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ABSTRACT. We re-visit the two-bidder, all-pay auction of Amann and Leininger (1996) allowing for

interdependent values and correlation à la Lizzeri and Persico (2000) and Siegel (2014). We study both

monotone and non-monotone pure strategy equilibria (MPSE and NPSE): First, we show the allocation

and bidding strategies of MPSE can be obtained in the same manner as in the independent private

values environment. For correlated private values, the allocation is the same regardless of correlation.

For common-values, the allocation is determined by the signals’ percentiles. Second, we present three

conditions: local single-crossing, single-crossing and increasing, which are respectively: necessary;

sufficient; necessary and sufficient for the existence of MPSE. Third, we exhibit common-value families

of examples that violate the local single-crossing and thus lack MPSE. We also construct a correlated

private values example, where the slightest amount of correlation breaks down MPSE that exists

under independence. Lastly, we explicitly obtain NPSE for quadratic valuations in cases where no

MPSE exists.
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1. INTRODUCTION

In rent-seeking contests, distinct individuals may entertain different estimates of the prize. Such
estimates maybe of varying precision or accuracy; possibly they maybe interdependent and/or
correlated.

In this paper we model rent-seeking contests as all-pay auctions. Our aim here is limited
to provide a tractable characterization of pure strategy (monotone or not monotone) equilibria
(henceforth MPSE and NPSE) of the (first-price) all-pay auction with two (possibly asymmetric)
players with interdependent valuations and correlated, continuous signals.

Our model can be viewed either as an extension of Amann and Leininger (1996) as we add
correlation and interdependent values, or alternatively, as specialization of Lizzeri and Persico
(2000) to the all-pay auction. It is also closely related to Siegel (2014) who studies a discrete signals
model. However, we study non-monotone equilibria which starkly departs from previous studies
of the all-pay auctio. Araujo et al. (2008) study non-monotonic equilibria in other auction formats
but their assumptions rule out non-monotonic equilibrium in the all-pay auction. A notable
exception is Rentschler and Turocy (2014), who characterize symmetric non-monotone equilibria .

As Siegel (2014), we do not restrict attention to affiliated signals, as in Lizzeri and Persico (2000)
or to independent signals as in, Araujo et al. (2008). We allow for positive or negative correlated
signals. Speaking plainly, affiliation is (mostly) useless – in the context of all-pay auctions with
interdependent valuations. In Lemma 1, we prove that any equilibrium with correlated signals
must also be an equilibrium of some all-pay auction with independent signals (but different
valuations).

After Lemma 1 is established, the characterization of MPSE is a straightforward application of
the recursive algorithm of Amann and Leininger (1996) for the independent private values case.1

The algorithm first solves for the allocation rule or tying function and next computes bid functions.
It can be implemented with any available differential equation solver, which are available in all
computer algebra systems2. Siegel (2014)’s algorithm may be viewed as the analogous version for
discrete type spaces.

In any MPSE, the allocation rule (i.e. the assignment of the object given the signal of the players)
only depends on the players’ expected values for the object conditional on their signals. In
particular: For the correlated private values environment, the allocation rule is the same regardless
of the nature of the correlation in the sense it coincides with the allocation of the independent
private values case with the same marginal distributions. For the common-value environment, the
allocation is dictated by the percentiles of the distribution of the agents’ signals3: when agent 1
gets a signal in the p-percentile, he bids the same as when agent 2 gets a signal in the p-percentile.4

1See also Parreiras (2006) for an application to the first-price auction, common-value, affiliated case.
2See Mathematica, Maple, or for an open-source alternative, see Sage.
3In the context of discrete signals, Siegel (2014) obtain this result.
4Corollary: if signals are conditionally (on the value) independent, winning probabilities of both agents are identical.

Einy et al. (2013) and Warneryd (2013) independently obtain this. They study models where one agent’s signals is

Blackwell’s sufficient for the other’s, which implies condition independence.

http://www.sagemath.org/
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In Section 4, we show economically interesting all-pay auctions have MPSE when signals are
independent but even “small doses” of correlation “break-down” the MPSE. That motivates us
to study non-monotonic equilibria. For the class of quadratic valuations, we provide an explicit
equilibrium strategies of NPSE when no MPSE exists. Discrete pooling (i.e. two or more types
placing the same bid) allows the bidders incentives to be properly aligned without requiring
different tie-break rules to assure existence.

2. THE MODEL

There are two agents, i = 1, 2. Let Vi be the random variable describing the value of the
object for player i. Let X1 and X2 be the agents’ signals. The conditional expected value is
vi(x, y) def

= E[Vi|X1 = x, X2 = y]. The cumulative distribution of Xi is Fi and, Fi|j is the conditional
cumulative distribution of Xi given Xj. The lower-case f denotes the respective probability density
function. Finally, we also define

λ1(x, y) def
= v1(x, y) · fX2|X1

(x|y) and

λ2(x, y) def
= v2(x, y) · fX1|X2

(y|x).

We assume:
CONTINUITY: FXi is absolutely continuous and λi is piecewise continuous.
UNIFORM MARGINALS: Without any loss of generality, Xi ∼ U[0, 1].
FULL SUPPORT & POSITIVE VALUATIONS: For all (x, y) ∈ [0, 1]2, λi(x, y) > 0.

Remark 1. To see uniform marginals does not entail loss of generality: let Si be the original signal,
we always can re-parametrize signals by taking as the new signal, Xi = FSi(Si).

Remark 2. Since marginal distributions are uniform [0, 1], by Baye’s rule, we have
fX1|X2

(x|y) = fX1,X2(x, y) = fX2|X1
(y|x) and consequently, λ2(x,y)

λ1(x,y) =
v2(x,y)
v1(x,y) .

As we are interested in non-monotone equilibria, unlike the previous literature, we do not
necessarily assume λi(x, y) increasing in x.5

In this paper, we assume a tie breaking rule that favors bidder 1. This is done of pure notational
convenience. With two bidders, λi > 0, under any random tie-breaking rule, ties do not occur in
equilibrium.

With interdependent valuations, there is no loss of generality in assuming independent signals
in the context of the all-pay auction as the reasoning below shows.
THE FICTITIOUS AUCTION: Given an all-pay auction, the corresponding fictitious (or auxiliary)
auction is the all-pay auction where signals are independently and uniformly distributed on the
unit interval, and expected conditional valuations are λi(x, y).

Lemma 1. The fictitious auction and the original auction are payoff equivalent.

5See Amann and Leininger (1996), Krishna and Morgan (1997), Lizzeri and Persico (2000), Araujo et al. (2008), and

Siegel (2014).
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Proof of lemma 1. Pick any strategy profile b = (b1(x), b2(y)) then the bidders’ payoffs from the
fictitious auction are:6

Ũ1(b|x) =
∫

{y:b2(y)≤b}
λ1(x, y)dy− b =

∫
{y:b2(y)≤b}

v1(x, y) f2|1(y|x)dy− b = U1(b|x),

Ũ2(b|y) =
∫

{x:b1(x)<b}
λ2(x, y)dx− b =

∫
{x:b1(x)<b}

v2(x, y) f1|2(x|y)dx− b = U2(b|y). �

As a result, best reply correspondences in the fictitious and original auctions coincide, so do
their equilibria sets.

3. MONOTONE EQUILIBRIUM

In this section, we study monotone equilibrium. Without loss of generality, we focus on the
equilibrium bidding strategies that are weakly increasing and have no mass point at any positive
bid.7 The equilibrium bids might have a mass point at zero for one bidder. Note that that a uniform
upper bound b̄ applies for the equilibrium bids of the two bidders. Without loss of generality, we
assume bidder 1’s equilibrium bids have no mass point. Let φ1(b) and φ2(b), b ∈ [0, b̄] denote the
inverse bidding functions. Note that bidder 2’s equilibrium bids might have a mass point at zero.
In this case, we define φ2(0) = supb2(y)=0{y}. The tying function8 Q (or allocation rule) maps the
type of player 1 to the type of player 2 that bids the same in equilibrium, that is Q(φ1(b))

def
= φ2(b).

Note Q(0) = φ2(0).

Proposition 1. The tying function solves the differential equation,

Q′(x) =
v2(x, Q(x))
v1(x, Q(x))

and Q(1) = 1.

Also b1(x) =
∫ x

0 λ2(z, Q(z)) dz, ∀x ∈ [0, 1], and b2(y) =
∫ y

Q(0) λ1(Q−1(z), z) dz, ∀y ∈ [Q(0), 1].

Proof. First-order conditions for the two bidders’ optimization problems are respectively

λ1(x, φ2(b)) φ′2(b)− 1 = 0, ∀x, and λ2(φ1(b), y) φ′1(b)− 1 = 0, ∀y ≥ φ2(0). (3.1)

∀b ∈ [0, b̄], we have x = φ1(b) and y = φ2(b) at equilibrium. (3.1) gives

λ1(φ1(b), φ2(b)) φ′2(b)− 1 = 0

and λ2(φ1(b), φ2(b)) φ′1(b)− 1 = 0.

From Q(φ1(b))
def
= φ2(b), we have Q′(φ1(b)) ·φ′1(b) = φ′2(b). Thus Q′(φ1(b)) =

φ′2(b)
φ′1(b)

= λ2(φ1(b),φ2(b))
λ1(φ1(b),φ2(b))

,

which leads to Q′(x) = λ2(x,Q(x))
λ1(x,Q(x)) . Finally, remark 2 implies Q′(x) = v2(x,Q(x))

v1(x,Q(x)) .
Together with the boundary condition, Q(·) can be pinned down.
The first order conditions can be rewritten as

b′1(x) = λ2(x, Q(x)),

6Recall remark 2 and the tie-breaking rule that favors bidder 1.
7Analogous results hold for decreasing equilibrium.
8See Amann and Leininger (1996) or Parreiras (2006).
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which leads to
b1(x) =

∫ x

0
λ2(z, Q(z)) dz, ∀x ∈ [0, 1].

Similarly, we have9

b2(y) =
∫ y

Q(0)
λ1(Q−1(z), z) dz, ∀y ∈ [Q(0), 1].

�

Proposition 1 says that valuation interdependence, as opposed to the signals’ correlation, is the
only factor that matters for determining the tying function. Below, we illustrate this remark in a
couple of interesting environments:

Corollary 1. CORRELATED PRIVATE VALUES. If the signals’ marginal distributions remains the same but
the joint distribution (and possibly correlation) of signals varies. In any monotone equilibrium, the tying
function remains the same as in the independent private values environment.

Corollary 2. COMMON-VALUES. In any monotone equilibrium, the tying function is the identity.10

Note that with common values, we have Q(0) = 0. Without re-scaling and with common values,
the tying function is Q(x) = F−1

2 (F1(x)). In the statistical literature, this Q is also known as
quantile-quantile plot, or simply Q−Q plot.

To establish existence (or not) of a monotone equilibrium, we define for player 1:
(LOCAL SINGLE CROSSING) For all x, λ1(·, Q(x)) is non-decreasing in neighborhood of x.
(INCREASING)11 For all x, z ∈ [0, 1],

∫ Q(x)
Q(z)

(
λ1(x, y)− λ1(Q−1(y), y)

)
dy ≥ 0.

(SINGLE CROSSING) For all x̂ < x < x̃: λ1(x̂, Q(x)) < λ1(x, Q(x)) < λ1(x̃, Q(x)). And similarly
define the analogous conditions for player 2.12 We say a condition holds iff it holds for both players.

Proposition 2. LOCAL SINGLE-CROSSING is necessary, SINGLE-CROSSING is sufficient and INCREAS-
ING is necessary and sufficient for b1(x) =

∫ x
0 λ2(z, Q(z))dz and

b2(y) = b1(Q−1(y)) be an increasing equilibrium.

Proof. Recall that marginals are uniformly distributed on [0, 1], i.e. f1(x) = f2(y) = 1. Thus, the
function λ1(·, ·) satisfies LOCAL SINGLE-CROSSING if and only if v1(x, φ2(b)) f1,2(x, φ2(b)) is non-
decreasing in x at x = φ1(b) where f1,2 denotes the joint density function of (x, y). Differentiating
the identity, v1(φ1(b), φ2(b)) f1,2(φ1(b), φ2(b))φ′2(b)− 1 = 0, with respect to b, and assuming φ′1 > 0,
the local single-crossing at x = φ1(b) is equivalent to the second-order condition for 1’s optimal
bid. Clearly, local single crossing is necessary.

The argument to establish SINGLE-CROSSING is sufficient is standard.13

9For y ∈ [0, Q(0)], we set Q−1(y) ≡ 0.
10Siegel (2014) obtains this result for the discrete signals case.
11Araujo et al. (2008) consider a version of INCREASING for the symmetric, independent signals case.
12For player 2, the respective conditions are: (LOCAL SINGLE CROSSING) For all y, λ2(Q−1(y), ·) is non-decreasing

in neighborhood of y. (INCREASING) For all y, z ∈ [0, 1],
∫ Q−1(y)

Q−1(z) (λ2(x, y)− λ2(x, Q(x))) dx ≥ 0. (SINGLE CROSSING)

For all ŷ < y < ỹ: λ2(Q−1(y), ŷ) < λ2(Q−1(y), y) < λ2(Q−1(y), ỹ).
13See Krishna and Morgan (1997, p. 351), Lizzeri and Persico (2000, p. 104) or Athey (2001).
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Let U1(b1(x̃)|x) denotes bidder 1’s expected payoff when his type is x and he bids like type x̃.
We have ∀x, x̃ ∈ [0, 1],

U1(b1(x̃)|x) =

Q(x̃)∫
0

λ1(x, y)dy− b2(Q(x̃)) =
Q(x̃)∫
0

λ1(x, y)dy−
Q(x̃)∫

Q(0)

λ1(Q−1(y), y)dy

=

Q(0)∫
0

λ1(x, y)dy +

Q(x̃)∫
Q(0)

[
λ1(x, y)− λ1(Q−1(y), y)

]
dy.

By SINGLE-CROSSING, y < Q(x) implies λ1(x, y)− λ1(Q−1(y), y) > 0 and conversely, y > Q(x)
implies λ1(x, y)− λ1(Q−1(y), y) < 0. Therefore, x̃ = x maximizes U1(b1(x̃)|x).

Let U2(b2(ỹ)|y) denotes bidder 2’s expected payoff when his type is y and he bids like type ỹ.
Note when ỹ ∈ [0, Q(0)], for all y, we have U2(b2(ỹ)|y) = U2(0|y) = 0. Now, for all y ∈ [0, 1] and
ỹ ∈ (Q(0), 1], we have:

U2(b2(ỹ)|y) =

Q−1(ỹ)∫
0

λ2(x, y)dx− b1(Q−1(ỹ)) =

Q−1(ỹ)∫
0

λ2(x, y)dx−
Q−1(ỹ)∫

0

λ2(x, Q(x))dx

=

Q−1(ỹ)∫
0

[λ2(x, y)− λ2(x, Q(x))] dx.

By SINGLE-CROSSING, when x < Q−1(y), we have λ2(x, y) − λ2(x, Q(x)) > 0. In the same
manner, when x > Q−1(y), we have λ2(x, y) − λ2(x, Q(x)) < 0. Therefore, ỹ = y maximizes
U2(b2(ỹ)|y).

Finally to establish INCREASING is necessary and sufficient, we write the difference in bidder
1’s payoffs U1(b1(x̃)|x)−U1(b1(x)|x) =

∫ Q(x̃)
Q(x)

[
λ1(x, y)− λ1(Q−1(y), y)

]
dy. The incentive com-

patible condition, for all x and x̃, U1(b1(x̃)|x)−U1(b1(x)|x) ≤ 0, is equivalent to INCREASING.
Moreover, as U1(0|x) ≥ 0, the individual rational constrained is satisfied. In the same manner, for

bidder 2, U2(b2(ỹ)|y)−U2(b2(y)|y) =
∫ Q−1(ỹ)

Q−1(y) [λ2(x, y)− λ2(x, Q(x))] dx. As before, the incentive
compatible condition, for all y and ỹ, U2(b2(ỹ)|y)−U2(b2(y)|y) ≤ 0, is equivalent to INCREASING.
Lastly, U2(0|y) = 0 implies individual rationality is also satisfied. �

Often14 the following monotonicity assumption, or one of its variants, is used:
(M) λi(x, y) is increasing in x for all y. We have M⇒ SINGLE CROSSING⇒ INCREASING⇒ LO-
CAL SINGLE CROSSING.

In section C of the Appendix, we characterize explicitly (in the context of quadratic valuations)
the parameter space regions where each of the conditions in proposition 2 holds.

4. NON-EXISTENCE OF MONOTONE EQUILIBRIUM

When signals are correlated, the all-pay auction may lack monotone equilibria. Even for ”small
doses” of correlation, provided the support of signals is sufficiently large.

14See Krishna and Morgan (1997), Lizzeri and Persico (2000), Araujo et al. (2008) or Siegel (2014)
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Example 1. (CORRELATED PRIVATE VALUES) The signals (X1, X2) follow a truncated, symmetric,
bivariate normal distribution specified by (µ, σ2, ρ) and truncation points µ − M and µ + M.
Valuations are vi(x) = exp (h(xi)) for i = 1, 2 where h is a given increasing function.

Proposition 3. If h′(x) < ρ(µ−x)
σ2(1+ρ)

for some x, there is no increasing equilibrium for example 1.

Proof. As players are symmetric, by Proposition 1, if a monotone, pure strategy equilibrium exists
then it must be symmetric. However, using the fact that Xj|Xi ∼ N

(
(1− ρ)µ + ρXi, (1− ρ2)σ2)

we obtain
∂

∂x
vi(x, y) · fXj|Xi

(y|x)
∣∣∣∣
y=x
≥ 0⇔ h′(x) ≥ ρ

σ2(1 + ρ)
(µ− x). �

As a result, the symmetric monotone equilibrium is not robust to the introduction of a small
degree of correlation for a family of examples:

Corollary 3. Assume ‖h′‖∞ < K then for any ρ > 0 there is M0 > 0 such that the private values model
of example 1 has no monotone equilibrium for M > M0.

For common-values we have similar non-existence problems. Consider a setting as in Matthews
(1984): signals and the value are affiliated; signals are unbiased estimates of the value; condi-
tional on the value, signals are independent; the parameter θ measures the precision of players’
information.

Example 2. (COMMON-VALUE) The all-pay auction has no monotone equilibrium if:

(1) The value is lognormal , V ∼ ln N (µ, τ−1), and conditional on the value, signals are the

value plus some additive (normal) noise, Si|V
iid∼ N (V, θ−1); or

(2) The value follows the Pareto distribution , V ∼ Pareto(ω, α), and conditional signals are

the value with a multiplicative (beta distributed) noise, Si|V
iid∼ V · B(θ, 1) · θ+1

θ ; or
(3) The value follows an inverse gamma distribution, V ∼ Inv−Γ(α, β); and conditional signals

follow an exponential law, Si|V
iid∼ Exp(θ V−1) · θ−1.

See Appendix A for a proof of Example 2.

5. NON-MONOTONE EQUILIBRIA

Consider a pure strategy equilibrium profile in which every bid strategy, bi(·) with i = 1, 2, is
piecewise monotone, that is, b′i(·) (which exists almost everywhere in this case) changes sign a
finite number of times15. We partition player 1’s type space into finite intervals [0, 1] =

⋃n1
k=1 T1

k

such these intervals are maximal with respect the property each restriction b1|T1
k
(·) is monotone.

For exposition purposes, let’s focus on the case where b1(·) is increasing in odd intervals and
decreasing otherwise. The cases where one or both of the b1(·) is increasing in even intervals are
analogous.

Now define the kth local inverse bid function of player 1: φ1
k : b−1

1 (T1
k )→ T1

k . For player 2, we
also define everything in an analogous manner so we can express the payoff of a type x of player i

15This is related to the ’limited complexity strategies’ of Athey’s 1997 working-paper version of Athey (2001)
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x

b(x)

β

φ1(β) φ2(β)

b(x) =

−2
3 x3 + x2 + 3x if x ≤ 1

2
5
3 +

2
3 x3 − x2 − 3x otherwise.

FIG. 1. A piecewise monotone strategy and its local inverse bids

for the symmetric model with v(x, y) = 3− x− y(3− 4x + 2x2)

who bids b as:16

U1(b|x) =

[
n2
2 ]

∑
k=0

φ2
2k+1(b)∫

φ2
2k(b)

λ1(x, y)dy

− b,

where [n2
2 ] denotes the largest integer that is smaller or equal to n2

2 . By convention, φ2
0(b) = 0, and

for even n2, φ2
n2+1(b) = 1.

The main idea to solve for non-monotonic equilibria is to construct (and solve for) the pooling
functions, which are similar to the tying function we saw on section 3. For expositional purposes17,
let’s assume all local inverse bids are well-defined at b. For x ∈ φi

1(R+), we define Pi
k(x) def

=

φk

(
bi(x)

)
, that is Pi

k maps the smallest type of player i to the kth type (in an increasing order) that
bids the same as type x of player i. Unlike the tying function, a pooling function maps types of the
player to other types of the same player.

To make it more concrete, let’s restrict attention to the symmetric case (λ1(x, y) = λ2(y, x)) and
also assume that (at most) only two types are pooling in a symmetric equilibrium (so we write
P = P1 = P2). Under certain regularity conditions, the pooling function solves the differential
equation18:

P′(x) =
λ2(x, x)− λ2(x, P(x))

λ2(P(x), x)− λ2(P(x), P(x))
.

Once we solve for P we can reduce the first-order conditions to a single ODE. In general, it is
hard to obtain a closed form solution for P. Moreover, the boundary conditions are not obvious,
unlike in the monotone case, because now, one needs to characterize the region where pooling
occurs. Despite the hurdles, in the next subsection we show how to compute the non-monotone
equilibrium for the case of quadratic valuations.

16For notational convenience, we assume b falls in the right range so the inverse biddign functions are well defined.
17See Appendix B for a more detailed and formal exposition.
18See Appendix B, proof of corollary 4.
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x

b

b(x) =


393
250 −

2
3 x3 + 2

5 x2 + 8x if 0 ≤ x ≤ 1
5

719
150 +

2
3 x3 − 2

5 x2 − 8x if 1
5 ≤ x ≤ 2

5
19
6 + 4

3 x3 − 1
2 x2 − 4x if 2

5 ≤ x ≤ 1.

FIG. 2. Case A = −1, C = −3, D = 1, F = 4.

5.1. Quadratic Preferences. In this section we construct non-monotone equilibrium displaying
mirror-symmetry. That is, the pooling function is a translation composed with a reflection: P(x) =
c− x for some suitable constant c. We assume:

QUADRATIC MODEL Players are symmetric, wlog. signals are independent and uniformly
distributed in [0, 1]. Player i’s value v(x, y) = Ax2 + By2 + Cxy + Dx + Ey + F, where x is the
signal of player i and y is the signal of −i. We assume F is sufficient large so that19, v(x, y) >

0, ∀ (x, y) ∈ [0, 1]2.
Notice we departed from our previous convention: hereafter if signals are (x, y), player 1’s value

is v(x, y) and player 2’s value is v(y, x). Although the model allows for common-values, it does
not assume it.

Some preliminaries and notation: Let c def
= −2D

2A+C and notice it is the unique solution of:

v(x, x) + v(x, c− x) = v(c− x, x) + v(c− x, c− x).

We also need the auxiliary function, λ̂(x, y) def
= v(x, y) + v(x, c− y).

Remark 3. The function λ̂(x, y) satisfies λ̂(x, y) = λ̂(c− x, y) for all x and y.

Remark 4. The derivative λ̂x(x, y) is linear in x with λ̂x(c/2, y) = 0 for all y, and λ̂xx = 4A.

In the following propositions, the equilibrium refers to the symmetric equilibrium20 bidding
function where types c/2− t and c/2 + t pool that is, b(c/2− t) = b(c/2 + t) for t ∈ (0, t], for
some t > 0.

19Notice this is assumption FULL SUPPORT & POSITIVE VALUATIONS.
20We conjecture the equilibrium is unique but we dot not claim uniqueness.



10

Proposition 4. If A, C < 0 < 2D < −2A − C, the equilibrium is bell-shaped for types in [0, c] and
decreasing for types in [c, 1]. Moreover, it satisfies b(0) =

∫ 1
c v(x, x)dx and,

b(x) =


b(0) +

∫ x
0 λ̂(y, y)dy if 0 ≤ x ≤ c/2,

b(0) +
∫ c−x

0 λ̂(y, y)dy if c/2 ≤ x ≤ c, and∫ 1
x v(y, y)dy if c ≤ x ≤ 1.

.

Proof. Since λ̂(x, y) > 0, b(·) given above is increasing in [0, c/2] and decreasing in [0, 1]. Let’s
verify that b(·) is indeed a NPSE by a direct mechanism approach. Let U(z|x) be the payoff of a
player with type x who bids as if his type were z. Using the expression of b(·), we have

U(z|x) =


U(c|x) +

∫ z
0

(
λ̂(x, y)− λ̂(y, y)

)
dy if 0 ≤ z ≤ c/2,

U(c− z|x) if c/2 < z < c, and∫ 1
z (v(x, y)− v(y, y)) dy if c ≤ z ≤ 1.

We want to show that x = argmax
z

U(z|x) for all x. Of course, the first-order condition is always

satisfied since Uz(x|x) = 0. Moreover, as the direct mechanism is monotone and given the first-
order condition holds, the single crossing condition, Uxz(z|x) > 0 for all x, is sufficient to guarantee
incentive compatibility (i.e. no type wants to deviate to z). Unfortunately Uxz(z|x) > 0 does not
always hold. Nonetheless, we still can use single-crossing arguments in many cases, as we show
below.

(1) Claim: Types x in [0, c] do not want to deviate to z in [0, c]. To prove the claim notice that,

Uxz(z|x) =


λ̂x(x, z) if 0 ≤ z < c/2,

−λ̂x(x, c− z) if c/2 < z < c, and

−vx(x, z) if c < z ≤ 1.

and due to remark 4 and the fact A < 0, we also have:

x̂ <
c
2
< x̃ ⇒ λ̂x(x̂, z) > λ̂x(c/2, z) = 0 > λ̂x(x̃, z) for all z,

which proves Uxz(z|x) > 0 for x, z ∈ [0, c/2). As a result, no type in [0, c/2) has an incentive to
deviate to z ∈ [0, c/2]: given the first-order condition, Uz(z|x) = 0 for z = x, if some type x where
to deviate to z, the deviation would be not optimal since either Uz(z|x) > 0 if z < x or, Uz(z|x) < 0
if z > x.

Moreover, since U(z|x) = U(c− z|x) for z ∈ [c/2, c], it also follows that no type in [0, c] has an
incentive to deviate to z ∈ [0, c].

(2) Claim: No type x ∈ [0, c) wants to deviate to z in [c, 1]. Note that U(x|x) ≥ U(z|x), ∀x ∈
[0, c), ∀z ∈ [0, c]. To establish the claim, we only need to show that Uz(z|x) < 0 for all z ≥ c > x.
And for z ≥ c > x, we have Uz(z|x) = v(z, z)− v(x, z) = (z− x)[A(z + x) + Cz + D]

< (z− x)[(A + C)c + D] = (z− x)[(A + C) 2D
|2A+C| + D] < (z− x)[(A + C) D

|A+C| + D] = 0.
(3) Claim: No type x ∈ [c, 1] wants to deviate to z in [c, 1]. To prove this claim, we shall show the

single crossing holds in the monotonic region, Uxz(z|x) > 0 for all z ∈ [c, 1], thus no type has an
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146
375 −

2
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5 x2 − 2x if 0 ≤ x ≤ 1
5

−146
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2
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5 ≤ x ≤ 2

5

− 22
125 +

4
3 x3 + 1

2 x2 + x if 2
5 ≤ x ≤ 1.

FIG. 3. Case A = 1, C = 3, D = −1, F = 1.

incentive to deviate to z ∈ [c, 1]:

−vx(x, z) = −2Ax− D− Cz ≥ −(2A + C)c− D = D > 0.

As a result, no type wants to deviate to z ∈ [c, 1].
(4) Claim: Types x in [c, 1] do not want to deviate to z ∈ [0, c/2]. To prove the claim, it

suffices to show that Uz(z|x) < 0, for all z in [0, c/2) since U(x|x) ≥ U(c|x) = U(0|x). Note that
Uz(z|x) = λ̂(x, z)− λ̂(z, z) = (x− z)[2A(x + z) + C · c + 2D] ≤ (x− z)[2A · c + C · c + 2D] = 0.
It follows types x in [c, 1] also do not want to deviate to z ∈ [c/2, c] as U(z|x) = U(c− z|x) for
z ∈ [c/2, c].

So far we proved the direct mechanism induced by the bid functions of the proposition is
incentive compatible. It is also individual rational since U(1|x) = 0 for all x. �

Proposition 5. If −2A − C < 2D < 0 < A, C the equilibrium is U-shaped for types in [0, c] and
increasing for types in [c, 1]. Moreover, it satisfies:

b(x) =


∫ c/2

x λ̂(z, z)dz if 0 ≤ x ≤ c/2,∫ x
c/2 λ̂(z, z)dz if c/2 ≤ x ≤ c, and

b(0) +
∫ x

c v(z, z)dz if c ≤ x ≤ 1.

.

Proof. The proof is analogous to the previous one. Again as λ̂(·) > 0 and v(·) > 0, the proposed
bid function is decreasing in [0, c/2] and increasing in [c/2, 1]. Let U(z|x) be the payoff of a player
with type x who bids as if his type were z. Using the expression of b(·), we have

U(z|x) =


∫ c−z

z v(x, y)dy−
∫ c/2

z λ̂(y, y)dy if 0 ≤ z < c/2,∫ z
c−z v(x, y)dy−

∫ c/2
c−z λ̂(y, y)dy if c/2 < z < c, and∫ z

0 v(x, y)dy− [b(0) +
∫ z

c v(y, y)dy] if c < z ≤ 1.
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We want to show that x = argmax
z

U(z|x) for all x. Note

Uz(z|x) =


λ̂(z, z)− λ̂(x, z) if 0 ≤ z < c/2,

λ̂(x, z)− λ̂(c− z, c− z) if c/2 < z < c, and

v(x, z)− v(z, z) if c < z ≤ 1.

Once more, the first-order condition is always satisfied since Uz(x|x) = 0.
Now let’s consider,

Uxz(z|x) =


−λx(x, z) if 0 ≤ z < c/2,

λx(x, z) if c/2 < z < c, and

vx(x, z) if c < z ≤ 1.

By remark 4, and the fact A < 0, we have:

x̂ <
c
2
< x̃ ⇒ λ̂x(x̂, z) < λ̂x(c/2, z) = 0 < λ̂x(x̃, z) for all z,

which proves Uxz(z|x) > 0 for x, z ∈ [0, c/2).
(1) Claim: Types x in [0, c] do not want to deviate to z in [0, c]. Consider a type in [0, c/2). Based

on similar arguments as in the proof of Proposition 4, these types do not want to deviate in this
interval. Again, as U(z|x) = U(c− z|x) for any z ∈ [0, c/2] and all x, we conclude types in [0, c]
do not want to deviate to [0, c]

(2) Claim: No type x ∈ [0, c) wants to deviate to z in [c, 1]. To establish the claim, we only
need to show that Uz(z|x) < 0 if z ≥ c > x. For z ≥ c, we have Uz(z|x) = v(x, z)− v(z, z) =

−(z− x)[A(z + x) + Cz + D] < −(z− x)[(A + C)c + D] = −(z− x)[(A + C) 2|D|
2A+C + D]

< (z− x)[(A + C) |D|A+C + D] = 0.
(3) Claim: No type x ∈ [c, 1] wants to deviate to z in [c, 1]. To prove this claim, we shall show the

single crossing holds in the monotonic region, Uxz(z|x) > 0 for all z ∈ [c, 1], thus no type has an
incentive to deviate to z ∈ [c, 1]:

vx(x, z) = 2Ax + D + Cz ≥ (2A + C)c + D = |D| > 0.

As a result, no type wants to deviate to z ∈ [c, 1].
(4) Claim: Types x in [c, 1] do not want to deviate to z ∈ [0, c/2]. To prove the claim, it suffices

to show that Uz(z|x) < 0, for all z ∈ [0, c/2) and x ∈ [c, 1], since U(x|x) ≥ U(c|x) = U(0|x).
Note that Uz(z|x) = λ̂(z, z) − λ̂(x, z) = −(x − z)[2A(x + z) + C · c + 2D] > −(x − z)[2A · c +
C · c + 2D] = 0. It follows that types x in [c, 1] do not want to deviate to z ∈ [c/2, c] since
U(z|x) = U(c− z|x) for z ∈ [c/2, c].

Individual rationality always holds since U(x|x) ≥ U(c/2|x) = 0. �
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FIG. 4. Case A = −1, C = −3, D = 3, F = 1.

Proposition 6. If A, C < 0 < −2A− C < 2D < −4A− 2C, the equilibrium is increasing for types in
[0, c− 1] and bell shaped for types in [c− 1, 1]. Moreover,

b(x) =


∫ x

0 v(y, y)dy if 0 ≤ x ≤ c− 1,

b(c− 1) +
∫ x

c−1 λ̂(y, y)dy if c− 1 < x ≤ c/2, and

b(c− 1) +
∫ 1

x λ̂(y, y)dy if c/2 ≤ x ≤ 1.

.

Proof. The proof is similar to the previous cases. In the direct mechanism induced by b(·), we have:
z range U(z|x) Uz(z|x) Uxz(z|x)

[0, c−1)
∫ z

0 (v(x, y)− v(y, y)) dy v(x, z)− v(z, z) vx(x, z)

(c−1, c/2) U(c−1|x) +
∫ z

c−1

(
λ̂(x, y)− λ̂(y, y)

)
dy λ̂(x, z)− λ̂(z, z) λ̂x(x, z)

(c/2, 1] U(c−z|x) λ̂(c−z, c−z)− λ̂(x, c−z) −λ̂x(x, z).
(1)

Claim: Types x in [0, c− 1] do not want to deviate to z in [0, c− 1]. We only need to show that
Uxz = vx(x, z) > 0,∀x, z ∈ [0, c− 1]. Note that vx(x, z) = 2Ax + D + Cz ≥ (2A + C)(c− 1) + D =

−(2A + C)− D > 0.
(2) Claim: Types x in [0, c − 1] do not want to deviate to z in [c/2, 1]. Note that we have

U(x|x) ≥ U(c− 1|x) = U(1|x). To establish the claim, it suffices to show that Uz(z|x) ≥ 0 for
x in [0, c− 1] and z in [c/2, 1]. Uz(z|x) = λ̂(x, z)− λ̂(z, z) = (x − z)[2A(x + z) + C · c + 2D] >

(x− z)[2A · c + C · c + 2D] = 0. It further follows that types x in [0, c− 1] do not want to deviate
to z in [c− 1, c/2] as U(z|x) = U(c− z|x) for z in [c− 1, c/2].

(3) Claim: Types x in [c− 1, c/2] do not want to deviate to z in [c− 1, 1]. It suffices to show types
x in [c− 1, c/2] do not want to deviate to z in [c− 1, c/2]. For this purpose, we only need to show
that Uxz ≥ 0 for x, z ∈ [c− 1, c/2].

Since A < 0, by remark 4 λ̂x(x, ·) > 0 if x ∈ [c− 1, c/2). Thus no types x in [0, c/2] have a
profitable deviation in [c − 1, c/2]. Again, as U(z|x) = U(c − z|x) for z ∈ [c − 1, c/2], we can
conclude that, types in [c− 1, 1] do not have profitable deviations in [c− 1, 1].
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FIG. 5. Case A = 1, C = 3, D = −3, F = 1.

(4) Claim: Types x in [c − 1, c/2] do not want to deviate to z in [0, c − 1]. Note U(x|x) ≥
U(c − 1|x). It suffices to show Uz(z|x) > 0 for x in [c − 1, c/2] and z in [0, c − 1). Uz(z|x) =

v(x, z)− v(z, z) = (x− z)[A(z + x) + Cz + D] ≥ (x− z)[A(c− 1 + c/2) + C(c− 1) + D]

> (x− z)[A(c/2 + c/2) + C(c/2) + D] = 0. For the same reason, types x in [c/2, 1] do not want
to deviate to z in [0, c− 1]. �

Proof. We need,

Uxz(z|x) =


−vx(x, z) if 0 ≤ z ≤ c− 1,

−λ̂x(x, z) if c− 1 ≤ z ≤ c/2,

λ̂x(x, z) if c/2 ≤ z ≤ 1,

Once more, we require the single-crossing, Uxz > 0, to hold for z ∈ [0, c − 1] and all x. Thus,
−vx(x, z) = −2Ax − D − Cz ≥ −2A− D + Cz ≥ −2A− D −max(0, C(c− 1)) ≥ −2A− D −
max(0,−C 2D+2A+C

2A+C ) > 0. As before, the inequalities follow directly from the proposition’s as-
sumptions.

Since A > 0, by remark 4, λ̂x(x, ·) < λ̂x(c/2, ·) = 0 if x ∈ [c− 1, c/2). Thus, types x in [0, c/2]
do not have profitable deviations in [c− 1, c/2]. Again, as U(z|x) = U(c− z|x) for z ∈ [c− 1, c/2],
we can conclude that, types in [c− 1, 1] do not have profitable deviations in [c− 1, 1]. �

Proposition 6’s dual is:
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Proposition 7. If −4A− 2C < 2D < −2A− C < 0 < A, C the equilibrium is decreasing for types in
[0, c− 1] and U-shaped for types in [c− 1, 1]. Moreover,

b(x) =


∫ c−1

x v(y, y)dy +
∫ c/2

c−1 λ̂(y, y)dy if 0 ≤ x ≤ c− 1,∫ c/2
x λ̂(y, y)dy if c− 1 ≤ x ≤ c/2, and∫ x
c
2

λ̂(y, y)dy if c/2 ≤ x ≤ 1.

.

Proof. The proof is similar to the previous cases,

U(z|x) =


∫ 1

z v(x, y)dy− [
∫ c−1

z v(y, y)dy +
∫ c/2

c−1 λ̂(y, y)dy] if 0 ≤ z ≤ c− 1,∫ c−z
z v(x, y)dy−

∫ c/2
z λ̂(y, y)dy if c− 1 ≤ z ≤ c/2,

U(c− z|x) if c/2 ≤ z ≤ 1,

and so, z range Uz(z|x) Uxz(z|x)

[0, c−1) −v(x, z) + v(z, z) −vx(x, z)

(c−1, c/2) −λ̂(x, z) + λ̂(z, z) −λ̂x(x, z)

(c/2, 1] λ̂(x, c−z)− λ̂(c−z, c−z) λ̂x(x, z)

(1) Claim: Types x in [0, c − 1] do not want to deviate to z in [0, c − 1]. We only need to
show that Uxz = −vx(x, z) > 0,∀x, z ∈ [0, c − 1]. Note that −vx(x, z) = −[2Ax + D + Cz] ≥
−[(2A + C)(c− 1)]− D = −(2A− C)c + (2A + C)− D = (2A + C) + D > 0.

(2) Claim: Types x in [0, c− 1] do not want to deviate to z in [c− 1, c/2]. Note that we have
U(z|x) ≥ U(c− 1|x). To establish the claim, it suffices to show that Uz(z|x) ≤ 0 for x in [0, c− 1]
and z in [c− 1, c/2]. Uz(z|x) = −λ̂(x, z) + λ̂(z, z) = (z− x)[2A(x + z) +C · c+ 2D] < (z− x)[2A ·
c + C · c + 2D] = 0. It further follows that types x in [0, c− 1] do not want to deviate to z in [c/2, 1]
as U(z|x) = U(c− z|x) for z in [c− 1, c/2].

(3) Claim: Types x in [c/2, 1] do not want to deviate to z in [c/2, 1]. Since A > 0, by remark
4, λ̂x(x, ·) > λ̂x(c/2, ·) = 0 if x ∈ (c/2, 1], which proves Uxz(z|x) > 0 for x, z ∈ (c/2, 1]. Thus,
types x in [c/2, 1] do not have profitable deviations in [c/2, 1]. Again, as U(z|x) = U(c− z|x) for
z ∈ [c− 1, c/2], we conclude types in [c− 1, 1] do not have profitable deviations in [c− 1, 1].

(4) Claim: Types x in [c − 1, c/2] do not want to deviate to z in [0, c − 1]. Note U(x|x) ≥
U(c− 1|x) for x ∈ [c− 1, c/2]. To establish the claim, we show that Uz(z|x) > 0 for x in [c− 1, c/2]
and z in [0, c− 1): Uz(z|x) = −v(x, z) + v(z, z) = −(x− z)[A(z + x) + Cz + D] ≥ −(x− z)[A(c−
1 + c/2) + C(c− 1) + D] >

> −(x − z)[A(c/2 + c/2) + C(c/2) + D] = 0. It further follows that types x in [c/2, 1] do not
want to deviate to z in [0, c− 1]. �

6. CONCLUDING REMARKS

We characterized monotone equilibrium of all-pay auctions in the continuous signals case,
allowing for correlation and interdependent values.
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We showed the monotone equilibrium may fail to be robust to arbitrarily small degrees of
correlation. Motivated by that finding, we explicitly obtain non-monotone equilibrium for para-
metric families (i.e. quadratic valuations). For simplicity we considered the symmetric case, but
it is possible to extend the results for the asymmetric case. We can also extend our results to
allow for polynomial valuations, however, unlikely the quadratic case, the parameter space where
mirror-symmetry non-monotone equilibria exists is not open.

The existence of pure strategy equilibria, however, remains an open question. Govindan and
Wilson (2010) prove existence when players use behavioral strategies (i.e. conditional on the signal
they choose a distribution over bids).
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APPENDIX A. COMMON VALUES EXAMPLES

Here we prove the common values models of example 2 lack monotone equilibria. As before, it
suffices to show that for some x the local-single crossing condition is violated. So we first compute
the conditional expected values and the corresponding conditional densities:

V S1|V E[V|S1 = x, S2 = y] fS2|S1
(y|x)

ln N (µ, τ−1) N (V, θ−1) exp
(

τµ+θ x+θ y+ 1
2

τ+2θ

)
N
(

τµ + θ x
τ + θ

,
τ + 2θ

θ(τ + θ)

)
Pareto(ω, α) V · B(θ, 1) · θ+1

θ
θ+1

θ

α + 2θ

α + 2θ − 1
max(ω, x, y)

(α + θ)θ

α + 2θ

ω(α+θ)1[x<ω] x(α+θ−2)1[x>ω] yθ−1

max(ω, x, y)α+2θ

Inv−Γ(α, β) Exp(θ V−1) · θ−1 Γ(α + 2θ − 1)
Γ(α + 2θ)

(x + y + β)
Γ(α + 2θ)

Γ(α + θ)Γ(θ)
yθ−1 (x + β)α+θ

(x + y + β)α+2θ

For the Lognormal/Normal model, v1(x, y) · fX2|X1
(y|x) = exp

(
τµ+θ x+θ y+ 1

2
τ+2θ −

(
y− τµ+θ x

τ+θ

)2

2 τ+2θ
θ(τ+θ)

)
and so sign

∂

∂x
v1(x, y) · fX2|X1

(y|x)
∣∣∣∣
y=x

= sign (−µτθ + τθx + τ + θ), which is negative for x <

M0 for some M0.
For the Pareto/Beta model, let’s take x > y > ω so v1(x, y) · fX2|X1

(y|x) = (θ+1)(α+2θ)
α+2θ−1 · α+θ

α+2θ ·
yθ−1

xθ+1 ,
which is clearly decreasing in x for all y.

For the Inverse Gamma/Exponential model, v1(x, y) · fX2|X1
(y|x) = Γ(α+2θ−1)yθ−1

θΓ(α+θ)Γ(θ) ·
(x+β)α+θ

(x+y+β)α+2θ−1 ,

which is also decreasing in x when θ > 1 and x > M0 for some M0.

APPENDIX B. POOLING FUNCTIONS

The set of local inverse bids of player 1 that are well defined at b are I(b) =
{

k : b ∈ b1(I1
k )
}

. We
similarly define J(b) for player 2; and write ni(b)

def
= #I(b) and nj(b)

def
= #J(b) for the number of

local inverse bids that are necessary to completely describe the system of first-order conditions
at b. We also need to re-label indexes: I(b) = {i1, i2, . . . , in1} and J(b) = {j1, j2, . . . , jn2} in order

to describe the matrices: Λ1(b) and Λ2(b) with entries given by Λ1
r,c(b) = λ1

(
φ1

ir(b), φ2
jc(b)

)
and

Λ2
r,c(b) = λ2

(
φ1

ic(b), φ2
jr(b)

)
.

Definition 1. A piecewise-monotone equilibrium b is said regular at b if n1(b) = n2(b) < +∞ is
constant in a neighborhood21 of b, and Λ1(b) and Λ2(b) are full-rank. In this case, we call b a
regular point and say the equilibrium is regular if almost all b are regular.

Any monotone equilibrium is regular. Without regularity, there is little hope to pin-down the
equilibrium using the first-order approach. Without regularity, the differential system correspond-
ing to the FOCs is undetermined.

When only two types are pooling, the system is considerably simpler:

Lemma 2. Consider a symmetric equilibrium that is regular at b, with n1(b) = n2(b) = 2. Its correspond-
ing pooling functions satisfy:

21In a regular equilibrium, ni(b) may vary with b but it can take at most a countable number of values.
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∂

∂y
P2

k (x) = (−1)jk−j1

∣∣L1
k(x)

∣∣∣∣L1
1(x)

∣∣ ,
where the (r, c)− entry of the matrix L1

k is λ1(P1
ir(x), P2

jc(y)) if c , k and 1 for all r when c = k.

Proof. The first-order condition for type x of player 1 who bids b is:

n

∑
l=1

(−1)jl+1 λ1

(
x, φ2

jl(b)
) ∂φ2

jl
∂b

(b) = 1 (FOC)

As the FOC must be satisfied for x = φ1
ik
(b) for all k, we obtain an ODE system, which in matrix

form reads as, Λ1(b) ·Φ2 = 1, where Φ2 is the n–column vector
(
(−1)jl+1 ∂φ2

jl
∂b (b)

)
and Λ1(b) is a

square matrix with entries given by Λ1
r,c(b) = λ1

(
φ1

ir(b), φ2
jc(b)

)
= λ1

(
P1

r (x), P2
c (x)

)
for y = Q(x)

and b = b1(x). This system is invertible because of regularity and n1 = n2.
To apply Crammer’s rule, we define L1

k – the matrix constructed by taking Λ1 and replacing its’

kth column by a vector of ones, that is L1
k(b) =

(
Λ1

1,...,k−1(b), 1, Λ1
k+1,...,ni

(b)
)

. By Cramer’s rule,

∂φ2
jl

∂b
(b) = (−1)

∣∣L1
k(x)

∣∣
|Λ1(x)|

,

which together with
∂

∂x
P2

l (x) =
∂φ2

jl
∂b

/∂φ2
j1

∂b
establishes the part of the lemma for the pooling

functions of player 2. As the equilibrium is symmetric, P1
k = P2

k for all k. �

The case when only two types are pooling is much simpler since we have to characterize only
one pooling function:

Corollary 4. If are players are symmetric, in a symmetric equilibrium with n1 = n2 = 2, the pooling

function satisfies, P′(x) =
λ1(x, x)− λ1(P(x), x)

λ1(x, P(x))− λ1(P(x), P(x))
=

λ2(x, x)− λ2(x, P(x))
λ2(P(x), x)− λ2(P(x), P(x))

.

Proof. By lemma 2 and since y = x and P = P1 = P2 hold in a symmetric equilibrium,

∂

∂x
P(x) = −

∣∣∣∣∣ λ1(x, x) 1
λ1(P(x), x) 1

∣∣∣∣∣∣∣∣∣∣ 1 λ1(x, P(x))
1 λ1(P(x), P(x))

∣∣∣∣∣
= − λ1(x, x)− λ1(P(x), x)

λ1(P(x), P(x))− λ(x, P(x))

�

APPENDIX C. PARAMETER SPACE

In propositions 4,5,6, and 7, subsection 5.1, the equilibrium qualitative features depended only
the A, C and D parameters of the valuation v(x, y) = Ax2 + By2 +Cxy+ Dx + Ey+ F. For this rea-
son, our parameter space of interest is the set,P = {(A, C, D) : (A, C, D) ∈ [−a, a]× [−c, c]× [−d, d]}
for a, c, d > 0.
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We completely characterize the corresponding regions in P for which, each of the conditions
in prop. 2 holds generically22. Our exhaustive characterization comes at a cost: our proofs are
computational as we must rely on the cylindrical algebraic decomposition algorithm (see Basu
et al., 2006), which is implemented in major computer algebra systems. In the online appendix, we
provide the Mathematica c© code.

Notation: x− def
= min(x, 0).

M: 0 < 2A− + C− + D.
SC: 0 < A− + (A + C)− + D.
INCREASING: 0 < A− + (A + C)− + D or −2(A + C)− − (4A + C)− < 3D < −3A− 3C−.
LOCAL SINGLE CROSSING: 0 < (2A + C)− + D.

22This is solely for the reader convenience: adding non-generic (lower dimensional, zero Lebesgue measure )

components produces an extremely long characterization without adding any relevant information
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