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Overview 

 

When and why will observed play to approximate an equilibrium?   

What sort of equilibrium?  

 

Rationality, even common knowledge  of rationality,  is not sufficient for 

Nash equilibrium  (“NE”).  

 

Common  knowledge of rationality does imply NE in games where iterated 

strict dominance gives a unique solution. 

 

But many games of interest have multiple NE, and all of these survive 

iterated strict dominance. 

 

No reason for play to look like any of the equilibria without some 

explanation for why players all  expect the same equilibrium. 



 3 

Yet equilibrium seems a decent approximation of the outcomes of some (not 

all!) experiments, and has been useful in empirical analyses of field data. 

(testing of the equil assumption in field data seems an open issue, 

equilibrium  is typically built into the estimation procedure…) 

 

To understand equilibrium, look at long-run behavior of non-equilibrium 

dynamic processes. 

 

“Learning in games”  broadly defined: players play the game repeatedly, and 

adjust their play based on their experience.  Then equilibria  correspond to 

the long-run outcome (e.g. steady state, asymptotic limit, etc.) of  the 

adjustment process.  

 

This description applies to many sorts of adjustment processes, including 

biological evolution, and to  myopic best responses to true state of the 

system- where nothing is being “learned.” 
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Aside on evolutionary models:  

Rationality not necessary  for play to resemble equilibrium- a colony of 

bacteria can converge to NE. 

 

In evolutionary biology models, the payoffs correspond to reproductive 

fitness, players are genetically programmed to play various actions, and the 

Nash equilibria are steady states of  a  model of how the share of the 

population evolves- the idea is that the fitter strategies have more offspring 

so that their share of the population increases.  

 

The replicator dynamic   is the standard model in evolutionary   game 

theory; non-equilibrium dynamic process where the mass of agents using a 

given strategy grows at rate proportional to the strategy’s current payoff. 

 

Specialize to single population playing a symmetric two-player stage game. 

 

Continuum of players, each of whom uses a pure strategy.   



 5 

 

Standard motivation: individuals genetically programmed to play some pure 

strategy, and this programming is inherited.  Round robin tournament or 

appeal to  LOLN:  total number of  offspring of  s-strategists is then number 

of agents using s times offspring per agent.    

 

Replicator dynamics also describes the result of some types of imitation by 

economic agents  and some of the properties of the replicator dynamic 

extend to various classes of more general processes that may correspond to 

other sorts of learning or emulation.    

 

Under replicator dynamic, strategy’s share is increasing whenever that 

strategy does better than the population average, even if the strategy is not 

the best response to the current state. But still steady states are closely 

linked to the Nash Equilibria: 
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• Every Nash equilibrium is a steady state:  In the state corresponding to 

a Nash equilibrium, all strategies being played have the same average 

payoff, so the population shares are constant.   

 

• Interior steady states, where all actions have positive probability, must 

be Nash equilibria, but steady states on the boundary need not be.  

 

• Non-Nash steady states cannot be asymptotically stable: If the state is 

perturbed by introducing a small weight on an improving deviation, the 

share playing that deviation it will grow. So if play converges, it 

converges to a NE.  (true for any continuous-time deterministic  

processes where the growth rates are a strictly increasing function of the 

payoff differences, and for many other models of learning in static 

games as well.)  

 

• No guarantee the dynamics converges to a steady state- can cycle or be 

chaotic. 



 7 

Replicator dynamic linked to notion of evolutionarily stable strategy  (ESS): 

 

Suppose population  originally at some profile σ , and then a small  share of 

"mutants" start playing some other strategy 'σ .   

ESS asks that the existing population gets a higher payoff against the 

resulting mixture than the mutants do.   

 

Every strict Nash equilibrium  is an ESS, and any strict Nash equilibrium is 

locally stable under the replicator dynamic.  For generic  static games, all 

pure-strategy equilibria are strict; for these games pure-strategy ESS same as 

pure-strategy NE. 

 

ESS/NE useful in explaining a wide range of biological phenomena, 

including mutualisms and parasitess, animal behaviors such as territorialism, 

and genomic  imprinting.  This reinforces the point that rationality and 

equilibrium in games are distinct- and objections to rationality assumptions 

do not immediately translate into objections to game theory (/end aside.) 
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The models that seem most like  (the narrow sense of ) “learning”…  

 

(a) Explicitly specify  how individual agents use observations to 

change their behavior  

 

 

(b) Self-interested play by the agent- not agents programmed to try to 

find equilibrium! 

 

But some models are borderline- hard to say if “learning” or not- and not 

sure if having a precise definition is that useful. 
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 Common themes in the learning-in-games literature: 

 

1) Non-equilibrium adjustment.  

 

We don’t want to  explain equilibrium  in a given game by assuming an 

equilibrium  of some larger adjustment game.  

 

If we don’t insist on “equilibrium  in the adjustment game,” there can be 

players whose adjustment rule isn't a best response to the adjustment rules of 

the others and is thus “making a mistake.” 

 

Such mistakes are a necessary component of any non-equilibrium 

explanation  of equilibrium.  So in evaluating these models  it won’t be a 

relevant  criticism to say that some player is playing suboptimally. 

Instead we'll ask that it not be obvious to the players that there is some 

simple alternative that would be better.  
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2)  The learning-in-games literature has so far focused on LR play:  

 

In short run initial beliefs/conditions matter, and needn’t see equilibrium. 

But literature needs more results about speed of learning and learning in 

short or medium run. 

 

3) Prefer conclusions that hold for a range of learning rules  

 

Hard to pin down “the real rules” people use.   Though more info would be 

nice; discuss some attempts at this later.   To some extent rules that "point 

in the right direction"  have similar long run properties; is this how people 

behave?   
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4)  Sensible-seeming learning processes need not converge in some 

games. Conversely, in some sorts of games  most sensible processes do 

converge.  

 

The possibility of non-convergence  isn't surprising,  since lots of dynamic 

process don’t converge to steady states.  However we should expect learning 

to converge in games that are solvable by iterated strict dominance. And 

many processes converge on “potential games” even though these need not 

be dominance solvable and can have multiple equilibria.  

 

5) Adjustment processes may  suggest equilibrium refinements-

because they may tend to converge to some equilibria  and not to 

others.   

 

6)  Players play repeatedly without playing a “repeated game”  

 

That is,  each time they play,  they try to maximize the payoff in the "current 

game" and don’t try to influence future play in other games.  
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This usually explained by an explicit or implicit appeal to a “large 

population model" with many "agents" in each "player role."  

   

Leading cases:  

 

6a) anonymous random matching: each period all agents are matched to 

play the game, and  told only play in their own match. Agents are unlikely to 

play their current opponent again for a long time, even unlikely to play 

anyone who played anyone who played him.  

 

So if the population  size is large enough compared to the discount factor, 

it's not worth sacrificing current payoff to influence this opponent's future 

play.   

 

This treatment is used in most experiments.  
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6b) Aggregate statistic model:  

 

Each period all agents play.  At the end of each period, subjects learn the 

aggregate distribution of play, and  each player 1's payoff depends on the 

whole distribution of  player-2 actions. 

 

Each agent's action influences the aggregate, and the aggregate is seen by 

everyone, so in principle it could impact next period's play. But if there are 

20 player 1's, each player has influence .05 on the aggregate;  that may not 

have any effect on the play of the other half the class.  

 

Appealing to a large population limits the domains where the theory applies.   

But by how much? …people may never play the exact same game very 

often, but they may  also extrapolate  between games. 

 

We don't have good models or data on cross-game extrapolation.  
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Modeling non-equilibrium learning  

 

What are agents trying to learn? 

 

• Probability of exogenous events  (“Nature’s moves”) 

• Own preferences (can be a special case of the above)  

• The distribution of opponent’s play 

 

What can agents observe ? 

 

• Their own payoffs 

• Realizations of moves by Nature  

• Actions and/or payoffs of agents they interact with 

• Actions and payoffs of other agents (i.e.  market share, word-of-mouth,  

and other forms of “social learning.”)  
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Do players have any influence on what they observe? 

 

• If not, “passive learning.”  

 

• If so, there may be an incentive to “experiment,” i.e. to sacrifice short-

run payoff to get information. (In computer science, this is called 

“active learning,” with a trade-off between “exploration and 

exploitation.”)  

 

What determines the environment players are learning about? 

 

• Environment is directly  specified as part of the model; it can be i.i.d. or 

given by a more complex stochastic process. 

 

• The interaction of non-equilibrium “learning rules.” 
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What determines players learning rules and behavior? 

 

• Worst case/minmax considerations (popular in the statistics and CS 

literatures, but see also papers on “calibration,” “universal 

consistency,” and “checking rules” )  

 

• Bayesian, Savage-rational  maximization in a non-equilibrium 

setting 

 

• Exogenously specified, “boundedly rational.”   (this may or may 

not differ from Bayesian… w.o. constraints on the prior and 

likelihhod function Bayesianism is extremely general…) 
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Passive Learning in Static Games  

 

Fictitious Play 

 

Introduced by Brown [1951] as a way to compute equilibrium.  

(hence “fictitious” play) but can also be used as a stylized model of learning. 

   

Easy to motivate and analyze, too simple to match experimental data.. 

 

Motivation: Suppose that an agent is going to repeatedly play a fixed 

strategic-form game.  The agent knows the structure of the game (the 

strategy spaces and payoff functions) but not how the other side is going to 

play. (can be adapted to less prior knowledge.) 

 

All that  the agent observes is the outcome of play in their own matches.   
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The agent doesn’t observe: 

 

• what happens in other matches, 

• opponents’ past play. 

 

The agent believes she is playing against a randomly drawn opponent from a 

large population,  so doesn’t try to influence opponent’s play. 

 

Because what the agent observes is independent of  own action, there is no 

incentive for “experimentation.”  
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In FP agents act like Bayesian expected utility maximizers facing unknown 

distribution of opponents’ strategies.   (Corresponds to “Dirichlet prior,” a 

conjugate  prior for multinomial sampling. ) 

 

Key isn't functional form, but the implicit assumption that the player treats 

the environment as stationary. 

 

Implies all observations equally informative, so beliefs converge to the 

empirical marginal distributions. 

 

Plausible?  Stationarity seems a reasonable first hypothesis in many 

situations, and players might stick with it when it is approximately right.  

Perhaps they would reject stationarity given sufficient evidence to the 

contrary- as when there is a strong time trend or a cycle. And  people 

sometimes give less weight to older data, as if facing a hidden Markov 

process- “weighted FP.”  
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The Interpretation of Cycles in Belief-Based Learning 

  

  

 A B 

A 0,0 1,1 

B 1,1 0,0 

     

Suppose this game is played according to FP, with only 1 agent per side and  

initial weights (1, sqrt (2)) for each player.   

First period: both players think the other will play  B,  so both play  A. The 

next period the weights are (2,sqrt (2)) and both play  B; the outcome is the 

alternating sequence  ((B.,B),(A,A),(B,B), etc.)   

The empirical frequencies of each player's choices converge to  (½, ½),  

which is the Nash equilibrium. So FP “works” for the purpose of computing 

equilibrium, but this isn’t a good model of learning: Realized play is always 

on the diagonal, and both players receive payoff  0  in every period even 

though each can guarantee a payoff of ½. 
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Reason: the empirical joint distribution on pairs of actions does not equal 

the product of the two marginal distributions, so that the empirical joint 

distribution corresponds to correlated as opposed to independent play.  

 

We could? Should? expect players to notice the cycle and form more 

sophisticated beliefs. 

 

So in general we won’t want to identify a cycle with its average. 

 

And we may want to worry about how sensitive the players are to  

correlations in the data.  
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Multi-Player Fictitious Play 

Related modeling issue:  a player’s assessment (expected  play of opponents  

this period)  always correspond to a mixed strategy profile, or should 

correlated assessments be allowed?   

 

Answer:  under  the  interpretation of fictitious play as the result of Bayesian 

updating,  a player’s current assessment of his opponents’ play can 

correspond to a correlated distribution even if the player is certain that his 

opponents in fact randomize independently. 

 

If 2 and 3 randomize independently then    

 1 2 3 2 2 3 3 1 2 3( , ) ( ) ( ) [ ( , )]
it ts s s s dγ σ σ µ σ σ
−Σ

= ∫ ;  

independent mixing is reflected in the fact that the integrand uses the 

product of 
2 2( )sσ  and 

3 3( )sσ .   This ntegral need not be a product measure, 

it typically won’t be unless player 1’s subjective uncertainty about his 

opponents is also uncorrelated, that is, unless 
1
tµ  is a product measure.   
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To elaborate, in  learning model, there is a difference between  

 

(a) believing that your opponents are playing the correlated  strategy  

(1/2 (A,A), 1/2 (B,B)) 

and  

 

(b) thinking they are either playing (A,A) or (B,B).  

 

These two beliefs have the same (correlated), marginal over first period 

observations.  But they get updated differently because they imply different 

correlations between period 1 and period 2.    With beliefs (b), after one 

observation you know what they will be playing at all future dates.  

 

There seems no good reason (beyond convenience!) to suppose that the 

players’ initial assessments correspond to uncorrelated randomizations.   
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Important facts about FP:  

• If actions converge they converge to a pure strategy NE.  

• If time averages of empirical marginals converge the joint distribution 

is a NE. 

• The above holds in any belief-based learning model that is 

“asymptotically empirical” (beliefs converge to empirical frequencies) 

and “asymptotically myopic” (eventually players choose actions that are 

myopic best responses to their beliefs.) 

• FP “behaves well” when there are infrequent changes of play: In this 

case it is “ε -consistent” (do as well as maximizing vs time average of 

opponents’ play) and it also converges to the best response dynamic. 
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Fictious play: exact best respone to beliefs. 

Discontinuous,  can oscillate even as beliefs converge. 

Causes technical problems, also leads to poor performance. 

“Stochastic” or “smooth FP (“SFP”) : smooth approximation to BR curves. 

 

Better behaved, and better worst-case properties (“universally consistent”). 

 

Can be given a “Harsanyi-purification” foundation based on private payoff 

shocks. 

 

Studied with stochastic approximation, which relates limits of discrete-time 

stochastic system to invariant sets of the “mean field” which is a 

deterministic continuous-time flow: (slowing down +LOLN) 

 

Here the mean fiekd is the continuous time best response dynamic. 

 

Roughly speaking: SFP can only end up at steady states or cycles that are 

stable in this system.   
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Examples: In 2x2 coordination games pure equilibria are possible limits but 

not the mixed one; same true in potential games more generally. In matching 

pennies the mixed NE is stable.  In some games cycles are stable: these 

cycles correspond to longer and longer cycles in the real discrete time game. 

 

Extensions/Open Questions:  Weighted SFP (less weight on old 

observations) ; SFP on a network (mostly play with friends/neighbors)  SFP 

with ‘trend-spotting” or cycle detection.  

 

A little work on first two topics, see  Benaim Hofbauer Hopkins JET [2009], 

Fudenberg-Takahashi GEB [2011]), even less known about the third. 
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Other Learning Rules in Static Games 

 

REL 

 

FP/SFP are models of “belief based learning" where agents know and use 

the structure of the game. 

 

Contrast to reinforcement learning (REL) models.  

Two steps to defing a REL process: 

a) what is reinforced? Actions, strategies, rules?   

b) how? 

 

Stand case: agents update values to each action based only on received 

payoffs.  Don’t think about payoff they would have received under different 

strategy. 
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Simple(st?) version is Cumulative Proportional Reinforcement (CPR) 

 

Normalize so that all utilities are positive, and give initial weights to each 

action , update the score of the action that was played by its realized payoff, 

and do not update the scores of other actions.  

Then set probability of action k = weight on k/sum of weights. 

 

Here the response to “2 played R” depends on 1’s own action:  if  1 played  

played U and 2 played R and this gave a good payoff then U is reinforced 

even if (D,R) would have been better. 

 

Step size depends on payoff received but can still use stochastic 

approximation – use it to track empirical joint distribution, and let 

probability of actions at each time be given by the specified reinforcement 

rule- can characterize long run outcomes, somewhat similar results as SFP. 
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What better approximates actual behavior in static complete-info games?  

 

If players are told structure of the game, and they are rational, they shouldn’t 

condition on own action; in lab subjects seem to do so.  OTOH REL agents 

don't respond at all to what they could have gotten by playing something 

else, and it seems that they do. And subjects play differently if told the play 

of others and not just own payoffs-which goes against standard REL models. 

Camer-Ho suggest the best fit is “in between”. 

 

Salmon [2001]: Little power in tests used to distinguish the learning models. 

Following CH assumed all agents use the same behavior rule.  

 

Wilcox [2006] shows this leads to bias in favor of REL. 

 

Intuition: With heterogeneous subjects, pooled estimation gives prediction 

errors that are correlated with past strategy choices, because those  past 

choices carry idiosyncratic parameters. So  players’ own past choices have 

relevant into, and the past payoffs used in REL depend on past choices… 
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Imitation Processes:   like REL don’t require agents to know payoff matrix, 

and stochastic even w/o  mutations. 

 

Examples: 

 

1) Imitation + aspiration model: realized payoff is the game payoff + noise 

term. Each period an agent is picked at random to reevaluate his choice; the  

agent sticks with his strategy if realized payoff exceeds an exogenous 

aspiration level and otherwise imitates at random. 

 

2) Imitation model: When an agent reevaluates, he picks another randomly 

chose agent. If that agent’s strategy is different, imitate with a probability 

that is increasing in the payoff difference.   

 

3) “Imitate the most successful”:  Agent observes  the payoff of others 

with noise, then picks the strategy with the highest observed payoff.  
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4) Best response to current state (adjustment but not learning…) 

  But 

 

4’)  partial sampling of history: each period one set of agents chosen to play, 

they pick best responses to a sample of k of last m outcomes.  (so no agent 

has any personal observations)  

 

1k m= =  a lot like BR dynamic, tracks it if no mutations and start with 

all agents doing the same thing   

 

k, m  large look like learning  
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Extensive form games and self-confirming equilibrium 

 

Extensive form games:   agents observe (at most)  the terminal nodes  that 

are reached in their own plays of the game.  

(“strategy method” results in a different game…) 

 

Agents don’t observe how opponents would have played at information sets 

that were not reached in that play of the game, and they may not observe 

outcomes in other matches. 

 

If  agents only observe actual play in own matches, and an agent  never 

plays a specific action, he'll never observe how his opponents react to it. So 

incorrect beliefs about off-path play could persist, and play might converge 

to a non-Nash outcome that is “self- confirming” unless agents 

“experiment.”    

 



 33 

Questions: 

 

1) What sorts of outcomes can emerge from learning processes?  

 

2) Some “experimentation” seems to be needed to rule out convergence to a 

non-Nash outcome.  “How  much”  of this off-path play is needed  for 

various equilibrium concepts? That is, how  much off-path play is needed to 

imply that all steady states satisfy the equilibrium conditions?  

 
3) How much off-path play will occur under various models of learning? 

 

4)  What if players observe  don’t observe exact terminal node? For  

example, in a first-price sealed-bid auction players might observe the 

winning bid but not the losing ones.  

5) What if players have and use prior info on opponents’ payoffs to restrict 

their beliefs? 
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Definitions: σ  is a  self-confirming equilibrium (SCE) if  for each player i  

and each is  with   ( ) 0i isσ >  there are beliefs ( )i isµ  about other players’ 

strategies such that 

  

(a) is  is a best response to ( )i isµ , and  

 

(b) ( )i isµ  is correct at every  h   that has positive probability under 

( , )σi is − .   

  

This   allows player i to rationalize each  strategy in the support of  iσ   with 

a different belief.   Reason:  there are many agents in the role of each player, 

and different agents in the role of player  i  may have observed play at 

different nodes.    

 

“Unitary” SCE: one belief per player. 
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SC
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SCE:  beliefs are not restricted to reflect knowledge of opponents’ payoffs.  

 

“Rationalizable self-confirming equilibria” (RSCE): players’ beliefs are 

consistent with what they observe, as in SCE, and players know the payoff 

functions of their opponents and expect them to play rationally-provided  

that the opponents haven’t yet done anything “irrational.”  

 

 Unitary RSCE coincides with backwards induction in two-stage games of 

perfect information (1 can predict 2’s play), but if a player can move twice 

on a path it is much weaker and more like SCE.  

 

SCE doesn’t require beliefs over strategies are consistent with a common 

prior.   

 

Aumann [1987]: common prior over strategies equivalent to correlated 

equilibrium; don’t want to assume this here.  
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Instead ask when repeated observations will lead agents with different priors 

to a common posterior. 

 

There can be unitary SCE that differ from Nash because 2 players disagree 

about the play of a 3rd: 
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1 2

3

A

D d

(1,1,1)

(3,0,0) (0,3,x) (3,0,0) (0,3,y)

L RL R

a

 
 

(A,a,L) is a SCE. 

It can also arise from a learning process where players 1 and 2 update 

beliefs about opponents’ play as in fictitious play: As long as the prior 

makes them both play A, they get no data on 3’s play, and hence don’t 

update. 



 39 

But (A,a) is not a NE outcome:  Nash equilibrium requires players 1 and 2 

to make the same (correct) forecast of player 3's play, and if both make the 

same forecast, at least one of the players must choose  D. 

  

Let ( )H s  be the path of s. 

A game has observed deviators if for all players i, all strategy profiles s, and 

all ˆi is s≠ , ˆ( , ) \ ( )i ih H s s H s−∈  implies that there is no ˆ is−  with 

ˆ( , )i ih H s s−∈ . 

 

-If a  deviation by player i leads to an off-path information there is no 

deviation by i’s opponents that leads to the same information set.   

 

-Satisfied in games of perfect information,  more generally multistage games 

with observed actions, and  all two-player   games of perfect recall: With 

two players, both players must know whether it was their deviation other 

opponents that led them to a particular information set. 
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Independent beliefs:  each player’s beliefs about the others is a product 

measure. (even off of the path). 

 

In games with observed deviators, the outcome of any independent unitary 

self-confirming equilibria is the outcome of a Nash equilibrium. 

 

Idea: specify that each player’s off-path actions are exactly those that the 

player’s opponents believe would be played.  Unitary beliefs implies there is 

only a single set of beliefs associated with each player i,  and the 

independence condition ensures that these beliefs correspond to a mixed 

strategy profile. Observed deviators implies that only one player’s beliefs 

about play at an off path information set ih  are relevant- namely the beliefs 

of the player j who could deviate and cause that information set to be 

reached. So we can specify that the actual play at ih  corresponds to the 

beliefs of player j. 
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Various learning models have SCE as long run outcome. 

 

But as in a one-armed bandit patient players may choose to experiment. 

 

Classic One-armed bandit 

 

Choose “Out” :  get 1 with certainty. 

“In”  has fixed but unknown probability distribution,  prob.  p  of payoff  2  

and (1-p) of payoff 0. Objective is discounted sum of payoffs. 

 

If expected value of p< ½, the risky arm  never tried when 0δ = . 

 

But a  patient player may experiment: 

a) If  prob .6 that p=0, “always out” has normalized payoff of 1;  “try In 

once then switch to Out forever iff get 0” has higher payoff  if 1/3δ > .  

b) If prior is that  p  is either .8 or .2,  one observation not fully 

informative; use dynamic programming to decide whether to play In or 

Out. 
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Experimentation in discounted bandit problem ends in finite time with 

probability one: there is a T such that at all t>T the arm chosen is 

myopically optimal.  

 

There can be positive probability that play “locks on” to the safe arm when 

it is suboptimal, but probability of this goes to 0 as 1δ → . (with time 

averaging can get first best payoff by experimenting infinitely often but  a  

vanishing fraction of the time.) 

 

Note that always a deterministic optimal solution to bandit problem. 

 

Now  consider fictitious play in an extensive form game when there is a 

lower bound on the probability of each action that goes to 0 at rate 1/t .  
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Rules out convergence to non-Nash outcomes:  sufficient that players have 

correct beliefs about play at any “relevant” information set- these are the 

information sets that can be reached if any one player deviates from the 

equilibrium path, and wth “1/ t  experimentation ,” these relevant 

information sets are reached infinitely often (because 
1

1/
t

t
∞

=

= ∞∑ ).  

(“zero-one laws”) 

 

So from the law of large numbers and asymptotic empiricism, if players get 

an infinite number of observations of play at an information set, their beliefs 

about play at that information set become correct. 

 

the 1/t  rule needn’t lead to correct beliefs at nodes that take 2 or more 

deviations  to reach because 2

1

1/
t

t
∞

=

≠∞∑ . 
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This raises, but doesn’t answer, the question of how much experimentation 

players will actually do. 

 

And note that rational Bayesian decision makers typically won’t randomize 

 

Need a way to develeop “reasonable” conditions on experimentation. 

 

FL: Continuum  population of overlapping generations of Bayesians who 

maximize expected discounted utility.  

 

Conclusion:  patient players experiment enough to rule out non Nash states. 

But this doesn’t say all NE are limits of steady states with patient players. 

 

What about converse here?  Can every NE be a steady state? Or will there 

be enough information about off-path play to eliminate some of them? 

 

FL  2006 examine this in games of perfect information with independent 

beliefs. 
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Simplifies optimal experimentation for the same reason it simplifies 

inference:  no reason to take action 1 to learn about payoff to action 2. 

 

Show that for some non-doctrinaire priors there is no off-path 

experimentation. 

But  off-path play isn’t completely arbitrary: players one step off the path 

are reached infinitely often, and so play there looks like a SCE. 

 

Node x  is one step off the path of π  if x  is not reached under π  and it is an 

immediate successor of a node that is reached with positive probability 

 

Profile π   is a subgame-confirmed Nash equilibrium if it is a Nash 

equilibrium and if, in each subgame beginning one step off the path, the 

restriction of  π  to the subgame is self-confirming in that subgame.  

 

In simple games with generic payoffs, a subgame-confirmed Nash   

equilibrium that is “nearly pure” is path-equivalent to  a patiently stable 

state. 
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Example (Three Player Centipede Game) 

 

  
Unique subgame-perfect equilibrium: all players pass, but (drop, drop, pass)  

is subgame-confirmed.    Since 2 drops, doesn’t learn 3’s play. 
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Open questions: how to extend analysis to more general extensive forms. 

 

a) find right generalization of subgame-confirmed 

 

b) hopefully provide learning-theory foundations 

 

 

Learning perspective on refinements: instead of impose axioms on 

equilibrium concepts (such as invariance to allegedly inessential transforms) 

look to see what the learning model implies. 

Out of equilibrium beliefs determined by the relative frequency of various 

experiments. 

 

Don’t get forward induction: best experiment to reach an info set may be 

strictly dominated… 

 

Open question: implication of rational learning for refinements in specific 

classes of games such as signaling games: which are the more common e  
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Adding Prior Information about Payoffs, Rationality, etc to SCE 

 

SCE allows beliefs about off-path play to be completely arbitrary- only 

constraint is what players observe about others’ play. 

 

May be a good approximation of some field situations and for experiments 

in which subjects are given no information about opponents’ payoffs.  

 

In other cases,  players probably do have some prior information about their 

opponents’ payoffs- this leads to  rationalizable conjectural equilibrium” 

(RCE) and “rationalizable self-confirming equilibrium.”  (RSCE). 

 

RCE is a strategic form concept and doesn’t require optimization at off path 

info sets.  RSCE imposes some off-path optimality restrictions.  They both 

resemble rationalizability in having a belief-closed structure- so long as no  

deviations, each player thinks the other player thinks that … 

  

Intersecting this with SCE gives some restrictions 
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But RSCE has implications beyond the intersection of SCE+rationalizable: 

 
(u,U) is Nash outcome (so self-confirming), and rationalizable  at all nodes, 

but not RSCE:  if 1 knows  2 knows 3 is playing up, can use this knowledge 

and his knowledge of player 2’s payoffs to deduce that 2 will play a.  
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Open: dynamic non equilibrium foundation for RSCE. 

 

Related: SCE and RSCE  with ambiguity-averse preferences; here too need 

learning foundations. 

 

 SCE and RSCE assume that the players’ inferences are consistent with their 

observations. 

 

Some papers model the idea that players make systematic mistakes in 

inference, for example  Jehiel’s  analogy-based expectations equilibrium or 

“ABEE:”  

 

Players group the opponents’ decision nodes into “analogy classes,” and 

believe that play at each node in a given class is identical. Given this, the 

player’s beliefs must then correspond to the actual average of play across 

the nodes in the analogy class.  
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Example Perfect  information.  

 

Nature moves first, choosing state A with probability 2/3 or state B with 

probability 1/3, player 1 moves second, choosing either action A1 or action 

B1, player 2 moves last, choosing either action A2 or action B2.  

 

Player 2 is a dummy receiving a zero payoff no matter what; suppose player 

2 chooses A in state A and B in state B regardless of what player 1 did. 

Player 1 gets 1if his action matches that of player 2 and zero if not. Then in 

state A player 1 should optimally play A1 and in state B player 1 should 

play B1.   

 

ABEE: suppose player 1 views all nodes of player 2 following a given move 

as belonging to an analogy class.   

 

Then he  believes that player 2 will play A2 2/3rds the time, regardless of 

the state, and so player 1 will play A1  regardless of the state.  
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If player 1 observes and remembers the outcome of each game, then as he 

learns that player 2 plays A 2/3rds of the time, he will also get evidence that 

player 2’s play is correlated with the state, so if he is Bayesian and assigns 

positive probability to player 2 observing the state, he should eventually 

learn that this is the case.  

 

However, a Bayesian player 1 could maintain the belief that 2’s play is 

independent of the state provided that he has a doctrinaire prior that assigns 

probability 1 to this independence.   

 

One explanation: players are unable to remember all they have observed/ 

 

In the example this corresponds to player 1 only being able to remember the 

fraction of time that 2 played A2, and not the correlation of this play with 

the state. Corresponds to SCE when the player 1’s end-of-stage observation 

is simply player 2’s action, and includes neither Nature’s move nor player 

1’s realized payoff. (this implies imperfect recall)   
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ABEE is closely related to Eyster & Rabin’s  notion of cursed equilibrium. 

This focuses specifically on Bayesian games, and assumes “analogy” classes 

of the form that “opponents’ play is independent of their types. “ 

 

Assume beliefs convex combination of analogy-based expectations and 

truth. 

 

Cursedness parameter equals zero is usual Bayesian equilibrium. 

Cursedness =1 is a special kind of ABEE.  

 

Open questions: What is ruled out by ABEE w/o constraints on the allowed 

analogy classes?  What sorts of   false analogies are relevant for which 

applications?
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 Esponda AER (2008): adverse selection in a “lemons problem”. 

 

Seller values object at s, buyer value is  v s x= +  

s uniform on [0,1], private info for seller, x  is a known parameter. 

 

Double auction: submit bids simultaneously, if seller’s “ask” is <=buyer’s 

price p   then trade at p.  (not split the difference) 

 

Seller has weakly dominant strategy: ask=s. 

 

NE:  
* argmax Pr( )( ( | ) ) ( .5 )

p
p s p E v s p p p x p= ≤ ≤ − = − ,so 

*
p x= . 

Fully cursed equilibrium: buyers  maximize 

Pr( )( ) (.5 )s p Ev p p x p≤ − = + −  , 

 so   
* (.5 ) / 2p x= + :  bid more than NE  if .5x < , underbid if x >.5  
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Esponda: if buyer’s beliefs wrong why equal unconditional average? Instead 

allow for errors but link them to observation structure. 

 

Information structure: see  ask each period, see v  only when buy. 

 

Esponda defines “naïve buyers” who  act as if they 

 

• know distribution of  seller “asks” and 

 

• view the quality distribution as independent of own bid. 

 

Here equilibrium is fixed point where buyers optimize  given belief that 

average value is the average they observe, ignoring the dependence of 

quality on  p-  

Thus buyers choose  p  to max Pr( )( ) ( )s p v p p v p≤ − = −  where  

 

( | ) / 2v E v s p p x= ≤ = +  or 2 2p v x= −  
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FOC for buyer is / 2p v= , so fixed point is 4 / 3v x= ,   
* / 2 2 / 3p v x= =  

 

Underbid  for any x. 

 

So buyers pay –less- than in NE as opposed to more as in winner’s curse. 

 

In lab players are told typically told the distribution of values. 

 

Esponda argues this is unrealistic as in most field settings players need to 

learn the distribution of values from their observations- excellent point! 

 

What about SCE here? 

Buyer observes own payoff so shouldn’t end up worse off then not buying. 

But SCE need not be Nash- as buyer can have any beliefs about how 

whether sellers accept/reject off-path prices. 
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Would like to apply RSCE, but if buyer only sees v when buys, don’t see 

full terminal node.  

 

Esponda’s sophisticated buyers correspond to an extension of RSCE to 

Bayesian games. (Fudenberg-Kamada (2013a,b) do this more generally ) 

 

Sophisticated buyer: believes expected quality depends on price  and 

moreover believes it is increasing in price (implied by RSCE and unknown 

distribution of s, not implied by SCE). 

 

If equil price is p* the sophisticated buyer predicts that quality at a given out 

of equilibrium price will be given some function ( , *)p pρ . 

 

Buyer learns true expected value of goods sold at price p*, knows it will be 

no higher for lower prices, and no lower for higher prices. 

 

So will bid at least as much as naïve buyer, maybe more. 
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Moreover- because buyer observes  s  each time she purchases- she learns 

the  true distribution of s  conditional on *s p<  so she can compute the true 

expected value of goods at all prices *p p< . 

 

So sophisticated buyer will bid no more than in NE. 

 

Sounds compelling (at least to me) but what really happens? 

 

How descriptive are  behavioral/cursed/self confirming in this game? 

 

Hard to say in the field, doing experiments with Alex Peysakhovich.. 

Subjects get it wrong and overbid.  But not an “equilibrium” phenomena- 

play of individuals  doesn’t converge. And can be more overbidding than 

even in cursed!    

 

Explanation: overreaction to most recent history, “short memory.” 
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If run blocks of 10 at a time and report average outcome per bid: subjects 

get it right. 

 

Blocks of 10 and just show the raw data: little improvement. 

 

So some combination of focusing attention and doing computation is the 

key. 

 

Similar findings in other stochastic decision problems. 

 

Possible take-away: rational learning models best describe settings where 

subjects have and use tools such as computers to record and analyze history, 

maybe less accurate for decisions made w.o aids. 

 

Bigger picture take away: experiments as a useful adjunct to game theory. 

 

Cost of entry is getting lower due to use of Mechanical Turk- lower 

payments, faster coding, less intrusive oversight. 


