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Abstract

This paper studies mechanism design when agents are maxmin expected utility

maximizers. The �rst result gives a general necessary condition for a social choice

rule to be implementable. The condition combines an inequality version of the stan-

dard envelope characterization of payo¤s in quasilinear environments with an approach

for relating maxmin agents� subjective expected utilities to their objective expected

utilities under any common prior. The condition is then applied to give an exact

characterization of when e¢ cient trade is possible in the bilateral trading problem of

Myerson and Satterthwaite (1983), under the assumption that agents know each other�s

expected valuation of the good (which is the information structure that emerges when

the agents start with a common prior but are pessimistic about how the other agent

might acquire information before participating in the mechanism). Whenever e¢ cient

trade is possible, it may be implemented by a relatively simple double auction format.
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Aytek Erdil, Ben Golub, Fuhito Kojima, Massimo Marinacci, Paul Milgrom, Suresh Mutuswami, Phil Reny,
Ilya Segal, Andy Skrzypacz, Joel Sobel, three anonymous referees, and participants in several seminars. I
thank Jason Huang for excellent research assistance.
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1 Introduction

�Robustness,�broadly construed, has been a central concern in game theory and mechanism

design since at least the celebrated argument of Wilson (1987). The Wilson doctrine is usu-

ally interpreted as calling for mechanisms that perform well in a wide range of environments

or for a wide range of agent behaviors. However, there is also growing and complementary

interest in robustness concerns on the part of agents instead of (or in addition to) on the part

of the designer; that is, in asking what mechanisms are desirable when agents use �robustly

optimal�strategies. This paper pursues this question in the case where agents are maxmin

expected utility (MMEU) maximizers (Gilboa and Schmeidler, 1989) by developing a general

necessary condition for a social choice rule to be implementable, and by applying it to give

an exact characterization of when e¢ cient trade is possible in the classical bilateral trade

setting of Myerson and Satterthwaite (1983).

The necessary condition for implementation generalizes a well-known necessary condition

in the Bayesian independent private values setting, namely that expected social surplus must

exceed the expected sum of information rents left to the agents, as given by an envelope

theorem. That this condition has any analogue with maxmin agents is rather surprising, for

two reasons. First, the usual envelope characterization of payo¤s need not hold with maxmin

agents. Second, and more importantly, a maxmin agent�s belief about the distribution of

opposing types depends on her own type. This is also the situation with Bayesian agents

and correlated types, where results are quite di¤erent than with independent types (Crémer

and McLean, 1985, 1988; McAfee and Reny, 1992).

The derivation of the necessary condition (Theorem 1) address both of these issues. For

the �rst, I derive an inequality version of the standard envelope condition that does hold

with maxmin agents. The key step is replacing the partial derivative of an agent�s allocation

with respect to her type with the minimum value of this partial derivative over all possible

beliefs of the agent. For the second, I note that, by de�nition, a maxmin agent�s expected

utility under her own subjective belief is lower than her expected utility under any belief

she �nds possible. This implies that the sum of agents� subjective expected utilities is

lower than the sum of their �objective�expected utilities under any possible common prior,
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which in turn equals the expected social surplus under that prior (for a budget-balanced

mechanism). Hence, a necessary condition for a social choice rule to be implementable is

that the resulting expected social surplus exceeds the expected sum of information rents

for any possible common prior; that is, for any prior with marginals that the agents �nd

possible.

The second part of the paper applies this necessary condition to give an exact charac-

terization of when e¢ cient bilateral trade is implementable, under the assumption that the

agents know each other�s expected valuation of the good (as well as bounds on the valua-

tions). As explained below, this information structure is the one that emerges when agents

have a (unique) common prior on values at an ex ante stage and are maxmin about how

the other might acquire information before entering the mechanism. In this setting, the

assumption of maxmin behavior may be an appealing alternative to the Bayesian approach

of specifying a prior over the set of experiments that the other agent may have access to,

especially when this set is large (e.g., consists of all possible experiments) or the agents�

interaction is one-shot. Furthermore, the great elegance of Myerson and Satterthwaite�s

theorem and proof suggests that their setting may be one where relaxing the assumption of

a unique common prior is particularly appealing.1

The second main result (Theorem 2) shows that the Myerson-Satterthwaite theorem

sometimes continues to hold when agents are maxmin about each other�s information acqui-

sition technology as described above� but sometimes not. In the simplest bilateral trade

setting where the range of possible seller and buyer values is [0; 1], the average seller value

is c�, and the average buyer value is v�, Figure 1 indicates the combination of parameters

(c�; v�) for which an e¢ cient, maxmin incentive compatible, interim individually rational,

and weakly budget balanced mechanism exists. Above the curve� the formula for which is

c�

1� c� log
�
1 +

1� c�
c�

�
+
1� v�
v�

log

�
1 +

v�

1� v�

�
= 1

1This is in line with Gilboa�s exhortation in his monograph on decision making under uncertainty to
�[consider] the MMEU model when a Bayesian result seems to crucially depend on the existence of a unique,
additive prior, which is common to all agents. When you see that, in the course of some proof, things cancel
out too neatly, this is the time to wonder whether introducing a little bit of uncertainty may provide more
realistic results,�(Gilboa, 2009, p.169).
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Figure 1: In the bilateral trade setting, e¢ cient trade is possible in the region below the
curve and impossible in the region above it.

� the Myerson-Satterthwaite theorem persists, despite the lack of a unique common prior or

independent types. Below the curve, the Myerson-Satterthwaite theorem fails.

I call the mechanism that implements e¢ cient trade for all parameters below the curve

in Figure 1 the �i (�i) double auction. It is so called because when a type �i agent and a

type �j agent trades, the type �i agent receives a share �i (�i) of the gains from trade that

depends only on her own type and not on her opponent�s. The �i (�i) double auction has

the property that an agent�s worst-case belief is the belief that minimizes the probability

that strict gains from trade exist; this may be seen to be the belief that her opponent�s

type always takes on either the most favorable value for which there are no gains from

trade or the most favorable value possible. If an agent misreports her type to try to get a

better price, the requirement that her opponent�s average value is �xed forces the deviator�s

worst-case belief to put more weight on the less favorable of these values, which reduces her

expected probability of trade. The share �i (�i) is set so that this �rst-order cost in terms of

probability of trade exactly o¤sets the �rst-order bene�t in terms of price, which makes the

�i (�i) double auction incentive compatible for maxmin agents. Finally, the �i (�i) double

auction is weakly budget balanced if and only if �1 (�1) + �2 (�2) � 1 for all �1; �2; that is,

if and only if the shares that must be left to the two agents sum to less than one.
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I also consider several extensions and robustness checks in the bilateral trade setting.

One observation here is that if the average types of the two agents do not have gains from

trade with each other (e.g., if the pair (c�; v�) lies below the 45� line in Figure 1), then

e¢ cient trade can be implemented with a mechanism even simpler than the �i (�i) double

auction, which I call a reference rule. A reference rule works by setting a �reference price�

p� and specifying that trade occurs at price p� if this is acceptable to both agents, and that

otherwise trade occurs (when e¢ cient) at the reservation price of the agent who refuses to

trade at p�. The intuition for why references rules are incentive compatible with maxmin

agents if and only if c� � v� is simple and is given in the text.

This paper joins a growing literature on games and mechanisms with maxmin agents, or

with agents who follow �robust�decision rules more generally. In contrast to much of this

literature, the current paper shares the following important features of classical Bayesian

mechanism design: (i) the implementation concept is (partial) Nash implementation; (ii) the

only source of uncertainty in the model concerns exogenous random variables, namely other

agents�types; and (iii) for Theorem 1, the model admits the possibility of a unique common

prior as a special case. Several recent papers derive permissive implementability results

with maxmin agents by relaxing these assumptions, in contrast to the relatively restrictive

necessary condition of Theorem 1.

Bose and Daripa (2009), Bose and Mutuswami (2012), and Bose and Renou (2013) relax

(i) by considering dynamic mechanisms that exploit the fact that maxmin agents may be

time-inconsistent. A central feature of their approach is that agents cannot commit to

strategies, so they do not obtain implementation in Nash equilibrium. Their approach also

relies on taking a particular position on how maxmin agents update their beliefs, an issue

which does not arise here. Di Tillio, Kos, and Messner (2012) and Bose and Renou (2013)

relax (ii) by assuming that agents are maxmin over uncertain aspects of the mechanism itself.

This lets the designer extract the agents�information by introducing �bait�provisions into

the mechanism. The mechanisms considered in these four papers are undoubtedly interesting

and may be appealing in particular applications. However, they arguably rely on a more

thoroughgoing commitment to maxmin behavior than does the current paper (agents must

be time-inconsistent, or must be maxmin over endogenous random variables). Even if one
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accepts this commitment, it still seems natural to ask what is possible in the more �standard�

case where (i) and (ii) are satis�ed.

De Castro and Yannelis (2010) relax (iii) by assuming that agents�beliefs are completely

unrestricted, and �nd that e¢ cient social choice rules are then always implementable. This

is consistent with Theorem 1, as with completely unrestricted beliefs agents can always

expect the worst possible allocation, which implies that the necessary condition of Theorem

1 is vacuously satis�ed. For example, in the bilateral trade setting, e¢ cient trade is always

implementable, as agents are always certain that they will not trade and are therefore willing

to reveal their types.

The model of Lopomo, Rigotti, and Shannon (2009) satis�es (i), (ii), and (iii), but

considers agents with incomplete preferences as in Bewley (1986) rather than maxmin pref-

erences. There are two natural versions of incentive compatibility in their model, which

bracket maxmin incentive compatibility (and Bayesian incentive compatibility) in terms of

strength. Lopomo, Rigotti, and Shannon show that the stronger of their notions of incen-

tive compatibility is often equivalent to ex post incentive compatibility (whereas maxmin

incentive compatibility is not), and that full extraction of information rents is generically

possible under the weaker of their notions, and is sometimes possible under the stronger one.

Finally, Bodoh-Creed (2012) satis�es (i), (ii), and (iii) and considers maxmin agents.

Bodoh-Creed�s main result provides conditions for an exact version of the standard envelope

characterization of payo¤s to apply with maxmin agents, based on Milgrom and Segal�s

(2002) envelope theorem for saddle point problems. As discussed below, these conditions

are not satis�ed in my setting. Bodoh-Creed also does not derive a general necessary

condition for implementability like Theorem 1, and his treatment of applications (including

bilateral trade) focuses not on e¢ ciency but on revenue-maxmization using full-insurance

mechanisms, as in Bose, Ozdenoren, and Pape (2006).

The paper proceeds as follows. Section 2 presents the model. Section 3 gives the general

necessary conditions for implementation. Section 4 applies these conditions to characterize

when e¢ cient bilateral trade is implementable. Section 5 contains additional results in the

bilateral trade setting. Section 6 concludes. The appendix contains omitted proofs and

auxiliary results.
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2 Model

Agents and Preferences: A groupN of n agents must make a social choice from a bounded

set of alternatives Y � Rn. Each agent i has a one-dimensional type �i 2
�
�i;
��i
�
= �i � R,

and agents have quasilinear utility. In particular, if alternative y = (y1; : : : ; yn) is selected

and a type �i agent receives transfer ti, her payo¤ is

�iyi + ti:
2

Agent i�s type is her private information. In addition, each agent i has a set of possible

beliefs ��i about her opponents�types, where��i is an arbitrary nonempty subset of�(��i),

the set of Borel measures ��i on ��i (throughout, probability measures are denoted by �,

and the corresponding cumulative distribution functions are denoted by F ). Each agent i

evaluates her expected utility with respect to the worst possible distribution of her opponents�

types among those distributions in ��i; that is, the agents are maxmin optimizers.

Mechanisms: A direct mechanism (y; t) consists of a measurable allocation rule y :

�! Y and a measurable and bounded transfer rule t : �! Rn. Given a mechanism (y; t),

let

Ui

�
�̂i; ��i; �i

�
= �iyi

�
�̂i; ��i

�
+ ti

�
�̂i; ��i

�
;

Ui

�
�̂i; ��i; �i

�
= E��i

h
Ui

�
�̂i; ��i; �i

�i
;

Ui (�i) = inf
��i2��i

Ui
�
�i; ��i; �i

�
:

Thus, Ui
�
�̂i; ��i; �i

�
is agent i�s utility from reporting type �̂i against opposing type pro�le

��i given true type �i, Ui
�
�̂i; ��i; �i

�
is agent i�s expected utility from reporting type �̂i

against belief ��i given true type �i, and Ui (�i) is agent i�s worst-case expected utility from

reporting her true type �i.3

2The assumption that utility is multiplicative in �i and yi is for simplicity. One could instead assume
that utility equals vi (y; �i) + ti for some absolutely continuous and equidi¤erentiable family of functions
fvi (y; �)g, as in Milgrom and Segal (2002) or Bodoh-Creed (2012).

3The term �worst-case� is only used heuristically in this paper, but the meaning is generally that if

min��i2��i Ui

�
�̂i; ��i; �i

�
exists, then a minimizer is a worst-case belief; while if the minimum does not
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A distinguishing feature of this paper is the notion of incentive compatibility employed,

which I call maxmin incentive compatibility. A mechanism is maxmin incentive compatible

(MMIC) if

�i 2 arg max
�̂i2�i

inf
��i2��i

Ui

�
�̂i; ��i; �i

�
for all �i 2 �i; i 2 N: (1)

I restrict attention to MMIC direct mechanisms throughout the paper. The motivation for

doing so is provided in Appendix B, where I prove the appropriate version of the revela-

tion principle. In particular, I show that when agents are maxmin optimizers, any Nash

implementable social choice rule is MMIC.4 The main assumption underlying this result is

that an agent cannot �commit to randomize,�meaning that mixed strategies are evaluated

according to the maxmin criterion realization-by-realization. If instead agents could commit

to randomize, then restricting attention to MMIC mechanisms in the sense of (1) would no

longer be without loss of generality. Assuming that agents cannot commit to randomize

seems as natural as the alternative in most contexts, and is also the more common assump-

tion in the literature on mechanism design with maxmin agents (e.g., Bose, Ozdenoren, and

Pape, 2006; de Castro and Yannelis, 2010; Bodoh-Creed, 2012; Di Tillio, Kos, and Messner,

2012).

In addition to MMIC, I also consider the following standard mechanism design criteria.

� Ex Post E¢ ciency (EF): y (�) 2 argmaxy2Y
P

i �iyi for all � 2 �.

� Interim Individual Rationality (IR): Ui (�i) � 0 for all �i 2 �i.

� Ex Post Weak Budget Balance (WBB):
P

i ti (�) � 0 for all � 2 �.

� Ex Post Strong Budget Balance (SBB):
P

i ti (�) = 0 for all � 2 �.

E¢ ciency is self-explanatory. Interim individual rationality is imposed with respect to

agents�own worst-case beliefs; in addition, all results in the paper continue to hold with ex

post individual rationality (i.e., Ui (�i; ��i; �i) � 0 for all �i 2 �i; ��i 2 ��i). The ex post

exist (which is possible, as Ui
�
�̂i; ��i; �i

�
may not be continuous in ��i), then a limit point of a sequence�

��i
	
that attains the in�mum is a worst-case belief.

4The solution concept throughout the paper is thus Nash equilibrium (this is made explicit in Appendix
B and is captured implicitly by (1) in the text). In particular, there is no strategic uncertainty or �higher
order ambiguity�(as in Ahn, 2007).

8



version of budget balance seems appropriate, since there is no unique common prior. The

di¤erence between weak and strong budget balance is that with weak budget balance the

mechanism is allowed to run a surplus.

An allocation rule y is maxmin implementable if there exists a transfer rule t such that

the mechanism (y; t) satis�es MMIC, IR, and WBB.

3 Necessary Conditions for Implementation

My most general result is a necessary condition for maxmin implementation, which general-

izes a standard necessary condition for Bayesian implementation with independent private

values. In particular, in an independent private values environment with common prior

distribution F , it is well-known that an allocation rule y is Bayesian implementable only if

the expected social surplus under y exceeds the expected information rents that must be left

for the agents in order to satisfy incentive compatibility. It follows from standard arguments

that this condition may be written as

X
i

�Z
�2�

�iyi (�) d�

�
�
X
i

�Z
�i2�i

(1� Fi (�i)) yi
�
�i; ��i

�
d�i

�
; (2)

where

yi
�
�i; ��i

�
= E��i [yi (�i; ��i)]

(recall that � is the measure corresponding to cdf F ). I will show that a similar condition

is necessary for maxmin implementation, despite the lack of independent types or a unique

common prior. Intuitively, the required condition will be that (2) holds for all distributions

F with marginals that the agents �nd possible, with the modi�cation that, on the right-hand

side of (2), the expected information rents under F are replaced by the expectation under

F of type �i�s minimum possible information rent.

I begin by formalizing these concepts. Given a measure � 2 �(�), let �S denote its

marginal with respect to �S, for S � N . Let �� be the set of measures � 2 �(�) such

that, for all i 2 N , the marginals �i and ��i are pairwise independent and ��i 2 ��i. Some

examples may clarify this de�nition.
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� If n = 2, then �� = �1 � �2 (where �i � ��j).

� Suppose the set of each agent i�s possible beliefs takes the form of a product ��i =Q
j 6=i�

i
j for some sets of measures �

i
j � �(�j) (in particular, each agent believes that

her opponents�types are independent). Then �� =
Q
j2N

�T
i6=j �

i
j

�
.

� If n > 2, it is possible that �� is empty. For instance, take the previous example withT
i6=j �

i
j = ; for some j.

Finally, let

~yi (�i) = inf
��i2��i

yi
�
�i; ��i

�
:

Thus, ~yi (�i) is the smallest allocation that type �i may expected to receive.

The following result gives the desired necessary condition.

Theorem 1 If allocation rule y is maxmin implementable, then, for every measure � 2 ��,

X
i

�Z
�2�

�iyi (�) d�

�
�
X
i

�Z
�i2�i

(1� Fi (�i)) ~yi (�i) d�i
�
: (3)

Comparing (2) and (3), (2) says that the expected social surplus under F must exceed the

expected information rents, whereas (3) says that the expected social surplus must exceed

the expectation of the agents��minimum possible�information rents, re�ecting the fact that

agents�subjective expected allocations are not derived from F . In addition, (2) must hold

only for the �true�distribution F (i.e., the common prior distribution), while (3) must hold

for any �candidate� distribution F (i.e., any distribution in ��). Furthermore, (3) is a

generalization of (2), as in the case of a unique independent common prior �, it follows that

��i =
�
��i
	
for all i, �� = f�g, and ~yi (�i) = yi

�
�i; ��i

�
, so (3) reduces to (2). Finally,

if y is continuous then (3) also shows that (2) changes continuously as a slight degree of

ambiguity aversion is introduced into a Bayesian model.

The di¤erences between (2) and (3) suggest that maxmin implementation is neither easier

nor harder than Bayesian implementation in general, and that more generally expanding the

sets of possible beliefs ��i can make implementation either easier or harder. In particular,

expanding the sets ��i expands ��, which implies that (3) must hold for a larger set of

10



measures �. On the other hand, expanding ��i also reduces ~yi (�i), and thus reduces

the right-hand side of (3), making (3) easier to satisfy. Indeed, Section 4 shows that

e¢ cient bilateral trade is sometimes maxmin implementable in cases where the Myerson-

Satterthwaite theorem implies that it is not Bayesian implementable, which demonstrates

that maxmin implementation can be easier than Bayesian implementation. But it is also easy

to �nd examples where maxmin implementation is harder than Bayesian implementation.

For instance, take a Bayesian bilateral trade setting where all types are certain that gains

from trade exist� so that e¢ cient trade is implementable� and expand the set of possible

beliefs by adding a less-favorable prior for which the Myerson-Satterthwaite theorem applies.

Condition (3) will then imply that e¢ cient trade is not implementable, by exactly the same

argument as in Myerson-Satterthwaite.

The �rst step in proving Theorem 1 is deriving an inequality version of usual envelope

characterization of payo¤s, Lemma 1. Lemma 1 is related to Theorem 1 of Bodoh-Creed

(2012), which gives an exact characterization of payo¤s using Milgrom and Segal�s (2002)

envelope theorem for saddle point problems. The di¤erence comes because the maxmin

problem (1) admits a saddle point in Bodoh-Creed but not in the present paper; one reason

why is that Bodoh-Creed assumes that yi
�
�i; ��i

�
is continuous in �i and ��i (his assumption

A8), which may not be the case here.5 For example, e¢ cient allocation rules are not

continuous, so Bodoh-Creed�s characterization need not apply for e¢ cient mechanisms. I

discuss below how Theorem 1 may be strengthened if (1) is assumed to admit a saddle point.6

Lemma 1 In any maxmin incentive compatible mechanism,

Ui (�i) � Ui (�i) +
Z �i

�i

~yi (s) ds for all �i 2 �i: (4)

Proof. As Y is bounded, Theorem 2 of Milgrom and Segal (2002) may be applied to

5A careful reading of Bodoh-Creed (2012) reveals that some additional assumptions are also required
for the existence of a saddle point, such as quasiconcavity assumptions. Bodoh-Creed (2014) provides an
alternative derivation of his payo¤ characterization result using additional continuity assumptions in lieu
of assumptions guaranteeing the existence of a saddle point. Neither set of assumptions is satis�ed in the
current setting.

6The present approach of bounding Ui (�i) also bears some resemblence to Segal and Whinston (2002),
Carbajal and Ely (2013), or Kos and Messner (2013), with the di¤erence that the di¢ culty here is not
relating Ui (�i) to

R �i
�i
U 0i (�) d�, but rather relating U

0
i (�) to (bounds on) y

�
�; ��i

�
.

11



the problems inf��i2��i Ui
�
�̂i; ��i; �i

�
and max�̂i2�i inf��i2��i Ui

�
�̂i; ��i; �i

�
to show that

Ui (�i) is absolutely continuous. Hence, Ui (�i) is di¤erentiable almost everywhere, and

Ui (�i) = Ui (�i)+
R �i
�i
U 0i (s) ds. Given a point of di¤erentiability �

0
i 2

�
�i;
��i
�
, �x a sequence�

�ki
	
converging to �0i from above. Then

Ui
�
�ki
�
� Ui

�
�0i
�
� inf

��i2��i
Ui
�
�0i ; ��i; �

k
i

�
� inf
��i2��i

Ui
�
�0i ; ��i; �

0
i

�
= inf

��i2��i

�
Ui
�
�0i ; ��i; �

0
i

�
+
�
�ki � �0i

�
y
�
�0i ; ��i

��
� inf
��i2��i

Ui
�
�0i ; ��i; �

0
i

�
� inf

��i2��i
Ui
�
�0i ; ��i; �

0
i

�
+ inf
��i2��i

�
�ki � �0i

�
y
�
�0i ; ��i

�
� inf
��i2��i

Ui
�
�0i ; ��i; �

0
i

�
= inf

��i2��i

�
�ki � �0i

�
y
�
�0i ; ��i

�
�

�
�ki � �0i

�
~y
�
�0i
�
:

Hence,
Ui(�ki )�Ui(�0i )

�ki��0i
� ~y

�
�0i
�
, and therefore U 0i

�
�0i
�
� ~yi

�
�0i
�
. The result follows as Ui (�i) =

Ui (�i) +
R �i
�i
U 0i (s) ds.

The remaining step in the proof of Theorem 1 relates the bound on agents�subjective

expected utilities in (4) to the objective social surplus on the left-hand side of (3). The key

reason why this is possible is that a maxmin agent�s subjective expected utility is a lower

bound on her expected utility under any probability distribution she �nds possible. Hence,

the sum of agents�subject expected utilities is a lower bound on the sum of their objective

expected utilities under any measure � 2 ��, which in turn is a lower bound on the objective

expected social surplus under � (if weak budget balance is satis�ed). Note that this step

relies crucially on the assumption that agents are maxmin optimizers; for example, it would

not apply for Bayesian agents with heterogeneous priors.

Proof of Theorem 1. Suppose mechanism (y; t) satis�es MMIC, IR, and WBB. For any

measure �i 2 �(�i), integrating (4) by parts yieldsZ
�i

Ui (�i) d�i � Ui (�i) +
Z
�i

(1� Fi (�i)) ~yi (�i) d�i:

Recall that

Ui (�i) �
Z
��i

(�iyi (�) + ti (�)) d��i for all ��i 2 ��i:
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Combining these inequalities implies that, for every measure � = �i � ��i 2 �(�i)� ��i,Z
�i

Z
��i

(�iyi (�) + ti (�)) d��id�i � Ui (�i) +
Z
�i

(1� Fi (�i)) ~yi (�i) d�i;

or Z
�

(�iyi (�) + ti (�)) d� � Ui (�i) +
Z
�i

(1� Fi (�i)) ~yi (�i) d�i: (5)

Note that every measure � 2 �� is of the form �i � ��i 2 �(�i) � ��i for each i. Thus,

for every � 2 ��, summing (5) over i yields

X
i

�Z
�

(�iyi (�) + ti (�)) d�

�
�
X
i

Ui (�i) +
X
i

�Z
�i

(1� Fi (�i)) ~yi (�i) d�i
�
:

Finally,
P

i Ui (�i) � 0 by IR and
P

i

R
�
ti (�) d� � 0 by WBB, so this inequality implies (3).

If the maxmin problem (1) admits a saddle point
�
�̂
�
i (�i) ; �

�
�i (�i)

�
(where MMIC implies

that �̂
�
i (�i) = �i), then, letting

y�i (�i) = yi
�
�i; �

�
�i (�i)

�
be type �i�s expected allocation under her worst-case belief �

�
�i (�i), Theorem 4 of Milgrom

and Segal (2002) or Theorem 1 of Bodoh-Creed (2012) implies that (4) may be strengthened

to

Ui (�i) = Ui (�i) +

Z �i

�i

y�i (s) ds for all �i 2 �i: (6)

The same argument as in the proof of Theorem 1 then implies that the necessary condition

(3) may be strengthened to

X
i

�Z
�2�

�iyi (�) d�

�
�
X
i

�Z
�i2�i

(1� Fi (�i)) y�i (�i) d�i
�
:

Thus, if the maxmin problem admits a saddle point then a necessary condition for maxmin

implementation is that, for every measure � 2 ��, the expected social surplus under �

exceeds the expectation under � of the sum of the agents�subjective information rents (i.e.,

13



the information rents under the worst-case beliefs ���i (�i)). Unfortunately, I am not aware

of su¢ cient conditions on the allocation rule y alone that ensure the existence of a saddle

point. Applying the Debreu-Fan-Glicksberg �xed point theorem to (1), a su¢ cient condition

on the mechanism (y; t) is that y and t are continuous in � and Ui
�
�̂i; ��i; �i

�
is quasiconcave

in �̂i and quasiconvex in ��i.7

A well-known necessary condition for an e¢ cient allocation rule to be Bayesian im-

plementable is that an individually rational Groves mechanism runs an expected surplus

(Makowski and Mezzetti, 1994; Williams, 1999; Krishna and Perry, 2000). This follows

because the standard envelope characterization of payo¤s implies that the interim expected

utility of each type in any e¢ cient and Bayesian incentive compatible mechanism is the same

as her interim expected utility in a Groves mechanism. However, this result does not go

through with maxmin incentive compatibility, even if (1) admits a saddle point. This is be-

cause the envelope characterization of payo¤s with MMIC, (6), depends on types�expected

allocations under their worst-case beliefs ���i (�i), and these beliefs in turn depend on trans-

fers as well as the allocation rule. In particular, distinct e¢ cient and MMIC mechanisms

that give the same interim subjective expected utility to the lowest type of each agent need

not give the same interim subjective expected utilities to all types, in contrast to the usual

payo¤equivalence under Bayesian incentive compatibility.8 Indeed, I show in Section 4 that,

in the context of bilateral trade, the e¢ cient allocation rule may be maxmin implementable

even if all IR Groves mechanisms run expected de�cits for some measure � 2 ��.

On the other hand, the condition that an IR Groves mechanism runs an expected sur-

plus is also su¢ cient for an e¢ cient allocation rule to be Bayesian implementable, because,

following Arrow (1979) and d�Aspremont and Gérard-Varet (1979), �lump-sum�transfers of

the form hi (��i) may be used to balance the budget ex post without a¤ecting incentives.

This result also does not carry over with maxmin incentive compatibility, as these transfers

can a¤ect agents�worst-case beliefs and thereby a¤ect incentives. This issue makes con-

structing desirable MMIC mechanisms challenging, and this paper does not contain positive

7It should also be noted that if (1) admits a saddle point then the maximizing and minimizing operators
in (1) commute, so that maxmin IC coincides with �minmax�IC. In this case, agents may equivalently be
viewed as pessimistic Bayesians rather than MMEU maximizers. That is, when (1) admits a saddle point,
the approach of this paper does not require that agents are non-Bayesian.

8This point was already noted by Bodoh-Creed (2012).
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results on maxmin implementation outside of the bilateral trade context� where, however,

a full characterization is provided.

4 Application to Bilateral Trade

In this section, I show how Theorem 1 can be applied to obtain a full characterization of

when e¢ cient bilateral trade or bilateral public good provision is implementable when agents

know each other�s expected valuation of the good.

The key assumptions in this section are that n = 2 and Y = f0 = (0; 0) ; 1 = (1; 1)g (e.g.,

fno trade; tradeg, fno provision; provisiong), and that in addition every measure �i 2 �i
satis�es E�i [�i] = ��i for some �

�
i 2

�
�i;
��i
�
(note that, as in the general case, �i can be

negative).9 The results in this section actually only require the weaker assumption that

E�i [�i] � ��i for all �i 2 �i; the intuition is that, with maxmin agents, only bounds on

how �bad� an agent�s belief can be are binding.10 However, Section 5.1 shows that the

equality assumption E�i [�i] = �
�
i is appropriate if agents have a unique common prior with

mean (��1; �
�
2) and support

�
�1;
��1
�
�
�
�2;
��2
�
at an ex ante stage and may acquire additional

information prior to entering the mechanism. I therefore adopt the equality assumption for

consistency with this interpretation.

The model remains general enough to cover the classical bilateral trade and bilateral

public good provision settings, as follows.

Bilateral Trade: Agent 1 is the seller and agent 2 is the buyer. They can trade (y = 1) or

not (y = 0). The seller�s type �1 is �1 times her value of retaining the object (or equivalently

her cost of providing it). The buyer�s type �2 is his value of acquiring the object. t1 (�1; �2)

is the price received by the seller. t2 (�1; �2) is �1 times the price paid by the buyer.

Public Good Provision: Agents 1 and 2 can either share the cost C 2 R of providing a

public good (y = 1) or not (y = 0). An agent�s type �i is her bene�t from the good, net of a

benchmark payment of C
2
. ti (�i; �j) is �1 times what agent i pays for the good in addition

9The assumption that ��i lies in the interior of �i is without loss of generality: if �
�
i 2

�
�i;
��i
	
, then

there would be no uncertainty about agent i�s value, and e¢ cient trade could always be implemented with
a Groves mechanism.
10Without a bound on how bad beliefs can be, de Castro and Yannelis�s (2010) theorem shows that e¢ cient

trade is always implementable.
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to C
2
.

The special case of this model where �i = ���j, i = 1; 2, will be useful for providing

intuition for the results. I call this the aligned supports case. With aligned supports, the

least favorable type of agent i does not have (strict) gains from trade with any type of agent

j, and the most favorable type of agent i has (weak) gains from trade with every type of

agent j. For example, �aligned supports�in the bilateral trade setting means that the sets

of possible values of the seller and the buyer coincide.

Two special kinds of distributions �i will play an important role in the analysis. Let ���i

be the Dirac measure on ��i , so that ���i 2 �i corresponds to the possibility that agent i�s value

is ��i for sure.
11 Let ��li;�hi be the 2-point measure on �

l
i and �

h
i satisfying E

�
�l
i
;�h
i [�i] = �

�
i ;

that is, ��li;�hi is given by �i = �
l
i with probability

�hi ���i
�hi ��li

and �i = �
h
i with probability

��i��li
�hi ��li

.

Thus, ��li;�hi 2 �i corresponds to the possibility that agent i�s value may take on only value

�li or �
h
i .
12 The results to follow require ���i 2 �i and ��li;�hi 2 �i for certain values of �

l
i; �

h
i .

I now turn to the characterization result. A preliminary observation is that if no type

of some agent i has gains from trade with the average type of agent j, then e¢ cient trade is

always possible. In this case, e¢ cient trade can be implemented by simply giving the entire

surplus to agent j: certainty of no-trade is then a worst-case belief for every type of agent i,

so truthtelling is trivially optimal for agent i, and truthtelling is optimal for agent j by the

usual Vickrey-Clarke-Groves logic.

Proposition 1 Assume that ��i + ��j � 0 and ���j 2 �j for some i 2 f1; 2g. Then e¢ cient

trade is implementable (with strong budget balance).

Proof. See Appendix A.

In light of Proposition 1, the main result of this section considers the non-trivial case

where some type of each agent has gains from trade with the average type of the other agent

(i.e., ��i + �
�
j > 0 for i = 1; 2). I also assume that some type of each agent does not have

strict gains from trade with the average type of the other agent (i.e., �i+�
�
j � 0 for i = 1; 2).

11In the information acquisition interpretation of Section 5.1, ���i 2 �i corresponds to the possibility that
agent i may acquire no new information about her value before entering the mechanism.
12In the information acquisition interpretation of Section 5.1, ��li;�hi 2 �i corresponds to the possibility

that agent i may observe a binary signal of her value before entering the mechanism, where the �bad�signal
lowers her expected value to �li and the �good�signal raises her expected value to �

h
i .
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This is an analogue of the �overlapping supports�assumption of the Myerson-Satterthwaite

theorem. Put together, the assumptions that ��i + �
�
j > 0 and �i + �

�
j � 0 for i = 1; 2 say

that the intervals �i and �j are su¢ ciently wide or su¢ ciently �well-aligned.� For instance,

these assumptions hold with aligned supports.

The result is the following.

Theorem 2 Assume that ��i+��j > 0 and �i+�
�
j � 0, and that ��i;��i 2 �i for all �i 2 [�i; �

�
i ],

for i = 1; 2.13 Then e¢ cient trade is implementable if and only if

 
��1 +min

�
��2;��1

	
��1 + ��2

! 
��1 � ��1

��1 +min
�
��2;��1

	! log 1 + ��1 +min���2;��1	��1 � ��1

!

+

 
��2 +min

�
��1;��2

	
��1 + ��2

! 
��2 � ��2

��2 +min
�
��1;��2

	! log 1 + ��2 +min���1;��2	��2 � ��2

!
� 1: (*)

Proof. See Appendix A.

Theorem 2 shows that, under mild restrictions, e¢ cient bilateral trade between maxmin

agents is possible if and only if Condition (*) holds. In other words, the Myerson-Satterthwaite

impossibility result holds with maxmin agents if and only if Condition (*) fails.

As will become clear, Condition (*) says precisely that, in the �i (�i) double auction,

�1 (�1) + �2 (�2) � 1 for all �1 2 �1; �2 2 �2. To understand the economic content of

Condition (*), I discuss three aspects of the condition. First, what does Condition (*)

imply for comparative statics and other economic results? Second, where does Condition

(*) come from? And, third, why is Condition (*) necessary and su¢ cient condition for

implementation, while Theorem 1 only gives a necessary condition?

To see the implications of Condition (*), �rst set aside the �rst term in each of the

products on the left-hand side (i.e., the
��1+minf��2;��1g

��1+��2
and

��2+minf��1;��2g
��1+��2

terms). These

terms disappear with aligned supports, and may be viewed as �adjustments�that are needed

if there are some types that are either sure to trade (if ��i > ��j) or sure to not trade (if
��i < ��j). Next, note that each of the remaining products is of the form 1

x
log (1 + x), which

is decreasing in x. In particular, increasing ��i makes Condition (*) harder to satisfy. A

rough intuition for this comparative static is that increasing ��i makes agent j more con�dent

13Note that ���i ;��i = ���i , so we have ���i 2 �i.
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that he will trade, which makes shading his report to get a better transfer more tempting.

For example, as ��i ! �i, the bound on how �bad� agents� beliefs can be vanishes, and

e¢ cient trade is always implementable as in de Castro and Yannelis (2010); on the other

hand, as ��i ! ��i, agents become certain that they will trade, and the temptation to shade

their reports becomes irresistible.

Another observation is that Condition (*) always holds when ��1 + �
�
2 � 0; that is, when

the average types of each agent do not have strict gains from trade with each other (e.g.,

this is why the curve in Figure 1 lies above the 45� line). This follows because, using the

inequality log 1 + x � x
1+x
, the left-hand side of Condition (*) is at least

��1 � ��1
��1 + ��2

+
��2 � ��2
��1 + ��2

= 1� �
�
1 + �

�
2

��1 + ��2
:

This is consistent with Proposition 5 below, which shows that e¢ cient trade is implementable

with reference rules when ��1 + �
�
2 � 0. In particular, the parameters for which e¢ cient

trade is implementable with general mechanisms but not with reference rules are precisely

those that satisfy Condition (*) but would violate Condition (*) if the log 1 + x terms were

approximated by x
1+x
. This gives one measure of how restrictive reference rules are.

To see (heuristically) where Condition (*) comes from, suppose that supports are aligned

and that the worst-case belief of a type �i agent who reports type �̂i is ���̂i;��j , which is easily

seen to be the belief that minimizes the probability that strict gains from trade exist (i.e.,

that �̂i + �j > 0) among beliefs �j with E
�j [�j] = �

�
j . Suppose also that the mechanism is

ex post individually rational, so that Ui
�
�̂i;��̂i; �i

�
= 0. Then

Ui

�
�̂i; ���̂i;��j ; �i

�
=
��j + �̂i
��j + �̂i

�
�i + ti

�
�̂i; ��j

��
+

 
1�

��j + �̂i
��j + �̂i

!
(0) ;

where
��j+�̂i
��j+�̂i

is the probability of trade (i.e., the probability that �j = ��j under ���̂i;��j),

and �i + ti
�
�̂i; ��j

�
is type �i�s payo¤ in the event that trade occurs. Assuming that ti is
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di¤erentiable, the �rst-order condition for truthtelling to be optimal is

@

@�i
ti
�
�i; ��j

�
= �

��j � ��j�
��j + �i

� �
��j + �i

� ��i + ti ��i; ��j�� :
This �rst-order condition captures the tradeo¤ discussed in the introduction: shading one�s

report down yields a �rst-order loss in the probability of trade (i.e., in the probability that

�j = ��j), which must be o¤set by a �rst-order improvement in the transfer (i.e., in ti
�
�i; ��j

�
).

Solving this di¤erential equation for ti
�
�i; ��j

�
yields

ti
�
�i; ��j

�
=
��j + �i
��j + �i

"
k � ��j

��j � ��j
��j + �i

�
�
��j � ��j

�
log
�
�i + ��j

�#
;

where k is a constant of integration. The constant that keeps transfers bounded as �i ! ���j
is k = ��j +

�
��j � ��j

�
log
�
��j � ��j

�
, which gives

ti
�
�i; ��j

�
= �i (�i)

�
�i + ��j

�
� �i;

where

�i (�i) = 1�
��j � ��j
��j + �i

log

 
1 +

��j + �i
��j � ��j

!
:

Now, letting

ti (�i; �j) = �i (�i) (�i + �j)� �i for all �i 2 �i; �j 2 �j;

so that the resulting mechanism is an �i (�i) double auction as described in the introduction,

it may be veri�ed that weak budget balance holds for all (�i; �j) if and only if it holds for�
��i; ��j

�
(and it also may be veri�ed that ���̂i;��j is indeed a worst-case belief). Therefore,

e¢ cient trade is implementable if and only if

t1
�
��1; ��2

�
+ t2

�
��1; ��2

�
� 0;

or equivalently

�1
�
��1
�
+ �2

�
��2
�
� 1:
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This is precisely Condition (*) (in the aligned supports case). In other words, Condition

(*) says that the shares of the social surplus that must be left to the highest types in the

�i (�i) double auction sum to less than one.

Finally, why does the su¢ cient condition for implementability that �1
�
��1
�
+�2

�
��2
�
� 1

match the necessary condition from Theorem 1? Recall that the necessary condition is

that expected social surplus exceeds (a lower bound on) expected information rents (i.e., (3)

holds) for any distribution �1��2 2 �1��2. A �rst observation is that it su¢ ces to compare

the social surplus and information rents under the critical distribution ��1;��1 � ��2;��2, as this

distribution may be shown to minimize the di¤erence between the left- and right-hand sides

of (3). Letting �i be the probability that �i = ��i under ��i;��i, the expected social surplus

under ��1;��1 � ��2;��2 in the aligned supports case equals

�1�2
�
��1 + ��2

�
;

as under ��1;��1 � ��2;��2 there are strict gains from trade only if �1 = ��1 and �2 = ��2. Next,

the expectation of (the lower bound on) agent i�s information rent under ��i;��i equals

�i

Z ��i

�i

~yi (�i) d�i + (1� �i)
Z �i

�i

~yi (�i) d�i| {z }
=0

;

which may be shown to equal

�i
�
��i + �

�
j

�
�i
�
��i
�

= �1�2
�
��1 + ��2

�
�i
�
��i
�
:

The explanation for the appearance of the �i
�
��i
�
term here is that this is the fraction of the

social surplus that must be left to type ��i in an MMIC mechanism when type �i�s subjective

expected allocation is ~yi (�i) (in particular, the bound on agent i�s subjective information

rent given by integrating ~yi (�i) is tight in the current setting), and the last equality follows

by aligned supports. Combining these observations, the necessary condition from Theorem
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1 reduces to

�1�2
�
��1 + ��2

�
� �1�2

�
��1 + ��2

� �
�1
�
��1
�
+ �2

�
��2
��
;

which is equivalent to �1
�
��1
�
+ �2

�
��2
�
� 1.

The approach taken to constructing the �i (�i) double auction is quite di¤erent from stan-

dard approaches in Bayesian mechanism design. In particular, the approach here is to posit

type �i�s worst-case belief to be ���i;��j (the belief the minimizes the probability that strict

gains from trade exist); solve a di¤erential equation coming from incentive compatibility for

ti
�
�i; ��j

�
, which gives the formula for �i (�i); and then verify that ���i;��j is indeed type �i�s

worst-case belief in the �i (�i) double auction. In contrast, a standard approach might be

to use an AGV mechanism. However, as argued above, standard arguments for why using

such mechanisms is without loss of generality do not apply with maxmin agents. Indeed, I

close this section by showing that in some cases e¢ cient trade is implementable in an �i (�i)

double auction, but not in any AGV mechanism.

With maxmin agents, the natural de�nition of an AGVmechanism is a mechanism where,

for all �i 2 �i; �j 2 �j,

ti (�i; �j) = E
��j (�i) [�jy (�i; �j)] + hi (�j)

for some worst-case belief ��j (�i) 2 argmin�j2�j Ui
�
�i; �j; �i

�
and some lump-sum transfer

function hi : �j ! R. Suppose that ��i > 0 for i = 1; 2 and Condition (*) and the

assumptions of Theorem 2 hold (it may be checked that these assumptions are mutually

consistent). Theorem 2 then implies that an �i (�i) double auction implements e¢ cient

trade, but I claim that e¢ cient trade is not implementable in any AGV mechanism. To see

this, �rst note that individual rationality of type �i implies that hi
�
��j
�
� 0 for i = 1; 2, as

otherwise one would have Ui (�i) � Ui
�
�i; ���j ; �i

�
= hi

�
��j
�
< 0. Next, WBB implies that

t1 (�
�
1; �

�
2) + t2 (�

�
1; �

�
2) = E

��2(�
�
1) [�2y (�

�
1; �2)] + E

��1(�
�
2) [�1y (�1; �

�
2)] + h1 (�

�
2) + h2 (�

�
1) � 0:
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On the other hand, EF, E�i [�i] = �
�
i , and �

�
i > 0 imply that, for all �1 2 �1; �2 2 �2,

E�2 [�2y (�
�
1; �2)] + E

�1 [�1y (�1; �
�
2)]

= Pr�2 (y (��1; �2) = 1)E
�2 [�2jy (��1; �2) = 1] + Pr�1 (y (�1; ��2) = 1)E�1 [�1jy (�1; ��2) = 1]

� Pr�2 (y (��1; �2) = 1) �
�
2 + Pr

�1 (y (�1; �
�
2) = 1) �

�
1

> 0:

Therefore, h1 (�
�
2) + h2 (�

�
1) < 0, which is inconsistent with hi

�
��j
�
� 0 for i = 1; 2.

A closely related point is that if ��1 + �
�
2 > 0 and Condition (*) and the assumptions of

Theorem 2 hold, e¢ cient trade is implementable even though every IR Groves mechanism

runs an expected de�cit for some measure � 2 ��, in contrast to the results of Makowski and

Mezzetti (1994), Williams (1999), and Krishna and Perry (2000) for Bayesian mechanism

design. This follows because IR again implies that hi
�
��j
�
� 0 for i = 1; 2 for a Groves

mechanism given by

ti (�i; �j) = �jy (�i; �j) + hi (�j) ;

so the expected de�cit of such a mechanism under the measure ���1 � ���2 2 �� is equal to

t1 (�
�
1; �

�
2) + t2 (�

�
1; �

�
2) = �

�
1 + �

�
2 + h1 (�

�
2) + h2 (�

�
1) > 0:

5 Further Results on Bilateral Trade

This sections presents additional results on bilateral trade with maxmin agents. Section

5.1 describes how the assumption that agents know each other�s expected valuation may

be interpreted in terms of information acquisition. Section 5.2 explores the robustness

of Theorem 2 to alternative models of agent preferences. Section 5.3 characterizes when

e¢ cient trade is possible with reference rules, a particularly simple class of mechanisms.
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5.1 Information Acquisition Interpretation

The assumption that agents know the mean and bounds on the support of the distribution

of each other�s value emerges naturally when agents share a unique common prior at an

ex ante stage but are uncertain about the information acquisition technology that one�s

opponent can access prior to entering the mechanism. This section provides the details of

this argument.

Consider the following extension of the model. Each agent i�s ex post utility is

~�iy + ti;

where ~�i 2 R is her realized ex post value. There is an ex ante stage at which the agents�

beliefs about the ex post values
�
~�1; ~�2

�
are given by a (unique) common product measure ~�

on
�
�1;
��1
�
�
�
�2;
��2
�
with mean (��1; �

�
2) (the common prior). Before entering the mechanism,

each agent i observes the outcome of a signaling function (�experiment�) �i : �i ! Mi

(where Mi is an arbitrary message set), which is informative of her own ex post value but

independent of her opponent�s. Agent i�s interim value, �i� which corresponds to her type

in the main model� is then her posterior expectation of ~�i after observing the outcome of

her experiment. That is, after observing outcome mi, agent i�s valuation for the good is

given by

�i � E
~�i

h
~�ij�i

�
~�i

�
= mi

i
. (7)

Note that the issue of updating �ambiguous beliefs�does not arise in this model. In par-

ticular, each agent �knows�her own signaling function, so the updating in (7) is completely

standard. However, the following observation shows that the main model can be interpreted

as resulting from each agent�s being maxmin about her opponent�s signaling function at the

interim stage (i.e., after she observes her own signal).

Remark 1 If a measure �i is the distribution of �i = E
~�i

h
~�ij�i

�
~�i

�
= mi

i
under ~�i for

some experiment �i, then E�i [�i] = �
�
i and supp�i � �i (where supp�i denotes the support

of �i).

The fact that E�i [�i] = �
�
i is the law of iterated expectation. The fact that supp�i � �i
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follows because ~�i 2
�
�i;
��i
�
with probability 1 under ~�i. Thus, assuming that agent j

�nds some particular set of measures �i satisfying E
�i [�i] = ��i and supp�i � �i possible

amounts to assuming that he �nds it possible that agent i may have access to some subset

of all possible experiments.14 With this interpretation, the assumption that ���i 2 �i means

that agent j �nds it possible that agent i acquires no information about her value before

entering the mechanism (beyond the common prior), while the assumption that ��li;�hi 2 �i
means that agent j �nds it possible that agent i observes a binary signal of her value, where

the �bad�realization lowers her expectation of ~�i to �
l
i and the �good�realization raises her

expectation of ~�i to �
h
i .

5.2 Robustness to Di¤erent Preferences

Although the MMEU model is perhaps the best-studied model of ambiguity aversion, its

emphasis on agents�worst-case beliefs strikes some researchers as �extreme� (see Gilboa

(2009) or Gilboa and Marinacci (2011) for discussion). This section therefore considers the

robustness of Theorem 2 to less extreme models. As a simple �rst step, I show that Theorem

2 continues to hold with MMEU when agents do not use weakly dominated strategies. I

then consider the robustness of Theorem 2 in the epsilon contamination model axiomatized

by Kopylov (2008) and in the variational preferences model axiomatized by Maccheroni,

Marinacci, and Rustichini (2006). Both of these models nest MMEU as a special case and

allow for a tractable analysis of the robustness of Theorem 2 as one moves away fromMMEU.

I �nd that Theorem 2 may fail to be robust to epsilon contamination preferences (depending

on the prior that is �contaminated�with ambiguity aversion), but is robust to variational

preferences.

14More precisely, the set of possible measures �i is jointly determined by the set of experiments agent i
may have access to and the prior. For example, every measure �i such that E

�i [�i] = �
�
i and supp�i � �i

is the distribution of �i for some experiment if and only if the prior puts probability 1 on agent i�s ex post
value being either �i or ��i (see, for example, Theorem 1 of Shmaya and Yariv (2009) or Proposition 1 of
Kamenica and Gentzkow (2011)).
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5.2.1 Ruling Out Weakly Dominated Strategies

As constructed in the proof of Theorem 2, the �i (�i) double auction has the unappealing

feature that truthtelling is weakly dominated for some types. In particular, �i (�i) = 0 if

�i � ���j , so types �i � ���j get payo¤ 0 against every opposing type from truthtelling, but

get a positive payo¤ against some opposing types (and payo¤ 0 against the others) from

shading their reports. However, the speci�cation of �i (�i) for types �i � ���j can be altered

without a¤ecting the desirable properties of the �i (�i) double auction, as the following result

shows. For instance, in the aligned supports case it su¢ ces to let �i (�i) = 1
2

�
1� �j

�
��j
��

for �i � ���j , i = 1; 2.15

Proposition 2 Theorem 2 continues to hold when the de�nition of MMIC is strengthened

to require that truthtelling is not weakly dominated for any type.

Proof. See Appendix A.

5.2.2 Epsilon Contamination

To model agents with epsilon contamination preferences, assume there is a (unique) com-

mon prior �CP = �CP1 � �CP2 and a constant " 2 [0; 1] such that the notion of incentive

compatibility is

�i 2 arg max
�̂i2�i

(1� ")Ui
�
�̂i; �

CP
j ; �i

�
+ " min

�j2�j
Ui

�
�̂i; �j; �i

�
: (8)

Note that " = 0 corresponds to Bayesian IC and " = 1 corresponds to maxmin IC.

I show that the conclusion of Theorem 2 may change discontinuously as " decreases

from 1, depending on the prior �CP . The intuition is that this apparently small change in

beliefs radically changes the incentives of types for whom certainty of no-trade is a worst-case

belief (i.e., types �i < ���j). In particular, in the MMEU model, incentive compatibility

is unusually easy to satisfy for types �i < ���j , as these types do not expect to trade in

the worst-case and are therefore willing to reveal their information. In contrast, in the

15An earlier version of this paper shows that the reference rule mechanisms of Section 5.3 can also be
modi�ed so as to rule out dependence on weakly dominated strategies.
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epsilon contamination model for " < 1, incentive compatibility is unusually hard to satisfy

for �i < ���j , as these types now condition on the very low probability event that the

opponent�s type is given by the common prior �CP , and thus behave exactly as if they were

Bayesian expected utility maximizers.

One might therefore expect the Myerson-Satterthwaite impossibility result to apply for

any " < 1 whenever a type �1 < ���2 and a type �2 < ���1 have gains from trade with each

other, which occurs when ��1 + �
�
2 < 0. However, in the epsilon contamination model types

�i > ���j do not condition only on the opponent�s type being given by �CP , and if e¢ cient

trade among these types can be implemented with a surplus, this surplus can then be used

to subsidize trade among types �i < ���j . Nonetheless, if �CP puts su¢ ciently small weight

on types �i > ���j , this subsidy cannot be large enough in expected terms (according to �CP )

to allow the �i < ���j trades to trade e¢ ciently, at least if the ex post version of individual

rationality is imposed.16

The following result formalizes this intuition. Maintain the assumptions of Theorem 2,

so that if ��1 + �
�
2 < 0 then Theorem 2 implies that e¢ cient trade is possible with maxmin

agents. The following result shows that, for some prior �CP , this conclusion fails in the

epsilon contamination model for any " < 1.

Proposition 3 If ��1+ �
�
2 < 0 and ��i+ �

�
j > 0 for i = 1; 2, then there exists a common prior

�CP with positive density on
�
�1;
��1
�
�
�
�2;
��2
�
such that e¢ cient trade is not implementable

with ex post IR in the epsilon contamination model for any " < 1.

Proof. See Appendix A.

5.2.3 Variational Preferences

When agents have variational preferences, the appropriate notion of incentive compatibility

is

�i 2 arg max
�̂i2�i

min
�j2�(�j)

Ui

�
�̂i; �j; �i

�
+ ci

�
�j
�

(9)

16Conversely, I conjecture that if �CP puts su¢ ciently high weight on types �i > ���j , Theorem 2 continues
to hold for " close to 1 in (8). Unfortunately, proving this result seems to require a di¤erent approach from
that in Theorem 2, as the relevant belief of a type �i agent is no longer a 2-point distribution.
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for some function ci : � (�j)! R+. Note that variation preferences coincide with MMEU

preferences if

ci
�
�j
�
=

8<: 0 if �j 2 �j
1 if �j =2 �j

9=; :
I show that Theorem 2 holds for a class of variational preferences that extends far beyond

the special case of MMEU. In particular, consider the simple class of variational preferences

where

ci
�
�j
�
= a

��E�j [�j]� ��j �� for some a > 0:
This class admits the model of Section 4 as the limiting case where a ! 1. The

following result shows that in fact Theorem 2 holds for variational preferences of this type

for any a � 1. This indicates a signi�cant degree of robustness of Theorem 2 to considering

variational preferences that are less extreme than MMEU. The proof proceeds by showing

that if a � 1, an agent�s �worst-case�belief with variational preferences (i.e., the minimizing

measure �j in (9)) coincides with her worst-case belief in the MMEU model, so the �i (�i)

double auction remains incentive compatible with variational preferences.

Proposition 4 Suppose the assumptions of Theorem 2 are satis�ed and Condition (*) holds,

so that the �i (�i) double auction implements e¢ cient trade with maxmin agents. Then the

�i (�i) double auction also implements e¢ cient trade when agents have variational prefer-

ences with a � 1.

Proof. See Appendix A.

5.3 E¢ cient Trade with Reference Rules

A common justi�cation for introducing concerns about robustness into mechanism design is

that these concerns may argue for the use of simpler or otherwise more intuitively appealing

mechanisms. The �i (�i) double auction introduced in the previous section is simple in some

ways, but it does involve a carefully chosen transfer rule. In this section, I point out that

e¢ cient trade can also be implemented in an extremely simple class of mechanisms� which I

call reference rules� in the case where the average types of the two agents do not have gain
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from trade with each other (i.e., when ��1+ �
�
2 � 0). Reference rules also have the advantage

of satisfying strong rather than weak budget balance.17

I de�ne a reference rule as follows.

De�nition 1 A mechanism (y; t) is a reference rule if

y (�i; �j) =

8<: 1 if �i + �j � 0

0 if �i + �j < 0

9=;
and there exist transfers t�i 2 R for i = 1; 2 such that t�i = �t�j and

ti (�i; �j) =

8>>>>>><>>>>>>:

t�i if �i � �t�i ; �j � �t�j ; �i + �j � 0

��i if �i < �t�i ; �j � �t�j ; �i + �j � 0

�j if �i � �t�i ; �j < �t�j ; �i + �j � 0

0 if �i + �j < 0

9>>>>>>=>>>>>>;
:18

With a reference rule, agents trade with �reference transfers� (t�1 � t�1) if they are both

willing to do so. Otherwise, the agent who is unwilling to trade at the reference transfers

receives her reservation transfer ��i, and the other agent receives the full gains from trade.

For example, in the classical bilateral trade setting (where c is the seller�s cost, v is the

buyer�s value, and p is the price), a reference rule corresponds to setting a reference price

p�, trading at price p� if c � p� � v, and otherwise trading at whichever value is closer to p�

(i.e., price is v if c � v < p�; price is c if p� < c � v).

Reference rules clearly satisfy EF, (ex post) IR, and SBB, so an MMIC reference rule

implements e¢ cient trade. The following result characterizes when MMIC reference rules

exist; that is, when e¢ cient trade is implementable with reference rules.

17The term �reference rule� is taken from Erdil and Klemperer (2010), who recommend the use of such
mechanisms in multi-unit auctions. They highlight that reference rules perform well in terms of agents�
�local incentives to deviate,�a di¤erent criterion from what I consider here. Reference rules also bear some
resemblance to the �downward �exible price mechanism�of Börgers and Smith (2012). Their mechanism
starts with a �xed price p� which the seller may then lower to any p0 < p�, whereupon the parties decide
whether to trade at p0.
18Note that this de�nes ti (�i; �j) for all �i; �j , because if �i < �t�i and �j < �t�j then �i+�j < �t�i �t�j = 0.
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v* p* c*

buyers certain of no­trade price independent
of buyer’s report

price independent
of seller’s report sellers certain of no­trade

Figure 2: Reference rules with p� 2 [v�; c�] are incentive compatible.

Proposition 5 Assume that ���i 2 �i for i = 1; 2. Then e¢ cient trade is implementable

with reference rules if and only if either

1. ��1 + �
�
2 � 0 (the average types do not have strict gains from trade), or

2. �1 + �2 � 0 (every pair of types has gains from trade).

Proof. See Appendix A.

The intuition for Proposition 5 is particularly easy to see in the classical bilateral trade

setting. The intuition for why reference rules are incentive compatible when c� � v� and

p� 2 [v�; c�] is captured in Figure 2. Observe that every buyer with value v � c� may be

certain that no gains from trade exist, as he may believe that the distribution of seller values

is the degenerate distribution on c�. Hence, certainty of no-trade is a worst-case belief for

these buyers, and they are therefore willing to reveal their information. In contrast, buyers

with value v > c� do believe that gains from trade exist with positive probability. But

it is optimal for these buyers to reveal their values truthfully as well: misreporting some

v̂ > c� does not a¤ect the price regardless of the seller�s value (as price equals c if c > p� and

equals p� if c � p�), and misreporting some v̂ � c� again gives payo¤ 0 in the worst-case (as

certainty that the seller�s value equals c� would again be a worst-case belief). Therefore,

truthtelling is optimal for every buyer type, and the argument for sellers is symmetric.

On the other hand, the intuition for why reference rules are not incentive compatible

when c� < v� may be seen in Figure 3. Suppose the reference price p� is greater than c�.

Consider a buyer with value v 2 (c�; p�). If he reports his value truthfully, then whenever
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sellers deviatebuyers deviate

c* p* v*

buyers deviate

c* p*v*

sellers deviate

c*p* v*

Figure 3: When c� < v�, no reference rule is incentive compatible.

he trades under the reference rule he does so at price v, which gives him payo¤ 0. Suppose

he instead shades his report down to some v̂ 2 (c�; v). Then whenever he trades the price

is v̂, which gives him a positive payo¤, and in addition he expects to trade with positive

probability (since v̂ > c�). Hence, he will shade down. The same argument shows that in

any reference rule a seller with c 2 (p�; v�) shades up. Figure 3 shows that a consequence

of this argument is that a reference rule cannot be MMIC for both agents when c� < v�,

regardless of where the reference price p� is set.

6 Conclusion

This paper contributes to the study of mechanism design where agents follow �robust�deci-

sion rules, in particular where agents are maxmin expected utility maximizers. I establish

two main results. First, I give a general necessary condition for the implementability of

a social choice rule, which generalizes the well-known condition from Bayesian mechanism

design that expected social surplus must exceed expected information rents. This condition

involves both a modi�cation of the usual envelope characterization of payo¤s and a simple

but important conceptual connection between maxmin agents�subjective expected utilities

and the �objective� expected social surplus under a common prior. Second, I apply this

result to give a complete characterization of when e¢ cient bilateral trade is possible, when

agents know little beyond each other�s expected valuation of the good (which is the infor-
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mation structure that results when agents are maxmin about the experiment that the other

may access before participating in the mechanism). Somewhat surprisingly, the Myerson-

Satterthwaite impossible result sometimes continue to hold with maxmin agents, despite the

lack of a unique common prior or independent types. When instead e¢ cient trade is pos-

sible, it is implementable with a relatively simple double auction format, the �i (�i) double

auction; sometimes, it is also implementable with extremely simple reference rules.

A clear direction for future work is deriving positive implementation results beyond the

bilateral trade context of two agents and two social alternatives. I have argued that standard

mechanisms (like the AGV mechanism) may fail to have desirable properties with maxmin

agents, and it is not immediately clear how to generalize the mechanisms I construct in this

paper (the �i (�i) double auction and the reference rule) beyond the bilateral trade case.

Perhaps the next simplest case to consider is the multilateral public good provision problem

with n agents and two alternatives (Mailath and Postlewaite, 1989). In this setting, the same

approach used to derive the �i (�i) double auction can be used to derive a mechanism that

sometimes implements e¢ cient trade. However, the attainability of an exact characterization

of when e¢ cient trade is possible remains an open question.

More broadly, an important issue is considering models of robust agent behavior beyond

the maxmin expected utility model and the related models of ambiguity aversion discussed

in Section 5.2. For instance, Linhart and Radner (1989) and Bergemann and Schlag (2008,

2011) consider minmax regret approaches. The integration of models of robust agent behav-

ior in mechanisms and models of robustness concerns on the part of the mechanism designer

(Bergemann and Morris, 2005; Chung and Ely, 2007) must also await future research.
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Appendix A: Omitted Proofs

Proof of Proposition 1

Consider the mechanism

y (�i; �j) =

8<: 1 if �i + �j > 0

0 if �i + �j � 0

9=; ;
ti (�i; �j) =

8<: ��i if �i + �j > 0

0 if �i + �j � 0

9=; ;
tj (�i; �j) =

8<: �i if �i + �j > 0

0 if �i + �j � 0

9=; :
This mechanism clearly satis�es EF, IR, and SBB. For MMIC for agent i, note that

Ui (�i; �j; �i) = 0 for all �i 2 �i and Ui
�
�̂i; �

�
j ; �i

�
= 0 for all �i; �̂i 2 �i (as ��i + ��j � 0),

so ���j 2 �j implies that inf�j2�j Ui
�
�i; �j; �i

�
= 0 � inf�j2�j Ui

�
�̂i; �j; �i

�
. For MMIC for

agent j, note that Uj (�j; �i; �j) = max f�i + �j; 0g � Uj

�
�̂j; �i; �j

�
for all �j; �̂j 2 �j and

�i 2 �i, so inf�i2�i Uj (�j; �i; �j) � inf�i2�i Uj
�
�̂j; �i; �j

�
.

Proof of Theorem 2: Necessity

By Theorem 1, e¢ cient trade is implementable only if

X
i

�Z
�2�

�iyi (�) d�

�
�
X
i

�Z
�i2�i

(1� Fi (�i)) ~yi (�i) d�i
�
� 0 (10)

for some allocation rule yi satisfying

yi (�) =

8<: 1 if �i + �j > 0

0 if �i + �j < 0

9=; :
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Note that, for any such allocation rule yi,

~yi (�i) =

8>>><>>>:
0 if �i � ���j
��j+�i
��j+�i

if �i 2
�
���j ;��j

�
1 if �i > ��j

9>>>=>>>; :

This is immediate for the �i � ���j and �i > ��j cases, and follows by Chebyshev�s inequality

in the �i 2
�
���j ;��j

�
case.19 ;20

Let �i = �maxf�i;���jg;��i (which is assumed to be an element of �i, as �
��j < �

�
i ) for i = 1; 2.

Let �i =
��i+minf��j ;��ig
��i+minf��j ;��ig , which is the probability that �i =

��i under �maxf�i;���jg;��i. Observe

that

X
i

�Z
�2�

�iyi (�) d�

�
=

�
��i + ��j

�
�i�j +max

�
��i + �j; 0

	
�i
�
1� �j

�
+max

�
��j + �i; 0

	
�j (1� �i) ;

and, using the assumption that �i + �
�
j � 0,

Z
�i2�i

(1� Fi (�)) ~yi (�i) d�i =

Z minf��i;��jg

maxf�i;���jg
�i

�
��j + �i
��j + �i

�
d�i +

Z ��i

minf��i;��jg
�id�i

=
�
��i + �

�
j

�
�i

�
�
��j � ��j

�
�i log

 
1 +

��j +min
�
��i;��j

	
��j � ��j

!
:

Combining these observations and collecting terms, the left-hand side of (10) equals

�

2664 �1 +
�
��1+minf��2;��1g

��1+��2

��
��1���1

��1+minf��2;��1g

�
log

�
1 +

��1+minf��2;��1g
��1���1

�
+

�
��2+minf��1;��2g

��1+��2

��
��2���2

��2+minf��1;��2g

�
log

�
1 +

��2+minf��1;��2g
��2���2

�
3775 ; (11)

where � = �1�2
�
��1 + ��2

�
> 0. The bracketed term in (11) non-negative if and only if

19The form of Chebyshev�s inequality I use throughout the paper is, for random variable X with mean x�

and upper bound �x, Pr (X � x) � x��x
�x�x . This follows because x

� � Pr (X � x) �x+ Pr (X < x)x. See, for
example, p. 319 of Grimmett and Stirzaker (2001).
20As will become clear, the value of ~yi

�
��j

�
does not matter for the proof.
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Condition (*) holds. Hence, Condition (*) is necessary.

Proof of Theorem 2: Su¢ ciency

The �i (�i) double auction is de�ned by

y (�i; �j) =

8<: 1 if �i + �j > 0

0 if �i + �j � 0

9=; ;
ti (�i; �j) =

8<: �i (�i) �j � (1� �i (�i))min
�
�i;��j

	
if �i + �j > 0

0 if �i + �j � 0

9=; ;
for i = 1; 2, where

�i (�i) =

8><>: 1�
��j���j

��j+minf�i;��jg log
�
1 +

��j+minf�i;��jg
��j���j

�
if �i > ���j

0 if �i � ���j

9>=>; :
This mechanism is clearly e¢ cient. I show that it satis�es IR and MMIC, and that it

satis�es WBB if and only if Condition (*) holds.

Claim 1: The �i (�i) double auction satis�es (ex post) IR.

Proof: If �i + �j � 0, then Ui (�i; �j; �i) = 0. If �i + �j > 0, then

Ui (�i; �j; �i) = �i + �i (�i) �j � (1� �i (�i))min
�
�i;��j

	
� �i (�i) (�i + �j) :

Now �i (�i) is of the form 1� 1
x
log (1 + x) for x > 0, and 1

x
log (1 + x) 2 (0; 1) for x > 0, so

�i (�i) 2 (0; 1) for all �i. This yields (ex post) IR.

Claim 2: The �i (�i) double auction satis�es WBB if and only if Condition (*) holds.

Proof: WBB is trivially satis�ed when �1 + �2 � 0, so suppose that �1 + �2 > 0.

If �1 < ��2 and �2 < ��1,

t1 (�1; �2) + t2 (�1; �2) = (�1 + �2) (�1 (�1) + �2 (�2)� 1) :
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Since �i (�i) is non-decreasing in �i (as 1
x
log (1 + x) is decreasing in x), this expression is

non-positive for all �1; �2 with �1+ �2 > 0 if and only if �1
�
��1
�
+�2

�
��2
�
� 1. Condition (*)

implies �1
�
��1
�
+ �2

�
��2
�
� 1 and is equivalent to this inequality when ��i � ��j for i = 1; 2.

If �1 � ��2 and �2 � ��1,

t1 (�1; �2) + t2 (�1; �2) = �1 (�1) �2 + �2 (�2) �1 + (1� �1 (�1)) �2 + (1� �2 (�2)) �1

= �1 + �2 � (1� �1 (�1)) (�2 � �2)� (1� �2 (�2)) (�1 � �1) :

This expression is non-decreasing in �1 and �2 (as �i (�i) 2 (0; 1) is non-decreasing and

�i � �i), so it is non-positive for all �1; �2 with �1 + �2 > 0 if and only if

��1 + ��2 �
�
1� �1

�
��1
�� �

��2 � �2
�
�
�
1� �2

�
��2
�� �

��1 � �1
�
� 0:

Moving the product terms to the right-hand side and dividing by ��1 +��2 (which is positive)

shows that this inequality is equivalent to Condition (*) when ��i � ��j for i = 1; 2 (which

is the case under consideration).

Finally, if �1 < ��2 and �2 � ��1 (which is the hardest case),21

t1 (�1; �2) + t2 (�1; �2) = (�1 (�1) + �2 (�2)� 1) �1 + �1 (�1) �2 + (1� �2 (�2)) �1

= (�1 + �2)

�
�1 (�1)�

�1 � �1
�1 + �2

(1� �2 (�2))
�
:

This expression is non-positive for all �1; �2 with �1 + �2 > 0 if and only if the bracketed

term is non-positive for all such �1; �2. This term is increasing in �2, so it is non-positive

for all �1; �2 with �1 + �2 > 0 if and only if

�1 (�1)�
�1 � �1
�1 + ��2

�
1� �2

�
��2
��
� 0 (12)

for all �1.22 If �1 � ���2, then �1 (�1) = 0 so (12) holds. Suppose toward a contradiction

21This assumes �1+�2 > 0. If instead �1+�2 = 0, then t1 (�1; �2)+t2 (�1; �2) = � (1� �2 (�2)) (�1 � �1) �
0.
22The �only if�part of this statement follows because the hypothesis that �2 � ��1 implies that ��2 � ��1,

which in turn implies that �1 + ��2 � 0 for all �1.
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that (12) fails for some �1 2
�
���2;min

�
��1;��2

	�
. Observe �rst that (12) holds at �1 =

min
�
��1;��2

	
: this has already been shown if ��1 � ��2, and if ��1 < ��2 it follows by noting

that at �1 = ��1 (12) is equivalent to Condition (*) when ��1 < ��2 and ��2 � ��1. Since the

left-hand side of (12) is continuous in �1 and (12) holds for �1 = ��1 and for all �1 � ��2, (12)

fails somewhere on the interval
�
���2;min

�
��1;��2

	�
if and only if it fails at a local minimum

in (���2;��2). Hence, the argument may be completed by showing that no local minimum

in (���2;��2) exists. To see this, note that for �1 2 (���2;��2),

�01 (�1) =
1

��2 + �1

�
��2 + �1
��2 + �1

� �1 (�1)
�
;

and therefore the �rst-order condition for an extremum is

1

��2 + �1

�
��2 + �1
��2 + �1

� �1 (�1)
�
=

��2 + �1�
��2 + �1

�2 �1� �2 ���2�� :
In addition, the second derivative of the left-hand side of (12) equals

�
�
��2 � ��2

� �
2
�
��2 + �1

�
+ ��2 + �1

�
(��2 + �1)

2 ���2 + �1�2 + 2
1� �1 (�1)
(��2 + �1)

2 � 2
��2 + �1�
��2 + �1

�3 �1� �2 ���2�� :
At an extremum, using the �rst-order condition implies that this equals

�
�
��2 � ��2

� �
2
�
��2 + �1

�
+ ��2 + �1

�
(��2 + �1)

2 ���2 + �1�2 + 2
1� �1 (�1)
(��2 + �1)

2 � 2
1�

��2 + �1
�
(��2 + �1)

�
��2 + �1
��2 + �1

� �1 (�1)
�

=
��2 � ��2

(��2 + �1)
2 ���2 + �1�

�
��1 (�1) +

�
��2 + �1
��2 + �1

� �1 (�1)
��

=
��2 � ��2

(��2 + �1)
2 ���2 + �1�

"
��1 (�1) +

(��2 + �1)
�
��2 + �1

��
��2 + �1

�2 �
1� �2

�
��2
��#

:

Next, observe that
�1 � �1
�1 + ��2

�
(��2 + �1)

�
��2 + �1

��
��2 + �1

�2 ;

which may be seen by cross-multiplying by
�
��2 + �1

�2
and noting that �1 � �1 � ��2 + �1 (as
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�1 + �
�
2 � 0) and ��2 + �1 � ��2 + �1. Therefore,

��1 (�1) +
�1 � �1
�1 + ��2

�
1� �2

�
��2
��
� ��1 (�1) +

�
��2 + �1

�
(��2 + �1)�

�1 + ��2
�2 �

1� �2
�
��2
��
;

so if (12) fails then the second derivative is non-positive at any local extremum. That is, any

local extremum in (���2;��2) must be a local maximum, so no local minimum in (���2;��2)

exists, completing the proof. The argument for �1 � ��2 and �2 < ��1 is symmetric.

Claim 3: The �i (�i) double auction satis�es MMIC.

Proof: Suppose �i � ���j . By IR, Ui (�i) � 0. By ex post IR and WBB, ti
�
�̂i; �j

�
� �j

for all �̂i; �j, and therefore Ui
�
�̂i; �

�
j ; �i

�
� max

�
�i + �

�
j ; 0
	
� 0 for all �̂i. Hence, ���j 2 �j

implies that Ui (�i) � Ui
�
�̂i; �

�
j ; �i

�
� min�j2�(�j) Ui

�
�̂i; �j; �i

�
, which yields MMIC.

For the remainder of the proof, suppose �i > ���j . I show that no misreport �̂i can be

pro�table in each of the following four cases: (i) �̂i > �i, (ii) �̂i � ���j , (iii) �̂i 2
�
��j; �i

�
, (iv)

�̂i 2
�
���j ;min

�
�i;��j

	�
. These cases cover all possible misreports, so the �i (�i) double

auction satis�es MMIC.

Case (i): �̂i > �i.

In this case, I claim that Ui (�i; �j; �i) � Ui

�
�̂i; �j; �i

�
for all �j. The key step is the

following observation.

Lemma 2 In the �i (�i) double auction, ti (�i; �j) is non-increasing in �i in the region where

�i + �j � 0.

Proof. See below.

Now, if �i + �j � 0, then Ui (�i; �j; �i) = 0, while ex post IR and WBB imply that

Ui

�
�̂i; �j; �i

�
� max f�i + �j; 0g � 0. If instead �i + �j > 0, then EF and Lemma

2 imply that Ui (�i; �j; �i) � Ui

�
�̂i; �j; �i

�
. The claim follows, and therefore Ui (�i) �

inf�j2�(�j) Ui

�
�̂i; �j; �i

�
.

Case (ii): �̂i � ���j .

Here, Ui
�
�̂i; �

�
j ; �i

�
= 0. Hence, ���j 2 �j and IR imply that Ui (�i) � inf�j2�j Ui

�
�̂i; �j; �i

�
.

Case (iii): �̂i 2
�
��j; �i

�
.

Note that �i
�
�̂i

�
= �i

�
��j

�
, so Ui

�
�̂i; �j; �i

�
= �i+�i

�
��j

�
�j�

�
1� �i

�
��j

��
�j for all
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�j. Therefore, Ui
�
�̂i; �j; �i

�
= �i+�i

�
��j

�
��j�

�
1� �i

�
��j

��
�j for all �j 2 �j. Similarly,

Ui
�
�i; �j; �i

�
= �i + �i

�
��j

�
��j �

�
1� �i

�
��j

��
�j, so Ui (�i) = inf�j2�(�j) Ui

�
�̂i; �j; �i

�
.

Case (iv): �̂i 2
�
���j ;min

�
�i;��j

	�
.

In this case, I claim that

inf
�j2�(�j)

Ui

�
�̂i; �j; �i

�
=
��j + �̂i
��j + �̂i

�
�i + ti

�
�̂i; ��j

��
:23 (13)

To see that (13) is an upper bound on inf�j2�(�j) Ui
�
�̂i; �j; �i

�
, observe that ���̂i;��j 2 �j and

that Ui
�
�̂i; ���̂i;��j ; �i

�
equals (13). To see that (13) is a lower bound on inf�j2�(�j) Ui

�
�̂i; �j; �i

�
,

note that

Ui

�
�̂i; �j; �i

�
= Pr�j

�
�j > ��̂i

�
E�j

h
�i + ti

�
�̂i; �j

�
j�j > ��̂i

i
+ Pr�j

�
�j � ��̂i

�
(0)

= Pr�j
�
�j > ��̂i

�
E�j

h
�i + �i

�
�̂i

�
�j �

�
1� �i

�
�̂i

��
�̂ij�j > ��̂i

i
= Pr�j

�
�j > ��̂i

��
�i � �̂i

�
+Pr�j

�
�j > ��̂i

�
�i

�
�̂i

��
E�j

h
�jj�j > ��̂i

i
+ �̂i

�
: (14)

I show that (13) is a lower bound on (14) for all �j with expectation �
�
j , and hence for all

�j 2 �j. To see this, consider the problem of minimizing (14) over �j with expectation

��j in two steps: �rst minimize over �j with a given value of Pr
�j

�
�j > ��̂i

�
, and then

minimize over Pr�j
�
�j > ��̂i

�
. For a given value of Pr�j

�
�j > ��̂i

�
, (14) is minimized by

minimizing E�j
h
�jj�j > ��̂i

i
over �j with expectation �

�
j . Observe that

�
1� Pr�j

�
�j > ��̂i

��
E�j

h
�jj�j � ��̂i

i
+ Pr�j

�
�j > ��̂i

�
E�j

h
�jj�j > ��̂i

i
= ��j

23Intuitively, the claim is that �maxf��̂i;�jg;��j is a worst-case belief for an agent of type �i who misreports
as type �̂i 2

�
���j ; �i

�
.
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for all �j with expectation �
�
j . Noting that E

�j

h
�jj�j � ��̂i

i
� ��̂i and rearranging yields

E�j
h
�jj�j > ��̂i

i
� 1

Pr�j
�
�j > ��̂i

� ���j + �1� Pr�j ��j > ��̂i�� �̂i� :
Hence, the minimum of (14) over �j with expectation �

�
j and a given value of Pr

�j

�
�j > ��̂i

�
equals

Pr�j
�
�j > ��̂i

��
�i � �̂i

�
+Pr�j

�
�j > ��̂i

�
�i

�
�̂i

�0@ 1

Pr�j
�
�j > ��̂i

� ���j + �1� Pr�j ��j > ��̂i�� �̂i�+ �̂i
1A

= Pr�j
�
�j > ��̂i

��
�i � �̂i

�
+ �i

�
�̂i

��
��j + �̂i

�
:

As �̂i � �i, (14) is minimized over �j with expectation �
�
j by minimizing Pr

�j

�
�j > ��̂i

�
,

which by Chebyshev�s inequality yields

��j + �̂i
��j + �̂i

�
�i � �̂i

�
+ �i

�
�̂i

��
��j + �̂i

�
=

��j + �̂i
��j + �̂i

�
�i � �̂i + �i

�
�̂i

��
��j + �̂i

��
=

��j + �̂i
��j + �̂i

�
�i + ti

�
�̂i; ��j

��
:

This gives (13), proving the claim.

Therefore,

sup
�̂i2(���j ;minf�i;��jg]

inf
�j2�(�j)

Ui

�
�̂i; �j; �i

�
= sup

�̂i2(���j ;minf�i;��jg]

��j + �̂i
��j + �̂i

�
�i + ti

�
�̂i; ��j

��
:

To complete the proof, it su¢ ces to show that the objective is non-decreasing in �̂i over�
���j ;min

�
�i;��j

	�
. This holds because

�0i

�
�̂i

�
=

1

��j + �̂i
� 1

��j + �̂i
�i

�
�̂i

�
;

@

@�̂i
ti

�
�̂i; ��j

�
= �

��j � ��j
��j + �̂i

�i

�
�̂i

�
;
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and

@

@�̂i

"
��j + �̂i
��j + �̂i

�
�i + ti

�
�̂i; ��j

��#
=

�
��j � ��j

� �
�i � �̂i

�
�
��j + �̂i

�2 � 0;

where the last inequality follows because �i � �̂i � ���j � ���j.

Proof of Lemma 2

The result is immediate when �i � ���j or �i � ��j, as in both cases �0i (�i) = 0, which

immediately implies that ti (�i; �j) is non-increasing in �i.

If �i 2
�
���j ;��j

�
then ti (�i; �j) = �i (�i) �j � (1� �i (�i)) �i, and therefore

@

@�i
ti (�i; �j) = � (1� �i (�i)) + �0i (�i) (�j + �i) :

In addition,

�0i (�i) =
1

��j + �i
� 1

��j + �i
�i (�i) ;

and therefore

@

@�i
ti (�i; �j) =

�j � ��j
��j + �i

(1� �i (�i))�
��j � ��j
��j + �i

�j + �i
��j + �i

=
��j � ��j
��j + �i

"
�j � ��j
��j + �i

log

 
1 +

��j + �i
��j � ��j

!
� �j + �i��j + �i

#
:

Since �i > ���j , the sign of @
@�i
ti (�i; �j) equals the sign of the term in brackets. Using the

fact that 1
x
log (1 + x) < 1 for all x > 0, this term is less than

�j � ��j
��j � ��j

� �j + �i��j + �i
= �

�
��j � �j

� �
��j + �i

��
��j � ��j

� �
��j + �i

� � 0;
where the last inequality again uses �i > ���j . Hence, ti (�i; �j) is non-increasing in �i.
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Proof of Proposition 2

The proof of necessity is unchanged. For su¢ ciency, modify the �i (�i) double auction

constructed in the proof of Theorem 2 by letting �i (�i) = min
n
1
2
;
�i��i
��j���j

o�
1� �j

�
��j
��
for

all �i � ���j , i = 1; 2 (rather than �i (�i) = 0 for �i � ���j). The modi�ed mechanism

satis�es EF and (ex post) IR as in the proof of Theorem 2. In addition, ti (�i; �j) is

unchanged for all �i > ���j , and reporting �̂i � ���j continues to give payo¤ 0 in the worst

case, so MMIC also follows as in the proof of Theorem 2.

Next, as �i (�i) > 0 for all �i > �i in the modi�ed mechanism, truthtelling is not weakly

dominated for any type. In particular, truthtelling was weakly dominated only for types

�i � ���j in the unmodi�ed �i (�i) double auction, and in the modi�ed mechanism such a

type does strictly better from truthtelling than from misreporting as type �̂i < �i against any

opposing type �j 2
�
��i;��̂i

�
(and ti (�i; �j) is unchanged for all �i > ���j , so truthtelling

does not become weakly dominated for any of these types).

Finally, the argument for WBB is also similar to the proof of Theorem 2. More speci�-

cally, as in that proof, consider three cases:

If �1 < ��2 and �2 < ��1, then as in the proof of Theorem 2 WBB holds if and only

if �1 (�1) + �2 (�2) � 1. If �i > ���j for i = 1; 2, this holds because �1
�
��1
�
+ �2

�
��2
�
� 1

(recalling that �i (�i) is non-decreasing in the unmodi�ed �i (�i) double auction). If �1 > ���2
and �2 � ���1, it holds because

�1 (�1) + �2 (�2) �
1

2

�
1� �2

�
��2
��
+ �2 (�2) �

1

2
+
1

2
�2
�
��2
�
< 1:

And if �i � ���j for i = 1; 2, it holds because

�1 (�1) + �2 (�2) �
1

2

�
1� �2

�
��2
��
+
1

2

�
1� �1

�
��1
��
< 1:

If �1 � ��2 and �2 > ��1, then a fortiori �1 > ���2 and �2 > ���1, so the argument is

exactly as in the proof of Theorem 2.

Lastly, if �1 < ��2 and �2 � ��1, then, as in the proof of Theorem 2, WBB reduces to

(12). If �1 > ���2 then the argument is exactly as in the proof of Theorem 2. If instead
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�1 � ���2 then (12) becomes�
min

�
1

2
;
�1 � �1
��2 � ��2

�
� �1 � �1��2 + �1

� �
1� �2

�
��2
��
� 0;

which holds as the term in brackets is non-positive.

Proof of Proposition 3

If �i � ���j , then ex post IR and ���j 2 �j imply that

min
�j2�j

Ui

�
�̂i; �j; �i

�
� 0;

with equality if �̂i � �i. Thus, if " < 1 a necessary condition for incentive compatibility (8)

is

�i 2 argmax
�̂i��i

Ui

�
�̂i; �

CP
j ; �i

�
for all �i � ���j :

The standard envelope argument now implies that

Ui
�
�i; �

CP
j ; �i

�
� Ui

�
�i; �

CP
j ; �i

�
+

Z �i

�i

y
�
s; �CPj

�
ds for all �i � ���j :

Rearranging and integrating over �i � ���j (which is possible as ���j < ��i) yields

Ui
�
�i; �

CP
j ; �i

�
�

Z ���j

�i

"
�iy
�
�i; �

CP
j

�
+ ti

�
�i; �

CP
j

�
�
 Z �i

�i

y
�
s; �CPj

�
ds

!#
fCPi (�i) d�i

=

Z ���j

�i

 
�i �

FCPi
�
���j

�
� FCPi (�i)

fCPi (�i)

!
y
�
�i; �

CP
j

�
fCPi (�i) d�i

+

Z ���j

�i

ti
�
�i; �

CP
j

�
fCPi (�i) d�i: (15)
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By ex post IR, ti
�
�i; �

CP
j

�
may be bounded by

ti
�
�i; �

CP
j

�
=

Z ��j

�j

ti (�i; �j) f
CP
j (�j) d�j

�
Z ���i

�j

ti (�i; �j) f
CP
j (�j) d�j + (1� Fj (���i )) ��j:

Thus, summing (15) over i = 1; 2 and using EF and WBB yields

U1
�
�1; �

CP
2 ; �1

�
+ U2

�
�2; �

CP
1 ; �2

�
�

Z ���2

�1

Z ���1

��1

�
�1 + �2 �

FCP1 (���2)� FCP1 (�1)

fCP1 (�1)
� F

CP
2 (���1)� FCP2 (�2)

fCP2 (�2)

�
fCP2 (�2) f

CP
1 (�1) d�2d�1

+

Z ���2

�1

Z ���1

�2

[t1 (�1; �2) + t2 (�1; �2)] f
CP
2 (�2) f

CP
1 (�1) d�2d�1

+
�
1� FCP1 (���2)

�
��1 +

�
1� FCP2 (���1)

�
��2

� �
Z ���2

�1

��
�1 + �2 �

FCP1 (���2)� FCP1 (�1)

fCP1 (�1)

��
FCP2 (���1)� FCP2 (�2)

�����1
��1
fCP1 (�1) d�1

+
�
1� FCP1 (���2)

�
��1 +

�
1� FCP2 (���1)

�
��2

= �
Z ���2

�1

�
FCP1 (���2)� FCP1 (�1)

� �
FCP2 (���1)� FCP2 (��1)

�
d�1

+
�
1� FCP1 (���2)

�
��1 +

�
1� FCP2 (���1)

�
��2:

As ��1 + �
�
2 < 0 and ��i + �

�
j > 0 for i = 1; 2, for every � > 0 there exists a common

prior �CP with positive density on
�
�1;
��1
�
�
�
�2;
��2
�
such that FCPi

�
2
3

�
���j

�
+ 1

3
(��i )

�
�

FCPi
�
1
3

�
���j

�
+ 2

3
(��i )

�
> 1�� for i = 1; 2. With such a prior, the preceding sum is at most

1

3
(1� �)2 (��1 + ��2) + �

�
��1 + ��2

�
:

This is negative for su¢ ciently small �. Hence, if " < 1 then a mechanism satisfying (8),

EF, and WBB must violate IR for type �1 or �2.

43



Proof of Proposition 4

It su¢ ces to show that the �i (�i) double auction satis�es (9) when a � 1. Note that the

�i (�i) double auction satis�es MMIC, and that, for any report she makes, an agent is made

weakly worse-o¤ by nature�s ability to choose a distribution outside of �j; that is,

min
�j2�(�j)

Ui

�
�̂i; �j; �i

�
+ a

��E�j [�j]� ��j �� � min
�j2�j

Ui

�
�̂i; �j; �i

�
for all �i; �̂i 2 �i: (16)

Hence, to show that truthtelling remains optimal with variational preferences, it is enough

to show that (16) holds with equality when the agent is truthful. If �i � ���j then an agent�s

expected utility from truthtelling remains 0 under variational preferences, so the non-trivial

case is where �i > ���j . In this case, nature�s minimization problem

min
�j2�(�j)

Ui
�
�i; �j; �i

�
+ a

��E�j [�j]� ��j ��
may be decomposed into two steps: �rst minimizing over distributions �j with a given

expectation E�j [�j], and then minimizing over expectations. Consider the �i � ��j and

�i < ��j cases separately.

�i � ��j case:

For any belief �j with expectation �
��
j , one has Ui

�
�i; �j; �i

�
= �i+�i (�i) �

��
j +(1� �i (�i)) �j.

Thus, nature�s problem becomes

min
���j
�i + �i (�i) �

��
j + (1� �i (�i)) �j + a

�����j � ��j �� :
As �i (�i) 2 (0; 1) and a � 1, the solution is ���j = ��j . Hence, (16) holds with equality.

�i < ��j case:

The proof of Theorem 2 shows that the worst-case belief with expectation ���j is the

2-point distribution on
�
��i; ��j

	
, which yields expected utility

���j + �i
��j + �i

Ui
�
�i; ��j; �i

�
=

���j + �i
��j + �i

�i (�i)
�
��j + �i

�
=

�
���j + �i

�
�i (�i) :
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Thus, nature�s problem becomes

min
���j

�
���j + �i

�
�i (�i) + a

�����j � ��j �� :
Again, the solution is ���j = �

�
j , so (16) holds with equality.

Proof of Proposition 5

Su¢ ciency:

When �1 + �2 � 0, any reference rule with t�i 2
�
��i; �j

�
satis�es MMIC.

When ��1 + �
�
2 � 0, I show that any reference rule with t�i 2

�
��j ;���i

�
satis�es MMIC.

First, suppose that �i < ���j . Observe that Ui
�
�̂i; �

�
j ; �i

�
� 0 for all �̂i. This follows

because if �̂i+�
�
j < 0 then Ui

�
�̂i; �

�
j ; �i

�
= 0, while if �̂i+�

�
j � 0 then Ui

�
�̂i; �

�
j ; �i

�
= �i+�

�
j <

0. Hence, for all �̂i, IR and ���j 2 �j imply that Ui (�i) � 0 � inf�j2�j Ui
�
�̂i; �j; �i

�
, which

yields MMIC.

Next, suppose that �i � ���j . First, note that misreports of �̂i � ���j cannot be

pro�table because Ui (�i) � 0 = Ui
�
�̂i; �

�
j ; �i

�
and ���j 2 �j. Next, consider misreports of

�̂i > ���j . If y (�i; �j) = y
�
�̂i; �j

�
, then ti (�i; �j) = ti

�
�̂i; �j

�
(as �i; �̂i � ���j � �t�i ), and

hence Ui (�i; �j; �i) = Ui

�
�̂i; �j; �i

�
. In addition, if y (�i; �j) = 1 and y

�
�̂i; �j

�
= 0 then

Ui (�i; �j; �i) � 0 = Ui
�
�̂i; �j; �i

�
by ex post IR. Finally, if y (�i; �j) = 0 and y

�
�̂i; �j

�
= 1

then Ui
�
�̂i; �j; �i

�
� �i+ �j < 0 = Ui (�i; �j; �i). Hence, Ui (�i; �j; �i) � Ui

�
�̂i; �j; �i

�
for all

�j, so misreports of �̂i > ���j cannot be pro�table, either. This yields MMIC.

Necessity:

Since ��1 + �
�
2 > 0, every reference rule satis�es either t�1 < ��2 or t

�
1 > ���1, and hence

t�i < �
�
j for some i 2 f1; 2g. Fix this choice of i.

First, suppose that �i � �t�i . Then there exists a type �i 2
�
���j ;�t�i

�
\ �i. Note

that Ui (�i; �j; �i) = 0 for all �j. However, Ui
�
�̂i; �j; �i

�
= �i � �̂i > 0 whenever �̂i < �i

and �̂i + �j � 0. In addition, for all �̂i 2
�
���j ; �i

�
and all �j 2 �j, Chebyshev�s inequality

yields Pr�j
�
�̂i + �j � 0

�
� ��j+�̂i

��j+�̂i
, and therefore Ui

�
�̂i; �j; �i

�
� (��j+�̂i)(�i��̂i)

��j+�̂i
> 0. Hence,

inf�j2�j Ui

�
�̂i; �j; �i

�
� (��j+�̂i)(�i��̂i)

��j+�̂i
> 0 = inf�j2�j Ui

�
�i; �j; �i

�
, so MMIC fails.

Next, suppose that �i > �t�i . Then there exists a type �j 2
�
��i;�t�j

�
\ �j (as

45



�j < ��i < t�i = �t�j < ��j <
��j). Note that Uj (�j; �i; �j) = 0 for all �i. However,

Uj

�
�̂j; �i; �j

�
= �j� �̂j > 0 whenever �̂j < �j and �i+ �̂j � 0. Now for all �̂j 2 (��i; �j) and

all �i 2 �i, one has Pr�i
�
�i + �̂j � 0

�
= 1 and therefore Uj

�
�̂j; �i; �j

�
= �j � �̂j. Hence,

inf�i2�i Uj

�
�̂j; �i; �j

�
= �j � �̂j > 0 = inf�i2�i Uj (�j; �i; �j), so MMIC fails.

Appendix B: Revelation Principle

In this appendix, I consider the more general setting with an arbitrary set of alternatives Y

and payo¤ functions ui (y; �i), to emphasize that the revelation principle does not depend on

quasilinear utility.

Consider an arbitrary mechanism (game form) G = (S; g), with strategy set S = (Si)i2N

and outcome function g : S ! Y . A mixed strategy pro�le is a function � : �!
Q
i�(Si).

Type �i�s interim maxmin expected utility at mixed strategy pro�le � is

E�i(�i)
�
inf

��i2��i
E��i

�
E��i(��i) [ui (g (si; s�i) ; �i)]

��
;

where the outer expectation is over si, the middle expectation is over ��i, and the inner

expectation is over s�i. This de�nition implicitly assumes that agents cannot commit to

randomize, in that the maxmin criterion is applied to �i (�i) realization-by-realization. A

mixed strategy pro�le �� is a maxmin Nash equilibrium if, for all �i 2 �i,

��i (�i) 2 arg max
�i(�i)2�(Si)

E�i(�i)
�
inf

��i2��i
E��i

�
E��i(��i) [ui (g (si; s�i) ; �i)]

��
:

A social choice rule f : � ! Y is maxmin Nash implementable if there exists a mechanism

G = (S; g) and a pure strategy maxmin Nash equilibrium s� of G such that g (s� (�)) = f (�)

for all � 2 �. A social choice rule f is maxmin incentive compatible if it is MMIC when

viewed as a direct mechanism. The relevant version of the revelation principle is as follows.

Proposition 6 (Revelation Principle) If a social choice rule f is maxmin Nash imple-

mentable, then it is maxmin incentive compatible.

Proof. If f is maxmin Nash implementable, then there exists a mechanism (S; g) and a
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pure strategy pro�le s� 2 S such that g (s� (�)) = f (�) for all � 2 � and

s�i (�i) 2 arg max
�i(�i)2�(Si)

E�i(�i)
�
inf

��i2��i
E��i

�
ui
�
g
�
si; s

�
�i (��i)

�
; �i
���

for all �i 2 �i:

In particular,

s�i (�i) 2 arg max
�̂i2�i

inf
��i2��i

E��i
h
ui

�
g
�
s�i

�
�̂i

�
; s��i (��i)

�
; �i

�i
for all �i 2 �i:

In other words, the direct mechanism g � s� = f is maxmin incentive compatible.

The notion of implementability considered here is more general than that in the text, as

here quasilinearity, individual rationality, and budget balance are not imposed. The same

argument applies under these additional requirements.
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