Inference and Learning from Others
Inference and Learning from Others

Plenty of errors in reasoning we make
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.
Introduction

Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.

Today's genre:
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.

Today’s genre:

- Errors in inference from volitional agents, per se
Inference and Learning from Others

Plenty of errors in reasoning we make
- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.

Today’s genre:
- Errors in inference from volitional agents, per se
 - How good gleaning information from others?
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.

Today’s genre:

- Errors in inference from volitional agents, per se
 - How good gleaning information from others?
 - What systematic errors?
Inference and Learning from Others

Plenty of errors in reasoning we make

- Complexity-based bounded rationality
- Biased reasoning about self
- Under-studied: implications of biases of statistical reasoning.

Today’s genre:

- Errors in inference from volitional agents, per se
 - How good gleaning information from others?
 - What systematic errors?
 - What effects of these errors?
Cursed Thinking:
Cursed Thinking:

- People under-infer information from others’ behavior.
Cursed Thinking:

- People under-infer information from others’ behavior.
- Winner’s curse in auctions, lemons, & financial markets
Cursed Thinking:

- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:

- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinably

Naive Inference:
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
 - but typically predicts anti-imitation too
Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
 - but typically predicts anti-imitation too
 - and precludes extensive imitation without anti-imitation
Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
 - but typically predicts anti-imitation too
 - and precludes extensive imitation without anti-imitation
- naive inference, redundancy neglect \(\implies\)
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinedly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
 - but typically predicts anti-imitation too
 - and precludes extensive imitation without anti-imitation
- naive inference, redundancy neglect \(\implies \)
 - ubiquitous imitation
Extensive Imitation is Irrational and Harmful

Introduction

Cursed Thinking:
- People under-infer information from others’ behavior.
 - Winner’s curse in auctions, lemons, & financial markets
 - No no-trade results—directly, patternly, and disciplinelly

Naive Inference:
- Insofar as do attend to information in others’ behavior, tend to take at face value.

Today: Naive inference in observational learning:
- Rationality predicts some imitation ...
 - but typically predicts anti-imitation too
 - and precludes extensive imitation without anti-imitation
- naive inference, redundancy neglect ⟷
 - ubiquitous imitation
 - overconfidently wrong social beliefs
Plugging my papers on inferring from others:
Plugging my papers on inferring from others:

- Eyster and Rabin (2005), *Econometrica*
- Eyster and Rabin (2010), *AEJ Theory*
- Eyster and Rabin (2012)
- Eyster, Rabin, and Vayanos (2013),
- **Eyster and Rabin (2013),**
- Eyster, Rabin, and Weizsacker (in progress)
- Gagnon-Bartsch and Rabin (in progress)
Extensive Imitation is Irrational and Harmful

Introduction

Today
Today

1 How Not to Cure Syphilis
Extensive Imitation is Irrational and Harmful

Introduction

Today

1. How Not to Cure Syphilis
2. Rational Observational Learning
Extensive Imitation is Irrational and Harmful

Introduction

Today

1. How Not to Cure Syphilis
2. Rational Observational Learning
 - Behavioral implications
Today

1. How Not to Cure Syphilis
2. Rational Observational Learning
 - Behavioral implications
3. Naive Observational Learning
Extensive Imitation is Irrational and Harmful

Introduction

Today

1. How Not to Cure Syphilis
2. Rational Observational Learning
 - Behavioral implications
3. Naive Observational Learning
 - Informational, societal consequences of redundancy neglect
Today

1. How Not to Cure Syphilis
2. Rational Observational Learning
 - Behavioral implications
3. Naive Observational Learning
 - Informational, societal consequences of redundancy neglect

Note: Today and virtually all on this topic → Erik Eyster
Rational-Herding Literature:
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:

- Observing others always helps in expected terms.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:

- Observing others always helps in expected terms.
- High likelihood wrong herds only if those herds are unconfident.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:

- Observing others always helps in expected terms.
- High likelihood wrong herds only if those herds are unconfident.
- Rational-herding literature is about failure to aggregate information.
Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:

- Observing others always helps in expected terms.
- High likelihood wrong herds only if those herds are unconfident.
- Rational-herding literature is about failure to aggregate information
- Not of society (frequently) thinking it knows things it doesn’t.
Extensive Imitation is Irrational and Harmful

Introduction

Rational-Herding Literature:

- People infer from actions of those with similar tastes.
- Rational imitation.
- Herds may start & last on wrong choice.

Efficiency facts of rational-herding models:

- Observing others always helps in expected terms.
- High likelihood wrong herds only if those herds are unconfident.
- Rational-herding literature is about failure to aggregate information.
- Not of society (frequently) thinking it knows things it doesn’t.
- (Debated in literature: is even non-aggregation really likely?)
Extensive Imitation is Irrational and Harmful

Introduction

We think:
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
- Understand *inherent* redundancy in others’ behavior
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
- Understand *inherent* redundancy in others’ behavior
- Don’t imitate very much.
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
- Understand *inherent* redundancy in others’ behavior
- Don’t imitate very much.
- Anti-imitate frequently
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
- Understand *inherent* redundancy in others’ behavior
- Don’t imitate very much.
- Anti-imitate frequently

But:
We think:

- *Limits* to imitation perhaps bigger punchline than imitation itself.
- Rational realize others also imitating
- Understand *inherent* redundancy in others’ behavior
- Don’t imitate very much.
- Anti-imitate frequently

But:

- We are skeptical people so reluctant to imitate.
Extensive Imitation is Irrational and Harmful

Introduction

And we should care a lot about this:
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:

- Historical example: mercury
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:

- Historical example: mercury
- Extended illustrative example
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:

- Historical example: mercury
- Extended illustrative example
- Formal framework:
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:

- Historical example: mercury
- Extended illustrative example
- Formal framework:
 - rationality and anti-imitation
And we should care a lot about this:

- Extensive imitation \implies not PBE rationality
- Extensive imitation \implies social confirmation bias & false beliefs.

Remainder:

- Historical example: mercury
- Extended illustrative example
- Formal framework:
 - rationality and anti-imitation
 - redundancy neglect and mislearning

...
“A night with venus, and a lifetime with mercury”
“A night with venus, and a lifetime with mercury”

Late 15th to mid-20th century, syphilis wreaked havoc on the world.
“A night with venus, and a lifetime with mercury”

Late 15th to mid-20th century, syphilis wreaked havoc on the world

- Acton (1846): 4% of troops quartered in Britain infected.
“A night with venus, and a lifetime with mercury”

Late 15th to mid-20th century, syphilis wreaked havoc on the world

- Acton (1846): 4% of troops quartered in Britain infected.
- Parascandola (2008): Civil War, 12% of Union Army treated.
“A night with venus, and a lifetime with mercury”

Late 15th to mid-20th century, syphilis wreaked havoc on the world

- **Acton (1846):** 4% of troops quartered in Britain infected.
- **Parascandola (2008):** Civil War, 12% of Union Army treated.
- **Hyman (1941):** As late as 1941, 4.4% of Americans infected, causing 40,000 deaths per year
“A night with venus, and a lifetime with mercury”

Late 15th to mid-20th century, syphilis wreaked havoc on the world

- Acton (1846): 4% of troops quartered in Britain infected.
- Parascandola (2008): Civil War, 12% of Union Army treated.
- Hyman (1941): as late as 1941, 4.4% of Americans infected, causing 40,000 deaths per year
- Tens of millions had disease, millions died from it
16th to early 20th century, leading treatment for syphilis: mercury.
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects

- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores

- Its use, however, premised on curative properties when taken orally
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores
- Its use, however, premised on curative properties when taken orally
 - Many, especially military doctors with statistics, had their doubts
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects

- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores

- Its use, however, premised on curative properties when taken orally
 - Many, especially military doctors with statistics, had their doubts
 - But continued to be widely used until penicillin
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores
- Its use, however, premised on curative properties when taken orally
 - Many, especially military doctors with statistics, had their doubts
 - But continued to be widely used until penicillin
 - Partially superseded by the arsenic derivative salvarsan in 1909
16th to early 20th century, leading treatment for syphilis: mercury.

- Mercury is nasty stuff.
 - High cost and horrible and lethal side effects
- Nasty to humans—and bacteria
 - applied topically, may have soothed sores
 - toxic properties may have inhibited cell growth, including new sores
- Its use, however, premised on curative properties when taken orally
 - Many, especially military doctors with statistics, had their doubts
 - But continued to be widely used until penicillin
 - Partially superseded by the arsenic derivative salvarsan in 1909
 - (But standard practice was to combine salvarsan with mercury)
Why used so long?
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
- If so, how could doctors get it wrong for over 400 years
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
- If so, how could doctors get it wrong for over 400 years
- Even if not, doctors had such faith—but we still don’t know?
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
- If so, how could doctors get it wrong for over 400 years
- Even if not, doctors had such faith—but we still don’t know?

Note:
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
- If so, how could doctors get it wrong for over 400 years
- Even if not, doctors had such faith—but we still don’t know?

Note:

- *Not* arguing it was a dumb idea
Why used so long?

- Hard to prove, even now, that it was, on net, a bad idea.
- But it seems very unlikely
- If so, how could doctors get it wrong for over 400 years
- Even if not, doctors had such faith—but we still don’t know?

Note:

- *Not* arguing it was a dumb idea
- Asking why used for 450 years.
Paper: extended example, inspired by medical examples, of issues.
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
- Fully sure settle on effective drug
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
- Fully sure settle on effective drug
- But this requires extreme attention to redundancy.
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
- Fully sure settle on effective drug
- But this requires extreme attention to redundancy.

When most drugs false positives (and docs know this!),
Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
- Sure settle on effective drug
- But this requires extreme attention to redundancy.

When most drugs false positives (and docs know this!),

- the way rational herds self-correct: virtually guaranteed that bad drugs get abandoned by doctors with little personal evidence against who have observed massive number of doctors prescribing.
Extensive Imitation is Irrational and Harmful
A Night with Venus, a Lifetime with Mercury

Paper: extended example, inspired by medical examples, of issues.

- Trial and error of drugs.
- Fully rational will eventually reject drugs that don’t work.
- Fure sure settle on effective drug
- But this requires extreme attention to redundancy.

When most drugs false positives (and docs know this!),

- the way rational herds self-correct: virtually guaranteed that bad drugs get abandoned by doctors with little personal evidence against who have observed massive number of doctors prescribing.
- And even mild redundancy neglect guarantees adoption of a bad drug.
Instead, now: extended example not in paper.
Instead, now: extended example not in paper.

- Mercury vs. this example vs. main model vs. Avery-Zemsky vs. dozens other examples ... all same.
Modification of the canonical two-state, two signal, two-restaurant model of social learning.
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, \(p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = .5 \).
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, $p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = .5$.
 - Two states: $\omega_A \rightarrow A$ is good, $\omega_B \rightarrow B$ is good.

- Each of ∞ diners receives private signals $\in \{\alpha, \beta, \emptyset\}$
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, \(p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = 0.5 \).
 - Two states: \(\omega_A \rightarrow A \text{ is good, } \omega_B \rightarrow B \text{ is good.} \)

- Each of \(\infty \) diners receives private signals \(\in \{ \alpha, \beta, \emptyset \} \)
- The signals are \textit{i.i.d.} conditional on the state,
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, $p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = .5$.
 - Two states: $\omega_A \rightarrow A$ is good, $\omega_B \rightarrow B$ is good.

- Each of ∞ diners receives private signals $\in \{\alpha, \beta, \emptyset\}$
- The signals are i.i.d. conditional on the state,
 - α supports ω_A.

(Northwestern University) Extensive Imitation is Irrational and Harmful Dining Out
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, $p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = .5$.
 - Two states: $\omega_A \rightarrow A$ is good, $\omega_B \rightarrow B$ is good.

- Each of ∞ diners receives private signals $\in \{\alpha, \beta, \emptyset\}$
- The signals are $i.i.d.$ conditional on the state,
 - α supports ω_A,
 - β supports ω_B,

(Northwestern University) Extensive Imitation October 2, 2013 13 / 47
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - A and B, $p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = 0.5$.
 - Two states: $\omega_A \rightarrow A$ is good, $\omega_B \rightarrow B$ is good.

- Each of ∞ diners receives private signals $\in \{\alpha, \beta, \emptyset\}$
- The signals are i.i.d. conditional on the state,
 - α supports ω_A,
 - β supports ω_B,
 - \emptyset uninformative.
Modification of the canonical two-state, two signal, two-restaurant model of social learning.

- Two restaurants in town,
 - \(A \) and \(B \), \(p(A \text{ good}, B \text{ bad}) = p(B \text{ good}, A \text{ bad}) = .5 \).
 - Two states: \(\omega_A \rightarrow A \text{ is good, } \omega_B \rightarrow B \text{ is good.} \)

- Each of \(\infty \) diners receives private signals \(\in \{\alpha, \beta, \emptyset\} \)

- The signals are \(i.i.d. \) conditional on the state,
 - \(\alpha \) supports \(\omega_A \),
 - \(\beta \) supports \(\omega_B \),
 - \(\emptyset \) uninformative.
For each Player k,

- $\Pr[s_k = \alpha|\omega_A] = \Pr[s_k = \beta|\omega_B] = 0.7(1 - \eta)$ and
For each Player k,

- $\Pr[s_k = \alpha | \omega_A] = \Pr[s_k = \beta | \omega_B] = 0.7(1 - \eta)$ and
- $\Pr[\emptyset | \omega_A] = \Pr[\emptyset | \omega_B] = \eta$.
For each Player k,

- $\Pr[s_k = \alpha | \omega_A] = \Pr[s_k = \beta | \omega_B] = .7(1 - \eta)$ and
- $\Pr[\emptyset | \omega_A] = \Pr[\emptyset | \omega_B] = \eta$.
- $\eta = 0$, canonical binary-signal information structure.
For each Player k,

- $\Pr[s_k = \alpha | \omega_A] = \Pr[s_k = \beta | \omega_B] = 0.7(1 - \eta)$ and
- $\Pr[\emptyset | \omega_A] = \Pr[\emptyset | \omega_B] = \eta$.
- $\eta = 0$, canonical binary-signal information structure.
- When $\eta \to 1$, information is very rare.
For each Player k,

- $\Pr[s_k = \alpha | \omega_A] = \Pr[s_k = \beta | \omega_B] = .7(1 - \eta)$ and
- $\Pr[\varnothing | \omega_A] = \Pr[\varnothing | \omega_B] = \eta$.
- $\eta = 0$, canonical binary-signal information structure.
- When $\eta \to 1$, information is very rare.
- (Lots results independent of η)
Each Player k chooses among nine choices: she can dine in Restaurant A, dine in Restaurant B, or dine at home.
Each Player k chooses among nine choices: she can dine in Restaurant A, dine in Restaurant B, or dine at home.

- Goes to a restaurant if she thinks there is more than 60% chance it is good, and stays at home if that is not true at either restaurant.
Each Player k chooses among nine choices: she can dine in Restaurant A, dine in Restaurant B, or dine at home.

- Goes to a restaurant if she thinks there is more than 60% chance it is good, and stays at home if that is not true at either restaurant.

- Depending on confidence in restaurant’s quality, may go alone, or take one, two, or three of her relatives.
Each Player k chooses among nine choices: she can dine in Restaurant A, dine in Restaurant B, or dine at home.

- Goes to a restaurant if she thinks there is more than 60% chance it is good, and stays at home if that is not true at either restaurant.

- Depending on confidence in restaurant’s quality, may go alone, or take one, two, or three of her relatives.

- Superscripts for the number of people she takes:
Each Player k chooses among nine choices: she can dine in Restaurant A, dine in Restaurant B, or dine at home.

- Goes to a restaurant if she thinks there is more than 60% chance it is good, and stays at home if that is not true at either restaurant.

- Depending on confidence in restaurant’s quality, may go alone, or take one, two, or three of her relatives.

- Superscripts for the number of people she takes:

 \[p(\omega_A) \] [0,10),[10,20),[20,30),[30,40) [40,60] (60,70],(70,80],(80,90],(90,100]

 Choice \[B^{+++}, B^{++}, B^+, B \] \[H \] \[A, A^+, A^{++}, A^{+++} \]
Three people choose restaurants each period,
Three people choose restaurants each period,

- Signal conditionally i.i.d. given state
Three people choose restaurants each period,

- Signal conditionally i.i.d. given state
- Each after observing
Three people choose restaurants each period,

- Signal conditionally i.i.d. given state
- Each after observing her own signal,
Three people choose restaurants each period,

- Signal conditionally i.i.d. given state
- Each after observing her own signal, and the full actions (three locations, and party size), in order,
Three people choose restaurants each period,

- Signal conditionally i.i.d. given state
- Each after observing her own signal, and the full actions (three locations, and party size), in order, taken in all previous periods.
What predictions does full rationality make?
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow$ stay home.
What predictions does full rationality make?

- Ø signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
What predictions does full rationality make?

- ∅ signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly $0.7 \rightarrow$ alone).
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly $0.7 \rightarrow$ alone).

Suppose in period 2 observe exactly one A in period 1.
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly $.7 \rightarrow$ alone).

Suppose in period 2 observe exactly one A in period 1.

- What do as a function of your signal?
What predictions does full rationality make?

- ∅ signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly .7 \rightarrow alone).

Suppose in period 2 observe exactly one A in period 1.

- What do as a function of your signal?
- You will realize that the three signals in period 1 were $\{\alpha, \emptyset, \emptyset\}$.
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly $.7 \rightarrow$ alone).

Suppose in period 2 observe exactly one A in period 1.

- What do as a function of your signal?
- You will realize that the three signals in period 1 were $\{\alpha, \emptyset, \emptyset\}$.
- $\beta \rightarrow H$.
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow \text{stay home.}$
- α or β signal, observes nothing but $H \rightarrow \text{go to restaurant.}$
- (alone, because beliefs exactly $.7 \rightarrow \text{alone}$).

Suppose in period 2 observe exactly one A in period 1.

- What do as a function of your signal?
- You will realize that the three signals in period 1 were $\{\alpha, \emptyset, \emptyset\}$.
 - $\beta \rightarrow H$
 - $\emptyset \rightarrow A$.

(Northwestern University) Extensive Imitation October 2, 2013 17 / 47
What predictions does full rationality make?

- \emptyset signal, observes nothing but $H \rightarrow$ stay home.
- α or β signal, observes nothing but $H \rightarrow$ go to restaurant.
- (alone, because beliefs exactly $0.7 \rightarrow$ alone).

Suppose in period 2 observe exactly one A in period 1.

- What do as a function of your signal?
- You will realize that the three signals in period 1 were $\{\alpha, \emptyset, \emptyset\}$.
 - $\beta \rightarrow H$.
 - $\emptyset \rightarrow A$.
 - $\alpha \rightarrow A^{++}$
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
</tr>
</tbody>
</table>

Key logic: guys in period 2 did not get any additional information. (If did, would not have gone alone.) Period 3: rationally realize no new information in Period-2 followers.
Period 1:	$\{A, H, H\}$
Period 2:	$\{A, A, A\}$
Period 3:	$\beta \rightarrow H$, $\emptyset \rightarrow A$, $\alpha \rightarrow A^{++}$
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>${A, H, H}$</td>
<td>${\alpha, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td>Period 2:</td>
<td>${A, A, A}$</td>
<td>${\emptyset, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td>Period 3:</td>
<td>$\beta \rightarrow H$, $\emptyset \rightarrow A$, $\alpha \rightarrow A^{++}$</td>
<td></td>
</tr>
</tbody>
</table>

Key logic: guys in period 2 did not get any additional information.
(If did, would not have gone alone.)

Period 3: rationally realize no new information in Period-2 followers.
<table>
<thead>
<tr>
<th>Period 1</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{A, H, H}</td>
<td></td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2</td>
<td>{A, A, A}</td>
<td></td>
<td>{∅, ∅, ∅}</td>
</tr>
</tbody>
</table>

Period 3:

\[\beta \rightarrow H, \varnothing \rightarrow A, \alpha \rightarrow A^{++} \]

- Key logic: guys in period 2 did not get any additional information.
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>β \rightarrow H, ∅ \rightarrow A, α \rightarrow A^{++}</td>
<td></td>
</tr>
</tbody>
</table>

- Key logic: guys in period 2 did *not* get any additional information.
 - (If did, would not have gone alone.)
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>β → H, ∅ → A, α → A^{++}</td>
<td></td>
</tr>
</tbody>
</table>

- Key logic: guys in period 2 did not get any additional information.
 - (If did, would not have gone alone.)
 - Period 3: rationally realize no new information in Period-2 followers.
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 4:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 5:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
</tbody>
</table>

Understanding redundancy information in actions: hard. But it matters a lot.
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 4:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 5:</td>
<td>{A, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 6:</td>
<td>(\beta \rightarrow H, \emptyset \rightarrow A, \alpha \rightarrow A^{++})</td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions ${A, H, H}$</th>
<th>Response ${\alpha, \emptyset, \emptyset}$</th>
<th>Signals ${\emptyset, \emptyset, \emptyset}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>${A, A, A}$</td>
<td>${\emptyset, \emptyset, \emptyset}$</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>${A, A, A}$</td>
<td>${\emptyset, \emptyset, \emptyset}$</td>
<td></td>
</tr>
<tr>
<td>Period 4:</td>
<td>${A, A, A}$</td>
<td>${\emptyset, \emptyset, \emptyset}$</td>
<td></td>
</tr>
<tr>
<td>Period 5:</td>
<td>${A, A, A}$</td>
<td>${\emptyset, \emptyset, \emptyset}$</td>
<td></td>
</tr>
<tr>
<td>Period 6:</td>
<td>$\beta \rightarrow H, \emptyset \rightarrow A, \alpha \rightarrow A^{++}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Understanding redundancy information in actions: hard.
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>{A, H, H}</th>
<th>{α, ∅, ∅}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
<tr>
<td>Period 4:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
<tr>
<td>Period 5:</td>
<td>{A, A, A}</td>
<td>{∅, ∅, ∅}</td>
</tr>
</tbody>
</table>

Period 6: \(β \rightarrow H, ∅ \rightarrow A, α \rightarrow A^{++} \)

- Understanding redundancy information in actions: hard.
- But it matters a lot.
Herding without sufficiently increased enthusiasm is a bad sign:

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, H}</td>
<td></td>
</tr>
</tbody>
</table>
Herding without sufficiently increased enthusiasm is a bad sign:

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, H, H}</td>
<td>\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A</td>
</tr>
<tr>
<td>Period 2: {A, A, H}</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td></td>
</tr>
</tbody>
</table>

Herding without sufficiently increased enthusiasm is a bad sign:

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td>{\alpha, \emptyset, \emptyset}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, H}</td>
<td>{\emptyset, \emptyset, \beta}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A</td>
<td></td>
</tr>
</tbody>
</table>
Herding without sufficiently increased enthusiasm is a bad sign:

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A, A, H}</td>
<td>{∅, ∅, β}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>β → B, ∅ → H, α → A</td>
<td></td>
</tr>
</tbody>
</table>

3 A, 3 H → ω_A, ω_B equally likely!
Herding without sufficiently increased enthusiasm is a bad sign:

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, H, H}</td>
<td>{α, ∅, ∅}</td>
<td></td>
</tr>
<tr>
<td>Period 2: {A, A, H}</td>
<td>{∅, ∅, β}</td>
<td></td>
</tr>
<tr>
<td>Period 3: [β \rightarrow B, ∅ \rightarrow H, α \rightarrow A]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 \(A, 3H \rightarrow ω_A, ω_B\) equally likely!

- Do we get that?
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: ${A, H, H}$</td>
<td></td>
</tr>
<tr>
<td>Period 2: ${A, H, H}$</td>
<td></td>
</tr>
</tbody>
</table>
Actions and Response

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>${A, H, H}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>${A, H, H}$</td>
</tr>
<tr>
<td>Period 3:</td>
<td>$\beta \rightarrow B^{++}$, $\emptyset \rightarrow B$, $\alpha \rightarrow H$</td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>({A, H, H})</td>
<td></td>
<td>({\alpha, \emptyset, \emptyset})</td>
</tr>
<tr>
<td>Period 2:</td>
<td>({A, H, H})</td>
<td></td>
<td>({\emptyset, \beta, \beta})</td>
</tr>
<tr>
<td>Period 3:</td>
<td>(\beta \to B^{++}, \emptyset \to B, \alpha \to H)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>({A, H, H})</td>
<td>({\alpha, \emptyset, \emptyset})</td>
</tr>
<tr>
<td>Period 2:</td>
<td>({A, H, H})</td>
<td>({\emptyset, \beta, \beta})</td>
</tr>
<tr>
<td>Period 3:</td>
<td>(\beta \rightarrow B^{++}, \emptyset \rightarrow B, \alpha \rightarrow H)</td>
<td></td>
</tr>
</tbody>
</table>

You shouldn’t go to \(A\) even if get \(\alpha\)!
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>{A, H, H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>{H, H, H}</td>
</tr>
</tbody>
</table>

Go to B no matter what!

(Northwestern University)
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, H, H}</td>
<td>\beta \rightarrow B^{+++}, \emptyset \rightarrow B^{++}, \alpha \rightarrow B</td>
</tr>
<tr>
<td>Period 2: {H, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td></td>
</tr>
</tbody>
</table>

Go to B no matter what!
<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: ${A, H, H}$</td>
<td></td>
<td>${\alpha, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td>Period 2: ${H, H, H}$</td>
<td></td>
<td>${\beta, \beta, \beta}$</td>
</tr>
<tr>
<td>Period 3: $\beta \rightarrow B^{+++}$, $\emptyset \rightarrow B^{++}$, $\alpha \rightarrow B$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{H, H, H}</td>
<td>{β, β, β}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>(β \rightarrow B^{+++}), (∅ \rightarrow B^{++}), (α \rightarrow B)</td>
<td></td>
</tr>
</tbody>
</table>

Go to \(B\) no matter what!

\(\Rightarrow\)
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{A^{++}, A, A}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{A^{++}, A, A}</td>
<td></td>
</tr>
</tbody>
</table>

Northwestern University
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2</td>
<td>{A^{++}, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 3</td>
<td>{A^{++}, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 4</td>
<td>β → B, ∅ → H, α → A</td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>({A, H, H})</td>
<td></td>
<td>({\alpha, \emptyset, \emptyset})</td>
</tr>
<tr>
<td>Period 2:</td>
<td>({A^{++}, A, A})</td>
<td></td>
<td>({\alpha, \emptyset, \emptyset})</td>
</tr>
<tr>
<td>Period 3:</td>
<td>({A^{++}, A, A})</td>
<td></td>
<td>({\emptyset, \beta, \beta})</td>
</tr>
<tr>
<td>Period 4:</td>
<td></td>
<td>(\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A)</td>
<td></td>
</tr>
</tbody>
</table>

\[\triangleright\]
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{A++, A, A}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{A++, A++, A}</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{A++, A++, A}</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{A++, A++, A++}</td>
<td></td>
</tr>
</tbody>
</table>

Will a β signal help stop the herd?
Actions and Response

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>{A, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2</td>
<td>{A^{++}, A, A}</td>
<td></td>
</tr>
<tr>
<td>Period 3</td>
<td>{A^{++}, A^{++}, A}</td>
<td></td>
</tr>
<tr>
<td>Period 4</td>
<td>{A^{++}, A^{++}, A}</td>
<td></td>
</tr>
<tr>
<td>Period 5</td>
<td>{A^{++}, A^{++}, A^{++}}</td>
<td></td>
</tr>
<tr>
<td>Period 6</td>
<td></td>
<td>β → H, ∅ → A, α → A^{++}</td>
</tr>
</tbody>
</table>

Will a β signal help stop the herd?
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${A, H, H}$</td>
<td></td>
<td>${\alpha, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td>2</td>
<td>${A^{++}, A, A}$</td>
<td></td>
<td>${\alpha, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td>3</td>
<td>${A^{++}, A^{++}, A}$</td>
<td></td>
<td>${\emptyset, \emptyset, \beta}$</td>
</tr>
<tr>
<td>4</td>
<td>${A^{++}, A^{++}, A}$</td>
<td></td>
<td>${\alpha, \alpha, \emptyset}$</td>
</tr>
<tr>
<td>5</td>
<td>${A^{++}, A^{++}, A^{++}}$</td>
<td></td>
<td>${\beta, \beta, \beta}$</td>
</tr>
<tr>
<td>6</td>
<td>$\beta \to H$, $\emptyset \to A$, $\alpha \to A^{++}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

Period 1:	Actions: \{A, H, H\}	Response: \{\alpha, \emptyset, \emptyset\}	Signals: \{\alpha, \emptyset, \emptyset\}
Period 2:	Actions: \{A^{++}, A, A\}	Response: \{\alpha, \emptyset, \emptyset\}	Signals: \{\alpha, \emptyset, \emptyset\}
Period 3:	Actions: \{A^{++}, A^{++}, A\}	Response: \{\emptyset, \emptyset, \beta\}	Signals: \{\emptyset, \emptyset, \beta\}
Period 4:	Actions: \{A^{++}, A^{++}, A\}	Response: \{\alpha, \alpha, \emptyset\}	Signals: \{\alpha, \alpha, \emptyset\}
Period 5:	Actions: \{A^{++}, A^{++}, A^{++}\}	Response: \{\beta, \beta, \beta\}	Signals: \{\beta, \beta, \beta\}
Period 6:	\beta \rightarrow H, \emptyset \rightarrow A, \alpha \rightarrow A^{++}		

Will a \beta signal help stop the herd?

\(\n\)
Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>{A, A, A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>{A^{++}, A^{++}, A^{++}}</td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>${A, A, A}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>${A^{++}, A^{++}, A^{++}}$</td>
</tr>
<tr>
<td>Period 3:</td>
<td>$\beta \rightarrow B$, $\emptyset \rightarrow H$, $\alpha \rightarrow A$</td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>Actions: {A, A, A}</th>
<th>Response: {\alpha, \alpha, \alpha}</th>
<th>Signals: {\beta, \beta, \beta}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2:</td>
<td>Actions: {A++, A++, A++}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1:</td>
<td>${A, A, A}$</td>
<td>${\alpha, \alpha, \alpha}$</td>
<td></td>
</tr>
<tr>
<td>Period 2:</td>
<td>${A^{++}, A^{++}, A^{++}}$</td>
<td>${\beta, \beta, \beta}$</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>$\beta \rightarrow B$, $\emptyset \rightarrow H$, $\alpha \rightarrow A$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Enough.
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{A, A, A}</td>
<td>{\alpha, \alpha, \alpha}</td>
<td>{\beta, \beta, \beta}</td>
</tr>
<tr>
<td>Period 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{A++, A++, A++}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A</td>
<td></td>
</tr>
</tbody>
</table>

- Enough.

- Things fare more complicated if
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, A, A}</td>
<td>{\alpha, \alpha, \alpha}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A^{++}, A^{++}, A^{++}}</td>
<td>{\beta, \beta, \beta}</td>
</tr>
<tr>
<td>Period 3:</td>
<td></td>
<td>\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A</td>
</tr>
</tbody>
</table>

- Enough.

- Things fare more complicated if don’t observe order
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{A, A, A}</td>
<td></td>
<td>{\alpha, \alpha, \alpha}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{A^{++}, A^{++}, A^{++}}</td>
<td></td>
<td>{\beta, \beta, \beta}</td>
</tr>
<tr>
<td>Period 3:</td>
<td></td>
<td>(\beta \rightarrow B, \emptyset \rightarrow H, \alpha \rightarrow A)</td>
<td></td>
</tr>
</tbody>
</table>

- Enough.

- Things fare more complicated if don’t observe order don’t observe all

(Northwestern University) Extensive Imitation October 2, 2013 25 / 47
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, A, A}</td>
<td>{α, α, α}</td>
<td>{β, β, β}</td>
</tr>
<tr>
<td>Period 2: {A++, A++, A++}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>β → B, ∅ → H, α → A</td>
<td></td>
</tr>
</tbody>
</table>

- Enough.

- Things fare more complicated if don’t observe order don’t observe all heterogenous preferences
Extensive Imitation is Irrational and Harmful
Dining Out

<table>
<thead>
<tr>
<th>actions</th>
<th>response</th>
<th>signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, A, A}</td>
<td>{α, α, α}</td>
<td></td>
</tr>
<tr>
<td>Period 2: {A++, A++, A++}</td>
<td>{β, β, β}</td>
<td></td>
</tr>
<tr>
<td>Period 3:</td>
<td>(β \rightarrow B, ∅ \rightarrow H, α \rightarrow A)</td>
<td></td>
</tr>
</tbody>
</table>

- Enough.

- Things fare more complicated if don’t observe order don’t observe all heterogenous preferences
 - But nothing makes the severe limits to imitation go away
Same setting (same signals, players per period, etc.) but:
Extensive Imitation is Irrational and Harmful

Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
Extensive Imitation is Irrational and Harmful

Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
Extensive Imitation is Irrational and Harmful

Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \{H, H, H, H, H, H\}, then believe
Extensive Imitation is Irrational and Harmful

Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe \(.5 \)
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \{H, H, H, H, H, H\}, then believe .5
 - If see \{A, H, H, H, H, H\}, then believe
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe .5
 - If see \(\{A, H, H, H, H, H\} \), then believe .7
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe .5
 - If see \(\{A, H, H, H, H, H\} \), then believe .7
 - If see \(\{A, A, H, H, H, H\} \), then believe
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe \(.5 \)
 - If see \(\{A, H, H, H, H, H\} \), then believe \(.7 \)
 - If see \(\{A, A, H, H, H, H\} \), then believe \(.84 \)
Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see $\{H, H, H, H, H, H\}$, then believe 0.5
 - If see $\{A, H, H, H, H, H\}$, then believe 0.7
 - If see $\{A, A, H, H, H, H\}$, then believe 0.84
 - If see $\{A, A, A, H, H, H\}$, then believe
Extensive Imitation is Irrational and Harmful

Dining Out

Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe .5
 - If see \(\{A, H, H, H, H, H\} \), then believe .7
 - If see \(\{A, A, H, H, H, H\} \), then believe .84
 - If see \(\{A, A, A, H, H, H\} \), then believe .5

(Example combines Callender-Horner and Eyster-Rabin intuitions)

One old and one new example:
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\}\), then believe \(0.5\)
 - If see \(\{A, H, H, H, H, H\}\), then believe \(0.7\)
 - If see \(\{A, A, H, H, H, H\}\), then believe \(0.84\)
 - If see \(\{A, A, A, H, H, H\}\), then believe \(0.5\)
 - If see \(\{A, A, A, A, H, H\}\), then believe

(Example combines Callender-Horner and Eyster-Rabin intuitions)
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe 0.5
 - If see \(\{A, H, H, H, H, H\} \), then believe 0.7
 - If see \(\{A, A, H, H, H, H\} \), then believe 0.84
 - If see \(\{A, A, A, H, H, H\} \), then believe 0.5
 - If see \(\{A, A, A, A, H, H\} \), then believe 0.7
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**

In period 3,

- If see \(\{ H, H, H, H, H, H \} \), then believe 0.5
- If see \(\{ A, H, H, H, H, H \} \), then believe 0.7
- If see \(\{ A, A, H, H, H, H \} \), then believe 0.84
- If see \(\{ A, A, A, H, H, H \} \), then believe 0.5
- If see \(\{ A, A, A, A, H, H \} \), then believe 0.7
- If see \(\{ A, A, A, A, A, H \} \), then believe
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**

In period 3,

- If see \(\{H, H, H, H, H, H\}\), then believe \(.5\)
- If see \(\{A, H, H, H, H, H\}\), then believe \(.7\)
- If see \(\{A, A, H, H, H, H\}\), then believe \(.84\)
- If see \(\{A, A, A, H, H, H\}\), then believe \(.5\)
- If see \(\{A, A, A, A, H, H\}\), then believe \(.7\)
- If see \(\{A, A, A, A, A, H\}\), then believe \(.3\)
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,
 - If see \(\{H, H, H, H, H, H\} \), then believe \(.5 \)
 - If see \(\{A, H, H, H, H, H\} \), then believe \(.7 \)
 - If see \(\{A, A, H, H, H, H\} \), then believe \(.84 \)
 - If see \(\{A, A, A, H, H, H\} \), then believe \(.5 \)
 - If see \(\{A, A, A, A, H, H\} \), then believe \(.7 \)
 - If see \(\{A, A, A, A, A, H\} \), then believe \(.3 \)

(Example combines Callender-Horner and Eyster-Rabin intuitions)
Same setting (same signals, players per period, etc.) but:

- Cannot observe order of play.
- **Signals rare**
- In period 3,

 - If see \(\{H, H, H, H, H, H\}\), then believe \(0.5\)

 - If see \(\{A, H, H, H, H, H\}\), then believe \(0.7\)

 - If see \(\{A, A, H, H, H, H\}\), then believe \(0.84\)

 - If see \(\{A, A, A, H, H, H\}\), then believe \(0.5\)

 - If see \(\{A, A, A, A, H, H\}\), then believe \(0.7\)

 - If see \(\{A, A, A, A, A, H\}\), then believe \(0.3\)

(Example combines Callender-Horner and Eyster-Rabin intuitions)

One old and one new example:
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1:</td>
<td>{A, H, H}</td>
</tr>
<tr>
<td>Period 2:</td>
<td>{H, H, H}</td>
</tr>
<tr>
<td>Period 3:</td>
<td>$\beta \rightarrow B^{+++}$, $\emptyset \rightarrow B^{++}$, $\alpha \rightarrow B$</td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {A, H, H}</td>
<td></td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>Period 2: {H, H, H}</td>
<td></td>
<td>{β, β, β}</td>
</tr>
<tr>
<td>Period 3: (β \rightarrow B^{+++}), (∅ \rightarrow B^{++}), (α \rightarrow B)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1: {B, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 2: {H, H, H}</td>
<td></td>
</tr>
<tr>
<td>Period 3: (β \rightarrow A), (∅ \rightarrow A^{++}), (α \rightarrow A^{+++})</td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A, H, H}</td>
<td></td>
<td>{α, ∅, ∅}</td>
</tr>
<tr>
<td>2</td>
<td>{H, H, H}</td>
<td></td>
<td>{β, β, β}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>β → B^{+++}, ∅ → B^{++}, α → B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{B, H, H}</td>
<td></td>
<td>{β, ∅, ∅}</td>
</tr>
<tr>
<td>2</td>
<td>{H, H, H}</td>
<td></td>
<td>{α, α, α}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>β → A, ∅ → A^{++}, α → A^{+++}</td>
<td></td>
</tr>
</tbody>
</table>
Extensive Imitation is Irrational and Harmful

Dining Out

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${A, H, H}$</td>
<td></td>
<td>${\alpha, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td></td>
<td>${H, H, H}$</td>
<td></td>
<td>${\beta, \beta, \beta}$</td>
</tr>
</tbody>
</table>

Period 3:

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta \rightarrow B^{+++}$, $\emptyset \rightarrow B^{++}$, $\alpha \rightarrow B$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period 1:</th>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${B, H, H}$</td>
<td></td>
<td>${\beta, \emptyset, \emptyset}$</td>
</tr>
<tr>
<td></td>
<td>${H, H, H}$</td>
<td></td>
<td>${\alpha, \alpha, \alpha}$</td>
</tr>
</tbody>
</table>

Period 3:

<table>
<thead>
<tr>
<th>Actions</th>
<th>Response</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta \rightarrow A$, $\emptyset \rightarrow A^{++}$, $\alpha \rightarrow A^{+++}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anti-imitation!

(ESDU)
Harder to see:
Harder to see:

- Rational observational learning in this case:
Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on \(B^{+++}\) or \(A^{+++}\).
Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on $\{B^{+++}\}$ or $\{A^{+++}\}$.
 - More than 95% of time \rightarrow right restaurant.
Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on \(\{B^{+++}\} \) or \(\{A^{+++}\} \).
 - More than 95% of time \rightarrow right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.
Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on \(\{B^{+++}\} \) or \(\{A^{+++}\} \).
 - More than 95% of time → right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- When signals rare:
Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on \(B^{+++} \) or \(A^{+++} \).
 - More than 95% of time \(\rightarrow \) right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- When signals rare:
 - Roughly 30% of time herd starts in wrong direction,
Extensive Imitation is Irrational and Harmful

Dining Out

Harder to see:

- Rational observational learning in this case:
 - Eventually will herd on \(B^{+++} \) or \(A^{+++} \).
 - More than 95% of time → right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- **When signals rare:**
 - Roughly 30% of time herd starts in wrong direction,
 - stays wrong < 5% time.
Harder to see:

- **Rational observational learning in this case:**
 - Eventually will herd on \(\{B^{+++}\} \) or \(\{A^{+++}\} \).
 - More than 95% of time → right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- **When signals rare:**
 - Roughly 30% of time herd starts in wrong direction,
 - stays wrong < 5% time.
 - → > 25% of time: herd in wrong direction followed by reversal...
Harder to see:

- **Rational observational learning in this case:**
 - Eventually will herd on \(\{B^{+++}\} \) or \(\{A^{+++}\} \).
 - More than 95% of time → right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- **When signals rare:**
 - Roughly 30% of time herd starts in wrong direction,
 - stays wrong < 5% time.
 - \(\rightarrow > 25\% \) of time: herd in wrong direction followed by reversal...
 - somebody observing at least 50 people going to one restaurant and none to other decides stay home based on opposite signal.
Harder to see:

- **Rational observational learning in this case:**
 - Eventually will herd on \(\{B^{+++}\} \) or \(\{A^{+++}\} \).
 - More than 95% of time → right restaurant.
 - Intuition: any lesser certainty, contrary signal will moderate behavior.

- **When signals rare:**
 - Roughly 30% of time herd starts in wrong direction,
 - stays wrong < 5% time.
 - → > 25% of time: herd in wrong direction followed by reversal...
 - somebody observing at least 50 people going to one restaurant and none to other decides stay home based on opposite signal.
When signals are rare,
When signals are rare,

- Tommy:
When signals are rare,

- Tommy:
 - less than 5% chance society converges to wrong restaurant,
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.

- **Britney (severe redundancy neglector):**
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.

- **Britney (severe redundancy neglector):**
 - $\sim 30\%$ chance convergence to wrong restaurant
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.

- **Britney (severe redundancy neglector):**
 - \(\sim 30\%\) chance convergence to wrong restaurant
 - Everybody around \(\sim 100\%\) sure they are right.
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.

- **Britney (severe redundancy neglector):**
 - ~30% chance convergence to wrong restaurant
 - Everybody around ~100% sure they are right.

Now: formal, continuous framework
When signals are rare,

- **Tommy:**
 - less than 5% chance society converges to wrong restaurant,
 - Everybody less than 96% sure they have right one.

- **Britney (severe redundancy neglector):**
 - $\sim 30\%$ chance convergence to wrong restaurant
 - Everybody around $\sim 100\%$ sure they are right.

Now: formal, continuous framework

- Lots of structure ... simple results
- Two possible states, $\omega \in \{0, 1\}$, *ex ante* equally likely
Two possible states, $\omega \in \{0, 1\}$, ex ante equally likely

Players \(\{1, 2, \ldots\}\) receive private signal
Two possible states, $\omega \in \{0, 1\}$, *ex ante* equally likely

Players $\{1, 2, \ldots\}$ receive private signal

$\sigma_k = \text{Player } k\text{'s belief that } \omega = 1 \text{ conditional upon her private signal}$
Two possible states, \(\omega \in \{0, 1\} \), \textit{ex ante} equally likely

Players \(\{1, 2, \ldots\} \) receive private signal

\(\sigma_k = \text{Player } k\)'s belief that \(\omega = 1 \) conditional upon her private signal

In state \(\omega \), \(k\)'s private signal drawn from the distribution \(F_k^{(\omega)} \); players’ beliefs are independent conditional upon the state
Two possible states, $\omega \in \{0, 1\}$, *ex ante* equally likely

Players $\{1, 2, \ldots\}$ receive private signal

$\sigma_k =$ Player k’s belief that $\omega = 1$ conditional upon her private signal

In state ω, k’s private signal drawn from the distribution $F_k^{(\omega)}$; players’ beliefs are independent conditional upon the state
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- \(F_k^{(0)} \) and \(F_k^{(1)} \) mutually absolutely continuous
 - no signal reveals the state with certainty;
- \([\underline{\sigma}_k, \overline{\sigma}_k] \subseteq [0, 1]\) convex hull of their common support
- $F_k^{(0)}$ and $F_k^{(1)}$ mutually absolutely continuous
 - no signal reveals the state with certainty;
- $[\sigma_k, \bar{\sigma}_k] \subseteq [0, 1]$ convex hull of their common support
 - Player k’s signal is *unbounded* when $\sigma_k = 0$ and $\bar{\sigma}_k = 1$
 - and *bounded* otherwise

Log-odds ratio of signal, s_k: $s_k = \ln \frac{\sigma_k}{1 - \sigma_k}$
\(F_k^{(0)} \) and \(F_k^{(1)} \) mutually absolutely continuous

- no signal reveals the state with certainty;

\([\sigma_k, \bar{\sigma}_k] \subseteq [0, 1] \) convex hull of their common support

- Player \(k \)'s signal is *unbounded* when \(\sigma_k = 0 \) and \(\bar{\sigma}_k = 1 \)
 - and *bounded* otherwise

- Log-odds ratio of signal, \(s_k := \ln \left(\frac{\sigma_k}{1-\sigma_k} \right) \)
Observation structure:
Observation structure:

- $D(k) \subset \{1, \ldots, k-1\} \equiv k$’s predecessors whose actions k observes
Observation structure:

- $D(k) \subset \{1, \ldots, k - 1\} \equiv k$’s predecessors whose actions k observes.
- When $k - 1 \notin D(k)$, interpret Players $k - 1, k$ as moving simultaneously.
Observation structure:

- $D(k) \subseteq \{1, \ldots, k-1\} \equiv k$’s predecessors whose actions k observes
- When $k-1 \notin D(k)$, interpret Players $k-1, k$ as moving simultaneously
- $ID(k) \subseteq \{1, \ldots, k-1\}$ subset whom Player k observes indirectly:
Observation structure:

- \(D(k) \subset \{1, \ldots, k - 1\} \) \(\equiv \) k’s predecessors whose actions k observes
- When \(k - 1 \notin D(k) \), interpret Players \(k - 1, k \) as moving simultaneously
- \(ID(k) \subset \{1, \ldots, k - 1\} \) subset whom Player k observes *indirectly*:
 - \(l \in ID(k) \) if and only if there exist some path of players \((k, k_1, k_2, \ldots, k_L, l) \) such that each observes the next
Observation structure:

- \(D(k) \subset \{1, \ldots, k - 1\} \equiv k \)'s predecessors whose actions \(k \) observes
- When \(k - 1 \not\in D(k) \), interpret Players \(k - 1, k \) as moving simultaneously
- \(ID(k) \subset \{1, \ldots, k - 1\} \) subset whom Player \(k \) observes indirectly:
 - \(l \in ID(k) \) if and only if there exist some path of players \((k, k_1, k_2, \ldots, k_L, l) \) such that each observes the next
 - Note that \(D(k) \subset ID(k) \)

\(N = \{f_1, f_2, \ldots, g, f\} \) observation structure
Observation structure:

- \(D(k) \subseteq \{1, \ldots, k-1\} \equiv k \)'s predecessors whose actions \(k \) observes
- When \(k-1 \notin D(k) \), interpret Players \(k-1, k \) as moving simultaneously
- \(ID(k) \subseteq \{1, \ldots, k-1\} \) subset whom Player \(k \) observes \textit{indirectly}:
 - \(l \in ID(k) \) if and only if there exist some path of players \((k, k_1, k_2, \ldots, k_L, l)\) such that each observes the next
 - Note that \(D(k) \subseteq ID(k) \)
- A player can indirectly observe another through many such paths,
Observation structure:

- \(D(k) \subset \{1, \ldots, k-1\} \equiv k \)'s predecessors whose actions \(k \) observes
- When \(k-1 \notin D(k) \), interpret Players \(k-1, k \) as moving simultaneously
- \(ID(k) \subset \{1, \ldots, k-1\} \) subset whom Player \(k \) observes indirectly:
 - \(l \in ID(k) \) if and only if there exist some path of players \((k, k_1, k_2, \ldots, k_L, l)\) such that each observes the next
 - Note that \(D(k) \subset ID(k) \)

- A player can indirectly observe another through many such paths,
 - this possibility plays a crucial role in our analysis below
Observation structure:

- $D(k) \subset \{1, \ldots, k-1\} \equiv k$’s predecessors whose actions k observes
- When $k-1 \notin D(k)$, interpret Players $k-1, k$ as moving simultaneously
- $ID(k) \subset \{1, \ldots, k-1\}$ subset whom Player k observes indirectly:
 - $l \in ID(k)$ if and only if there exist some path of players $(k, k_1, k_2, \ldots, k_L, l)$ such that each observes the next
 - Note that $D(k) \subset ID(k)$
- A player can indirectly observe another through many such paths,
 - this possibility plays a crucial role in our analysis below
- $\mathcal{N} = \{\{1, 2, \ldots\}, \{D(1), D(2), \ldots\}\}$ is observation structure
Player k chooses action $\alpha_k \in [0, 1]$ to maximize $E\{- (\alpha_k - \omega)^2\}$
given her information, l_k:

- $\alpha_k = E[\omega|l_k] = Pr[\omega = 1|l_k]$.
- action equal to her posteriors that $\omega = 1$
Player k chooses action $\alpha_k \in [0, 1]$ to maximize $E\{- (\alpha_k - \omega)^2\}$ given her information, I_k:

- $\alpha_k = \mathbb{E}[\omega|I_k] = \text{Pr}[\omega = 1|I_k]$.
- action equal to her posteriors that $\omega = 1$

Anybody who observes Player k can infer her beliefs (but not necessarily her signal)
Player k chooses action $\alpha_k \in [0, 1]$ to maximize $E\{-(\alpha_k - \omega)^2\}$ given her information, l_k.

- $\alpha_k = \mathbb{E}[\omega|l_k] = \text{Pr}[\omega = 1|l_k]$.
- Action equal to her posteriors that $\omega = 1$.

Anybody who observes Player k can infer her beliefs (but not necessarily her signal).

We identify actions by their log-odds ratios, $a_k := \ln \left(\frac{\alpha_k}{1-\alpha_k} \right)$.
Player k chooses action $\alpha_k \in [0, 1]$ to maximize $E\{-(\alpha_k - \omega)^2\}$ given her information, I_k

- $\alpha_k = \mathbb{E}[\omega|I_k] = \Pr[\omega = 1|I_k]$.
- action equal to her posteriors that $\omega = 1$

Anybody who observes Player k can infer her beliefs (but not necessarily her signal)

- We identify actions by their log-odds ratios, $a_k := \ln \left(\frac{\alpha_k}{1-\alpha_k} \right)$
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- Many of a player’s observations may be redundant
Many of a player’s observations may be redundant
In customary single-file structure, all but 1 are
Many of a player’s observations may be redundant

In customary single-file structure, all but 1 are

In other settings, players’ immediate predecessors do not provide “sufficient statistics” for earlier movers indirectly observed
Many of a player’s observations may be redundant
In customary single-file structure, all but 1 are
In other settings, players’ immediate predecessors do not provide
“sufficient statistics” for earlier movers indirectly observed

Central definition:
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- Many of a player’s observations may be redundant
- In customary single-file structure, all but 1 are
- In other settings, players’ immediate predecessors do not provide “sufficient statistics” for earlier movers indirectly observed

Central definition:

Definition

The quadruple of distinct players \((i, j, k, l)\) in \(N\) forms a diamond if

\[i \in ID(j) \cap ID(k), \; j \notin ID(k), \; k \notin ID(j), \; \text{and} \; \{j, k\} \subseteq D(l) \]
Many of a player’s observations may be redundant
In customary single-file structure, all but 1 are
In other settings, players’ immediate predecessors do not provide “sufficient statistics” for earlier movers indirectly observed

Central definition:

Definition

The quadruple of distinct players \((i, j, k, l)\) in \(\mathcal{N}\) forms a *diamond* if

\[i \in ID(j) \cap ID(k), j \notin ID(k), k \notin ID(j), \text{ and } \{j, k\} \subset D(l) \]

- Player \(i\) observed by \(j\) and \(k\), and \(j\) and \(k\) observed by \(l\), and \(j\) and \(k\) don’t observe each other.
Extensive Imitation is Irrational and Harmful

Impartial Inference and the Limits of Imitation

- Many of a player’s observations may be redundant
- In customary single-file structure, all but 1 are
- In other settings, players’ immediate predecessors do not provide “sufficient statistics” for earlier movers indirectly observed

Central definition:

Definition

The quadruple of distinct players (i, j, k, l) in \mathcal{N} forms a *diamond* if $i \in ID(j) \cap ID(k)$, $j \notin ID(k)$, $k \notin ID(j)$, and $\{j, k\} \subset D(l)$

- Player i observed by j and k, and j and k observed by l, and j and k don’t observe each other.
- Canonical single-file models of Banerjee (1992) and Bikchandani, Hirshleifer, and Welch (1992) do not include diamonds
We wish to abstract from difficulties that arise when players can partially but not fully infer their predecessors’ signals.
We wish to abstract from difficulties that arise when players can partially but not fully infer their predecessors’ signals.

We concentrate on “impartial inference”: full informational content of all signals that influence a player’s beliefs can be extracted.
We wish to abstract from difficulties that arise when players can partially but not fully infer their predecessors’ signals.

We concentrate on “impartial inference”: full informational content of all signals that influence a player’s beliefs can be extracted.

- hard to solve, but also some behaviors that out-funky anti-imitation
We wish to abstract from difficulties that arise when players can partially but not fully infer their predecessors’ signals.

We concentrate on “impartial inference”: full informational content of all signals that influence a player’s beliefs can be extracted.

- hard to solve, but also some behaviors that out-funky anti-imitation

Look at diamonds that are “shields”: j and k don’t observe each other, but do observe i. l observes j, k, and i.
Extensive Imitation is Irrational and Harmful

Impartial Inference and the Limits of Imitation

- We wish to abstract from difficulties that arise when players can partially but not fully infer their predecessors’ signals
- We concentrate on “impartial inference”: full informational content of all signals that influence a player’s beliefs can be extracted
 - hard to solve, but also some behaviors that out-funky anti-imitation
- Look at diamonds that are “shields”: j and k don’t observe each other, but do observe i. l observes j, k, and i.

Definition

k imitates j if $a_k(a_j, a^k_j; s_k)$ is weakly increasing (but not constant) in a_j.

Definition

k anti-imitates j if $a_k(a_j, a^k_j; s_k)$ weakly decreasing (not constant) in a_j.

(Note: Northwestern University)
• k anti-imitates j if k’s action moves in the opposite direction as j’s—holding everyone else’s action fixed
Extensive Imitation is Irrational and Harmful

Impartial Inference and the Limits of Imitation

- k anti-imitates j if k’s action moves in the opposite direction as j’s—holding everyone else’s action fixed
- Imitation is just the opposite
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- \(k \) anti-imitates \(j \) if \(k \)'s action moves in the opposite direction as \(j \)'s—holding everyone else's action fixed
- Imitation is just the opposite

Proposition

Assume the observation structure \(\mathcal{N} \) generates impartial inference. Then some player anti-imitates another if and only if \(\mathcal{N} \) contains a shield.
k anti-imitates j if k’s action moves in the opposite direction as j’s—holding everyone else’s action fixed

Imitation is just the opposite

Proposition

Assume the observation structure \mathcal{N} generates impartial inference. Then some player anti-imitates another if and only if \mathcal{N} contains a shield

Proposition 1 shows that any impartial-inference setting that contains a shield includes at least one player who anti-imitates another
• k anti-imitates j if k’s action moves in the opposite direction as j’s—holding everyone else’s action fixed
• Imitation is just the opposite

Proposition

Assume the observation structure \mathcal{N}' generates impartial inference. Then some player anti-imitates another if and only if \mathcal{N} contains a shield.

• Proposition 1 shows that any impartial-inference setting that contains a shield includes at least one player who anti-imitates another
• Proof does some accounting based on simple single-shield correlation-subtraction intuition.
In settings where rational people do not anti-imitate, they do not do very much imitation
In settings where rational people do not anti-imitate, they do not do very much imitation

- Single-file: each person imitates only her immediate predecessor
In settings where rational people do not anti-imitate, they do not do very much imitation

- Single-file: each person imitates only her immediate predecessor
- More generally: if no player anti-imitates, then no player imitates two predecessors who both observe an earlier, common predecessor
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

In settings where rational people do not anti-imitate, they do not do very much imitation

- Single-file: each person imitates only her immediate predecessor
- More generally: if no player anti-imitates, then no player imitates two predecessors who both observe an earlier, common predecessor
- But sharing no common observation excludes virtually all social learners (except at the beginning) in almost all settings of interest
Rational social learning also may lead some players to form beliefs on the opposite side of their priors than all their information.
Rational social learning also may lead some players to form beliefs on the opposite side of their priors than all their information.

Definition

Player k’s action a_k is *contrarian* given signal s_k and history a_{k-1} iff $a_k \neq 0$ and $\text{sgn}(a_k) = -\text{sgn}(s_k) = -\text{sgn}(a_j)$ for every $j \in D(k)$.
Rational social learning also may lead some players to form beliefs on the opposite side of their priors than all their information.

Definition

Player k’s action a_k is *contrarian* given signal s_k and history a^{k-1} iff $a_k \neq 0$ and $\text{sgn}(a_k) = -\text{sgn}(s_k) = -\text{sgn}(a_j)$ for every $j \in D(k)$.

Proposition

Assume \mathcal{N} generates impartial inference.

1. If some player’s action is contrarian, then \mathcal{N} contains a shield.
2. If \mathcal{N} contains a shield and players’ private signals are drawn from the density $f(\omega)$ that is everywhere positive on $[s, \bar{s}]$, then with positive probability some player’s action is contrarian.
To illustrate our model, consider: n players move in each *round*,

\[
A_t = \sum_{k=1}^{n} a_k t, \text{ the sum of round-} t \text{ actions,}
\]
\[
S_t = \sum_{k=1}^{n} s_k t, \text{ the sum of round-} t \text{ signals}
\]

Then:

\[
A_t = S_t + n t \sum_{i=1}^{n} \left(\frac{1}{i} \right)^{1} \left(\frac{n}{i} \right)^{1} A_t^i \]
To illustrate our model, consider: n players move in each *round*,

Let $A_t = \sum_{k=1}^{n} a^k_t$, the sum of round-$t$ actions,
To illustrate our model, consider: n players move in each *round*,

Let $A_t = \sum_{k=1}^{n} a_t^k$, the sum of round-$t$ actions,

and $S_t = \sum_{k=1}^{n} s_t^k$, the sum of round-$t$ signals
To illustrate our model, consider: n players move in each round,

Let $A_t = \sum_{k=1}^{n} a_t^k$, the sum of round-$t$ actions,

and $S_t = \sum_{k=1}^{n} s_t^k$, the sum of round-$t$ signals

Then:

$$A_t = S_t + n \sum_{i=1}^{t-1} (-1)^{i-1} (n-1)^{i-1} A_{t-i}$$
When $n = 1$, $A_t = S_t + A_{t-1}$
- Players imitate only their immediate predecessors, do not anti-imitate
Extensive Imitation is Irrational and Harmful

Impartial Inference and the Limits of Imitation

- When $n = 1$, $A_t = S_t + A_{t-1}$
 - Players imitate only their immediate predecessors, do not anti-imitate
- When $n = 2$, players imitate and anti-imitate alternating rounds with coefficients of constant magnitude:
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- When $n = 1$, $A_t = S_t + A_{t-1}$
 - Players imitate only their immediate predecessors, do not anti-imitate
- When $n = 2$, players imitate and anti-imitate alternating rounds with coefficients of constant magnitude:
 \[
 A_t = S_t + 2 \sum_{i=1}^{t-1} (-1)^{i-1} A_{t-i}
 \]
- When $n = 3$, the coefficients on past actions grow exponentially:
When $n = 1$, $A_t = S_t + A_{t-1}$
- Players imitate only their immediate predecessors, do not anti-imitate

When $n = 2$, players imitate and anti-imitate alternating rounds with coefficients of constant magnitude:

$$A_t = S_t + 2 \sum_{i=1}^{t-1} (-1)^{i-1} A_{t-i}$$

When $n = 3$, the coefficients on past actions grow exponentially:

$$A_t = S_t + 3 \sum_{i=1}^{t-1} (-1)^{i-1} 2^{i-1} A_{t-i},$$

Leading to
Extensive Imitation is Irrational and Harmful
Impartial Inference and the Limits of Imitation

- When $n = 1$, $A_t = S_t + A_{t-1}$
 - Players imitate only their immediate predecessors, do not anti-imitate
- When $n = 2$, players imitate and anti-imitate alternating rounds with coefficients of constant magnitude:
 \[
 A_t = S_t + 2 \sum_{i=1}^{t-1} (-1)^{i-1} A_{t-i}.
 \]
- When $n = 3$, the coefficients on past actions grow exponentially:
 \[
 A_t = S_t + 3 \sum_{i=1}^{t-1} (-1)^{i-1} 2^{i-1} A_{t-i},
 \]
 - Leading to
 - $A_1 = S_1$, $A_2 = S_2 + 3A_1$
 - $A_3 = S_3 + 3A_2 - 6A_1$
 - $A_4 = S_4 + 3S_3 - 6A_2 + 12A_1$
What happens if people do not anti-imitate, and imitate more broadly than predicted by full rationality?
What happens if people do not anti-imitate, and imitate more broadly than predicted by full rationality?

- Broad class of rules with minimal restrictions on use own signal:
Extensive Imitation is Irrational and Harmful

Redundancy Neglect

What happens if people do not anti-imitate, and imitate more broadly than predicted by full rationality?

- Broad class of rules with minimal restrictions on use own signal:

Definition

Social learning is *strictly and boundedly increasing in private signals* if

1. (strictly increasing) for each Player t, and each $a^{t-1} \in \mathbb{R}^{t-1}$,

 $\hat{s}^t > s^t \Rightarrow a_t(a^{t-1}, \hat{s}_t) > a_t(a^{t-1}, s_t)$

2. (boundedly increasing) there exists $K \in \mathbb{R}_{++}$ such that for each Player t, each $a^{t-1} \in \mathbb{R}^{t-1}$, and each $s^t, \hat{s}^t \in \mathbb{R}$,

 \[|a_t(a^{t-1}, \hat{s}_t) - a_t(a^{t-1}, s_t)| \leq K |\hat{s}_t - s_t| \]
Excludes: people ignore or put arbitrarily high weight on own signals
Extensive Imitation is Irrational and Harmful
Redundancy Neglect

- Excludes: people ignore or put arbitrarily high weight on own signals
- Encompasses many forms of non-Bayesian belief updating, including cases where people overconfidently overweight their own signal
Extensive Imitation is Irrational and Harmful

Redundancy Neglect

- Excludes: people ignore or put arbitrarily high weight on own signals
- Encompasses many forms of non-Bayesian belief updating, including cases where people overconfidently overweight their own signal
- Main assumption: people under-attend to redundancy in predecessors’ actions:

Players use social-learning rules that neglect redundancy if there exist an integer N and a constant $c > 0$ with the property that for each Player $t \geq N + 1$, each $a_t \neq N + 1$, each $s_t \neq a_t$, and each $z_0 > z_0$, we have:

$$a_t(a_t \neq N + 1, z_0, z_0, \ldots, z_0, \{z\}_N) a_t(a_t \neq N + 1, z, z, \ldots, z) \leq (1 + c)(z_0 - z_0).$$
Extensive Imitation is Irrational and Harmful

Redundancy Neglect

- Excludes: people ignore or put arbitrarily high weight on own signals
- Encompasses many forms of non-Bayesian belief updating, including cases where people overconfidently overweight their own signal
- Main assumption: people under-attend to redundancy in predecessors’ actions:
- someone who observes many people 60% convinced effectiveness of new hybrid seed will become more than 60% convinced herself
Extensive Imitation is Irrational and Harmful

Redundancy Neglect

- Excludes: people ignore or put arbitrarily high weight on own signals
- Encompasses many forms of non-Bayesian belief updating, including cases where people overconfidently overweight their own signal
- Main assumption: people under-attend to redundancy in predecessors’ actions:
 - someone who observes many people 60% convinced effectiveness of new hybrid seed will become more than 60% convinced herself

Definition

Players use social-learning rules that *neglect redundancy* if there exist an integer N and a constant $c > 0$ with the property that for each Player $t \geq N + 1$, each $a^{t-N-1} \in \mathbb{R}^{t-N-1}$, each $s_t \in \mathbb{R}$, and each $z' > z \geq 0$,

$$a_t(a^{t-N-1}, z', z', \ldots, z', s_t) - a_t(a^{t-N-1}, z, z, \ldots, z, s_t) \geq (1 + c)(z' - z)$$

\[N\text{ times}\] \hspace{1cm} \[N\text{ times}\]
Extensive Imitation is Irrational and Harmful

Redundancy Neglect

- Excludes: people ignore or put arbitrarily high weight on own signals
- Encompasses many forms of non-Bayesian belief updating, including cases where people overconfidently overweight their own signal
- Main assumption: people under-attend to redundancy in predecessors’ actions:
 - someone who observes many people 60% convinced effectiveness of new hybrid seed will become more than 60% convinced herself

Definition

Players use social-learning rules that *neglect redundancy* if there exist an integer N and a constant $c > 0$ with the property that for each Player $t \geq N + 1$, each $a^{t-N-1} \in \mathbb{R}^{t-N-1}$, each $s_t \in \mathbb{R}$, and each $z' > z \geq 0$,

$$a_t\left(a^{t-N-1}, z', z', \ldots, z', s_t\right) - a_t\left(a^{t-N-1}, z, z, \ldots, z, s_t\right) \geq (1 + c)(z' - z)$$

\[N\text{ times}\]

\[N\text{ times}\]
E.g., if Player t’s two immediate predecessors choose actions based solely on their private signals ($a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2}$);
E.g., if Player t’s two immediate predecessors choose actions based solely on their private signals ($a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2}$); if both raised their action from some z to z', then Player t, if observing both, would increase her action by $2(z' - z)$.
E.g., if Player t’s two immediate predecessors choose actions based solely on their private signals ($a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2}$);

- if both raised their action from some z to z', then Player t, if observing both, would increase her action by $2(z' - z)$

- If really independent, fully rational.
E.g., if Player t’s two immediate predecessors choose actions based solely on their private signals ($a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2}$);

If both raised their action from some z to z', then Player t, if observing both, would increase her action by $2(z' - z)$

If really independent, fully rational.

But generally this will not be the case—redundancy neglect embodies the error of reading more than one conditionally independent piece of information into recent predecessors’ actions
E.g., if Player t’s two immediate predecessors choose actions based solely on their private signals ($a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2}$);

if both raised their action from some z to z', then Player t, if observing both, would increase her action by $2(z' - z)$

If really independent, fully rational.

But generally this will not be the case—redundancy neglect embodies the error of reading more than one conditionally independent piece of information into recent predecessors’ actions

RN is joint assumption about observation structure and imitation
E.g., if Player \(t \)'s two immediate predecessors choose actions based solely on their private signals \((a_{t-1} = s_{t-1}, a_{t-2} = s_{t-2})\);

if both raised their action from some \(z \) to \(z' \), then Player \(t \), if observing both, would increase her action by \(2(z' - z) \)

If really independent, fully rational.

But generally this will not be the case—redundancy neglect embodies the error of reading more than one conditionally independent piece of information into recent predecessors' actions

RN is joint assumption about observation structure and imitation

- encompasses all sorts of combinations of assumptions about whom people observe and whom they imitate
Also allows people to under-infer from their predecessors, as in partially-cursed equilibrium (Eyster and Rabin (2005)), so long as they neglect redundancy:
Also allows people to under-infer from their predecessors, as in partially-cursed equilibrium (Eyster and Rabin (2005)), so long as they neglect redundancy:

- someone can treat all predecessors’ actions as half as informative as they are at the same time as she mistakenly imitates many predecessors instead of just one.
Also allows people to under-infer from their predecessors, as in partially-cursed equilibrium (Eyster and Rabin (2005)), so long as they neglect redundancy:

someone can treat all predecessors’ actions as half as informative as they are at the same time as she mistakenly imitates many predecessors instead of just one.

The condition is, intuitively, that the sum total of influence from underweighting individuals and overcounting predecessors is greater than the influence of one person, correctly interpreted.
Proposition

Suppose players social-learning rules are strictly and boundedly increasing in private signals as well as neglect redundancy, and that no player anti-imitates any other. Then, with positive probability, society converges to the action that corresponds to certain beliefs in the wrong state.
Proposition

Suppose players social-learning rules are strictly and boundedly increasing in private signals as well as neglect redundancy, and that no player anti-imitates any other. Then, with positive probability, society converges to the action that corresponds to certain beliefs in the wrong state.

- Redundancy neglect and the absence of anti-imitation do not merely prevent society from learning
Proposition

Suppose players social-learning rules are strictly and boundedly increasing in private signals as well as neglect redundancy, and that no player anti-imitates any other. Then, with positive probability, society converges to the action that corresponds to certain beliefs in the wrong state.

- Redundancy neglect and the absence of anti-imitation do not merely prevent society from learning
- but instead cause it to mislearn
Proposition

Suppose players social-learning rules are strictly and boundedly increasing in private signals as well as neglect redundancy, and that no player anti-imitates any other. Then, with positive probability, society converges to the action that corresponds to certain beliefs in the wrong state.

- Redundancy neglect and the absence of anti-imitation do not merely prevent society from learning
- but instead cause it to mislearn
- redundancy-neglecting doctors can converge with near certainty to a bad medicine ... and believe it works with near certainty
When players move single-file and observe all predecessors, BRTNI players (Eyster and Rabin, 2010), who interpret each predecessor’s action as her private signal, satisfy redundancy neglect with $c = N - 1$ for each N and mislearn with positive probability.
When players move single-file and observe all predecessors, BRTNI players (Eyster and Rabin, 2010), who interpret each predecessor’s action as her private signal, satisfy redundancy neglect with $c = N - 1$ for each N and mislearn with positive probability.

BRTNI players give the past 100 players 100 times the weight that they should get.
When players move single-file and observe all predecessors, BRTNI players (Eyster and Rabin, 2010), who interpret each predecessor’s action as her private signal, satisfy redundancy neglect with \(c = N - 1 \) for each \(N \) and mislearn with positive probability.

- BRTNI players give the past 100 players 100 times the weight that they should get.
- Proposition says that far milder over-imitation leads society astray.
When players move single-file and observe all predecessors, BRTNI players (Eyster and Rabin, 2010), who interpret each predecessor’s action as her private signal, satisfy redundancy neglect with $c = N - 1$ for each N and mislearn with positive probability. BRTNI players give the past 100 players 100 times the weight that they should get. Proposition says that far milder over-imitation leads society astray. If everyone treats their predecessors’ actions as embodying just two conditionally independent signals, instead of one, then society sometimes converges to complete confidence in the wrong state.
Reminder: results do not depend upon details of our environment
Reminder: results do not depend upon details of our environment

When observed recent actors provide independent information, they should all be imitated
Reminder: results do not depend upon details of our environment

When observed recent actors provide independent information, they should all be imitated

But when those recent players themselves imitate earlier actions, those earlier actions should be subtracted