(
t̂1
)
. (4)

But since t1,m ∈ R∞1 , we also have x1 (t1,m) ≥ 1− π1 (R∞2 |t1,m) for all m. By continuity of x1 and π1, we

thus have

x1
(
t̂1
)
≥ 1− π1

(
R∞2 |t̂1

)
. (5)

Therefore,

x̂1 = x1
(
t̂1
)
, by (4)

≥ 1− π1
(
R∞2 |t̂1

)
, by (5)

≥ 1− π1
(
{t2|x2 (t2) ≥ x̂2} |t̂1

)
, by definition of x̂2

≥ 1− π1
(
{t2|x2 (t2) ≥ x̂1} |t̂1

)
, by (3)

= π1
({
t1|x2 (t2) < x1

(
t̂1
)}
|t̂1
)

= r1
(
t̂1
)
,
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showing that

x̂2 ≥ x̂1 ≥ x∗.

A symmetric argument establishes that not invest is not rationalizable if xi (ti) > x∗∗.

When x∗∗ = 1 (or x∗ = 0), Lemma 3 is vacuous, stating that invest is uniquely rationalizable when it

is dominant. When x∗∗ < 1, Lemma 3 establishes that invest remains uniquely rationalizable throughout

the interval (x∗∗, 1).

This is similar to the main result of Carlsson and van Damme (1993). In their result, if one can connect

a type ti to a type t̄i at which invest is a dominant action, via a continuous path along which invest is either

risk-dominant or dominant, then invest is uniquely rationalizable at ti. Here, we do not explicitly assume

the existence of any type with a dominant action and make only minimal assumptions about the structure

of the type space. Nonetheless, when x∗∗ < 1, each type ti with x∗∗ < xi (ti) < 1 assigns a substantial

probability (i.e. a probability greater than 1 − xi (ti)) on a set of types tj whose values are higher than

that of ti and assign a substantial probability to yet another set of types with similar properties. Under

our compactness assumption, this chain leads to types who assign a substantial probability on types for

which invest is a dominant action. Such a chain forms a contagion path. Note that the types in the chain

have type-dependent thresholds as in Proposition 1.

Proof of Proposition 3. Proposition 3 immediately follows from Lemma 3. Under common

(1− ε, 1− ε)-belief of URBε, we clearly have x∗∗ ≤ 1/2 + 2ε. Hence, whenever (t1, t2) ∈ SRDε ∩
C1−ε,1−ε (URBε), we have xi (ti) > x∗∗ and invest is uniquely rationalizable (by Lemma 3) for both

players.

While Proposition 3 will be the focus on our analysis in this paper, to relate our work to the existing

literature, we will also note a weaker suffi cient condition:

Corollary 2 (Uniqueness II) Invest is the uniquely rationalizable action for both players if it is strictly

risk dominant for both and there is approximate common certainty that each player has approximately

uniform rank beliefs when his action is strictly risk dominant but not dominant, i.e., for some ε ∈ [0, 1],

(t1, t2) ⊆ C1−ε,1−ε



(
t′1, t

′
2

) ∣∣∣∣∣∣∣∣
x′i (t′i) ≥ 1

2 + ε and

x′i (t′i) ∈
[
1
2 + ε, 1

]
⇒ 1

2 − ε ≤ ri (t′i) ≤ ri (t′i) ≤ 1
2 + ε

for both i


 .

Note that this suffi cient condition merges the uniform rank beliefs and strict risk dominance properties

into a single condition. We simply drop the restriction on rank beliefs when a player has a dominant

strategy. This will clearly not matter for strategic results.
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3 One Dimensional Type Space Model

We now restrict our attention to a particular class of symmetric "global game" type spaces. Players’types

are one dimensional and drawn according to a common prior. In particular,

ti = τη + σei

where τ , σ ∈ (0, 1); η is a random variable with symmetric, positive, Lipschitz-continuous density function

g (with corresponding cumulative distribution function G); and random variables (e1, e2) are independently

and identically distributed with symmetric, positive, Lipschitz-continuous density function f (and corre-

sponding cumulative distribution function F ). Assume that there exist ē > 0 and η̄ > 0 such that f and g

are monotonically decreasing on [ē,∞) and [η̄,∞), respectively. For some y ∈ R, we assume that

x1 (t1) = y + t1 and x2 (t2) = y + t2.

The functions f and g, and the parameters y, σ and τ are all common knowledge. Thus each (f, g, y, σ, τ)

describes a type space.

The interpretation of the model is that y is a "public signal", or prior mean, of the players’ types.

The noise in their types– i.e., the difference between their values and the prior mean, is the sum of a

common shock η and conditionally independent shock ei. The size of these common and idiosyncratic

shocks are parameterized by τ and σ respectively. An equivalent interpretation– in keeping with global

games literature– is that there is an unknown "true state" θ drawn according to density g
(
θ−y
τ

)
and the

players observe signals that are equal to true state plus conditionally independent noise. A player’s type

is then the difference between this signal of θ and prior mean of θ.

We will be concerned about players’beliefs about other players’payoffs. We will write rσ,τ (t) for the

probability that type t assigns to the other player having a lower type, and thus a lower value, than him;

so

rσ,τ (t) =

∞∫
η=−∞

F

(
t− τη
σ

)
g (η) dη.

As in the general model, we refer to rσ,τ (t) as the rank belief of t. Note that rσ,τ is continuous, as we have

a density; also, rσ,τ (t) is independent of the prior mean y. (Since we have density, upper and lower rank

beliefs coincide.)

In the remainder of this section, we will maintain the assumption that distributions f and g have

well-behaved "fat tails". In the next section, we will consider the case where f and g are standard normal

distributions, a special case that has been much studied in the literature.
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3.1 Fat Tails

In the remainder of this section, we will assume that both common and idiosyncratic components are drawn

from fat-tailed distributions. Fat tailed distributions arise naturally in situations of model uncertainty,

as discussed in Acemoglu, Chernozhukov, and Yildiz (2006). When we are interested in approximating

complete information, tail properties are central to understanding higher-order beliefs. Assuming away

mass at the tails is potentially very misleading. We discuss further issues in using fat tailed distributions

following some formal definitions.

A function L : R→ R+ is said to have slow-varying tails if

lim
x→∞

L (λx)

L (x)
= 1

for all λ > 0. Convergence is uniform over compact intervals of λ. We assume that f and g have regularly-

varying tails, so that

f (e) = ALf (e) e−α

g (η) = BLg (η) η−β

for some α, β > 1, A,B > 0, and for some slowly-varying functions Lf and Lg. A particular example

of regularly varying distributions is Pareto distribution where f and g are constant up to some ē and

η̄, respectively, and f (e) and g (η) are proportional to e−α and η−β, respectively, thereafter. We will

use Pareto distribution in our numerical examples. Throughout the paper, when we refer to fat-tailed

distributions, we are assuming the stronger property that distributions have regularly-varying tails.

By the generalized central limit theorem, the limit of averages can be approximated by a Normal or a

Pareto distribution, depending on whether the underlying distribution has finite or infinite variance.

Belief updating under fat tails is quite different from belief updating under normal distribution. Under

the normal distribution, a player updates his belief by taking a weighted average of his signals and his prior.

This updating is well behaved and gives rise to many monotonicity properties. A player’s expectation of

his own and the other player’s payoff type are increasing in his own signal. A monotone likelihood ratio

property is satisfied. And so on.

These properties are not preserved by belief updating under fat tails. However, the structure of updating

under fat tails has its own psychological and economic intuition, and we believe it to be very relevant for

economic applications. Suppose that a player observes the signal ti = η + ei. What is his expectation

of the signal of the other player tj = η + ej . If the signal ti is close to its prior mean of 0, the player’s

expectation of η, and thus of tj , will be– roughly speaking– an average of his prior 0 and his signal ti, as

in the normal case. But if signal ti is a long way from 0, the player will think it most likely that either η or

ei, but not both, were different from 0. Which one he thinks most likely depends on the shape of the tails.
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Figure 1: Expectation of the other player’s type conditional on ones own when the idiosyncratic components

have thicker tails than the common component (i.e., α < β).

This is illustrated in Figure 1 for the case of Pareto distributions, where the ei are drawn from the

Pareto distribution with tail parameter β = 4 and η is drawn from a Pareto distribution with a thinner

tail α = 2. For small positive ti, he updates his expectation of η and thus his expectation of the other

player’s type tj . So his expectation of tj is increasing in ti for a while. But if he observes a substantially

larger ti, he then questions whether his private signal is valuable, attributing a substantial part of this

deviation to ei. This leads to a lower expectation about tj than the expectation he would have after

observing a lower signal ti (as in the decreasing part of the graph). In the limit, when he observes an

extremely positive signal, he discredits his private signal altogether as a meaningless noise and sticks to

his prior, expecting E [tj |ti] = 0. This is a behaviorally intuitive form of updating which is also rational.

While such non-monotone behavior prevents us from using many existing techniques in the global games

literature, the above updating behavior under regularly-varying tails provide us other means that lead to

sharper characterizations and economically natural results.

3.2 Higher-Order Beliefs

A key property of updating with fat tailed distributions is that when a type ti is in the tail, he will attribute

all the deviation from the mean to the shock with thicker tails. When the idiosyncratic shock has thicker

tails (β > α), as in the above example, he will attribute the deviation to the idiosyncratic shock and will

believe that the other player’s type is near the origin. This will lead to approximate common certainty

of the payoffs and thereby to multiplicity. On the other hand, when the common shock has thicker tails

(α > β), he will attribute the deviation to the common shock and will have approximately uniform rank

beliefs, leading to uniqueness. We start with our key result for this section, which applies in the latter case
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and applies for all levels of noise. We then consider limiting results as noise goes to zero and thus as we

approach complete information.

3.2.1 Thinner Idiosyncratic Tails

Our main result says that if the idiosyncratic shock (or private information) has thinner tails than the

common shock (or public information) and the idiosyncratic term is of suffi ciently smaller size, then there

is common certainty of approximately uniform rank beliefs.

Proposition 4 If α > β+1 and σ/τ is suffi ciently small, then there is common certainty of approximately

uniform rank beliefs, i.e., for any ε > 0, there exists ξ > 0 such that whenever σ/τ < ξ,

1

2
− ε < rσ,τ (t) <

1

2
+ ε (∀t) .

Note that the requirement on the size of the shocks is that σ/τ is smaller than a bound ξ̄, which depends

only on ε, f , and g. This result does not require σ and τ to be small and thus gives a suffi cient condition

for common certainty of approximately uniform rank beliefs away from the complete information limit.

For the types in the tail, because the idiosyncratic term has a thinner tail, a player attributes the abber-

ation to the common shock and believes that other player’s type is near his own, having an approximately

uniform rank belief. For the types away from the tail, since the idiosynratic term is of suffciently smaller

size, he again attributes the deviation from the mean to the common shock and has an approximately

uniform rank belief. This is vividly illustrated in Figure 2, where α = 4 and β = 2. Since α > β, for all

values of (σ, τ), the rank beliefs rσ,τ (t) approach 1/2 near the tail. Away from the tail, rσ,τ (t) may be far

from 1/2 when σ/τ is large, as in the case of (σ, τ) = (1, 1). But when σ/τ is small, rσ,τ is approximately

1/2 everywhere. Therefore, we have common certainty of approximately uniform rank beliefs. Our proof

formalizes these ideas next.

Proof. Writing ξ = σ/τ , note that rσ,τ (t) = rξ,1 (t/τ). Hence, it suffi ces to show that there exists ξ

such that rξ,1 (t) < 1/2+ε for all t ≥ 0 whenever ξ < ξ; throughout the proof, we will assume that ξ � 1/2

is suffi ciently small. All the other bounds follow from symmetry. To this end, we first observe that, since

g has regularly varying tails, there exists t0 such that for all t > t′ ≥ t0,(
t/t′
)−β−1

/ (1 + ε/2) ≤ g (t)

g (t′)
≤ (1 + ε/2)

(
t/t′
)−β+1

. (6)

We write

ẽ (t) = max {t, δ/ξγ} ≥ ē (7)

for some large δ and for some γ ∈ (1/ (α− β) , 1). We suppress the dependence on t in the sequel. We

observe that

ry,ξ,1 (t) ≤ (I1 + I2) /I3



Common Belief Foundations April 20, 2015 19

­ 1 0 ­ 8 ­ 6 ­ 4 ­ 2 0 2 4 6 8 1 0
0

0 .2

0 .4

0 .6

0 .8

1

t
i

r

Figure 2: Rank beliefs for σ = 1, 0.1, 0.001 and (α, β, τ) = (4, 2, 1).

where

I1 =

∫ ξẽ

−ξẽ
f (z/ξ)F (z/ξ) g (t− z) dz ≤ 1

2
(F (ẽ)− F (−ẽ)) ξgM,ξ (t) ,

I2 =

∫
z 6∈(−ξẽ,ξẽ)

f (z/ξ)F (z/ξ) g (t− z) dz ≤ f (ẽ) ,

I3 =

∫ ξẽ

−ξẽ
f (z/ξ) g (t− z) dz ≥ (F (ẽ)− F (−ẽ)) ξgm,ξ (t)

and

gM,ξ (t) = max
z∈[t−ξẽ,t+ξẽ]

g (t) and gm,ξ (t) = min
z∈[t−ξẽ,t+ξẽ]

g (t) .

Combining the above inequalities, we conclude that

ry,ξ,1 (t) ≤ 1

2

gM,ξ (t)

gm,ξ (t)
+

f (ẽ)

(F (ẽ)− F (−ẽ)) ξgm,ξ (t)
. (8)

Now, note that, since α > β + 1, there exists δ such that

f (z/ξγ)

(F (z/ξγ)− F (−z/ξγ)) ξg (2z/ξγ)
< ε/2 ∀z ≥ δ.

We pick such a δ in definition of ẽ. Then, using the fact that gm,ξ (t) ≥ g (t+ ẽ (t)) ≥ g (2ẽ (t)), one can

easily check that
f (ẽ (t))

(F (ẽ (t))− F (−ẽ (t))) ξgm,ξ (t)
< ε/2 ∀t. (9)
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In order to find an upper bound for 12g
M,ξ (t) /gm,ξ (t), consider only ξ � (t0/δ)

1/(1−γ), so that ẽ (t0) =

t0. Then, for any t > t0/ (1− ξ), we have t− ξẽ = (1− ξ) t > t0, and hence, by (6),

gM,ξ (t)

gm,ξ (t)
≤ (1 + ε/2)

(
t+ ξẽ

t− ξẽ

)β+1
= (1 + ε/2)

(
1 + ξ

1− ξ

)β+1
. (10)

On the other hand, since g is Lipschitz continuous and positive, there also exists κ > 0 such that

g
(
t′
)
≤ g (t)

(
1 +

(
t′ − t

)
κ
)

for any t, t′ ∈ [0, 2t0]. (Note that κ is independent or ξ.) Hence, for any t ∈ [0, t0/ (1− ξ)], we also have

gM,ξ (t)

gm,ξ (t)
≤ 1 + κξẽ

1− κξẽ ≤
1 + κmax

{
ξt0/ (1− ξ) , ξ1−γδ

}
1− κmax

{
ξt0/ (1− ξ) , ξ1−γδ

} . (11)

Substituting (9-11) in (8), we obtain

ry,ξ,1 (t) ≤ 1

2
max

{
1 + κmax

{
ξt0/ (1− ξ) , ξ1−γδ

}
1− κmax

{
ξt0/ (1− ξ) , ξ1−γδ

} , (1 + ε/2)

(
1 + ξ

1− ξ

)β+1}
+ ε/2.

Observe that the right-hand side is independent of t and converges to 1/2 + 3ε/4 as ξ → 0. Therefore,

there exists ξ̄ > 0 such that for all ξ ∈
(
0, ξ̄
)
,

ry,ξ,1 (t) <
1

2
(1 + ε) + ε/2 =

1

2
+ ε

(
∀t ≥ 0, ∀ξ < ξ̄

)
.

3.2.2 Approximating Complete Information

We now report results for when σ and τ are both small, analyzing what happens to higher-order beliefs along

sequences (σn, τn)→ (0, 0). Thus we will be considering a sequences where there is very little uncertainty

about payoffs and, in particular, types converge in the product topology to a complete information model,

where there is common certainty of payoffs.

For any given (σn, τn), we can consider the beliefs of a player observing signal t = τnη + σne about

the common component of his signal τnη. Belief about other variables will then be derived from this.

We write µn (·|t) for the probability distribution of τnη conditional on (σn, τn, t).5 We are interested in

characterizing the limit of µn (·|t) as n→∞.
5The probability of any interval (τnη1, τnη2) under µn (·|t) is

µn ((τnη1, τnη2) |t) = In (t− τnη1, t− τnη2) /In (−∞,∞)

where

In (z1, z2) =

∫ z2

z1

f (z/σn) g

(
t− z
τn

)
dz.
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Towards this goal, we define

qn (t) =
σng (t/τn)

σng (t/τn) + τnf (t/σn)
,

and assume that qn (t) converges to some q (t) ∈ [0, 1] for each t, and that the convergence is uniform over

[t, t] for any t > t > 0. Under regularly-varying tails, it is straightforward to show that

qn (t) ∼=
1

1 + ρnt
β−αA/B

and q (t) =
1

1 + ρtβ−αA/B

where

ρn =
σα−1n

τβ−1n

Lf (1/σn)

Lg (1/τn)
and ρ = lim

n→∞
ρn.

In the case of Pareto distribution, we simply have ρn (t) = σα−1n /τβ−1n allowing a tractable analysis based

on the tail indices α and β of idiosyncratic and common components, respectively. In general, except for

knife-edge cases, ρ is either 0 or∞, and q (t) is either 1 or 0, independent of t. Finally, we define our notion

of convergence for type-dependent probability distributions as follows. For any sequence of type-dependent

probability distributions Pn (·|·) and any P (·|·), where Pn (·|ti) and P (·|ti) are probability distributions
over the same type space for each ti, we say that Pn (·|·) converges to P (·|·) uniformly over compact sets
of types if

∫
hdPn (·|ti)→

∫
hdP (·|ti) uniformly over types ti ∈ [t, t] for any bounded continuous function

h and any compact interval [t, t].

The following result establishes the implication of fat tails that, in the limit, players rely only on one

of the public and the private signals, ignoring the other.

Lemma 4 As n→∞, the beliefs µn (·|·) about the common shock τnη converge to µ∞ (·|·) uniformly over
compact sets of types where

µ∞ (0|ti) = 1− q (ti) and µ∞ (ti|ti) = q (ti)

for each ti 6= 0 and µ∞ (0|0) = 1.

Thus, in the limit (σn, τn) → (0, 0), each individual puts positive probability only on two points,

entertaining only two possible theories. He puts probability q (ti) on (η = 0, σnei = ti), attributing all

of the variation in his type ti from 0 to the noise ei in his individual information. He puts probability

1− q (ti) on (τnη = ti, ei = 0), attributing all of the variation in his type ti from 0 to the common shock.

Consequently, the players have stark limiting beliefs regarding their relative ranking. When the tails of the

idiosyncratic components are fatter than that of the common component (α < β), we have q (ti) = 1, and

he ends up attributing all the deviation to his individual information, maintaining the belief that the other

player’s type is around 0, as in (the extremes of) Figure 1. When the tails of the idiosyncratic components
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are thinner than that of the common component (α > β), we have q (ti) = 0, and he ends up attributing

all the deviation to the common shock, maintaining the belief that the other player’s type is around his

own, as in (the extremes of) Figure 3 below.

Identifying the limiting rank beliefs requires more care because, conditional on ti, the limit beliefs

regarding tj are somewhat complicated. In the limit, by Lemma 4, player i assigns probability 1 − q (ti)

on τη = 0 and probability q (ti) on τη = ti. But in the limit case of τη = tj = ti, the relative ranking of tj

and ti are not determined from Lemma 4 because the limit CDF of tj conditional on τη is discontinuous at

τη.6 After all, probability of tj = ti is zero. The next result establishes the limiting rank beliefs, defined

as

r∞ (ti) ≡ lim
n→∞

rσn,τn (ti) = lim
n→∞

Pr (tj ≤ ti|ti, σn, τn) .

The result shows that when the noise is small so that ti is near τη, the player assigns probability 1/2 on

the other player’s signal being lower than his own.

Lemma 5 For any t > t > 0, as n→∞, rσn,τn (ti) uniformly converges to

r∞ (t) =

{
1− q (t) /2 if t > 0

q (t) /2 if t < 0

over
[
−t,−t

]
∪
[
t, t
]
.

The limiting rank-beliefs have an interesting form. When ρ ≡ limn→∞
σα−1n

τβ−1n

Lf (1/σn)
Lg(1/τn)

=∞, we have q (t) ≡
0, and the limiting rank belief is a step function at t = 0. The player nearly attributes all of the variation in

his signal to the noise in his own private information and keeps believing that tj is around zero– and that

θ and xj are around y. Since both players do so for all types, it is then easy to obtain a high common belief

in the event that both players assign high probability on θ being around y. The next corollary establishes

this formally.

Corollary 3 If ρ = ∞ and x < y < x, then, whenever payoffs are in [x, x], there is limit approximate

common certainty that payoffs are in [x, x], i.e., for any ε > 0, there exists n such that, for all n ≥ n,

[x− y, x− y]2 ⊆ C1−ε,1−ε
(

[x− y, x− y]2
)

in the (σn, τn) type space, where [x− y, x− y]2 is the set of type profiles under which the payoffs are in

[x, x].

Proof. Since µn (·|ti) → µ∞ (·|ti) uniformly over ti ∈ [x − y, x − y] (by Lemma 4), and since σn → 0,

there exists n̄ such that, for all n ≥ n̄ and for all ti ∈ [x− y, x− y], the probability that tj ≡ τnη+ σnej ∈
6With our formulation, the rank beliefs is 1/2 in the limit.
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Figure 3: Rank beliefs under α = 4 > 2 = β for σ = τ = 1, σ = τ = 0.1, and σ = τ = 0.01.

[x − y, x − y] is at least µ∞ (0|ti) − ε. But since ρ = ∞, we have µ∞ (0|ti) = 1. Therefore, for all n ≥ n̄,

all types ti ∈ [x− y, x− y] assign at least probability 1− ε on tj ∈ [x− y, x− y], as desired.

That is, when the common component has thinner tails than the idiosyncratic component (e.g., α < β

and σn/τn � 0 so that ρ =∞), the event that the payoffs are around their ex-ante mean is a (1− ε, 1− ε)-
evident event: whenever it happens, the players assign at least probability 1 − ε on that event. This will
further imply that the equilibria of the complete information game extend to the (σn, τn) type space.

On the other hand, if α > β and σn/τn is bounded so that the common component has fatter tails

than the idiosyncratic component, then ρ = 0 and q (ti) = 1 everywhere. Our lemma then implies that

the rank beliefs converge to r∞ (ti) = 1
2 on compact intervals of ti that exclude 0. However, this does

not deliver common certainty of approximately uniform rank beliefs, because we do not have uniform

convergence around zero. The problem is vividly illustrated in Figure 3. Although rσ,τ converges to 1/2

pointwise everywhere, rσ,τ traces the entire interval [0.2, 0.8] around ti = 0 no matter how small (σ, τ) is.

(This is because when one fixes the ratio of σ/τ , reducing the noise is equivalent to shrinking ti around

0, i.e., raσ,aτ (ti) = rσ,τ (ti/a).) To obtain common certainty of approximately uniform rank beliefs, we

need approximately uniform rank beliefs for types around 0, and for this it is necessary to have σ small

relative to τ . However, Proposition 4 already established this above– for both large and small (σ, τ).

In that case, rσ,τ converges to 1/2 uniformly everywhere as σ/τ gets small (see Figure 2). This leads to

common-certainty of approximate rank beliefs in the limit:

Corollary 4 Assume α > β + 1 and limn→∞
σn
τn

= 0. Then, there is limit common certainty of approxi-
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mately uniform rank beliefs, i.e., for any ε > 0, there exists n such that if n ≥ n,

1

2
− ε < rσn,τn (t) <

1

2
+ ε (∀t)

in the (σn, τn) type space.

3.3 Multiplicity and Uniqueness of Rationalizable Actions

We can now immediately apply our results about higher-order beliefs in the fat-tails model to the general

strategic analysis in Section 2.2 to derive strategic results in the fat-tails model.

The suffi cient conditions for common certainty of uniform rank beliefs in Proposition 4 immediately

imply the selection of the risk-dominant action as the unique rationalizable action, as established by our

general result Proposition 3:

Corollary 5 If α > β + 1, invest is strictly risk dominant for both players and σ/τ is suffi ciently small,

then invest is uniquely rationalizable for both players, i.e., for any ε > 0, there exists ξ > 0 such that

whenever σ/τ < ξ, if xi (ti) >
1
2 + ε for both i, invest is uniquely rationalizable for both players.

We can also use the higher-order belief results about approximately complete information to estab-

lish conditions for "limit multiplicity"– i.e., multiple rationalizable actions as we approach complete

information– or "limit uniqueness". In particular, we conclude that there is multiplicity whenever the

common component has a thinner tail than the idiosyncratic components, and conversely, the risk-dominant

action is uniquely rationalizable whenever the idiosyncratic components have thinner tails. Building on

Proposition 2 and Corollary 3, our first result establishes limit multiplicity in the former case.

Corollary 6 If (σn, τn)→ (0, 0) and ρ = limn→∞
σα−1n

τβ−1n

Lf (1/σn)
Lg(1/τn)

=∞, then there is limit multiplicity, i.e.,
for any 0 < y < 1 and ε > 0, there exists n such that, in every (σn, τn) type space with n ≥ n, both actions
are rationalizable for both players whenever xi (ti) ∈ [ε, 1− ε] for both i.

Proof. Let ρ = ∞ and take any ε > 0. Assume without loss of generality that ε < y < 1 − ε. Then,
Corollary 3 establishes that the event Mε that the payoffs are within the interval [ε, 1− ε] is (1− ε, 1− ε)-
evident whenever n is suffi ciently large. Then, for any such n, Proposition 2 establishes that both actions

are rationalizable throughout Mε.

The multiplicity here is illustrated in Figure 4. When (σ, τ) = (0.1, 0.1), the rank beliefs are as in

the flatter curve. For y = 1/2, this curve intersect the value function xi at three points when y = 0.5,

one at x∗ ' 0, one at x∗∗ ' 1, and one in the middle. Each of the extremal intersections corresponds

to a symmetric equilibrium. In one equilibrium, players invest iff their values exceed x∗, and in another

equilibrium they invest iff their values exceed x∗∗, yielding multiple solutions for types with values in
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Figure 4: The rank beliefs for (σ, τ) = (0.1, 0.1) and (σ, τ) = (0.01, 0.01) under (α, β) = (2, 4). The straight

lines corresponds to xi for y = 0, 0.2, 0.5, 0.8, 1.

(x∗, x∗∗) as in the corollary. For this value of (σ, τ), such multiplicity is supported for an interval
(
y, ȳ
)
,

where y is slightly above 0.2 and ȳ is slightly below 0.8. For values y = 0.2 and y = 0.8, we have a unique

rationalizable action everywhere except for the type corresponding to the unique intersection (by Lemma

3). When the noise reduces to (σ, τ) = (0.1, 0.1), the rank beliefs become as in the steeper curve. Now,

a larger set values for y leads to multiple equilibria, including y = 0.2 and y = 0.8, as the corresponding

value functions intersect the new curve at multiple points. In the limit (σ, τ)→ (0, 0), the curve becomes

the step function at ti = 0, yielding multiple equilibria for all values of y ∈ (0, 1).

The key insight for this result is as follows. When the players’ private information is weaker than

the public information, each player attributes all of the deviation in his type from the ex-ante mean 0 to

the noise in his private information and keeps believing that the other player’s payoff is near the ex-ante

mean y. Since this is true for all types of both players, such high confidence is maintained throughout the

players’higher-order beliefs, resulting in a high common belief that the payoffs are near the ex-ante mean y

whenever this is indeed the case. Then, the rationalizable behavior under the complete information about

payoffs around y extend to the case of incomplete information with "approximate common knowledge"

about the payoffs. Since both actions are rationalizable under complete information, both actions remain

rationalizable under the latter case of incomplete information.

When the players’private information is stronger than their public information (e.g. the tail index

α of the idiosyncratic component is larger than the tail index β of the common component and σn/τn

is bounded), the opposite happens. Now, each player attributes all of the deviation in his type from the

ex-ante mean 0 to the noise in the public information and comes to believe that the other players’payoff

is similar to his own, having equal probability of being higher or lower than his own. In such a model, one
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cannot maintain any high level of common belief regarding the whereabouts of the payoffs. Instead, one

maintains a common certainty about the players’rank beliefs being approximately 1/2, as established by

Proposition 4. But, such common certainty of the rank beliefs leads to selection of the risk-dominant action

as the unique rationalizable action, as established by our general result Proposition 3. Since Proposition 4

applies more generally, such a uniqueness is maintained away from the limit as well as in the limit:

Corollary 7 If (σn, τn) → (0, 0), limn→∞
σn
τn

= 0 and α > β + 1, then there is limit uniqueness, i.e.,

for any ε > 0, there exists n such that, if n ≥ n, invest is uniquely rationalizable for both players if

xi (ti) ≥ 1
2 + ε for both i, in the (σn, τn) type space.

The unique selection above is illustrated in Figure 5. As σ/τ decreases, the rank belief rσ,τ uniformly

converges to 1/2, restricting the x values corresponding to an intersection of the rank belief rσ,τ and xi

to a smaller ε neighborhood of 1/2. This ensures the unique selection of strictly risk-dominant actions,

uniformly over the possible payoff functions xi and the sizes of the idiosyncratic and common shock (σ

and τ). For example, the selection here does not depend on the value of y.

Several remarks are in order. First, there can be multiple equilibria for a given payoff function; for

example, r1,1 intersects xi = ti + 1/2 at three points, but the intersections are all contained in (−0.2, 0.2),

allowing the selection of 0.2-strict risk dominant actions. Second, one can switch back and forth between

multiplicity and uniqueness as σ/τ decreases; for example, we have multiplicity under (σ, τ) = (1, 1) but

unique selection under (σ, τ) ∈ {(2, 1) , (0.1, 1) , (0.01, 1)}. Finally, under any (σ, τ) with unique selection,

we could still have multiple equilibria by considering another payoff function, e.g., xi = ati + 1/2 for

suffi ciently small a, allowing a wide range of types with multiple actions. But all those types will also have

values that are near the risk-dominance cutoff 1/2, and we will ultimately be able to select strictly risk

dominant action as the unique rationalizable solution whenever such an action exists.

4 Discussion: Extensions and Relation to The Literature

4.1 Thin Tails and The Normal Case

We restricted our analysis in section 3 to the case of fat tailed distributions. What happens if we allowed

thin tailed distributions - where tail densities converge to zero at an exponential rate - in the one dimensional

signal setting of section 3.

Some extensions are straightforward. If the common component has a fat tailed distribution and the

idiosyncratic component has a thin tailed distribution, then there will be common certainty of uniform

rank beliefs in the limit. Conversely, if the common component has a thin tailed distribution and the

idiosyncratic component has a fat tailed distribution, then there will be approximate common certainty
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Figure 5: Rank beliefs for σ = 2, 1, 0.1, and 0.01 under (α, β, τ) = (4, 2, 1); the maximum deviation from

1/2 is decreasing in σ. The straight lines correspond to xi for y = 0.2, .5, 0.8.

of payoffs in the limit. Of course, a distribution with bounded support is a special case of a thin tailed

distribution.

We do not have general results for the case where both distributions have thin tails. However, a leading

case from the global games literature corresponds to assuming a particular thin-tailed distribution - the

normal distribution - for both common and idiosyncratic shocks. In this sub-section, we will review the

well known analysis of this case to highlight how it fits into the framework of this paper.

Thus we will consider the one dimensional model in the previous section but under the assumption

that η and ei have standard normal distributions and demonstrate how known results for this problem are

implied by the common belief foundations described above. In this case, rank beliefs can be characterized

in closed form, and this characterization has been extensively used in the existing literature, e.g., Morris

and Shin (2001) and Morris and Shin (2003a).

Player i with type ti = τη + σei will believe that τη is distributed with mean

τ2

σ2 + τ2
ti

and variance
σ2τ2

σ2 + τ2

and so he will belief that tj = τη + σej is distributed with mean

τ2

σ2 + τ2
ti

and variance
σ2τ2

σ2 + τ2
+ σ2 =

σ2
(
σ2 + 2τ2

)
σ2 + τ2

.
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Thus the player assigns probability

Φ

(√
σ2 + τ2

σ2 (σ2 + 2τ2)

σ2

σ2 + τ2
ti

)
= Φ

(√
σ2

(σ2 + 2τ2) (σ2 + τ2)
ti

)

to the other player having a lower signal. Thus the probability that a player with type t has the higher

type is

rσ,τ (t) = Φ

(√
σ2

(σ2 + 2τ2) (σ2 + τ2)
t

)
.

What can we say about higher-order beliefs in this case? Observe that, as σn → 0 and τn → 0,√
σ2n

(σ2n+2τ
2
n)(σ

2
n+τ

2
n)
converges to ∞ if σn

τ2n
→ ∞ and converges to 0 if σn

τ2n
→ 0. Thus if σn

τ2n
→ ∞, we obtain

approximate common certainty of payoffs and we have limit multiplicity as defined in Definition ??. If
σn
τ2n
→ 0, we do have pointwise convergence to uniform rank beliefs, so that rσn,τn (t) → 1

2 for each t. But

this convergence is not uniform in the tails, so that for any n, rσn,τn (t)→ 1 as t→∞ and rσn,τn (t)→ 0 as

t→ −∞. Thus there is never approximate common certainty of approximately uniform rank beliefs. But

for any ε, if we look at the set of t where rank beliefs are within ε of 12 , we have– by construction– that

the marginal type puts a high probability (greater than 1
2 − ε) to his opponent having a type outside the

set. However, it is enough for global game results that there is common certainty that rank beliefs are

close 1
2 when players do not have a dominant strategy. Thus, the weaker suffi cient condition of Lemma 2

for limit uniqueness is satisfied and we have limit uniqueness as defined in Definition ??.

Thus we find that the fat tailed limit results deliver sharper suffi cient conditions for limit uniqueness

while the well known normal results achieve limit uniqueness via a weaker, but less clean, common belief

foundation.

4.2 The Common Prior Assumption

We focussed on the case where the common prior assumption holds. Under the common prior assumption,

if there is common certainty that players have rank belief p, i.e., they assign probability p to having the

higher rank, then it must be the case that p = 1
2 . On the other hand, without the common prior assumption,

common certainty of alternative rank beliefs is possible. Our uniqueness results extend immediately to

common certainty of non-uniform rank beliefs, although the nature of global game selection is then different.

Specifically, define RBp
ε for the set of type profiles (t1, t2) where both players have ε-rank belief p:

RBp
ε = {(t1, t2) |p− ε ≤ ri (ti) ≤ ri (ti) ≤ p+ ε for each i} .

Say that action invest is p-dominant for ti if

xi (ti) ≥ p.
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We write Dp for the set of type profiles for which invest is p-dominant for each player, so

Dp = {(t1, t2) |xi (ti) ≥ p for each i} .

Proposition 5 Invest is the uniquely rationalizable action for both players if it is p-dominant for both

players and there is common (1− ε)-belief of ε-rank belief p+ 2ε, i.e., if

(t1, t2) ∈ Dp ∩ C1−ε,1−ε
(
RBp+2ε

ε

)
.

This observation, suitably generalized to many players, is the driving force behind the results of Izmalkov

and Yildiz (2010).

4.3 Many Players

We focussed on the case of two players. The extension of the results of this paper toN players– maintaining

the symmetry and separability of payoffs assumptions in this paper– is straightforward, and we describe

this extension in this section.

Suppose that each player i had a payoff type xi, the payoff to not investing was 0, and the payoff to

investing was xi − 1 + ψ (l) where l is the proportion of other players investing and ψ : [0, 1] → [0, 1] is

increasing with ψ (0) = 0 and ψ (1) = 1. In the special case of two players, these payoffs reduce to those

studied in this paper.

We can give a common belief characterization of rationalizability in this setting, although the relevant

belief operator is more complicated than in the two player case. For a fixed simple event E, agent i and

integer n, we can consider derived events corresponding the set of type profiles t−i of players other than i

where tj ∈ Ej for exactly n out of those other players. For each n, we will be interested in the probability
that player i assigns to such derived events. We will now be interested in when the weighted sum of these

probabilities is above some type-dependent level. Thus we define generalized belief operators:

Bfi
i (E) =

{
t

∣∣∣∣∣ti ∈ Ei and
N−1∑
n=0

ψ

(
n

N − 1

)
πi ({t−i |# {j|tj ∈ Ej} = n} |ti) ≥ fi (ti)

}
.

Note that this is a generalization of the type-dependent belief operators that we introduced in the two

player case. It is qualitatively more complicated, though, because it depends on the weighted sum of

probabilities assigned to a set of events (rather than probabilities of one event). However, with these

operators, we can generalize the tight characterization of rationalizability. For a vector of type dependent

probability functions f = (f1, .., fN ), we can now define f -belief and common f -belief operators as before,

Bf
∗ (E) = ∩Ni=1B

fi
i (E) .



Common Belief Foundations April 20, 2015 30

Cf (E) = ∩∞n=1
[
Bf
]n

(E) .

and analogous fixed point characterizations will hold. Now Lemma 2 will continue to hold as stated for

these modified operators, as will Proposition 1 giving a suffi cient condition for a uniquely rationalizable

action in symmetric games. It is also possible to give generalized belief operator characterizations of

rationalizable actions in more general games, see Morris and Shin (2007).

While the tight characterization of rationalizability becomes more complicated when we move to many

players, the suffi cient conditions we give for limit multiplicity and limit uniqueness generalize straightfor-

wardly.

The approximate common certainty suffi cient condition for multiplicity in Proposition 2 is suffi cient to

show rationalizability of all strict equilibrium actions in general games, as originally shown by Monderer

and Samet (1989), and thus the fat tails limit multiplicity result of Corollary 6 holds for general games

also.

For uniqueness suffi cient conditions, a player’s rank belief now gives the probability that he assigns to

his payoff type being ranked kth for each k, and we can define corresponding upper and lower rank beliefs.

Thus

ri (k|ti) = πi (# {tj |xj (tj) ≤ xi (ti)} = k|ti) ,

ri (k|ti) = πi (# {tj |xj (tj) < xi (ti)} = k|ti) .

We say that rank belief of a type ti is ε-uniform if

1

N
− ε ≤ ri (k|ti) ≤ ri (k|ti) ≤

1

N
+ ε.

for each k = 1, .., N . We write URBε for the set of type profiles t where both players have ε-uniform rank

beliefs:

URBε =

{
t

∣∣∣∣ 1

N
− ε ≤ ri (n|ti) ≤ ri (n|ti) ≤

1

N
+ ε for each i

}
.

We say that rank beliefs are approximately uniform if they are ε-uniform for some ε ≥ 0.

Morris and Shin (2003b) noted that the global game selection in this case was the "Laplacian action",

corresponding to a uniform belief over the proportion of opponents investing. Our second concept is a

strict version of the Laplacian property. We say that action invest is ε-Laplacian for ti if

xi (ti) ≥ 1− 1

N

N−1∑
j=0

ψ

(
j

N − 1

)
+ ε.

We write Lε for the set of type profiles for which invest is ε-strictly Laplacian for each player, so

Lε =

t
∣∣∣∣∣∣xi (ti) ≥ 1− 1

N

N−1∑
j=0

ψ

(
j

N − 1

)
+ ε for each i

 .
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Proposition 6 Invest is the uniquely rationalizable action for both players if it is ε-Laplacian for both

players and there is common (1− ε)-belief of ε-uniform rank beliefs for some ε ≥ 0, i.e., if

t ∈ Lε ∩ C1−ε (URBε) .

This result easily implies the fat tails limit uniqueness result of Corollary 7, since suffi cient conditions

for ε-uniform rank beliefs in the two player case also imply ε-uniform rank beliefs in the many player case.

Two papers that use explicit statements about higher-order beliefs to give suffi cient conditions for

unique rationalizable actions are Morris and Shin (2012) and Morris (2014). Morris and Shin (2012) con-

sider a particular coordination problem that arises among uninformed investors deciding whether to trade

in a market with adverse selection. They say that there is "market confidence" if statements of the form

"most players think that..." (k times) that the losses from informed trade are suffi ciently small are true.

This corresponds to a many player example of the higher-order belief characterization of Proposition 1.

Morris (2014) discusses higher-order beliefs suffi cient conditions for coordination when there is synchro-

nization problem. Oyama and Takahashi (2013) use generalized belief operators as tool to prove results

about robustness to incomplete information games in the sense of Kajii and Morris (1997).

4.4 Private Values and Separable Payoffs

We simplified the analysis by focussing on a private value global game rather than the more often studied

common value case. The alternative "common value" case would correspond to the case where player i’s

payoff is a function of y + τη, i.e., the prior mean plus the common shock, but he still observes a signal

ti = τη + σei which contains an idiosyncratic (but now payoff irrelevant) noise. Much of the literature on

global games has focussed on the common value case (e.g., Carlsson and van Damme (1993), Morris and

Shin (1998) and Frankel, Morris, and Pauzner (2003)). However, the private value case (Morris and Shin

(2005) and Argenziano (2008)) is as tractable and more relevant for many applications.

One complication of extending the analysis to the common value case is that, with regularly varying

tails, the underlying payoff functions will no longer satisfy increasing differences, so that higher types of a

player have a greater incentive to invest given the other players’action. In particular, in the fat tails case,

the distribution of θ = y + τη conditional on ti = τη + σei need not be monotone with respect to ti.

An additional simplifying assumption we made was that payoffs were additively separable between a

component that depended on the opponent’s action and a component that depended on an unknown payoff

state. This additive separability allows for a tighter description of the connection. Extensions are possible

here also, but are messy and involve tedious continuity arguments. See Morris and Shin (2007).
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4.5 Asymmetric Payoffs

Like much of the applied literature, we focussed on a game which was symmetric across players. However,

global game results go through with asymmetric games. One can state analogous higher-order belief

properties driving global game results (relating to translation invariance) but they are not as clean. The

issue is discussed in Morris and Shin (2007).

4.6 Global Games Literature

Let us briefly summarize how the results described in this note relate to the existing global games literature.

The classical exercise in the global games literature initiated by Carlsson and van Damme (1993) is to

consider what happens if we fix a prior over payoff relevant states and let the size of the noise in players’

conditionally independent signals of the state converge to zero. A key step in such arguments (e.g., in

Carlsson and van Damme (1993) and Frankel, Morris, and Pauzner (2003)) is the assumption that the

prior distribution is smooth, which ensures that conditional probabilities converge uniformly, or uniformly

over a compact interval. In the symmetric case, globally uniform convergence of conditional probabilities

gives common certainty of rank beliefs. However, as highlighted by lemma 2, it is enough to have common

certainty of rank beliefs on a compact interval including states where players actions are undominated. In

this sense, we highlight in this note (using a special case) the properties of higher-order beliefs that drive

results in the symmetric case.

Another exercise in the global games literature is to assume that both the prior and private signals

are normally distributed and see what happens when both prior distribution and distribution of noise in

private signals shrink to zero (Morris and Shin (2001) and Morris and Shin (2003a)). We discussed this

case in section 4.1. In this case, one can explicitly compute rank beliefs and see how they evolve as the

distributions shrink to zero at different rates. However, this paper has highlighted the fact that these

results are special. Focussing on the most interesting case of fat tailed distributions, we have identified

distinct properties that give limit uniqueness and limit multiplicity depending on the tail properties of the

distributions.

Our results generalize those in the existing literature because we do not exploit monotonicity properties

of the type space and thus the game is not supermodular. This is true both with general type spaces, or

with one dimensional type spaces with fat-tailed distributions. An order structure on types is used in

the existing literature. In the analysis of Carlsson and van Damme (1993), Morris and Shin (2003b) and

Frankel, Morris, and Pauzner (2003), there is monotonicity with respect to types in the limit (as noise

goes to zero) and continuity arguments are used to provide results in the (not necessarily) monotonic type

space away from the limit. In the normal models of Morris and Shin (2001) and Morris and Shin (2003a),

monotonicity away from the limit is implied by the normal distribution. In highlighting the connection
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between general supermodular games and global games, van Zandt and Vives (2007) impose monotonicity

away from the limit in general games. Mathevet (2010) imposes a stochastic dominance property even in

the limit to prove global game uniqueness results via a contraction argument. By contrast, results in this

paper are proved without any order structure on types.

A Omitted Proofs

Proof of Lemma 4. Take any ε > 0. We will find n̄ < ∞ such that for all n > n̄ and t ∈ [0, t̄],7 µn (·|t) puts at
most probability ε on (−∞,−ε) and (ε,∞), for which µ∞ (·|t) assigns zero probability. Furthermore, when t > 2ε,

µn (·|t) puts at most probabilities 1− q (t) + ε, ε, and q (t) + ε on sets [−ε, ε], [ε, t− ε], and [t− ε, t+ ε], respectively.

Consequently µn (·|t) puts at least probabilities 1−q (t)−4ε and q (t)−4ε on sets [−ε, ε] and [t− ε, t+ ε], respectively,

for which µ∞ (·|t) assigns probabilities 1− q (t) and q (t), respectively.

Now, F (ε/σn) and G (ε/τn) converge to 1, while F (−ε/σn) = 1 − F (ε/σn) and G (−ε/τn) = 1 − G (ε/τn)

converge to 0. Hence, there exists n̄1 <∞ such that

ε > max

{
F (−ε/σn)

F (ε/σn)− F (−ε/σn)
,

G (−ε/τn)

G (ε/τn)−G (−ε/τn)

}
(12)

for all n > n̄1.

Consider any t ≥ 0 and any n > n̄1. We start by showing that µn (·|t) puts at most probability ε on (−∞,−ε):

µn (τnη < −ε|t) ≤ In (t+ ε,∞) /In (t− ε, t+ ε)

≤ τnG (−ε/τn) f ((t+ ε) /σn)

τn (G (ε/τn)−G (−ε/τn)) f ((t+ ε) /σn)

=
G (−ε/τn)

G (ε/τn)−G (−ε/τn)
< ε.

Here, the first inequality is by definition and the monotonicity of In, while the last inequality is by (12). To see the

second inequality, note that

In (t+ ε,∞) =

∫ −ε/τn
−∞

f ((t− τnη) /σn) g (η) τndη ≤ τnG (−ε/τn) f ((t+ ε) /σn) ,

and (similarly)

In (t− ε, t+ ε) ≥ (G (ε/τn)−G (−ε/τn)) τnf

(
t+ ε

σn

)
.

Using symmetric arguments, we next conclude that µn (·|t) puts at most probability ε on (t+ ε,∞):

µn (τnη > t+ ε|t) ≤ In (−∞,−ε) /In (−ε, ε)

≤ σnF (−ε/σn) g ((t+ ε) /τn)

σn (F (ε/σn)− F (−ε/σn)) g ((t+ ε) /τn)
< ε.

When t ≤ 2ε, this is suffi cient because it shows that both µn (·|t) and µ∞ (·|t) put at least probability 1 − 2ε on

[−3ε, 3ε].

7Since f and g are symmetric, it suffi ces to consider the case z ≥ 0.
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Now consider any t > 2ε. For this case, we will further show that µn (·|t) and µ∞ (·|t) assign similar probabilities
on sets [−ε, ε], [ε, t− ε], and [t− ε, t+ ε]. Firstly, for any n > n̄1,

µn (ε < τnη < t− ε|t) ≤ In (ε, t− ε) /In (−ε, ε)

≤ σn (1− F (ε/σn)) g (ε/τn)

σn (F (ε/σn)− F (−ε/σn)) g ((t+ ε) /τn)

=
F (−ε/σn)

F (ε/σn)− F (−ε/σn)

g (ε/τn)

g ((t+ ε) /τn)

≤ F (−ε/σn)

F (ε/σn)− F (−ε/σn)

g (ε/τn)

g ((t̄+ ε) /τn)
.

Here, the equality is by 1 − F (ε/σn) = F (−ε/σn), and the last inequality is by monotonicity of g. To see the

inequality on the second line, note that

In (ε, t− ε) =

∫ t−ε

ε

f (z/σn) g ((t− z) /τn) dz ≤ g (ε/τn)

∫ t−ε

ε

f (z/σn) dz;

the lower bound for In (−ε, ε) has been established in the previous case. Now, since g has regularly-varying tails,
g (ε/τn) /g ((t̄+ ε) /τn)→ (ε/ (t̄+ ε))

−β
<∞. Hence, there exists n̄2 > n̄1 such that

F (−ε/σn)

F (ε/σn)− F (−ε/σn)

g (ε/τn)

g ((t̄+ ε) /τn)
< ε (∀n > n̄2) .

Therefore,

µn (ε < θ < t− ε|t) < ε (∀n > n̄2, t ∈ [2ε, t̄]) .

(Note that n̄2 does not depend on t.)

Bounding the probabilities of the sets [−ε, ε] and [t− ε, t+ ε] requires more subtle arguments. To this end, we

construct sequences en = σ−γn and ηn = τ−γn for some γ with max {1/α, 1/β} < γ < 1. Since (σn, τn) → (0, 0), one

can take en > ē and ηn > η̄ without loss of generality. Moreover, σnen → 0, τnηn → 0, en →∞, and ηn →∞, and
we consider only σnen < ε and τnηn < ε. Now,

µn (t− ε < θ < t+ ε|t) = In (−ε, ε) /In (−∞,∞) .

Towards finding an upper bound, we first obtain the following tighter lower bound for In (−∞,∞):

In (−∞,∞) > In (−σnen, σnen) + In (t− τnηn, t+ τnηn)

≥ (F (en)− F (−en))σng

(
t+ σnen

τn

)
+ (G (ηn)−G (−ηn)) τnf

(
t+ τnηn
σn

)
≡ Dn (t) .

We next find the following upper bounds:

In (−ε,−σnen) ≤ (F (−en)− F (−ε/σn))σng

(
t+ σnen

τn

)
≤ F (−en)σng

(
t+ σnen

τn

)
;

In (σnen, ε) ≤ F (−en)σng

(
t− ε
τn

)
;

In (−σnen, σnen) ≤ (F (en)− F (−en))σng

(
t− σnen

τn

)
.
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Combining with the lower bound above, we further observe that

In (−ε,−σnen) /Dn (t) ≤ F (−en)

F (en)− F (−en)
;

In (σnen, ε) /Dn (t) ≤ F (−en)

F (en)− F (−en)

g
(
t−ε
τn

)
g
(
t+σnen
τn

) ;

In (−σnen, σnen) /Dn (t) ≤
(F (en)− F (−en))σng

(
t−σnen
τn

)
(F (en)− F (−en))σng

(
t+σnen
τn

)
+ (G (ηn)−G (−ηn)) τnf

(
t+τnηn
σn

) .
Now, clearly, the upper bound for In (−ε,−σnen) /Dn (t) converges to 0. Since g

(
t−ε
τn

)
/g
(
t+σnen
τn

)
→
(
t−ε
t

)−β
<

2β , the upper bound for In (σnen, ε) /Dn (t) also goes to 0. Finally, since g
(
t−σnen
τn

)
/g
(
t
τn

)
, g
(
t+σnen
τn

)
/g
(
t
τn

)
,

and f
(
t+τnηn
σn

)
/f
(
t
σn

)
all uniformly converge to 1, the upper bound for In (−σnen, σnen) /Dn (t) uniformly con-

verges to q (t). Here, all the limits are taken uniformly over t ∈ [2ε, t̄], and hence there exists n̄3 such that

µn (t− ε < τnη < t+ ε|t) ≤ In (−ε, ε)
Dn (t)

< q (t) + ε (∀n > n̄3, t ∈ [2ε, t̄]) .

It is important to observe that n̄3 does not depend on t. Similarly, one can find n̄4 such that

µn (−ε < τnη < ε|t) < 1− q (t) + ε (∀n > n̄3, t ∈ [2ε, t̄]) .

Setting n̄ = max {n̄1, n̄2, n̄3, n̄4}, one concludes the proof.
Proof of Lemma 5. We will consider events C ⊆ R corresponding to common shock c = τη. For every event

C, define rn,C : R→ [0, 1] by

rn,C (t) ≡
∫
C

F ((t− c) /σn) dµn (c|t) .

Note that Pr (xj < xi|ti, σn, τn, c) = F ((ti − c) /σn), and hence

rσn,τn (t) =

∫
F ((t− c) /σn) dµn (c|t) = rn,(−∞,∞) (t) .

Towards computing the limit of rn,(−∞,∞), we fix ε ∈ (0, z) and partition (−∞,∞) into intervals

C1 = R\ (t− ε, t+ ε) ,

C2,n = (t− ε, t− σnen) ∪ (t+ σnen, t+ ε) ,

C3,n = [t− σnen, t+ σnen] ,

using the notation in the proof of Lemma 4.

We start with C1. For each value c of common shock, define F∞ (c|t) ≡ limn F ((t− c) /σn) and observe that it

is 1 when t > c and 0 when t < c. Since F∞ (c|t) is continuous on C1,

lim
n→∞

rn,C1 (t) =

∫
C1

F∞ (c|t) dµ∞ (c|t) = F∞ (0|t) (1− q (t)) .

For C2,n, since F (·|t) ∈ [0, 1], we write

0 ≤ rn,C2,n (t) ≤ µn (C2,n|t)
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and observe from the proof of Lemma 4 that µn (C2,n|t) uniformly converges to zero. Finally, we obtain bounds for
rn,C3,n (t). For the upper bound, we write

rn,C3,n (t) ≤
∫ σnen

−σnen
F (z/σn) f (z/σn) g ((t− z) /τn) dz/Dn (t)

≤ g

(
t− σnen

τn

)∫ σnen

−σnen
F (z/σn) f (z/σn) dz/Dn (t)

=
1

2
(F (en)− F (−en)) g

(
t− σnen

τn

)
/Dn (t) .

Similarly, for the lower bound, we write

rn,C3,n (t) ≥ 1

2
(F (en)− F (−en)) g

(
t+ σnen

τn

)
/Dn (t) .

As in the proof of Lemma 4, both bounds uniformly converge to q (t) /2. Therefore,

rσn,τn (t) = rn,C1 (t) + rn,C2,n (t) + rn,C3,n (t)

uniformly converges to

r∞ (t) = F∞ (0|t) (1− q (t)) + q (t) /2

=

{
1− q (t) /2 if t > 0

q (t) /2 if t < 0.

References

Acemoglu, D., V. Chernozhukov, and M. Yildiz (2006): “Learning and Disagreement in an Uncertain World,”

Discussion paper, M.I.T.

Angeletos, G.-M., and I. Werning (2006): “Crises and Prices: Information, Multiplicity and Volatility,”Amer-

ican Economic Review, 96, 1720—1736.

Angeletos, M., C. Hellwig, and A. Pavan (2007): “Dynamic Global Games of Regime Change: Learning,

Multiplicity and Timing of Attacks,”Econometrica, 75, 711—756.

Argenziano, R. (2008): “Differentiated networks: Equilibrium and Effi ciency,”The RAND Journal Of Economics,

39, 747—769.

Atkeson, A. (2001): “Discussion of Morris and Shin,”NBER Macroeconomics Annual, 2000, 161—164.

Aumann, R. (1976): “Agreeing to Disagree,”Annals of Statistics, 4, 1236—1239.

Carlsson, H., and E. van Damme (1993): “Global Games and Equilibrium Selection,”Econometrica, 61, 989—

1018.

Frankel, D., S. Morris, and A. Pauzner (2003): “Equilibrium Selection in Global Games with Strategic

Complementarities,”Journal of Economic Theory, 108, 1—44.



Common Belief Foundations April 20, 2015 37

Heifetz, A., and Z. Neeman (2006): “On the Generic (Im)Possibility of Full Surplus Extraction in Mechanism

Design,”Econometrica, 74, 213—233.

Hellwig, C. (2002): “Public Information, Private Information, and the Multiplicity of Equilibria in Coordination

Games,”Journal of Economic Theory, 107, 191—222.

Hellwig, C., A. Mukerji, and A. Tsyvinski (2006): “Self-Fulfilling Currency Crises: The Role of Interest

Rates,”American Economic Review, 96, 1769—1787.

Izmalkov, S., and M. Yildiz (2010): “Investor Sentiments,”American Economic Journal: Microeconomics, 2,

21—38.

Kajii, A., and S. Morris (1997): “The Robustness of Equilibria to Incomplete Information,”Econometrica, 65,

1283—1309.

Mathevet, L. (2010): “A Contraction Principle for Finite Global Games,”Economic Theory, 42, 539—563.

Mertens, J., and S. Zamir (1985): “Formalization of Bayesian Analysis for Games with Incomplete Information,”

International Journal of Game Theory, 14, 1—29.

Monderer, D., and D. Samet (1989): “Approximating Common Knowledge with Common Belief,”Games and

Economic Behavior, 1, 170—190.

Morris, S. (2014): “Coordination, Timing and Common Knowledge,”Research in Economics, 68, 306—314.

Morris, S., and H. Shin (1998): “Unique Equilibrium in a Model of Self-Fulfilling Currency Attacks,”American

Economic Review, 88, 587—597.

Morris, S., and H. Shin (2001): “Rethinking Multiple Equilibria in Macroeconomics,”NBER Macroeconomics

Annual, 2000, 139—161.

Morris, S., and H. Shin (2003a): “Coordination Risk and the Price of Debt,”European Economic Review, 48,

133—153.

(2003b): “Global Games: Theory and Applications,”in Advances in Economics and Econometrics: Proceed-

ins of the Eight World Congress of the Econometric Society, ed. by M. Dewatripont, L. Hansen, and S. Turnovsky,

pp. 56—114. Cambridge University Press, Cambridge.

(2005): “Heterogeneity and Uniqueness in Interaction Games,” in The Economy as an Evolving Complex

System, III. Santa Fe Institute.

Morris, S., and H. Shin (2012): “Contagious Adverse Selection,”American Economic Journal: Macroeconomics,

4, 1—21.

Morris, S., and H. S. Shin (2007): “Common Belief Foundations in Global Games,” Discussion paper,

http://www.princeton.edu/ smorris/pdfs/cbf.pdf.

Oyama, D., and S. Takahashi (2013): “Generalized Belief Operator and the Impact of Small Probability Events

on Higher Order Beliefs,”Discussion paper, University of Tokyo and National University of Singapore.



Common Belief Foundations April 20, 2015 38

Svennson, L. (2006): “The Social Value of Public Information: Morris and Shin (2002) is actually pro transparency,

not con.,”American Economic Review, 96, 448—452.

van Zandt, T. (2010): “Interim Bayesian Nash Equilibrium on Universal Type Spaces for Supermodular Games,”

Journal of Economic Theory, 145, 249—263.

van Zandt, T., and X. Vives (2007): “Monotone Equilibria in Bayesian Games of Strategic Complementarities,”

Journal of Economic Theory, 134, 339—360.

Weinstein, J., and M. Yildiz (2007): “A Structure Theoem for Rationalizability with Applications to Robust

Predictions of Refinements,”Econometrica, 75, 365—400.


