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1 Introduction

Leading equilibrium concepts such as Bayesian-Nash equilibrium and ratio-

nal expectations equilibrium incorporate the idea that agents’ beliefs about

future outcomes coincide with the model’s true probabilities.A natural moti-

vation for this requirement is that the competitive pressures in economic and

strategic interactions create strong incentives to avoid systematic forecast

errors.

Requiring beliefs to be free of systematic errors implicitly assumes that

there is a criterion or test to verify that they are consistent with observed out-

comes. This paper formalizes this requirement and examines its implications

for the sort of equilibria one might expect to arise. Roughly, an equilibrium is

testable if every non-equilibrium belief can be rejected with positive probabil-

ity by a test that compares that belief with observed outcomes. Testability is

motivated by, and is a stylized representation of, statistical tests that outside

observers, such as an econometrician, might use to take theoretical models to

the data. Our focus, however, is on the economic and strategic implications

of testability rather than the empirics of testing per se.

We first take the perspective of an outside observer who models an infinite-

horizon economy as a stochastic process P . This process describes the as-

sumed evolution of exogenous variables, as well as the optimizing behavior

of agents and the resulting equilibrium outcomes. Leading equilibrium con-

cepts require agents’ beliefs to agree with P . We start with the case that

the outside observer directly assumes that the system is in equilibrium, with-

out explicitly modeling the agents’ optimization. Our central assumption is

that P is stationary. Stationarity is a natural assumption, widely used in

dynamic stochastic models for its tractability and conceptual appeal. It is

also necessary for the application of many standard empirical methods. We

illustrate the role and limitations of stationarity in a number of important

contexts, such as consumption-based asset pricing, Markov perfect equilibria,

and Bayesian-Nash equilibrium in Markovian environments.

Our main result states that requiring an equilibrium to be testable is

equivalent to any one of the following three properties. First, an equilibrium

P is testable if and only if it precludes disagreement: any alternative belief Q
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that is consistent with observed outcomes with probability one must be equal

to P . Second, an equilibrium is testable if and only if agents’ beliefs preclude

structural uncertainty about long-run fundamentals, in the sense that no re-

alization of past observations can change their opinions about the model’s

long-run properties. Intuitively, the absence of structural uncertainty means

that agents have nothing further to learn from data about structural param-

eters. Learning may still occur, but only for predicting short-run outcomes.

Third, testability is related to the properties of moment conditions used in

the econometrics of non-linear dynamic stochastic models. We show that an

equilibrium is testable if and only if the empirical moment conditions identify

the model’s true parameters asymptotically.1

We interpret these findings as highlighting a connection (and potential

tension) between compelling desiderata of dynamic stochastic models. Test-

ing agents’ equilibrium beliefs against actual observations reflects the view

that the concept of equilibrium should have observable implications, and not

be just an article of faith. A non-testable equilibrium is one for which there

exists alternative beliefs that cannot be rejected with positive probability,

regardless of the amount of data. Testability is also naturally related to em-

pirical estimation of equilibrium models, a link formalized by its equivalence

to the consistency of empirical moment conditions. Given the wide use of

moment conditions in empirical work, we view this consistency as another

desirable property a model should have.

Our main theorem says that testability precludes disagreement and struc-

tural uncertainty about long-run fundamentals, two properties that are in-

creasingly important in modeling economic and financial phenomena. For

example, the absence of disagreement, in the form of common or concordant

priors, implies no trade theorems that are widely viewed as inconsistent with

observed investors’ behavior and volume of trade. A natural response to this

conflict between empirical evidence and theoretical predictions is to weaken

the common prior assumption so agents can disagree on how to interpret in-

formation.2 Relatedly, structural uncertainty about long-run fundamentals

1 We focus on the generalized method of moments (GMM) introduced by Hansen
(1982). See Section 3.3 for a detailed formal discussion.

2 There is a large and growing literature on the role of disagreement in explaining the
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and its gradual resolution through learning are increasingly viewed as rele-

vant to understanding a number of empirical puzzles. In their survey of the

subject, Pástor and Veronesi (2009) suggest that “[m]any facts that appear

baffling at first sight seem less puzzling once we recognize that parameters

are uncertain and subject to learning.”3 Our theorem indicates a potential

tension between disagreement and structural-uncertainty, on the one hand,

and the usual conceptual justification for equilibrium and its empirical esti-

mation, on the other.

A stochastic process describing a dynamic economic system in equilibrium

must take into account that agents’ decisions are optimal given their beliefs.

Section 5 focuses on how learning and equilibrium relate to testability and the

other properties discussed above. In the case of passive learning, Proposition

5.1 shows, under mild additional assumptions, that structural uncertainty

about exogenous variables tends to lead to non-stationary endogenous re-

sponses. Intuitively, uncertainty about long-run fundamentals implies that

an agent’s beliefs will be non-stationary as uncertainty is resolved through

learning. This result is in the spirit of Nachbar (2005)’s theorem on the

tension between learning and optimization in repeated games. We discuss

Nachbar’s work in Section 6.

Although leading equilibrium concepts require agents’ beliefs to agree

with the model’s true probabilities, models differ in how this requirement

is implemented. In a Bayesian-Nash equilibrium (with a common prior),

agents are only required to have a subjective belief about how Nature selects

the true parameters of the model. A more demanding approach is rational

expectations where beliefs are objective and coincide with the model’s ob-

served empirical frequencies. Beliefs in a rational expectations equilibrium

are testable, while beliefs in a Bayesian-Nash equilibrium can accommodate

trade volume and other puzzle in financial markets. See Hong and Stein (2007) for an
excellent survey. Ross (1989), for instance, notes that: “It seems clear that the only way
to explain the volume of trade is with a model that is at one and the same time appealingly
rational and yet permits divergent and changing opinions in a fashion that is other than
ad hoc.”

3 Lewellen and Shanken (2002), Brav and Heaton (2002), and Weitzman (2007) are
early examples of works that introduce learning about fundamentals to explain equity
premia, risk-free rates, excess volatility, and predictability of returns. See Pástor and
Veronesi’s survey of the literature.
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structural uncertainty and disagreement. The ideal would be to “have it

both ways,” i.e., to maintain the flexibility of the Bayesian-Nash equilibrium

without sacrificing testability or identification via moment conditions. Our

results point out to difficulties in reaching such compromise.

The message of this paper is not that disagreement and structural uncer-

tainty, as we define them, have no empirical content. Rather, the difficulty

is in reconciling them with the idea of a “true model” shared by agents

and outside observers.4 As noted in Section 5.3, subjective disagreement and

structural uncertainty have observable implications on behavior, even though

there may be no “true model” to objectively test beliefs against, or that can

be recovered from empirical moment conditions.

The paper proceeds as follows. In Section 2 we introduce the central

concept of testability. We discuss models of asset pricing and game theory

to motivate the main concepts. Section 3 introduces the properties of dis-

agreement, structural uncertainty, and the consistency of empirical moment

conditions. Section 4 states our main theorem, while Section 5 connects the

theorem to learning and equilibrium. Finally, Section 6 provides additional

connections to the literature.

2 Testing Beliefs

2.1 Preliminaries

We consider an infinite horizon model, with time periods denoted n =

0, 1, . . .. In period n, an outcome sn in a finite set S is realized.5 Let

H = S × S × · · · denote the set of infinite histories. The set of histories

of length n is denoted Hn, and the (finite) algebra of events generated by

these histories is Hn. Stochastic processes induce distributions on the set

of infinite histories H, with the σ-algebra H generated by the finite-horizon

events ∪∞n=1Hn.

4 See Sargent (2008): “a rational expectations equilibrium asserts that the same model
is shared by (1) all of the agents within the model, (2) the econometrician estimating the
model, and (3) nature, also known as the data generating mechanism.”

5 The finiteness of S is convenient to avoid inessential technical complications.
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A probability distribution P onH will stand for either the true (exogenous

or equilibrium) process, or for an agent’s belief about that process. Which of

these interpretations is being referred to will be clear from the context. Our

focus is on stationary distributions. Recall that a probability distribution P

is stationary if, for every k, its marginal distribution on the algebra Hl+k
l

generated by coordinates l, . . . , l+ k does not depend on l. See, for example,

Gray (2009). Let P denote the set of stationary distributions over H.

2.2 Tests

Equilibrium concepts, such as Nash equilibrium and rational expectation

equilibrium, require agents’ beliefs to coincide with the true equilibrium prob-

abilities. Consider an outside observer (a modeler or an econometrician) who

assumes that agents hold equilibrium beliefs and observes a realization of the

process. Verifying that agents’ beliefs coincide with the model’s probabili-

ties requires an objective criterion, or mechanism that compares beliefs with

observed outcomes. Statistical testing is a natural language to formalize this

requirement.

Fix a stationary stochastic process P which we interpret as the “equilib-

rium” process. This process describes the evolution of the model’s exogenous

variables (e.g., income and technology shocks) as well as endogenous vari-

ables (e.g., strategies, consumption levels, or asset pricing). A statistical test

is any function

T : P ×H → {0, 1}

that takes as input a distribution P and a history h and returns a yes/no

answer. Interpret an outcome T (P, h) = 1 to mean “history h is consistent

with the process P ;” otherwise, h is inconsistent with P . The set:

TP ≡ {h : T (P, h) = 1}

is the set of all observations viewed as consistent with P under this test.

We may interpret TP as the empirical predictions of P relative to T : if P is

correct, then observations must be in TP .

Tests in this paper depend on the entire infinite realization of the process,
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while real-world statistical tests use finite observations.6 On the other hand,

asymptotic testing makes testability an easier hurdle to overcome: if an

equilibrium theory is not testable in our sense, then it is certainly not testable

using finite tests. This has the implication that failure of testability in our

model is not a short-term phenomenon caused by scarcity of data.

The Type I error of a test T at a process P is the number 1 − P (TP )

representing the probability that the test rejects P when it is true. Statistical

models usually require tests with low Type I error. In our asymptotic testing

setting, it is natural to consider tests that are free of Type I error, i.e., ones

for which P (TP ) = 1 for every P . This makes for sharper statements and

interpretation of the results. For tests based on finite observations, small but

positive Type I errors are more natural. See the discussion in Section 6.4.

Definition 1. A stationary distribution P is testable if for every stationary

Q 6= P there is a test T such that

1. T is free of Type I error;

2. Q
(
TP
)
< 1.

We can interpret the definition in two ways. First, think of P as the

theory held by an outside observer, such as a theorist or an econometrician,

of the data generating process implied by an economic model. The theory P

is testable if, when P is incorrect and the correct alternative Q is presented,

T can be proven wrong with some probability. In statistical language, testa-

bility requires that for any such Q, there is a test T for P against Q that has

some power. That is, the Type II error of this test is not 100%.

We may alternatively interpret P as the belief of an agent within the

model. Equilibrium requires agents to have unquestioning faith in their equi-

librium beliefs. Such agents have no use for tests that check whether their

beliefs are right or wrong (since they are convinced they know the truth).

On the other hand, agents less certain about their knowledge may view the

testability of their beliefs as a desirable criterion.

6 Formally, a finite test must be measurable with respect Hn for some finite n. The set
of finite tests is obviously a subset of the set of all tests. Section 6.4 discusses finite tests.
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Our notion of testability is meant to shed light on the implications of

equilibrium rather than as a guide for designing practical testing procedures.

Actual empirical tests are finite and must therefore tolerate some Type I

error. Requiring asymptotic tests to be free of such errors, as we do, is

conceptually simpler and, in some cases, results in stronger theorems. In

summary, testability retains some essential features of real world empirical

tests, but abstracts from others in order to focus on theoretical questions

about equilibrium beliefs.

Before turning to testability in economic models, we provide a stylized

mathematical example:

Example 1. For 0 ≤ p ≤ 1, let µp denote the i.i.d. distribution on coin

tosses with probability p of success. We will prove later that P = µp is

testable. In fact, the test can be chosen independently of the alternative Q:

It checks that every block of k consecutive outcomes appear in the realized

sequence at frequency 1/2k.

As an example of a non-testable belief let P = 1
2
µ2/3 + 1

2
µ1/3. Under this

distribution the observations are i.i.d. but with unknown mean; the agent

believes the coin is µ2/3 or µ1/3 with equal probability. This belief is non-

testable: any alternative belief Q = αµ2/3 + (1 − α)µ1/3 for some α ∈ (0, 1)

cannot be separated from P in the sense of Definition 1.

2.3 Example: Asset Pricing

As a first illustration, consider the canonical consumption-based asset pricing

model. The primitive is a stochastic process {cn}, interpreted as the con-

sumption of a representative agent with a time separable utility
∑∞

n=1 δ
n u(cn).

Here, u is a (differentiable) period utility and δ ∈ [0, 1) is the discount fac-

tor. Assume a finite outcome space rich enough to model the consumption

process and any collection of asset returns or other variables of interest.7

The marginal rate of substitution between consumption in periods n+ 1

7 We assumed, for technical convenience, that the outcome space is finite. In asset
pricing theory, it is more natural to consider continuous outcome spaces. We can either
extend the model to continuous spaces, or assume S to be some appropriately fine grid.
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and n is the random variable

mn ≡ δ
u′(cn+1)

u′(cn)
, (1)

also known as the stochastic discount factor.

We assume that mn is stationary with distribution P .8 In a consumption-

based asset pricing model, the process {mn} determines the equilibrium rates

of returns of all assets. Specifically, an asset is represented by a stochastic

process {Rn} (not necessarily stationary) giving the gross rate of return at

time n of a dollar invested in that asset at time n− 1. Equilibrium requires

{Rn} to satisfy the Euler equation EP
[
mn+1Rn+1 |hn

]
= 1, for all positive

probability histories hn.

The usual practice, as in Lucas (1978)-style endowment economies, is to

take the consumption process as exogenous, presumably being the outcome

of an unmodeled intertemporal optimization.9 Once consumption and utility

are given, equilibrium requires that assets be priced according to the Euler

equation.

The model postulates P as the true process governing how {mn} evolves.

Our formal notion of testability attempts to give an operational meaning

to the statement “P is the true process.” Suppose that the modeler, or

the representative agent, is confronted by an arbitrageur with an alternative

theory Q 6= P of the stock market. Testability captures the intuition that

the modeler’s theory P must have some observable implications that can be

used to “prove P wrong” in the presence of an alternative Q. Since even a

wrong theory can give, by accident, more accurate predictions than the true

theory, the statement “proving P wrong” must be qualified.10 The notion

of testability accomplishes this by requiring the modeler (or the agent) to

8The stationarity of the discount factor can be derived from primitive assumptions
about the consumption process and the utility function. Here we assume stationary di-
rectly.

9 See Cochrane (2005) for a textbook exposition. What is considered endogenous and
exogenous is, obviously, model-dependent. We follow the common practice in asset pricing
theory by assuming that consumption is exogenous, although a richer model would treat
it as endogenously determined from more primitive processes.

10 A theory that predicts a fair coin to land Heads in a given toss is more accurate than
the true theory (that the coin is fair) about half of the time!
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produce, for any competing theory Q 6= P , an objective criterion that does

not fail P , but that has some power against Q.

2.4 Example: Markov Perfect Equilibria (MPE)

Our next example is a dynamic game with a Markovian state variable. These

models are extensively used in industrial organization, political economy,

among other fields.

There is a finite set of states, X, and players, I. The set of action profiles

is A = A1 × · · · × AI , where Ai is player i’s set of actions. In accordance

with our notation, we write S = X × A to denote the outcome of the game

in any given round.

In each period n = 0, 1, . . ., players choose action profile an ∈ A then a

state xn is realized. The distribution of xn given period n−1 ’s state xn−1 and

period n’s action profile an is determined by a known time-invariant transi-

tion function π : X ×A→ ∆(X). Note that the timing in our formulation is

not standard: we assume that players choose actions before state is realized.

This timing matters for our passive learning example in Section 5.1. We

assume for simplicity that π(x, a) has full support for every outcome (x, a).

The initial outcome (x0, a0) is chosen according to some distribution p on S.

A strategy for player i specifies his mixed action at every stage as a function

of past states and action profiles. A strategy is Markovian if players’ actions

depend only on the current state. Thus, a Markovian strategy for player i is

of the form σi : X → ∆(A).

A Markovian strategy profile σ and the transition function π induces a

unique stationary Markovian distribution P over ∆(H) that describes the

steady state of the play. The steady state distribution does not depend on

the initial choice of (x0, a0).

Agent i maximizes discounted expected utility, with period utility ui(x, a)

and discount factor δ. A profile σ is a Markov perfect equilibrium (MPE)

if for each player i, σi is optimal against the profile of strategies of his op-

ponents, σ−i.11 The MPE model is widely used in applied work to model,

among other things, industry dynamics following the seminal work of Ericson

11 As usual, all deviations are allowed, and not just Markovian ones.

9



and Pakes (1995). An attractive feature of this model is that it lends itself

naturally to empirical implementation, an issue we shall return to below.12

We will show later that an MPE distribution P on S∞ is testable: given

an alternative stationary (nor necessarily Markovian) theory Q 6= P of how

the game evolves, we can construct a Type I error free statistical test for

P against Q with some power, i.e., such that P is rejected with positive

probability under Q. We cannot in general conclude that P will necessarily

be rejected with high probability. For example, if Q assigns high probability

1− ε to P and probability ε to some P ′ 6= P , then P is accepted most of the

time.

A variant of the above model is one where we assume that an analyst

observes the players’ actions and some function f : X → X ′ of the state.13

For example, in empirical models it is common to assume that players con-

dition their actions on disturbances that are unobservable by the analyst.

Every MPE distribution induces a belief of the analyst over (A×X ′)N. The

analyst’ belief is typically not a Markov process but is still stationary. We

will show later that it is also testable.

3 Disagreement and Structural Uncertainty

We introduce three properties a dynamic economic model may have: the

possibility of disagreement, absence of structural uncertainty, and the feasi-

bility of empirical estimation using moment conditions. Our main theorem

will show that all three properties are equivalent to testability.

3.1 Disagreement

A standard assumption in economic models is that agents share a common

prior (Aumann (1976 and 1978)) and, as a result, a common interpretation of

information. This assumption has been questioned on a number of grounds.

First, that agents may disagree about how to interpret information seems

12In empirical models, strategies usually depend also on unobservable disturbances.
13 In particular, if f is constant then the analyst only see the players actions but not

the state of nature.
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both intuitive and consistent with the basic axioms of rationality. Second,

the absence of disagreement leads to paradoxical theoretical conclusions, such

as the no-trade theorems (Milgrom and Stokey (1982)), that are difficult to

reconcile with reality. Third, as noted in the introduction, there is large em-

pirical evidence that seems difficult to reconcile with common interpretation

of information.14

A natural way to introduce disagreement is to assume that agents have

different prior beliefs about the underlying uncertainty. Heterogenous prior

models are used to generate realistic trade volumes and to account for other

asset pricing anomalies. See Hong and Stein (2007) and Pástor and Veronesi

(2009) for surveys.

An agent’s uncertainty about the true process P is formally represented

by a distribution Q ∈ ∆(∆(H)) on the set of stochastic processes. To any

belief Q corresponds a process Q ∈ ∆(H) with identical distribution on

sample paths.15 Since there is no difference between the belief Q and the

process Q on observable phenomena, we use the latter to describe beliefs.

Definition 2. Two beliefs Q1, Q2 are compatible if for every event B, Q1(B) =

1 if and only if Q2(B) = 1.

Compatibility of beliefs is the property known as mutual absolute conti-

nuity, a condition that appears in the seminal paper by Blackwell and Dubins

(1962) and introduced to the study of learning in repeated games by Kalai

and Lehrer (1993). Blackwell and Dubins showed that compatible beliefs

“merge,” in the sense of generating the same predictions in the limit as data

increases.16

Compatibility is a common requirement in heterogenous belief models.

It has the interpretation that, while beliefs may initially disagree, their dis-

14 There are motives for trading under common priors (unanticipated liquidity and
rebalancing needs). Hong and Stein (2007) suggest that these motives are far too small to
explain the 51 trillion dollar volume of trade in equity in 2005, say.

15 Define Q(A) ≡
∫

∆(H)
P (A)Q(dP ). Note that since the set of stationary distributions

is closed and convex, if a belief Q is concentrated on stationary distributions, then its
reduction Q is also stationary.

16 See Blackwell and Dubins (1962) or Kalai and Lehrer (1993) for a formal statement
of this well-known result.
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agreement must eventually vanish. Incompatible beliefs must continue to

disagree even in the limit, with infinite data.

Definition 3. A stationary belief P precludes disagreement if for every sta-

tionary belief Q compatible with P , we have Q = P .

As the name suggests, such process P leaves no room for disagreement

with a compatible belief. The following stylized example illustrate the math-

ematical structure of the definition:

Example 2. Consider again the belief P = µ1/2 in Example 1, where out-

comes are generated by the independent tossing of a fair coin. This P pre-

cludes disagreement: every belief Q that is compatible with P must assign

probability 1 to the sequences of observations where each block of length k ap-

pears with long-run frequency 1/2k. The only stationary belief Q that satisfies

this condition is Q = P .

Consider next P = 1/2µ2/3+1/2µ1/3 introduced in Example 1. This belief

does not preclude disagreement: If Q = 3/4µ2/3 + 1/4µ1/3 then P and Q are

compatible, and represent the beliefs of two agents who will disagree forever

about how the initial choice of the coin was made.

3.2 Structural Uncertainty

An intuitive distinction can be made between situations where agents under-

stand the structure of their environment and others with “structural uncer-

tainty about long-run fundamentals.”

How should such uncertainty be defined? Uncertainty about fundamen-

tals suggests an agent who does not know all the long-run properties of the

process and that additional learning about them is possible. As a simple

example, suppose that there are just two candidate processes, P1 and P2,

both of which is i.i.d. as in Examples 1 and 2. For an agent who knows that

the true process is P1, say, no amount of new observations can change his

beliefs about the probability of future outcomes. In this case, there is no

structural uncertainty, and new information has no predictive value. On the

other hand, it is intuitive to think of an agent who believes that the true

process is P1 with probability α and P2 with probability 1 − α as someone
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who is uncertain about the structure. For such agent, additional observations

will potentially change his predictions.

This simple intuition breaks down in more general settings. Suppose,

that P1 and P2 are, instead, two non-i.i.d. Markov processes. If α ∈ (0, 1),

the agent is uncertain about the true process, and information is as valuable

as before. The problem is that information is also valuable even if the agent

knew that the true process is P1, say. The reason is that with a Markovian

process, the outcome of one period is informative about outcomes of future

periods even when the process is known.

Intuitively, “structural uncertainty” suggests lack of knowledge about the

long-run properties of the the process rather than outcomes in the ‘near’ fu-

ture. In the Markovian example above, for an agent who knows P1 additional

observations are informative about the near future, but have no impact on

his beliefs about the probability of outcomes in the distant future.

To make this distinction formal, fix a function f : Sk → Rm, with finite

k, and define fn ≡ f (sn−k+1, . . . , sn) , n = k, k + 1, . . .. We can think of

fk, fk+1, . . . as a payoff stream where, in each period n, a payment fn is

made that depends on the realization of the past k outcomes according to

the (stationary) formula f .17 For example, fk may represent the history-

dependent dividend paid by an asset in period k and fk, fk+1, . . . is the stream

of such payments. Another example is that f takes values in a finite set of

actions {a1, . . . , am} in some vector space and represents the actions of an

opponent who uses some Markovian strategy.

For a sequence (xk, xk+1, . . . ) of elements in Rm, define the limiting av-

erage:

V (xk, xk+1, . . . ) = lim
n→∞

1

n

k+n−1∑
i=k

xi,

whenever the limit exists. We shall abuse notation and refer to fk, fk+1, . . .

as f . Let V (f) be the random vector whose value V (f)(h) at a history h

is the limiting average of fk, fk+1, . . . generated by f at h. This random

variable is well-defined with probability 1 for any stationary P and function

f (Proposition A.2).

17 To allow history dependence of the payoff stream, payments start in period k.
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As an illustration, consider the dynamic game setting of Section 2.4 with

I players and strategy profiles A. Let ∆(A) denote the set of probability

distributions on A viewed as a subset of RA and let f : A → ∆(A) be

given by f(a) = δa for every a ∈ A. Then V (f)(h) would simply represent

the limiting empirical frequency of actions played along a history h. More

complex dynamic features of a history h can be captured with suitable choices

of f .

Definition 4. P displays no structural uncertainty if for every function f

and finite history ht−1 with P (ht−1) > 0

EP (· |ht−1) V (f) = EP V (f).

When f represents payoffs, the limit-of-averages criterion can be replaced

with discounted payoffs, provided the discount increases to 1. What is im-

portant is that information relevant for short-run predictions is irrelevant

for the long run, thus capturing the role of information that changes beliefs

about the long-run properties of the process. The limit-of-average criterion

simplifies the statement of the property and the results.

3.3 Empirical Identification

In empirical studies, the implications of an economic model are usually sum-

marized by moment conditions. Formally,

Definition 5. A moment condition is a bounded continuous function

f : Z × Sk → Rq (2)

where k and q are positive integers, and Z ⊂ Rm is a compact set.

We say that f identifies P if there is a unique z̄ = z̄(P, f) such that

EPf (z̄, s1, . . . , sk) = 0.

Intuitively, a moment condition represents a finite-horizon feature of P .

As an example, assume that S = {0, 1}, Z = [0, 1], and k = q = 1. Let

f : Z × S → R be the moment condition f(z, s) ≡ z − s. For a stationary
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distribution P , we have EP f(z, s) = 0 precisely at z̄ = EP sn, the expectation

of sn under P (which does not depend on n due to stationarity). Clearly,

EP sn does not capture any intertemporal correlations in P . For example, if

P1 is i.i.d. 0.5 while P2 is the process that puts equal weights on 0, 1, 0, . . . and

1, 0, 1, . . ., then these two processes are indistinguishable from the perspective

of the moment condition f since EP1 f(z, s) = EP2 f(z, s) = 0 at z̄ = 1/2.

Moment conditions underlie many statistical techniques used in econo-

metric practice, such as the generalized method of moments, introduced in

Hansen (1982), which generalizes many standard techniques. The idea is

to estimate the true z̄ by the element ẑ ∈ Z that minimizes the empirical

estimate of EP f . Formally, given f and length of data n ≥ k, define the

empirical average

Fn(z, h) =
1

n− k

n∑
t=k+1

f (z, st−k, . . . , st) ,

viewed as q× 1 column vector, with transpose denoted F>n . The generalized

moment estimator is the random variable

ẑn(h) ∈ argmin
z∈Z

Fn(z, h)> Fn(z, h).18 (3)

Definition 6. A stationary distribution P can be empirically identified if

ẑn
P−→ z̄ for every moment condition that identifies P .19

Hansen shows that consistency obtains for any ergodic P . For this argu-

ment, it is enough to consider k=1. But it is not in general possible to prove

the converse without using higher k’s.

The property that P can be empirically identified from data means that

all of the implications of P can be recovered, via moment conditions, from

observing the evolution of the process. Alternatively, if P ′ cannot be empir-

ically identified, then there must be an implication of P ′, in the sense that

EP ′f (z̄, s1, . . . , sk) = 0, such that z̄ cannot be recovered, even asymptotically

as data grows without bound.

18 More accurately, the generalized method of moments estimator looks at the quadratic
form F (z, h)>QF (z, h), where Q is an appropriately chosen q× q matrix. Hansen (1982)
shows how to select Q optimally. We focus here on the baseline case where Q is the identity
for simplicity.

19 That is, P
{
h : | ẑn(h)− z̄ | > α

}
→ 0 for every α as n→∞.
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4 Characterization of Testable Beliefs

4.1 Main Result

Our main result relates the four concepts introduced earlier:

Theorem 1. For any stationary process P , the following four statements are

equivalent:

1. P is testable;

2. P precludes disagreement;

3. P precludes structural uncertainty;

4. P can be empirically identified.

Theorem 1 highlights the tension between desirable properties. Testabil-

ity is compelling conceptually as a minimal condition for equilibrium, while

moments-based empirical methods are important for linking models to data.

These reasons explain in part why the processes used in dynamic stochas-

tic equilibrium models usually fall into the testable category. The theorem

says that a commitment to testable models makes it difficult to incorporate

disagreement and structural uncertainty. As discussed in the Introduction,

empirical and theoretical work increasingly point to disagreement and long-

run structural uncertainty as important sources of observed anomalies.

4.2 Asset Pricing and MPE Revisited

Many familiar models in the literature correspond to the testable case.

4.2.1 Irreducible and Hidden Markov Models

Our stylized Examples 1 and 2 emphasized i.i.d. processes for their simplicity.

More substantive economic models usually build on distributions with com-

plex intertemporal structures. We begin by considering classes of processes

that are important in applications.
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The following are standard definitions. A transition function π : S →
∆(S) is irreducible if for every s′, s ∈ S there exists some n such that

πn(s′|s) > 0, where πn is the n-th power of π. Every irreducible π defines a

unique invariant distribution p ∈ ∆(S) such that

p[t] =
∑
s

p[s]π(t|s).

We say that P is a (stationary, irreducible) Markov process if for every n:

P (s0, s1, . . . , sn) = π(sn|sn−1) · · · π(s1|s0) p(s0).

The definition extends naturally to processes with memory k. Memory

k Markov processes often appear in dynamic models in the form of vector

autoregressions and can display complex intertemporal correlations.20

Another important class of processes is hidden Markov models. These are

defined in terms of a Markov process on a set Ṡ of unobservable outcomes

and a function f : Ṡ → S where f(s) is the observation made given s.

The distribution induced over H is stationary but not necessarily Markovian

of finite memory. Hansen (2007) proposes the hidden Markov model as a

framework for uncertainty and learning in asset pricing.

The following fact will be useful in discussing the applications below:

Proposition 4.1. The conditions of Theorem 1 are satisfied for every irre-

ducible memory k Markov process, and every hidden Markov process where

the underlying Markov process is irreducible.

4.2.2 Asset Pricing

Assets in the consumption-based asset pricing model are priced according

to the Euler equation EP
[
mn+1Rn+1 |hn

]
= 1, where mn+1 is the stochastic

discount factor defined in (1) and evolving under a stationary distribution

P .

One approach to model asset markets is to assume that the primitives,

such as consumption, follow an exogenous stochastic structure of a specific

20 Autoregressive processes assume a continuous state space while we assume that S is
finite. See our comment on this issue in Footnote 7.
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form. In the classic Lucas asset pricing model, dividends, and therefore con-

sumption, follow a Markov process. More generally, processes with a memory

k Markov structure are testable by Proposition 4.1. The theorem implies that

any asset pricing model where the stochastic discount factor process {mn} is

testable must be one that precludes disagreement and structural uncertainty.

An alternative approach is to impose no exogenous stochastic structure,

but to estimate it from the data. A standard empirical practice to estimate

non-linear models is to use the method of generalized method of moments.

Suppose we are given a stationary model that is empirically identified for

every moment condition, in the sense of Definition 6. We can again apply

the theorem to conclude that the proposed model must preclude disagreement

and long-run structural uncertainty.

4.2.3 Markov Perfect Equilibrium

Consider next the Markov perfect equilibrium model introduced in Sec-

tion 2.4. The model generates equilibrium distributions that are irreducible

Markov process whenever the transition function has full support. By Propo-

sition 4.1 and Theorem 1, the model precludes disagreement and long-run

structural uncertainty. Knowledge of the long run fundamentals (as we define

them) is a strong assumption in an industry where firms expect (or fear) dis-

ruptive regulatory, technological, or demand changes. In such environments,

firms are likely to believe that these changes could fundamentally impact

profitability, and disagree on the nature of this impact.

4.3 Stationarity and the Need for Structure

A key restriction we impose is that processes must be stationary. An obvious

motivation for stationarity is the role it plays in economic and statistical

models. Here we offer more subtle motivation: the absence of stationarity

may lead to significant conceptual difficulties in defining what it means to

test beliefs.

The next proposition considers what happens if we remove stationarity

completely from the definition of testability:
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Proposition 4.2. Extend Definition 1 by removing the stationarity assump-

tion on P and Q. Then a distribution P is testable under this extended

definition if and only if it is a Dirac measure that puts unit mass on a single

sample path.

Proof: Dirac’s atomic measures on realizations are the extreme point of

∆(H). Therefore, if P is not Dirac’s atomic measure then it can be written

as P = λP ′ + (1− λ)P ′′ for some beliefs P, P ′′ such that P ′ 6= P ′′ and some

0 < λ < 1. Therefore, every Type I error-free test must have the property

that P ′(TP ) = P ′′(TP ) = 1. If Q = µP ′ + (1− µ)P ′′ for some 0 < µ < 1 and

µ 6= λ then Q 6= P but Q(TP ) = µP ′(TP ) + (1−µ)P ′′(TP ) = 1 for every such

test.

If no restriction is imposed on the set of processes, then by Proposition 4.2

requiring beliefs to be testable implies that they must be deterministic. This

is obviously unsatisfactory in modeling phenomena that are stochastic in

nature, such as asset markets and games. Models with non-trivial testable

beliefs require some structure restricting the processes allowed.

Stationarity is one way to introduce such structure, but it is obviously

not the only one. The question of what is the “right” stochastic structure in

economic and statistical models is subtle and lies outside the scope of this

paper. Jackson, Kalai, and Smorodinsky (1999) propose that a stochastic

structure should be coarse enough to be learnable, but fine enough so no

learnable pattern remains unlearned in the long-run. They point out that

the class of all distributions is too fine to be learnable, so a more restrictive

structure is needed. In our companion paper, Al-Najjar and Shmaya (2012),

we show that the class of stationary distributions is learnable, providing some

foundation for their use in economic models. We refer the reader to these

papers for elaboration on these points.

5 Learning and Equilibrium

As noted in Section 4.2, many economic models used in practice fall into

the testable category of our main theorem. An implication of that theorem

is that in stationary non-testable environment there is always something to
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learn about the long-run fundamentals. As agents learn from observing the

process, their beliefs about these fundamentals change. But changing beliefs

can lead to non-stationary decisions, and this undermines the stationarity of

the process itself.

This informal intuition suggests a tension between stationarity and opti-

mization. To better understand this tension, it will be convenient to assume,

as in the MPE model of Section 2.4, that S can be written as a product

S = X × A of action profiles A and exogenous variables X that are not

affected by these actions.

The evolution of the system is described by a stochastic process P on

H = (X × A)∞. Let PX and PA denote the marginals of P on X∞ and

A∞. We will only require PX to be stationary, but not necessarily the entire

process P . This weaker assumption makes it possible to apply Theorem

1 restricted to beliefs about the exogenous variables and thus explore the

implications of testability even when agents’ behavior is non-stationary.

5.1 Passive Learning

Consider a variation on the MPE setting of Section 2.4 where agents are

uncertain about the transition π. Pakes and Ericson (1998) study a model

along these lines with the goal of empirically testing for the implications of

agents’ passive learning on industry dynamics.

We follow closely that section except for two departures. First, agents

may be uncertain about the transition. Formally, agents have beliefs µi, i ∈ I,
with a finite and common support Π = {π1, . . . , πL}, L ≥ 1, representing

their uncertainty about the transition. Second, agents learn about the pro-

cess. Learning, however, is passive in the sense that agent’s actions do not

influence the evolution of the exogenous process. This rules out agents’ active

experimentation and keeps the theoretical and empirical analysis tractable.

Formally, we require that each πl ∈ Π takes the form πl(xn), and so depends

only on xn.

Let PX(πl) be the stationary distribution on X∞ induced by the tran-

sitions πl ∈ Π as described in Section 4.2.1. Agent i believes that the ex-

ogenous variables evolve according to the stationary distribution PX(µi) =
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µi(π1)PX(π1) + · · ·+ µi(πl)PX(πl) which no agent can influence. We distin-

guish three cases:

Case 1: L = 1, so agents know the true transition π.

Case 2: L > 1 and agents share a common prior (µi = µ, for all i) with

support {π1, . . . , πL}.

Case 3: L > 1 and agents have different priors (µi 6= µj, for some i, j) with

common support {π1, . . . , πL}.

Case 1 is a special case of the MPE introduced earlier.21 The marginal

process PX is Markovian, testable and displays no structural uncertainty.

The same holds for the full equilibrium process P under an MPE.

Turning to Case 2, we model decisions using Bayesian-Nash equilibrium as

solution concept. Fix one such equilibrium and let P denote the distribution

it generates. In any such equilibrium, the marginal process PX on exogenous

variables is the stationary process PX(µ). Applying Theorem 1 to PX , it is

easy to verify that it is non-testable, for example since agents are uncertain

about the long-run fundamentals (i.e., which π is the true process).

The fact that the marginal process PX is stationary and non-testable

makes it “likely” that the equilibrium process P as a whole is not stationary.

Intuitively, when agents learn about the long-run fundamentals (the true π),

their beliefs and decisions will change in a non-stationary fashion. The next

theorem formalizes this intuition:

Proposition 5.1. Suppose that agents have a common prior µ with support

{π1, . . . , πL}, L > 1. Then there exists action sets and utilities, Ai, ui, for

i = 1, . . . , I, such as the resulting game admits no Markov equilibrium profile.

When players know the Markov transition, their beliefs about the next

state depends only on their current state. Under uncertainty, however, the

current state is no longer sufficient to determine agents’ belief about the next

outcome, and behavior may depend on the entire history of past observations.

Early observations can have a persistent effect on agents’ decisions.(Making

21 Special because we require that agents’s actions do not influence the state.
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this argument formal requires that changes in beliefs have an impact on

actions. This is why the theorem is stated in terms of some specification of

payoffs.) Pakes and Ericson (1998) exploit this fact to construct a statistical

test of whether observed industry dynamics is consistent with firms learning

about their environment.

We conclude by noting a connection between testability and disagreement.

In Case 2, the process PX is non-testable yet agents agree on it. As argued

earlier, justifying agreement that µ is the true process is difficult when there

can be no statistical test that can, even in principle and with infinite data,

disprove µ against an alternative beliefs µ′ 6= µ. If one views testability as a

(necessary) condition for agreement, then Case 2 seems artificial, and Case

3 where agents disagree is the more compelling alternative.

5.2 Bayesian Nash Equilibrium

Next we consider learning in a repeated game with incomplete information

using the setup of Kalai and Lehrer (1993). For simplicity, assume there are

just two players, each with a finite number of actions. A type of a player is

his payoff matrix. Assume that there are m possible types for each player,

and denote by T i = {Di
1, . . . , D

i
m} the set of types of player i. A type profile

is realized from common prior distribution µ on T 1 × T 2. After types are

realized, each player observes his own type. The standard solution concept for

this class of games is that of a Bayesian Nash equilibrium. Kalai and Lehrer

(1993, Theorem 2.1) show, roughly, that conditional on (D1, D2) being the

true type profile, the play of the game will eventually be close to that of a

Nash equilibrium of the true game.

We consider an outside analyst who observes the actions of the players

but not the realized types. We illustrate the relationship between testability,

stationarity, and learning in three examples chosen for their tractability. In

Example 3 types are completely correlated, so players have no uncertainty.

Example 3. Assume that µ is uniform on {
(
D1
j , D

2
j

)
}j=1,...,m. Then players

know the type profile but an observer has uncertainty. Consider the Bayes

Nash equilibrium according to which, when the type profile is
(
D1
j , D

2
j

)
players

repeatedly play some Nash equilibrium of that game.
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The process induced by the equilibrium profile in this example is station-

ary (in fact, exchangeable) but will typically not be testable. This is because

there is uncertainty about the long-run distribution of play—unless the sup-

port of µ is concentrated on type profiles with the same Nash Equilibrium.

In our next example, players are uncertain about the game so they learn

something about their opponents’ type as they observe the evolution of play.

However, the payoffs are such that learning does not affect the players be-

havior. Say that a type D of player i is committed to action a if playing a

each period is a dominant strategy for player i in the repeated game when

his payoff matrix is D.

Example 4. Assume that µ has full support over T 1 × T 2 and that all

types are committed (to different actions). In a Bayes-Nash equilibrium,

each player always plays his commitment strategy.

The equilibrium profile in Example 4 is, trivially, stationary, but, when

some types of a player are committed to different actions, it is not testable.

In our final example, players have uncertainty and the example is such

that learning must affect behavior. In this case, no Bayesian Nash equilib-

rium induces a stationary play.

Example 5. Assume that:

1. µ has full support over T 1 × T 2.

2. There exists types D,D′ ∈ T 1 of player 1 which are committed to dif-

ferent actions a, a′.

3. There exists type D′′ of player 2 such that the set B(a) of best responses

of player 2 under D′′ to a and the B(a′) of best responses of player 2

under D′′ to a′ are disjoint.

We have the following result:

Proposition 5.2. A Bayes Nash equilibrium of the game described in Ex-

ample 5 cannot be stationary.
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The proof is in the Appendix. Roughly speaking, this follows from the

fact that in every equilibrium in the game with payoff matrices (D,D′′),

the players’ action profile is in {a} × B(a), and that in every equilibrium

in the game with payoff matrices (D′, D′′), the players action profile is in

{a′}×B(a′). Kalai and Lehrer’s theorem implies that players learn to play as

in equilibrium of the game with the realized types, so that there is a positive

probability that from some period onwards the action profile played is always

in {a} × B(a) and a positive probability that from some period onwards

the action profile played is always in {a′} × B(a′). Because of stationarity,

this should be the case already for the actions at period 0, and because

these actions are independent given the types, it follows that at day 0 there

is a positive probability that the action will be in {a} × B(a′) which is a

contradiction.

5.3 Testing Beliefs vs. Testing Behavior

Disagreement and structural uncertainty can have observable implications

on agents’ behavior and market outcomes. This is not in contradiction with

our main theorem. That theorem concerns the difficulties associated with

objectively testing whether beliefs are right and wrong. The fact that it is

difficult to test whether an agent “knows the true” model makes it more

plausible that his choices will reflect model uncertainty.

To make this more formal, apply our main theorem to the process PX
governing the evolution of the exogenous variables as discussed earlier. If

PX is not testable, then the theorem implies that agents have structural un-

certainty. While it is not possible to devise an objective test to determine

whether beliefs about PX are correct, agents’ uncertainty can have empiri-

cally measurable implications on their behavior.

The details will obviously depend on the model. Pakes and Ericson (1998)

develop econometric tests in a Markovian model of industry dynamics to

detect firms’ learning. Firms’ beliefs are not directly observable. On the

other hand, subjective uncertainty has the implication that early observations

have a persistent impact on posterior beliefs and, therefore, on future choices.

Evidence for learning may be found by looking for non-stationary behavior,
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such as a correlation between early observations and the long-run evolution

of the model.

Other example can be found in the context of asset pricing. Lewellen and

Shanken (2002) and Brav and Heaton (2002) consider the impact of investors’

learning on asset pricing. Using stylized settings where dividends are i.i.d.

with unknown parameters, they show that learning can cause returns to

appear predictable and excessively volatile even though prices react efficiently

to information. These authors note that learning may confound empirical

testing of asset pricing models.

6 Discussion and Related Literature

6.1 Testing Strategic Experts

A recent literature examines the problem of testing an expert’s knowledge

of the underlying process. An uninformed strategic expert may attempt to

manipulate the test with a randomized forecast. A number of papers, includ-

ing Sandroni (2003), Olszewski and Sandroni (2008), Shmaya (2008), provide

general conditions under which a strategic expert can manipulate any test.

Results establishing the existence of non-manipulable tests appear in Dekel

and Feinberg (2006), Shmaya (2008), Olszewski and Sandroni (2009), Al-

Najjar, Sandroni, Smorodinsky, and Weinstein (2010). See Olszewski (2012)

for a survey.

In our paper, agents do not strategically randomize their forecasts to

manipulate the test. Rather, they hold subjective beliefs about their en-

vironment, and choose optimally given these beliefs. Our focus is on the

implications of requiring that erroneous beliefs can be rejected by data un-

der the true model.

6.2 Bayesian Learning in Games

Section 5.2 illustrates the connection with the literature on learning in games.

The concepts of testability, long-run uncertainty, and stationarity are related

to Nachbar (2005)’s results for learning in games. In his motivating example
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(pp. 459-460) two players play an infinitely repeated game, where the stage

game has just two actions A,B for each player. Player i = 1, 2, believes

player j 6= i follows an i.i.d. strategy where A is played with probability qi
each period. Player i’s prior belief about the strategy of the opponent is a

probability distribution µi over [0, 1]. Nachbar starting point is the obser-

vation that even ε-optimization will lead to the unraveling of the assumed

stationary equilibrium.

In our terminology, each player faces a stationary environment described

by his belief about the strategy of his opponent. In this example, there is

long-run uncertainty if and only if µ does not put unit mass on one value

of qi. Proposition 5.1 shows that when players update their beliefs, their

behavior will not in general be i.i.d., and is therefore not consistent with the

players’s priors about their opponents’ strategies.

Nachbar obtains a general result for infinitely repeated game strategies

where the assumption of stationarity is not natural. In this paper, we take

the perspective of a single decision maker and our arguments rely heavily

on stationarity. Our concepts of testability and empirical identification also

have no counterpart in Nachbar’s work.

6.3 Self-confirming Equilibrium

The process P in this paper describes the evolution of all variables in the

model, including agents’ decisions. Beliefs are in equilibrium if their predic-

tions about future outcomes coincide with P . In our analysis, the process

P puts no restrictions on agents’ predictions at counter-factual events, i.e.,

events that have zero probability under P . This is important in games, where

players’ decisions depend on his beliefs about what their opponents will do at

all events, including those not observed in equilibrium. Although the process

P describes all what an outside observer can hope to see, it is insufficient to

explain what players do. This distinction is captured by the notion of self-

confirming equilibrium introduced by Fudenberg and Levine (1993a) where

players are assumed to know the true distribution on observed outcomes, but

may have incorrect off-path conjectures.

26



Fudenberg and Levine (1993b) motivate the concept of self-confirming

equilibrium as the result of a steady-state learning process. Related to our

discussion of disagreement, Dekel, Fudenberg, and Levine (2004) argue that

this steady-state interpretation of self-confirming equilibrium is difficult to

reconcile with heterogenous beliefs about the state of nature.

6.4 Finite Horizon Testing

The properties in Theorem 1 are formulated in terms of infinite outcome

sequences. The definitions have natural analogues for finite horizons. Take,

for instance, the concept of testability. Call a test T finite if there exists an

integer n such that T depends only on the outcome of the first n periods.22

Tests used in statistical practice are obviously finite. It is easy to show the

following:

Claim. If P is testable then for every stationary Q and every α > 0 there

exists a finite horizon test T such that:

1. The Type I error of T is smaller than α.

2. Q(T (P )) < 1− α

Formulating our result in a finite horizon setting would require close at-

tention to the amount of data available to the test, an issue that does not

arise in asymptotic tests. For finite tests, the horizon needed will in general

depend on the complexity of the intertemporal structure of the processes

being tested. To illustrate, consider the following simple example:

Example 6. Let S = {0, 1} and let P be the steady state distribution of a

Markov process with transition

• π(0|0) = π(1|1) = 1− ε and

• π(1|0) = π(0|1) = ε

22 Formally, T is measurable with respect to Hn.
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for a small ε < 1
n

. Since P is an irreducible Markov chain, it follows from

Proposition 4.1 above that P is testable. Let Q be the process that puts unit

mass on the sequence (0, 0, . . . ). Then for every test T of horizon n and Type

I error smaller than α = 0.10, we have Q(T (P )) = 1.

The problem in this example is that the process P is highly persistent.

If we are given a very short horizon, this persistence can easily confound P

with the constant process Q.

Testability with such short horizon has little bite. This should not be

surprising: no statistical technique based on such limited data can distinguish

the process P from Q. Relatedly, the GMM estimator of the one dimensional

marginal of P will fail to converge to its correct value over such small horizon.

In summary, finite data is a limiting factor to statistical methods in gen-

eral, and not specifically our model. To apply the notion of testability in

finite horizon, either the class processes has to be restricted, or the horizon

extended (or both). In our asymptotic testing framework, we impose no

restrictions beyond stationarity, but require the horizon to be infinite. Al-

ternatively, we could limit n to be finite, but then we must restrict the class

of processes to ensure fast enough rate of convergence to make statistical

testing feasible.23 We find the asymptotic approach to give a clearer picture

of the implications of testability.

23 A natural way to proceed is to require the process to be mixing with a uniform mixing
rate. This, indeed is the common assumption made in practice. Vector autoregressive
processes, for example, belong to this class. See also our discussion of Pakes and Ericson
(1998).
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A Proofs

A.1 Mathematical Preliminaries

A function f : H → R is finitely-based if there is an integer k such that

for any history h, f depends only on the first k coordinates of h (that is, f

is Hk-measurable). Abusing notation, we express finitely-based functions in

the form f : Sk → R. We use the following lemma:

Lemma A.1. For any pair of distributions P,Q ∈ ∆(H), P 6= Q there exists

a finitely-based function f such that EPf 6= EQf .

Given a stationary P and any (Borel)function g : H → R, the ergodic

theorem states that the limit

g̃ = lim
n→∞

1

n

n−1∑
i=0

g (si, si+1, . . . ) (4)

exists P -a.s. and that EP g̃ = EPg. If the limit g̃ is constant (i.e., g̃ = EPg

almost surely) for every g then P is called ergodic. It is sufficient for ergodicity

that the limit be constant for every finitely-based function g.24

The following proposition states the implication of the ergodic theorem

for finitely based functions. In the terminology of Section 3, the (random)

limiting average payoff of a finitely-based f is well-defined:

Proposition A.2. Let P be stationary and f : Sk → R be finitely-based.

Then

V (f)(h) = lim
n→∞

1

n

k+n−1∑
i=k

f(si−k, . . . , si−1)

exists for P -almost every history h = (s0, s1, . . . ), and EPV (f) = EPf .

Moreover, if P is ergodic then V (f(h)) is P -almost surely the constant EPf .

The set of all stationary distributions P over H is convex and weak∗-

compact. We denote by E ⊂ P the set of all ergodic distributions over H.

24 For a textbook exposition of the parts of ergodic theory relevant to this paper, see
Gray (2009).
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The ergodic decomposition theorem states that there exists a Borel function

ε : H → E such that µ (ε−1(µ)) = 1 for every ergodic µ and such that

P (E) =

∫
µ(E)P̄ (dµ) (5)

for every event E ⊆ H where P̄ ∈ ∆(E) is the push-forward of P under

ε (i.e., P̄ (E) = P (ε−1(E)) for every Borel subset E of E). It follows from

the ergodic decomposition theorem that the extreme points of this set are

the ergodic distributions. That is, P is ergodic if and only if there exists no

stationary distributions R′, R′′ such that R′ 6= R′′ and P = λR′ + (1− λ)R′′

for some 0 < λ < 1.

A.2 Proof of Theorem 1

We will show that the properties in the theorem are equivalent to P being

ergodic.

A.2.1 P is ergodic =⇒ P displays no structural uncertainty.

Assume that P is ergodic and let f : Sk → R be bounded. By Proposition A.2

V (f) is almost surely the constant EPV (f). It follows that EP (V (f)|E) =

EPV (f) for every event E with P (E) > 0. In particular, EP (·|ht−1)V (f) =

EPV (f) for every finite history ht−1 with P (ht−1) > 0.

A.2.2 P displays no structural uncertainty =⇒ P is testable.

Assume that P displays no structural uncertainty. Let f : Sk → R be

bounded. From the martingale convergence theorem it follows that

EP (·|ht−1)V (f) −−−→
t→∞

V (f)(h)

for P -almost every h. If P displays no structural uncertainty then

EP (·|ht−1)V (f) = EPV (f) = EPf,

where the second equality follows from Proposition A.2. Therefore V (f)(h) =

EPf for P -almost every h.
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Let Tf be a test such that Tf (P ) = {h|V (f)(h) = EPf} and Tf (Q) = Ω

for every stationaryQ 6= P . By the argument above it follows that T is Type I

error free. Moreover if Q(Tf (P )) = 1 for some stationary distribution Q then

V (f)(h) = EPf for Q-almost every h, and therefore EQf = EQV (f) = EPf ,

where the first equality follows from Proposition A.2.

If Q 6= P is any stationary distribution, then by Proposition A.1 there

exists a bounded function f : Sk → R such that EPf 6= EQf . Then it follows

that Tf is Type I error free and that Q(Tf (P )) < 1, as desired.

A.2.3 P is testable =⇒ P precludes disagreement.

Let P be testable and let Q be any stationary belief such that Q 6= P . We

claim that Q is not compatible with P . Indeed, let T be a Type I error

free test such that Q(T (P )) < 1. Since T is Type I error free, we get that

P (T (P )) = 1. Therefore P and Q are not compatible, as desired.

A.2.4 P precludes disagreement =⇒ P is ergodic.

Assume by contradiction that P is not ergodic so that P = λR′+(1−λ)R′′ for

some stationary beliefs R′ 6= R′′ and 0 < λ < 1. Since P (B) = λR′(B)+(1−
λ)R′′(B) for every event B it follows that P (B) = 1 if and only if R′(B) =

R′′(B) = 1. Let 0 < µ < 1 such that µ 6= λ and let Q = µR + (1 − µ)R′′.

Then Q(B) = 1 if and only if R′(B) = R′′(B) = 1 and so Q(B) = 1 if and

only if P (B) = 1. Thus P and Q are compatible, and since R 6= R′′ and

λ 6= µ it follows that P 6= Q, contradicting the assumption that P precludes

disagreement.

A.2.5 P is ergodic =⇒ P can be empirically identified

This part of the theorem is a slight extension of Hansen (1982)’s result on

the consistency of the GMM estimator. First we restate his result in our

notation:

Proposition A.3. Assume that some ergodic distribution P is identified by

a moment condition (2) with k = 1. Let ẑn be the GMM estimator given

by (3). Then ẑn
P−→ z̄.
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We need to adapt this result to arbitrarily finite k. Let P be ergodic and

let f be a moment condition given by (2):

f : Z × Sk → Rq.

Consider the new set of outcomes S̄ = Sk. Define the probability distri-

bution P̄ over H̄ as the push-forward of P under the map

(s0, s1, s2, . . . ) ∈ H 7→ (s̄0, s̄1, . . . )

where

s̄n = (sn, sn+1, . . . , sn+k−1).

Then P̄ is ergodic, the moment conditions f on P translates to a moment

condition on P̄ with k = 1, and the GMM estimator for P̄ under f̄ is the

same as for P under f . Thus, by Proposition A.3 it follows that the GMM

estimator is consistent.

A.2.6 P can be empirically identified =⇒ P is ergodic

Let P ∈ P be stationary and empirically identified. Fix an integer k and let

Z = ∆(Sk). Define the moment condition f : Z × Sk → RSk
be given by

f(z, h)[h′] = z[h′]− δh,h′

for every z ∈ ∆(Sk) and h′ ∈ Sk, where δh,h′ =

{
1, if h = h′

0, otherwise.
.

If µ is a stationary distribution then f identifies µ since the unique z̄ that

satisfies Eµf(z̄, h) = 0 is given by z̄ = Πk(µ) where Πk : P → ∆(Sk) is such

that Πk(µ) is the distribution on k-tuples induced by µ for every stationary

distribution µ.

It follows from A.2.5 that for every ergodic µ ∈ E

ẑn
µ−→ Πk(µ) (6)

under µ, where zn is the GMM estimator.

We claim that P ,

ẑn
P−→ Πk ◦ ε. (7)
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where ε : H → E is the ergodic decomposition function introduced earlier

satisfying 5. Indeed, for every α > 0

P
({
ω ∈ H

∣∣∣ | ẑn(ω)− Πk ◦ ε(ω) | > α
})

=∫
P̄ (dµ)µ

({
ω ∈ H

∣∣ | ẑn(ω)− Πk(µ) | > α
})
−−−→
n→∞

0

where the equality follows from the definition of ε and the limit from the

bounded convergence theorem and (6).

On the other hand,

ẑn
P−→ Πk(P ). (8)

since P can be empirically identified. It follows from (7) and (8) that Πk◦ε =

Πk(P ), P -a.s. Since this is true for every k it follows that ε is constant P -a.s.,

i.e., that P is ergodic.

A.3 Proof of Proposition 4.1

We proved that the conditions of Theorem 1 are satisfied for every ergodic

process. Every irreducible Markov process is ergodic Durrett (2010, Example

7.1.7). Also every function of an ergodic process is ergodic Durrett (2010,

Theorem 7.1.3). In particular, every hidden Markov process is irreducible

when the underlying Markov process.

A.4 Proof of Proposition 5.1

Since π1, . . . , πL are not identical, there exists some s∗ ∈ S such that π1(s
∗) 6=

π2(s
∗). Therefore there exists some u ∈ RS and α ∈ R such that

π1(s
∗) · u < α < π2(s

∗) · u

where · is the inner product in RS.

Assume that at every period n each player has two actions: a safe action

that gives payoff α regardless of the next state, and a risky action that gives

payoff u[sn+1]. Thus, a player’s payoff depends only on her own action and

not on the opponent’s actions. In this game, every equilibrium strategy
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σ is such that after every history h the player chooses the safe action if the

conditional expectation of u[sn+1] is smaller than α and the risky action if the

conditional expectation of u[sn+1] is greater than α. Since after sufficiently

long periods the player learns the ergodic transition π it follows that there

are arbitrary long histories (s0, s1, . . . , sn) with sn = s∗ after which the player

must play the safe action and arbitrary long histories after which the player

must play the risky action. Thus, the equilibrium cannot be Markovian.

A.5 Proof of Proposition 5.2

The proof uses the following lemma, which follows immediately from the

ergodic theorem.

Lemma A.4. Let S be a finite set of outcomes and let P be a stationary

distribution over H. Then P -almost every realization ω = (s0, s1, . . . ) ∈ H
has the property that s0 appears infinitely often in ω.

Proof: By the ergodic decomposition we can assume w.l.o.g. that P is

ergodic. Let p ∈ ∆(S) be the marginal one-period distribution of P , i.e.

p[s] = P ({ω = (s0, s1, . . . )|s0 = s}) for every s ∈ S. Then it follows from the

ergodic theorem that, for P -almost every realization ω, every s ∈ S appears

in ω with frequency p[s]. In particular, if p[s] > 0 then s appears infinitely

often in ω. This implies that s0 appears infinitely often in ω for almost every

realization ω = (s0, s1, . . . ) ∈ H, as desired.

To prove the proposition, let ε > 0 be small enough such that:

1. The only subgame-perfect ε-equilibrium in the repeated game with in-

complete information (D,D′′) is such that player 1 always play a and

player 2 always play an action from B(a).

2. The only subgame-perfect ε-equilibrium in the repeated game with in-

complete information (D′, D′′) is such that player 1 always plays a′ and

player 2 always play an action from B(a′).

Let η > 0 sufficiently small. It follows from Kalai Lehrer’s Theorem

that in every equilibrium of the game with incomplete information, if the
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types are (D,D′′) there is a time from which, with probability at least 1− η,

player 2 always plays an action from B(a). It follows from Lemma A.4 that

according to the equilibrium profile, conditioned on the types being, (D,D′′),

player 2 plays an action in B(a) with probability at least 1− η (since almost

every realization of the play path on which he doesn’t play an action in B(a)

cannot have the property that he plays an action from B(a) from some point

onward.) This implies that according to his equilibrium strategy, player 2

must play an action from B(a) with probability 1− η at day 0 if his type is

D′′. Similarly, player 2 must play an action from B(a′) with probability 1−η
at day 0 if his type is D′′. Since B(a) ∩B(a′′) = ∅ we get a contradiction.
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