
A Measure of Inference

in Classical and Intuitionistic Logics∗

Mamoru Kaneko†and Nobu-Yuki Suzuki‡

13 January 2011 (con20110113.tex)

Abstract

This paper presents a measure of inference in classical and intuitionistic logics in

the Gentzen-style sequent calculi. The measure for a proof of a sequent is the width

of the proof tree, that is, the number of leaves of the proof tree. Then the measure

for a sequent is the minimum value of the widths of possible proofs of the sequent;

if it is unprovable, the assigned value is +∞ It counts the indispensable cases for

possible proofs of a sequent. By this measure, we can separate between sequents

easy to be proved and ones difficult; we can go further than provability and/or

unprovability It is motivated by some economics/game theory problem (bounded

rationality). However, it would be not straightforward to obtain the exact value

of this measure for a given sequent. In this paper, we will develop a method of

calculating the value of the measure. We will apply our measure to various classes of

problems, for example, to evaluate the difficulty of proving contradictory sequents.

We also exemplify our measure with a problem of game theoretical decision making.

1. Introduction

This paper presents a measure of inference in classical and intuitionistic logics in the

Gentzen-style sequent calculus (Gentzen [7]). The definition of the measure takes two

steps: For each proof (tree)  , we measure the width, i.e., the number of leaves, of 

Then the measure of inference assigns, to a given sequent  = Γ → Θ the minimum
value of such widths of possible proofs of  if  is provable, and if it is unprovable,
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the assigned value is +∞ It counts the indispensable cases for possible proofs of se-

quent . By this measure, we represent the degree of difficulty in proving a given

sequent. Although our problem is highly proof-theoretic, we are motivated by some

general problems in game theory/economics. In Section 1, we explain, first, our motiva-

tion; and second, the contribution of this paper. Lastly, we present one game theoretic

example, to which our theory will be applied in Section 5.

1.1. General Motivation

Our problem of measuring inferences for a given sequent is related to various fields in

mathematical logic but is arising in game theory/economics, as mentioned above. It

is an analysis of proofs further than provability. Provability of a sequent  = Γ → Θ
is defined by existence of a proof of . The literature of logic has largely focussed on

this definition, except for computational complexity to be mentioned presently. This

confines us to the scope of provability and/or unprovability, ignoring difficulty to reach

a proof. When the required size of a possible proof is very large, we may not reach a

proof (an example is discussed in Woodin [29]). We study this difficulty in this paper.

If the objective of mathematics is to find a new theorem together with its proof, it

could be irrelevant to evaluate the required size of a proof. However, since mathematics

itself is constructed by human activities, we may not reach very complicated proofs,

while such theorems exist independent of human activities. Such theorems are not

separated in a clear-cut manner from easy to difficult ones; they form a spectrum.

Therefore, a study of such as spectrum could be informative to mathematics itself.

One target of game theory/economics is to study human behavior and decision-

making in a game/social situation. It is more directly related to human activities

than mathematics. The importance of “bounded rationality” has been emphasized in

the economics literature since Simon [24]. Simon himself criticized the assumption of

“super-rationality” for economic agents’ decision making, but touched only a particular

perceptual form of “bounded rationality”. Since then, only scattered approaches have

been given. The problem of logical omniscience/omnipotence (cf., Weingartner [28])

may be regarded as the counterpart of “super-rationality” in philosophical logic. We

intend to touch a central part of “bounded rationality”.

Our approach is related to the computational complexity in computer sciences. This

evaluates the (limiting) performance of an algorithm (program); typically, it is formu-

lated as a question of how the required time and memory size increase as the length

of input data increases - - see Goldreich [8]. It is natural from the viewpoint of com-

puter sciences to evaluate and compare required algorithms (programs). The principal

question in the approach of “proof complexity” (“the lengths of proofs”) is along the

same line; the literature has focussed on the size of a required algorithm - - see Pudlák

[23]. In these approaches, algorithms are compared by their limiting behaviors, while
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we focus on measuring inferences required for each fixed single (perhaps, small) instance

of a sequent but not the performance of an algorithm. After the development of our

theory, we may connect our approach with that of proof complexity, but this paper does

not address this question.

Our approach is well understood from the viewpoint of “bounded rationality” in

game theory/economics. For this, we should mention two related literatures: epistemic

logics of shallow (interpersonal) depths; and inductive game theory.

In the game theory literature, it has often been treated as a non-mathematical

assumption that the structure (rules, payoff functions) of a game is common knowledge

among the participating players. This was regarded as necessary. Kaneko-Nagashima

[11], [12] formulated an infinitary epistemic (predicate) logic to discuss the problem of

common knowledge explicitly. For the literature, see Meyer-van der Hoek [21], Fagin

et al. [6], and Kaneko, et al. [18]. The literature may be regarded as about “super

rationality” and “omniscience/omnipotence” in a social context.

A departure from this literature was taken by Kaneko-Suzuki [13], [14], [15]: They

developed a theory where interpersonal nesting structures can be restricted; for example,

only depth of interpersonal nesting is 2 i.e., a player thinks about the beliefs of the other
player, but does not go further than this depth. This approach treats limitations on

interpersonal beliefs and inferences, while we target to study limitations on intrapersonal

inferences within one player. Since classical and intuitionistic logic logics form the

central parts of their epistemic logics, the approach here can be extended and connected

to their epistemic logics. We give one game theoretical example in Section 1.3.

Consider a sequent  = Γ→ Θ from the viewpoint of epistemic logic, where a player
has  in his mind. Logic can discuss inferences from basic beliefs Γ to their logical
consequences Θ but has no capability of discussing the source of such basic beliefs Γ
Kaneko-Kline [10] has constructed inductive game theory (IGT), to look for a source for

such basic beliefs in players’ experiences with trials/errors, in repeating a social (game)

situation. This experiential source together with other cognitive postulates suggests

that it is difficult to obtain precise basic beliefs through experiences with trials/errors.

The subject of the present paper is closely related to this line of research: Once the

measure of inference is appropriately defined, we can use it to describe difficulty in

inference to obtain basic beliefs from a player’s experiences.

1.2. Contributions of the Present Paper

We define the measure of inference, denoted by L∗ in classical and intuitionistic logics
L = CL or IL in Gentzen’s [7] sequent calculus. We have four types of those measures,
depending upon L = CL or IL, and with or without cuts, ∗ = w or f, i.e., CLw CLf ILw
and ILf

We are interested in giving a method to calculate the exact value L∗() for an
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arbitrary given sequent  = Γ → Θ. Finding a proof  of  is not enough for the

calculation of L∗() since it gives only its upper bound for L∗(). We give the lower
bound method (LB-method) to calculate L∗() Specifically, we define a function L
over the set of sequents so that its value L() for each sequent  is calculated by looking
at the syntactical structures of  We will prove (Theorem 4.4) that this function L
gives a lower bound L() of L∗() for any sequent . This L gives often the exact
value of L∗() Then, we will apply this LB-method certain classes of problems.

Our concern is to measure the number of inference steps represented by L∗() as
the indispensable contents included in . The LB-method is to estimate this value from

 itself. These problems are related to the question of what the class of possible proofs

of  is, but we do not aim to construct a proof itself. In this sense, our theory is not

about proof-search (cf., Pym-Ritter [22]).

One is a problem of game theoretical decision making. This is related to the original

motivation, which we describe in Section 1.3. This example will be used to motivate

the formulation of our logic; we take conjunctions and disjunctions of finite sets of

formulae, rather than to two formulae. Since a lot of assumptions (or basic beliefs) are

used in game theoretic practices, this language is more convenient than that with binary

conjunctions and disjunctions. We take the width of a proof for the definition of our

measure L∗ for the same reason. The will be discussed in Section 5.
In Section 6, a contradictory statement is evaluated by our measure L∗ Evaluations

may differ significantly in the two cases with cuts and without cuts. In general, the value

of L∗ is smaller when cuts are allowed. Also, L∗(Γ → ) and L∗(Γ → ¬ ∧ ) may
differ, though those sequents are equivalent with respect to provability. The difference

is somewhat parallel to the difference between the measures Lw and Lf We give also

an evaluation, by L∗ of a specific contradictory statement arising in economics.
In Section 7, we will discuss a modification of L∗ when we allow only binary conjunc-

tions and disjunctions. In Section 9, we will give other problems and various remarks.

1.3. A Game with Large and Small Stores

Consider the situation where a large store, 1 (a supermarket), and a small store, 2
(a minimart) are competing. Now, we consider decision-making by store 2. The small
store has the subjective understanding of the situation: Store 1 is large enough to ignore
store 2 for 1’s decision-making but store 2’s profits are influenced by 1’s choice. His
understanding is described by Tables 1.1 and 1.2. That is, store 2 understands that
the situation is described by (1 2) Store 1 has only three alternative actions, and his
payoff is determined by his own choice. On the other hand, 1 has 10 alternative actions,
and the resulting payoffs are determined by the choices of both stores 1 and 2

In this game, store 2 has a “dominant action”, s10 which gives the highest payoff
whatever 1 chooses. To achieve this understanding, he compares the payoff from s10
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with that from s1  s9 in all the three cases of a1a2 and a3; hence it needs at least
9× 3 = 27 comparisons.

Table 1.1; 1 Table 1.2; 2

a1 6000

a2 2000

a3 1000

s1 s2 s3 · · · s9 s10
1 2 3 · · · 9 10

5 6 7 · · · 13 14

5 7 9 · · · 212 23

Store 2 has an alternative decision procedure (criterion): First, he predicts the
choice by store 1 and, using his prediction he chooses an action. For this procedure,
he needs 2 comparisons to predict that 1’s choice would be a1 and then he needs again
at least 9 comparisons to verify that s10 is the best given the prediction a1 In this
case, the minimum number of required comparisons is 11 Hence, there is a “trade-off”:
The concentration on his own payoff matrix does not require interpersonal inferences,

but interpersonal considerations may simplify his decision-making with respect to the

number of payoff comparisons. We do not explicitly consider interpersonal epistemic

aspects involved here, but the results given in the present paper can be extended in

epistemic logics of shallow depths in Kaneko-Suzuki [13], [14], [15].

The above argument can be described in terms of the measure L∗ of inference. In
Section 5, an example where store 2 has no dominant strategy is also considered.

2. Classical and Intuitionistic Logics

Here we present classical and intuitionistic logics CL and IL. We adopt the following

list of primitive symbols:

countably infinite number of propositional variables: p0p1 ;

logical connective symbols: ¬ (not)⊃ (implies) ∧ (and) ∨ (or);
parentheses: (  ); comma:  ; and braces {  }

In some examples, we use different propositional variables and use lower case letters  

etc. to denote those variables. We define formulae inductively: (o): any propositional

variable  is a formula; (i): if  are formulae, so are ( ⊃ ) and (¬); (ii): if Φ is
a finite set of formulae with its cardinality |Φ| ≥ 2, then (∧Φ) and (∨Φ) are formulae.
We denote the set of all formulae by P

The conjunctive and disjunctive symbols ∧ and ∨ are applied to a finite nonempty set
Φ of formulae with |Φ| ≥ 2. Since Φ is given as {1  } ( ≥ 2) with set-theoretical
identification, we need commas and braces as primitive symbols. This deviates from

the standard formulation of formulae, on which we will comment in Section 7. We may
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write  ∧  ∨  and  ∨  ∨  for ∧{}∨{} and ∨{} etc., when
these are easier. We often abbreviate the parentheses ( ) when it causes no confusion.

Let ΓΘ be finite (possibly empty) sets of formulae in P Using auxiliary symbol
→ we introduce a new expression Γ → Θ which we call a sequent. We abbreviate
(set-theoretical) braces, for example, {} ∪ Γ → Θ ∪ {} is written as Γ → Θ 
and also, Γ ∪ ∆ → Θ ∪ Λ is abbreviated as Γ∆ → ΘΛ We note that in expression
Γ→ Θ , we allow ΓΘ to contain  respectively, and that in Γ∆→ ΘΛ they
may have nonempty intersections. Nevertheless, this sequent is identified by the triple

of the set Γ∪∆ → and the set Θ∪ΛWe will make a stipulation on those expressions
and “side formulae”.

The logical inferences are governed by one axiom schema and various inference rules.

Axiom Schema (Initial Sequents): →  where  is any formula.

Structural Rules: The following inference rules are called the thinning and cut :

Γ→ Θ
∆Γ→ ΘΛ ()

Γ→ Θ  ∆→ Λ
Γ∆→ ΘΛ ()

In () the sets ∆ and Λ may be empty. Formulae in ∆Λ are called thinning formulae.
The formula  in () is called the cut-formula

Operational Rules:

Γ→ Θ 
¬Γ→ Θ (¬→) Γ→ Θ

Γ→ Θ¬ (→ ¬)

Γ→ Θ  ∆→ Λ
 ⊃ Γ∆→ ΘΛ (⊃→) Γ→ Θ

Γ→  ⊃ Θ
(→⊃)

Γ→ Θ
∧ΦΓ→ Θ (∧ →) where  ∈ Φ {Γ→ Θ  :  ∈ Φ}

Γ→ Θ∧Φ (→ ∧)

{Γ→ Θ :  ∈ Φ}
∨ΦΓ→ Θ (∨ →) Γ→ Θ 

Γ→ Θ∨Φ (→ ∨) where  ∈ Φ

The uppersequents of (⊃→) (→ ∧) and (∨ →) form sets of sequents. In the opera-

tional rules, we say that the formula(s) to be changes in the uppersequent(s) the side

formula(s), and that the formula formed in the lower sequent is the principal formula.
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For examples, in (→ ∧) all  in Φ are the side formulae, and ∧Φ is the principal for-
mula. It would be convenient to denotes, by [] the combination of an inference rule
 with its principal formula 

Although we allow that sets appearing in sequents may have intersections, we make

the following:

Stipulation S: For each inference rule, the cut or side formula(e) does not belong to

the neighboring sets in the upper sequents of the rule, for example,  ∈ Θ and  ∈ ∆
and  ∈ Γ in (∧ →) and  ∈ Θ in (→ ∧)
Due to () this stipulation affects neither provability nor our measure; only the depth
of a proof may be affected slightly. However, this stipulation enables us to determine

an immediate “descendant” uniquely, which will be stated and used in Section 8.

A proof  in CL is defined as a triple (;) with the following properties:

(i): () is a finite tree, and its immediate predecessor relation is denoted by ;
1

(ii):  is a function which associates a sequent () = ∆→ Λ to each node  ∈ ;

(a): for any leaf (maximal node)  in () () is an instance of the axiom;

(b): for any non-leaf  ∈ 
{(0) :   

0}
()

 (2.1)

is an instance of one inference rule.

The same inference may be used several times in a proof  . To avoid ambiguity

caused by such multiple uses of the same inference, we identify the address of an appli-

cation of an inference  of (2.1) by the lower node  in  which we call an application

of inference  ([] with the specification of its principal formula).
Let  = Γ → Θ be a sequent. We say that  = (;) is a proof of  in CL iff

 is a proof in CL with (0) =  for the root 0 of () We say that  is provable
in CL iff there is a proof of  in CL denoted by `CL .

The above axiom schema and inference rules form classical logic CL Intuitionistic

logic IL is obtained from CL by giving the restriction that the succedent of each sequent

has cardinality at most 1. See Gentzen [7] and Kleene [19]. A proof and provability for
IL are defined in the parallel manner with this restriction. Since a proof in IL is a proof

in CL `IL  implies `CL .

A proof  in L = CL or IL is said to be cut-free iff  has no applications of ()
The following theorem by Gentzen [7] (see also Kleene [19] and Takeuti [25]) plays an

important role in this paper.

Theorem 2.1 (Cut-Elimination for CL and IL). Let L be CL or IL. If `L  then

there is a cut-free proof  of  in L

1We call 0 a predecessor of  iff   0; and an immediate predecessor of  iff   
0
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We will define our measure of inference focussing on the width of a proof. The

width of a proof matters only with the four rules () (⊃→) (→ ∧) (∨ →), since each
of the other inference rules has only one uppersequent Given a sequent  = Γ → Θ
we estimate the size of a possible proof of  by looking at  Here, () becomes an
obstacle in estimating it from a given sequent . Nevertheless, we define and study our

measure of inference in the cases both with and without ()’s, since we would like to
study also the role of (). For this purpose, we need to refine Theorem 2.1, which will

be stated in Section 8.3.

3. Measure of Inference L∗

Here, we define the measure of inference L∗ for each  = Γ → Θ, and give various
examples to illustrate it. In order to obtain the exact values of L∗, we need some
method of calculating the value of L∗() which will be discussed in Section 4.

For each proof  = (;) in L = CL or IL, we define

( ) = the number of the leaves of the tree () (3.1)

Thus,  measures the width of  and ignores its depth23 Later, we will explain why we

care about the width of a proof rather than the total number of applications of inferences

including the depth of a proof. This is also related to the choice of our language allowing

applications of ∧ and ∨ to finite sets of formulae, which will be discussed in Section 7.
The width of a proof increases with the applications of () (⊃→) (→ ∧) and

(∨ →) but not with other inferences To evaluate ( ) we should pay attention to
these inferences; one evaluation method will be discussed in Section 4. We note that

since  depends upon a single proof, we do not put subscript L to 

Our ultimate goal is to study the measure for a sequent, rather than a proof.

Definition 31 We define the measure Lf of inference for a sequent  = Γ → Θ in
logic L = CL or IL as follows:

Lf() =

⎧⎨⎩
min{( ) :  is a cut-free proof of  in L} if `L 

+∞ otherwise.

(3.2)

By eliminating “cut-free” in (3.2), we have the other measure Lw() The expression
L∗() denotes either Lf() or Lw()

2Urquhart [27] and Arai [1]counted the number of all sequents in a proof. Then, they studied the

computational complexities of various specific sets of problem instances.
3We do count all the initial sequents which may be identical as sequents. For some problems, it could

be more natural to count identical initial sequents only once. But this is less basic than our counting

form, and also is more complex. In this paper, we adopt the way of counting all initial sequents.
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The measure L∗ counts the indispensable contents of the sequent  to be proved
In other words, by tracing upwards in a proof  , we would meet an initial sequent,

and if this initial sequent occurs in any proof of , we regard it as indispensable for

. Technically, we take the minimum number of leaves of proofs of  since there may

be multiple proofs of a given  with different number of initial sequents; these will be

presently exemplified by a few examples. When  is unprovable in logic L we defined

L∗() = +∞ An unprovable case may be regarded as a limit of large proofs.

Since logic L is CL or IL, we have four types of measures;

CLw() CLf() ILw() and ILf() (3.3)

We will concentrate on these measures; we will briefly mention the corresponding mea-

sures for epistemic logics of shallow depths in Section 9.

Since a proof in IL is a proof in CL, we have the inequalities in (1) of Lemma 3.1.

Since a cut-free proof in L is a proof in L, we have the second assertion.

Lemma 3.1.(1): CLw() ≤ ILw() and CLf() ≤ ILf();

(2): Lw() ≤ Lf() for L = CL, IL.

Examples for strict inequalities in (1) will be given in Example 4.2. Theorem 6.2

will give one sequent  so that Lw()  Lf() for L = CL, IL
Now, we consider of how L∗ works, using simple examples of sequents.

Example 31 Consider the sequent  =  ⊃  →  ⊃  (  propositional variables):
Since  itself is a proof, and L∗ takes positive integers as its values by (3.2), we have
L∗() = 1 But we have the following proof:

1 :

→   → 

  ⊃  → 
(⊃→)

 ⊃  →  ⊃ 
(⊃→)

Here, (1) = 2 We do not need to look into the contents of two occurrences of  ⊃ 

in ; we treat them as “chunks”, and each occurrence has a “companion.”

The next example shows that there may be different proofs of a sequent  with the

same width, which means that the indispensable contents are not uniquely determined.

Also, this example shows that it is not straightforward to find the exact value of L∗()

Example 32 Consider  =   ⊃    ⊃  → We have two different proofs (among

others) of :

2 :

→   → 

  ⊃  → 
(⊃→)

  ⊃    ⊃  → 
() 3 :

 →   → 

  ⊃  → 
(⊃→)

  ⊃    ⊃  → 
()
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We may regard either   ⊃  or   ⊃  as superfluous to obtain  but we cannot

discard both simultaneously. We expect L∗() = 2 from (2) = (3) = 2 We can
prove this fact as follows: It suffices to show that ( ) ≥ 2 for any proof  of  Indeed,
let  be a cut-free proof of  Then  has at least one application of (⊃→) Hence,
( ) ≥ 2 When  has at least one cut, we have already ( ) ≥ 2 since () has two
branches. Hence, L∗() = 2

The above proof of L∗() = 2 is specific to this example. It would be quite incon-
venient to find this kind of argument in each example. Also, typically, the value L∗()
is larger than 2 and it would not be easy to construct such arguments for those cases.
Therefore, we would like to have some method of calculating the exact value of L∗()
for . We will develop one such method in Section 4.

It is easy to see that L∗ satisfies the following inequalities along the inference rules.
But these inequalities do not help us obtain the exact value of L∗() for .

Lemma 3.2.(0): L∗(∆Γ→ ΘΛ) ≤ L∗(Γ→ Θ);
(1): L∗(¬Γ→ Θ) ≤ L∗(Γ→ Θ );
(1): L∗(Γ→ Θ¬) ≤ L∗(Γ→ Θ)
(2): L∗(∧ΦΓ→ Θ) ≤ min

∈Φ
L∗(Γ→ Θ);

(2): L∗(Γ→ Θ∧Φ) ≤
P
∈Φ

L∗(Γ→ Θ );
(3): L∗(Γ→ Θ∨Φ) ≤ min

∈Φ
L∗(Γ→ Θ );

(3): L∗(∨ΦΓ→ Θ) ≤
P
∈Φ

L∗(Γ→ Θ);
(4): L∗( ⊃ Γ∆→ ΘΛ) ≤ L∗(Γ→ Θ) + L∗(∆→ Λ);
(4): L∗(Γ→ Θ  ⊃ ) ≤ L∗(Γ→ Θ )
Proof. We prove only (2). If 0L Γ→ Θ for all  ∈ Φ thenmin∈Φ L∗(Γ→ Θ) =
+∞ and thus we have the assertion. Suppose `L Γ→ Θ for some  ∈ Φ Let  be a

proof of 0Γ→ Θ with 0 ∈ Φ and ( ) = L∗(0Γ→ Θ) = min∈Φ L∗(Γ→ Θ)
We add one more inference to  as follows:



∧ΦΓ→ Θ (∧ →)

We denote this proof by  0 Then, ( 0) = ( ) = L∗(0Γ→ Θ) = min∈Φ L∗(Γ
→ Θ) By the definition (3.2) we have L∗(∧ΦΓ→ Θ) ≤ min∈Φ L∗(Γ→ Θ)

If the above inequalities hold with equalities, the assertions of the above lemma help

us calculate L∗(Γ → Θ) However, only sometimes, these hold with equalities. Now,
we give two more examples to show these difficulties.
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Example 3.3. Consider  = ∧Φ → ∧Φ and 0 = Φ → ∧Φ with Φ = {1  10}
The two sequents are deductively equivalent, but differ with respect to L∗ First, we
observe L∗(∧Φ→ ∧Φ) = 1 but

P
∈Φ L∗(∧Φ→ ) = 10 since L∗(∧Φ→ ) = 1 for all

 ∈ Φ Hence, (2) of Lemma 3.2 holds for  with strict inequality. On the other hand,
the sequent Φ→ ∧Φ is proved as follows:½

→ 

Φ→ 
()

¾
∈Φ

Φ→ ∧Φ (→ ∧)

Hence L∗(Φ → ∧Φ) ≤ 10 by the definition (3.2) of L∗ In fact, L∗(Φ → ∧Φ) = 10
will be proved in Section 4 Thus, (2) holds for 0 with equality, i.e., L∗(Φ→ ∧Φ) =P

∈Φ L∗(Φ→ )

Example 3.4. Consider the sequent  = 0 0 ⊃ ∧Φ → ∧Φ where Φ = {1  10}
This sequent has two proofs:⎧⎪⎨⎪⎩ 0 → 0

 → 

∧Φ→ 
(∧ →)

0 0 ⊃ ∧Φ→ 
(⊃→)

⎫⎪⎬⎪⎭
∈Φ

0 0 ⊃ ∧Φ→ ∧Φ (→ ∧) 0 → 0 ∧Φ→ ∧Φ
0 0 ⊃ ∧Φ→ ∧Φ (⊃→)

Thus, the first proof has value ( ) = 20 and the second has only 2 In fact, we will
prove Lw() = Lf() = 2 in Section 4

4. The Lower Bound Method

As already mentioned in several examples in Section 3, the behavior of L∗ is complex,
and it is not easy to calculate the exact value L∗() for a given sequent  = Γ → Θ
A mechanical method of calculation is expected only for some class of sequents4. Here,

we will provide one method of finding the exact value L∗()

4.1. The Lower Bound Method

The following lemma is a small and straightforward observation, but explains our mo-

tivation to introduce a lower bound function.

Lemma 4.1 (LB-Method). Let  be a function assigning a natural number to every

sequent  For any sequent  if (1) () ≤ L∗() and (2) () = ( ) for some proof
 of  then () = L∗()

4This was discussed in Kaneko-Suzuki [16] for epistemic logics of shallow depths with the intuitionistic

base logic.
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For a given  if we have (1) and (2), then we get the exact value of L∗() A poor
example of  is given as () = 1 if `L ; and () = +∞ otherwise However, this 

does not help us identify L∗() : If we have ( )  1 for any proof  of  then this 

says nothing; and if we find a proof  of a sequent  with ( ) = 1 it automatically
implies L∗() = 1. We look for a more accurate  A requirement for such a function
 is to be calculated only using the information included in  Indeed, we will give such

a function, denoted by L in Section 4.3 and will prove (1) for any .

Our basic idea to define the function L is to count the occurrences of subformulae

∧Φ ∨Ψ and ⊃  in  which are necessarily the principal formulae of some applications

of (→ ∧) (∨ →) and (⊃→) in any proof of . It is a strength of sequent calculi CL
and IL that we can estimate, to a certain extent, the applications of (→ ∧) (∨ →) and
(⊃→) by looking only at  For this estimation, first, let us connect the width of a tree
with the number of branches in the tree.

Lemma 4.2. Let () be a finite tree with the nonterminal nodes 1   with 

branches at nonterminal node . Let 1   be the nonterminal nodes for which

  1 for all  = 1   Then the number of terminal nodes of () is given as

P
=1

 − (− 1) (4.1)

Proof. We prove the assertion by induction on . Let  = 1 Then a tree has only one
nonterminal node with has multiple branches. Then the number of terminal nodes is

1 = 1 − (− 1)
Now, we assume the induction hypothesis that (4.1) holds for any tree with  non-

terminal nodes with multiple branches Now, let () be a tree with +1 nonterminal
nodes with multiple branches. We choose one nonterminal node, called +1 with mul-

tiple branches but not (+1  ) for all  = 1  . By eliminate all the branches
at +1 and their predecessor, we have have a tree, (

0 0) with  nonterminal nodes

with multiple branches. By the induction hypothesis, the number of terminal nodes of

( 0 0) is given as
P

=1 − (− 1) Now, we return to the original tree () The
node +1 which is a terminal node in (

0 0) has +1 branches and +1 terminal

nodes as its predecessors. That is, one terminal node is eliminated, but +1 terminal

nodes are newly added. Thus, the number of terminal nodes of () is calculated as:

(
P

=1
 − (− 1)) + (+1 − 1) =

+1P
=1

 − (+ 1− 1)

Now, we have (4.1) for + 1

The following lemma is an immediate consequence of Lemma 4.2. This observation

is suggestive for the definition L
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Lemma 4.3. Let  be a proof in L = CL or IL. We list all the applications of (→ ∧)
(∨ →) (⊃→) () in  as

(1): (→ ∧)[∧Φ1]  (→ ∧)[∧Φ1 ]; (2): (∨ →)[∨Ψ1]  (∨ →)[∨Ψ2 ];

(3): (⊃→)[1 ⊃ 1]  (⊃→)[3 ⊃ 3 ]; (4): (1)  (4)

Then, ( ) =
P1

=1 |Φ|+
P2

=1 |Ψ|+ 2(3 + 4)− (1 + 2 + 3 + 4 − 1)
Note that some of the above applications have the same principal formulae.

4.2. Occurrences and Signs

To define the lower bound function L and to state the main theorem (Theorem 4.4),

we use various proof-theoretic concepts. They have been known in the folklore of proof

theory, but are usually discussed in an informal manner. Since our concern is directly

related to the structure of a proof, we need to introduce them explicitly.

First, we introduce a linear order ≺ over the set of all formulae P. We stipulate
that each finite nonempty set Φ of formulae is ordered by ≺: When Φ has  elements,

we may write Φ = {1  } following the order ≺ i.e., 1 ≺  ≺ 

We will use the concept of an occurrence  at three levels, which indicates the address

of a formula  relative to () a formula ; () a sequent ; and () a proof  Only
() requires a careful consideration, and () () are straightforward. Since () and ()
are need for Theorem 4.4, we give only () and (). () will be needed for a proof of
Theorem 4.4 and will be given in Section 8.

Consider one example:

 = ¬(∨{1 2 } ⊃ ∧{1  ⊃ 2}) (4.2)

where  = ∧{1 2 3} The subformulae in ∨{1 2 } and ∧{1  ⊃ 2} are ordered
by ≺  This  has two occurrences of  and we would like to separate each without

ambiguity. The left occurrence of  is identified in the following manner:

 = [ |  · ¬ · (⊃−1) · (∨ 3) : ] (4.3)

The first  is the reference formula, and the last  is the target formula. The sequence

in the middle is the address of  relative to  The null symbol  indicates the outermost

viewpoint. Then, we go through the immediate subformulae to the left  in (4.2). Since

⊃ ∧∨ have multiple immediate subformulae, (⊃−1) is used to indicate the premise
of ⊃ and (⊃ 1) indicates the conclusion. The expression (∨ 3) indicates to choose
the third disjunct of ∨{1 2 } These expressions are concatenated by · The right
occurrence of  in (4.2) is given as 0 = [ |  · ¬ · (⊃ 1) · (∧ 2) · (⊃−1) : ] The trivial
example is [ |  : ] which is the occurrence of the target formula  relative to the

reference formula  itself

13



Formally, we define an occurrence relative to a reference formula  by induction

from the outermost viewpoint of :

(0): the occurrence of  relative to  itself is  = [ |  : ]
Suppose that an occurrence of  relative to  is already defined as  = [ |  : ]
Then, the occurrence of an immediate subformula  of  is defined as follows:

(1): if  = ¬ the occurrence of this  is given as [ |  · ¬ : ];
(2): if  =  ⊃  the occurrences of these  and  are given as [ |  · (⊃−1) : ]
and [ |  · (⊃ 1) : ];
(3): if  = ∧Φ = ∧{1  } (or  = ∨Φ = ∨{1  }) the occurrence of  = 

in Φ (1 ≤  ≤ ) is [ |  · (∧ ) : ] ([ |  · (∨ ) : ] respectively)
We can verify that the left occurrence of  in (4.2) is calculated by those steps and given

in (4.3). We denote the reference formula  and target formula  of  = [ |  : ] by
[] and  []

We can also talk about an occurrence  of  in  in a sequent  = {1     }
→ {1 } where  =   Here 1      and 1  are ordered by ≺ 

The address of  =  in  is described by [ | ( )] stating that  occurs as the -th
formula  in the antecedent of  Let occurrence  = [ |  : ] be given. Then, we
have the occurrence  in  =  relative to sequent  as:

[ | ( )] ·  (4.4)

If the indicated place is  in the succedent of  then it is given as [ | ( )] ·  The
occurrence [ | ( )] ·  or [ | ( )] ·  relative to a sequent  is denoted by  Its

reference formula [] and target formula  [] are defined by [] = [] and  [] =  []
Since  contains all the information of  it is enough to refer to  when we talk about

an occurrence relative to 

The sign (positive or negative) of an occurrence  in a sequent  or a formula  is

unambiguously defined as follows: We assign 1 or −1 to each component of the address
of an occurrence  in  as follows:

1 to [ | ( )]  (∧ ) (∨ ) (⊃ 1) and − 1 to [ | ( )] (¬) (⊃−1)
where  = 1  Then, regarding concatenation · as multiplication × we can calculate
the sign of an occurrence in  For example, when  is given as (4.4) and  is given as

(4.3), we have

[] = −() = −([ |  · ¬ · (⊃−1) · (∨ 3);])
= (−1)× 1× (−1)× (−1)× 1 = −1

A strength of the sequent calculus is the sign-preserving property that once a formula

occurs in a proof  , all descendants have the same sign. We will state this property as

Theorem 8.1 in Section 8.1 after we define the concept of descendants.
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4.3. The Lower Bound Function L

Now, we isolate some occurrences in a sequent  using the concepts introduced above.

We say that an occurrence  0 is a companion of another occurrence  in  iff  [] =  [ 0]
and   0 have opposite signs. Then, we say that an occurrence  in  is legitimate iff

(i):  has no companions;

(ii):  [] of  is expressed as either ∧Φ ∨Ψ or  ⊃ ;

(iii): if  [] = ∧Φ  is positive in  and if  [] = ∨Ψ or  ⊃  it is negative in 

The sequent  = 0 0 ⊃ ∧Φ → ∧Φ of Example 3.4 has two occurrences of ∧Φ; one is
negative and the other is positive; they are companions. Hence, neither is legitimate.

This sequent has only one legitimate occurrence 0 ⊃ ∧Φ
Consider a set  of legitimate occurrences 1   in  Let the target formulae

 [1]   [] be

∧Φ1 ∧Φ1 ∨Ψ1 ∨Ψ2  1 ⊃ 1  3 ⊃ 3  (4.5)

where some of them may be identical. Then we define

() =
1P
=1
|Φ|+

2P
=1
|Ψ|+ 23 − (1 + 2 + 3 − 1) (4.6)

Here,  may the empty set ∅; then (∅) = −(−1) = 1
By () of (4.6), we estimate the number ( ) of Lemma 4.3. But this depends upon

the choice of  It may be too much to list all legitimate occurrences in . For example,

the sequent   ⊃    ⊃  →  of Example 3.2 has two legitimate occurrences, i.e.,

 ⊃  and  ⊃ ; each single occurrence is enough to obtain this sequent. Hence, we
should consider a certain subset of legitimate occurrences in  It is chosen so that the

other occurrences could be replaced by new propositional variables while keeping its

provability. For   ⊃    ⊃  →  we can replace the legitimate occurrence  ⊃ 

(or  ⊃ ) by a new propositional variable 0 but still we have `L  0   ⊃  →  (or

  ⊃   0 → )
In general, we should take care of nesting occurrences. Therefore, we consider a set

 of legitimate occurrences 1   in  satisfying

if  is included in a legitimate occurrence  then  ∈  (4.7)

Thus,  is upward closed. Let  01  
0
 be the other legitimate occurrences in  each

of which is maximal in the sense of nesting, i.e., each  0 ( = 1  ) includes no
occurrences of  01  

0
 but 

0
 itself However, we allow some of 

0
1  

0
 to occur in

1   Let 1   be new propositional variables not occurring in  Then, we define
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∗ = Γ∗ → Θ∗ to be the sequent obtained from  by replacing  01  
0
 by 1  .

We say that a set of legitimate occurrences 1   satisfying (4.7) is genuine iff

`L Γ∗ → Θ∗ (4.8)

Note that this definition depends upon the choice of CL or IL We denote the set of all

genuine sets by ML()
For  =   ⊃    ⊃  →  of Example 3.2, either  ⊃  or  ⊃  can be

replaced by a new propositional variable 0 Hence,ML() = {{  0} {} { 0}} where
 [] =  ⊃  and  [ 0] =  ⊃ 

Now, we take the minimal value of () over ML() i.e.,

L() = min
∈ ML ()

() (4.9)

Now, we state the main theorem of this section: We have (1) of Lemma 4.1 for any

sequent . We postpone its proof to Section 8, since a proof needs a few more proof

theoretical concepts. The theorem holds for L = CLIL.

Theorem 4.4 (Lower Bound Function L). L() ≤ Lw() for any sequent  =
Γ→ Θ

By Lemma 3.1.(2), we have L() ≤ Lw() ≤ Lf(); an example for a strict
inequality will be given in Section 6. The dependence of L() and Lw() upon L =
CL or IL will be shown in Example 4.2.

The lower bound function L often gives a good estimate of L∗ For  =   ⊃
   ⊃  →  of Example 3.2,ML() = {{  0} {} { 0}}Hence, L() =min∈ ML ()() =
2 Using, Theorem 4.4, we have L() = 2 ≤ Lw() ≤ Lf() Since we already gave a
cut-free proof  of  with ( ) = 2 we have Lw() = Lf() = 2 by Lemma 41

In Example 3.3, 0 = Φ→ ∧Φ has a unique legitimate occurrence  [] = ∧Φ Hence,
L(

0) = 10 Since we gave a proof  of 0 with ( ) = 10 we have L∗(0) = 10
In the sequent  = 0 0 ⊃ ∧Φ→ ∧Φ of Example 3.4, ∧Φ has a companion. Hence,

 has a unique legitimate occurrence  [] = 0 ⊃ ∧Φ which constitutes also a unique
genuine set. Hence, L() = 2 and L∗() = 2

In those examples, the LB-method provided the exact value of L∗() independently
of CL or IL. An example showing the difference between CL∗ and IL∗ is →  ∨ (¬)
( is a propositional variable): CLw() = CLf() = 1 but ILw() = ILf() = +∞.
We do not need Theorem 4.4 for this calculation. The next example is a less trivial one.

Theorem 4.4 provides the exact values Lw() Lf()

Example 4.1 (Dependence upon L = CL or IL). Consider  = 0 ∨ (¬0) 0 ⊃
1¬0 ⊃ 1 → 1; let 1 2 3 be the three legitimate occurrences in the antecedent of
 Let  be a new propositional variable. Then, `CL  0 ⊃ 1¬0 ⊃ 1 → 1, but not
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in IL. Thus, {2 3} is a genuine set in CL, but not in IL; and {1 2 3} is a unique
genuine set in IL Hence, CL() = 2×2−(2−1) = 3 and IL() = 3×2−(3−1) = 4We
find proofs 1 and 2 of  respectively, in CL and IL so that (1) = 3 and (2) = 4
Indeed, 1 and 2 are given as follows:

1 :

0 → 0

→ 0¬0 (→ ¬)
1 → 1

0 ⊃ 1 → 1¬0 (⊃→) 1 → 1

1 0 ⊃ 1 → 1
()

0 ⊃ 1¬0 ⊃ 1 → 1
()

0 ∨ ¬0 0 ⊃ 1¬0 ⊃ 1 → 1
()

2 :

0 → 0 1 → 1

0 0 ⊃ 1 → 1
(⊃→)

0 0 ⊃ 1¬0 ⊃ 1 → 1
()

¬0 → ¬0 1 → 1

¬0¬0 ⊃ 1 → 1
(⊃→)

¬0 0 ⊃ 1¬0 ⊃ 1 → 1
(th)

0 ∨ ¬0 0 ⊃ 1¬0 ⊃ 1 → 1
(→⊃)

5. An Application to the Game with Small and Large Stores

Here, we study decision making by small store 2 in the game in Section 1.3 in terms of
measure L∗. Recall that (1 2) given by Tables 1.1 and 1.2 express store 2’s under-
standing of the situation. We consider two decision-making criteria for store 2 :

(i): the dominant-strategy criterion; and (ii): the prediction-decision criterion.

With (i), store 2 concentrates on Table 1.2 for his decision-making, while with (ii), he
first uses Table 1.1 to predict what 1 would choose, and then he chooses an action based
on Table 1.2. Criterion (ii) requires store 2 to think about (predict) 1’s choice; it needs
interpersonal inferences. In the game theory literature, it is regarded as more complex

than (i). On the other hand, the number of steps required for (ii) is significantly smaller

than that for (i): We meet a “trade-off” between complexity of inferences involving

interpersonal thinking and that of the number of pure intrapersonal inferences.

In this paper, we do not consider the epistemic structures required for (i) and (ii),

which problem was discussed in Kaneko-Suzuki [13]. We will discuss those problems

also with the measure of inference for epistemic logics of shallow depths in [16].

Let us formulate (i) and (ii) in our propositional language. We introduce propo-

sitional variables as follows: (aa0)  
0 = 1 2 3; and (s s0 | a)  = 1 2 3 and

 0 = 1  10 They are possible (strict) preferences by stores 1 and 2 : (aa0) means
that 1 prefers a to a0 ; and (s s0 | a) means that conditional upon the choice a by
1 store 2 prefers strictly s to s0 

Game (1 2) : Tables 1.1 and 1.2 are expressed as the sets of preferences:

̂1 = {(aa0)¬(a0 a) :  0 = 1 2 3 with   0}; (5.1)
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̂2 = {(s s0 | a)¬(s0  s | a) :   0 and  = 1 2 3} (5.2)

The first states that store 1 prefers action a to a0 if   0 and the second states that
when 1 chooses a store 2 would prefer s to s0 with   0 Thus, Tables 1.1 and 1.2
are expressed in terms of preferences induced by the numerical payoffs.

Now, let us go to two decision-criteria.

Dominant-Strategy (DS) Criterion: It is formulated as ∧{(s s0 | a) : 0 6=  and

 = 1 2 3} which is denoted by Dom2(s) It suggests to choose an action s so that he
prefers it to the other actions whatever 1 chooses. Looking at Table 1.2, we find that
s10 is a unique dominant strategy. This claim is formulated as the sequent and `L ̂2 →
Dom2(s10) A proof of ̂2 → Dom2(s10) is given as

 :

½
(s10 s0 | a)→ (s10 s0 | a)

̂2 → (s10 s0 | a) ()

¾
0 6=10 and =123

̂2 → ∧{(s10 s0 | a) : 0 6= 10 and  = 1 2 3} (→ ∧) (5.3)

Here, ( ) = 3 × 9 = 27 Also, we have L(̂2 → Dom2(s10)) = 27 since Dom2(s10)
is a unique legitimate occurrence and constitutes a unique genuine set Hence, we have

L∗(̂2 →Dom2(s10)) = 27 by the LB-method (Lemma 4.1 and Theorem 4.4). In fact,

we can add ̂1 to this statement, i.e., L∗(̂1 ̂2 → Dom2(s10)) = 27
The DS-criterion may be incapable in recommending any action in some situations.

To see this, we consider the following variant

Game (1 
0
2) : We replace Table 1.2 by Table 1.2

0; if store 1 takes action a3, store 2’s
payoff ordering is completely opposite to that for the other choices by 1. Then, there is
no dominant strategy for store 2

Table 1.20; 02
s1 s2 s3 · · · s9 s10

a1 1 2 3 · · · 9 10

a2 11 12 13 · · · 20 21

a3 −1 −2 −3 · · · −9 −10
The set of preferences ̂02 is defined based on this table in a parallel manner as (5.2).

Since 0L ̂02 → Dom2(s10) we have L∗(̂02 → Dom2(s10)) = +∞ However, it holds that

`L ̂02 → ¬∨Dom2(s) which store 2 may notice. In this sequent, only ∨Dom2(s) is
a legitimate occurrence. It holds that L(̂

0
2 → ¬∨Dom2(s)) = 10We have a proof of

this sequent: ½ ◦ ◦ ◦
̂02Dom2(s)→

¾
=110

̂02∨Dom2(s)→
(∨ →)

̂02 → ¬ ∨ Dom2(s) (→ ¬)
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Thus, L∗(̂02 → ¬∨Dom2(s)) = 10 by the LB-method Again, we can add ̂1 to this

statement, i.e., L∗(̂1 ̂02 → ¬∨Dom2(s)) = 10
The above is interpreted as follows: Store 2 finds the DS-criterion does not allow

any action by checking his payoff matrix. He needs 10 comparisons to have this knowl-
edge. In game (1 2) the DS-criterion does not require interpersonal thinking about 1’s
decision-making, but in game (1 

0
2) this criterion has no power for decision-making.

Therefore, store 2 needs something else: One procedure is to predict what 1 would
choose. The prediction-decision criterion is such a procedure. From the viewpoint of

our measure L∗ , however, we can even compare the required inferences for the DS-

criterion and prediction-decision criteria in (1 2)

Prediciton-Decision (PD) Criterion: The prediction part is formulated as ∧{(aa0) :
0 6= } denoted by Bt1(a) where  = 1 2 3That is, store 2 thinks that 1 would
choose the best action. The prediction-decision criterion is formulated as ∧[Bt1(a) ⊃
∧0 6=(s s0 | a)] denoted by PD2(s) This means that for each prediction (unique in
our example), s is best preferred to other alternative actions. This PD-criterion was
an instance of the general form given in Kaneko-Suzuki [13]5. Since we adopt classical

and intuitionistic logics, we do not explicitly include epistemic structures.

In game (1 2) store 2 with this criterion looks at 1’s preferences ̂1 as well as his
own preferences ̂2 He predicts that 1 would prefer a1 to a2a3 (so he would choose
a1), and he finds that s10 is better than the other alternative actions. The same holds
for the game (1 

0
2) These are described as

`L ̂1 ̂2 → PD2(s10) and `L ̂1 ̂02 → PD2(s10) (5.4)

Either sequent has two legitimate occurrences: ∧[Bt1(a) ⊃ ∧0 6=10(s10 s0 | a)] and
∧0 6=10(s10 s0 | a1) Neither Bt1(a2) nor Bt1(a3) holds for 1 which implies that

∧0 6=10(s10 s0 | a2) and ∧0 6=10(s10 s0 | a3) can be replaced by new propositional

variables without destroying provability of (5.4). Hence, these constitute a unique gen-

uine set. Hence,

L(̂1 ̂2 → PD2(s10)) = L(̂1 ̂
0
2 → PD2(s10)) = (3 + 9)− (2− 1) = 11 (5.5)

Actually, we can find a proof  of each sequent with ( ) = 11 Hence, we have
L∗(̂1 ̂2 → PD2(s10)) = L∗(̂1 ̂02 → PD2(s10)) = 11

The above argument for (5.5) looks slightly different from that given in Section 1.1,

though the resulting values are the same. In fact, the argument in Section 1.1 can be

expressed so that a2 and a3 are not chosen, rather than that a1 is chosen. Then, it is
exactly the same as the calculation for (5.5).

5A general formulation requires the existence of a prediction in addition to the above implication

part. It is not important in this example, we ignore the existence requirement of a prediction for

simplicity.
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Let us summarize the above arguments:

Table 5.1

game: (1 2) game: (1 
0
2)

DS-criterion L∗(̂2 → Dom2(s10)) = 27 L∗(̂02 → ¬ ∨ Dom2(s)) = 10

PD-criterion L∗(̂1 ̂2 → PD2(s10)) = 11 L∗(̂1 ̂2 → PD2(s10)) = 11

In sum, the DS-criterion works for (1 2) but not for (1 
0
2). This requires no inter-

personal thinking, and is often regarded as more “natural” than requiring interpersonal

one. In (1 2), the PD-criterion suggests the same action, but requires a much smaller
number of comparisons. This difference could be larger by increasing the number of

alternative actions by store 1. Hence, interpersonal thinking is less reliable but sim-
plifies decision making. In game (1 

0
2), the DS-criterion does not work. For store 2

to notice this fact, he should check ̂02 → ¬∨Dom2(s) which needs at least 10 steps.
Once he notices this fact, he may go to the PD-criterion, which requires 11 steps to find
a decision. We can combine these two logical arguments:

L∗(̂1 ̂
0
2 → (¬ ∨ Dom2(s)) ∧ PD2(s10))) = 10 + 11 = 21

That is, store 2 first verifies that the DS-criterion recommends no action, and then he

uses the PD-criterion and finds one recommendation.

6. Evaluations of Some Contradictory Statements

Contradiction-freeness is one important criterion for an axiomatic system. For set-

theory, Woodin [29] discussed the possibility that an axiomatic system may contain

a contradiction from the objective point of view, but we may not find the system is

contradictory when a proof to reach a contradiction is too large. This is relevant also

for game theory/economics in that the beliefs owned by a player may be contradictory

but he himself does not notice it. When measure L∗ takes a large value to derive
a contradiction, it would be difficult for a game player (us) to notice it. Thus, it is

important to analyze the behavior of L∗ for contradictory statements. Here, we give
some general considerations, and then a specific problem arising in economics.

6.1. General Considerations

In logic L = CL or IL, a contradictory statement is formulated as either `L Γ → or

`L Γ→ ¬∧ for some (any)  With respect to provability, they are equivalent, but
they differ in general with respect to our measure of inference.
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Theorem 6.1: Suppose `L Γ→ . Then, for any formula 

Lw(Γ→ ¬ ∧) ≤ Lw(Γ→ ) ≤ Lw(Γ→ ¬ ∧) + 1 (6.1)

Proof. First, we have the inequality: Lw(Γ→ ¬∧) ≤ Lw(Γ→ ) since Γ→ ¬∧
is derived from Γ→ by ()Next, we show that the difference between Lw(Γ→ ¬∧)
and Lw(Γ→ ) is at most 1 Indeed, since Lw(¬ ∧→ ) = 1 and

· · ·
Γ→ ¬ ∧

· · ·
¬ ∧→

Γ→ ()

we have Lw(Γ→ ) ≤ Lw(Γ→ ¬∧)+Lw(¬∧→ ) = Lw(Γ→ ¬∧)+1
We conjecture that Lw(Γ → ¬ ∧ ) = Lw(Γ → ) but so far, we have suc-

ceeded in neither proving this equality nor finding a counter example. The inequality

corresponding to (6.1) does not hold for the measure Lf which is the next subject.

Let  = ∧{ } for  = 1  and  = ∨{ } for  = 1   where 1 
and  are all propositional variables. Then, consider the following sequents:

0 = ∨ {1  } → ∧ {1  }; (6.2)

1 = ∨{1  }¬ ∧ {1  }→ ;

2 = ∨{1  }¬ ∧ {1  }→ ¬ ∧ 

Those sequents are provable and deductively equivalent in L = CL, IL. The sequents 1
and 2 are the targets of the present discussion. However, 0 is closely related to these

sequents, and is used to directly show the difference between Lw and Lf We have the

following theorem, which will be proved below.

Theorem 6.2: (0): L(0) = L(1) = L(2) = + − 1;
(1): Lw(0) = Lw(1) = Lw(2) = + ;

(2): Lf(0) = Lf(1) = ×  and Lf(2) = + 

This theorem has various implications other than the exemplification of Theorem

6.1. When  ≥ 2 and not ( =  = 2) we have Lf(0) = Lf(1) =  ×  

Lf(0) = Lw(1) = +  which states that Lemma 3.1.(2) holds in strict inequality.

Also, ×  is much larger than +  for large 

The inequality Lw(0) =  +   Lf(0) =  ×  shows a difference caused by

()’s6. On the other hand, Lf(1) =  ×   Lf(2) =  +  assumes no ()’s

6This argument is reminiscent of Boolos [3]: In a first-order tableau system with equality and no

()’s, he presented one example where if ()’s are additionally available, its poof became much
smaller than the original proof.
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and is caused by additional ¬ ∧  This additional ¬ ∧  plays the same role as ()
in proving these sequents.

Here, the LB-method may not give even an approximation of Lf(0) = Lf(1)
When the LB-method is not available, we would have a difficulty to evaluate the exact

value of L∗ Indeed, to prove (1) and (2), we cannot directly use the LB-method.
Nevertheless, we use it in various steps of those proofs.

Proof of Theorem 6.2: In each sequent, ∨{1  }∧{1  } are legitimate
occurrences, and they form a unique genuine set. Hence, L(0) = L(1) = L(2)
= + − (2− 1) = + − 1

Here, we prove only Lf(1) = ×  and Lw(1) = +  For Lf(1) = ×  it

suffices to show that (i) there is a cut-free proof 1 of 1 with (1) = × ; and (ii)
Lf(1) ≥ × 

For (i), we give a cut-free proof 1 of 1 with (1) = ×  :
 · · ·
 → 


=1

∨{1} → 
(∨→)


=1

∨{1} → ∧{1}
∨{1}¬∧{1} → (¬→)

(→ ∧) where the top left is
 → 

 → ∨{}
 → 

Consider (ii). Let  be a cut-free proof of 1 Denote the occurrences of ∨{1  }
and ∧{1  } in  in  by 1 and 2 In 1 ∨{1  } and ∧{1  }
are legitimate occurrences. The uppermost ancestors of 1 and 2 are the principal

formulae of (∨ →) and (→ ∧) respectively. A lowest occurrence of such an application
is expressed as

{∆→ Λ :  = 1 }
∨{1  }∆→ Λ (∨ →) or {∆→ Λ  :  = 1  }

∆→ Λ∧{1  } (→ ∧). (6.3)

Consider the left case. The right case can be treated in a parallel manner. Then,

∆ contains ¬ ∧ {1  } or Λ contains ∧{1  } Consider an upper sequent
∆→ Λ Since  is cut-free, the sequent ∆→ Λ can be expressed as

¬ ∧ {1  }→ ∧{1  }; or  → ∧{1  } (6.4)

Consider the case of the first sequent. The second case is similar. Some uppermost

ancestors of one occurrence of ∧{1  } in this sequent is the principal formula of
(→ ∧). Hence, the subtree determined by ∆ → Λ has at least  leaves. Since this
holds for each ∆ → Λ we have ( ) ≥  ×  For the case of (6.4), we can prove

the same inequality in a similar manner.

Now, let us prove Lw(1) = +  We find a proof  01 of 1 with ( 01) = +  :
 → 
 → 

(∧→)

=1

∨{1} → 
(∨→)


 → 
 → 

(→∨)

=1

 → ∧{1} (→∧)
∨{1} → ∧{1}
∨{1}¬∧{1} → (¬→) ()
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We show Lw(1) ≥ + By (0), L(1) = +−1 Hence, Lw(1) ≥ +−1 Let
 be an arbitrary proof of 1 If it has no (), then ( ) ≥ × by Lf(1) = ×

Let  contains at least one () Then,  has already (→ ∨) and (→ ∧) with principal
formula ∨{1  } and ∧{1  }. Hence, ( ) ≥ + +2− (3− 1) = + 

Hence, we have Lw(1) ≥ + 

The sequent 2 has a cut-free proof  with ( ) = +  :


 → 
 → 

(→∨)

=1

 → ∧{1} → (→∧)
¬∧{1} → (¬→)
¬∧{1} → ¬ (→¬)

∨{1}¬∧{1} → ¬ ()


 → 
 → 

(∧→)

=1

∨{1} → 
(∨→)

∨{1}¬∧{1} → 
()

∨{1}¬∧{1} → ¬∧ (→ ∧)

This additional ¬ ∧  in the succedent plays a similar role to the cut-formula.

6.2. Inferences for a Cyclical Contradiction

In economics, cyclical preferences have been discussed a lot. They do not allow the

decision maker (DM) to choose the best preferred action: Cyclical preferences are con-

tradictory in this sense (see Tversky [26] and MacCrimmon-Larsson [20] for possible

sources and difficulties arising). Logically speaking, cyclical preferences themselves are

not contradictory; under some additional conditions such as transitivity and asymme-

try, cyclical preferences yield a contradiction. As already stated, if it takes a too long

time to find a contradiction in either sense, DM could not find it. Here, we discuss this

problem from the viewpoint of our measure of inference.

Suppose that DM faces a problem to choose one from  alternatives a1 a He
has two types of beliefs:

(1) basic preferences comparing consecutive alternatives;

(2) additional properties for preferences.

To describe those, we prepare propositional variables  (1 ≤   ≤   6= ); each 
is intended to mean that DM strictly prefers alternative a to a

For (1), DM makes direct comparisons only between a to a+1 (+1 is understood
as 1) Then, we suppose that he prefers a to a+1 for all  = 1   These preferences
are called the basic preferences over  alternatives: Then let

∆ = {12 23  (−1)} ∪ {1} (6.5)

He has a cycle of preferences over those alternatives.

The set ∆ of basic preferences constitutes raw data for him. This lacks preference

comparisons between remote alternatives, a and a (| − |  1) DM may compensate
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for such missing parts by some beliefs of general properties for preferences. Here, we

assume transitivity and asymmetry for his preferences:

Π = { ∧  ⊃  : 1 ≤    ≤ }; (6.6)

Π = { ⊃ (¬) : 1 ≤   ≤ } (6.7)

The sets Π and Π

 describe the agent’s beliefs of basic properties DM makes direct

comparisons between two consecutive alternatives, which are described by the set ∆ of

direct data. Indirect comparisons between nonconsecutive alternatives such as 13 are

made from the raw data and his beliefs of basic properties. For example, he derives 13
from 12 23 using 12 ∧ 23 ⊃ 13

The set ∆ of basic preferences itself is not contradictory. The union of three sets

∆Π

 Π


  yields a contradiction. Indeed, using the raw data ∆ and transitivity Π




successively, we have 1 which together with Π

 implies ¬1 On the other hand, ∆

contains 1; thus we have a contradiction, `L ∆Π

 Π


 →  The value of measure

L∗ is given in the following theorem, which is proved in the end of this section.

Theorem 6.3 (Cyclical Contradiction): Let  ≥ 2 Then we have:
(1): L(∆Π


 Π


 → ) = 2 − 2;

(2): Lw(∆Π

 Π


 → ) = Lf(∆Π


 Π


 → ) = 2 − 2

We show these claims in the cases of  = 2 3 and give a sketch for a general case.
Let  = 2 Then, ∆ = {1221}Π2 = ∅ and Π2 = {12 ⊃ (¬21) 21 ⊃ (¬12)}

The raw data ∆ = {1221} and asymmetry Π2 already lead to a contradiction. In
this case, each formula in Π2 is legitimate in the sequent 2 = ∆2Π


2 → , but only

one is enough to have a contradiction. Thus L(2) = 2 and we have a proof  of

∆2Π

2 → with (2) = 2 Hence, Lf(2) = Lw(2) = 2 by the LB-method.

Let  = 3. To obtain 13, we use Transitivity once, and then ¬31 by Asymmetry
once, which contradicts his raw preference 31 Transitivity consists of 12∧23⊃13 and
this has two legitimate occurrences 12∧23⊃13 and 12∧23 in the sequent∆3Π3 Π3 →
 Hence, L(∆3Π


3 Π


3 → ) = 2×3−2 = 4 Since we can find a proof  of this sequent

with ( ) = 4 and thus, by the LB-method, L∗(∆3Π3 Π3 → ) = 4
In the above argument, many formulae in Π Π


 are not used. To prove the theo-

rem, we choose some subsets Π̊  Π̊

 of Π


 Π


 so that ∆ Π̊


  Π̊


 is still contradictory:

Indeed, let

Π̊ = {1 ∧ (+1) ⊃ 1(+1) :  = 2   − 1} and Π̊ = {1 ⊃ ¬1}

These are enough for the above derivation of a contradiction from ∆Π

 Π


 , i.e., `L

∆ Π̊

  Π̊


 → . We should count the legitimate occurrences in Π̊  Π̊


 noting that
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each 1 ∧ (+1) ⊃ 1(+1) contains two legitimate occurrences in the sequent. Then,

we have (1). For (2), we can construct a proof  of ∆Π

 Π


 → with ( ) = 2− 2

by induction on 

7. Binary Conjunctions and Disjunctions

We take conjunction ∧ and disjunction ∨ directly for finite sets of formulae. But it is
more standard in the literature of logic to apply ∧ and ∨ to ordered pairs of formulae.
Our choice is to avoid too many repeated applications of them, since conjunctive and/or

disjunctive formulae consisting of many components often appear in game theoretical

practices. Here, we give a brief discussion on how the choice of the different language

affects the measure L∗ of inference
Consider the subset P of P in which ∧ and ∨ are applied only to binary sets of

formulae. We denote logic L= CL IL with P by L7 The theory developed in this paper
is available for L; L∗ and L are defined in the same way only with the replacement

of L by L It is important to emphasize that the LB-method holds for them without

any changes. However, we should ask how different L∗ and L∗ are. In this section,
we give only brief discussions on this question.

Let us start with the following simple lemma: We say that a sequent  = Γ→ Θ is
for L iff Γ ∪Θ ⊆ P.
Lemma 7.1. L∗() = L∗() for any sequent for L

The case of Lf() = Lf() is straightforward due to the subformula property of a
cut-free proof, but the case of Lw() = Lw() is not, and will be proved later.

To make a comparison between L∗ and L∗ for a sequent  containing non-binary
∧ and ∨ we translate  into the other one by expressing the non-binary ∧ and ∨ by
repeated applications of binary ∧ and ∨ Let {1  } be any set of formula in P
with  ≥ 2 where 1   are ordered by ≺  Then, we define

V{1  } andW{1  } by induction on  as follows:V{1 2} = ∧{1 2}; and
V{1  } = ∧{

V{1  −1} }; (7.1)W{1 2} = ∨{1 2}; and
W{1  } = ∨{

W{1  −1} }
Then, we define the translator  from P to P inductively as follow:
(o): () =  for all propositional variables;

(i): (¬) = ¬() and ( ⊃ ) = () ⊃ ();

7 If we adopt the language where ∧ and ∨ are applied to the ordered pairs of formulae, we will have
again other small differences. In this case, we can give the restriction on a proof that no formula in the

antecedent or succedent of each sequent occurs more than twice (cf., Došen [5]) Our logical system L
is similar to the standard formulation with this restriction.
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(ii): (∧{1  }) =
V{(1)  ()};

(iii): (∨{1  }) =
W{(1)  ()}

This  is surjective but not injective, for example, (∧{1 2 3}) = (∧{∧{1 2} 3})
=
V{1 2 3} Now, we can make a comparison between L∗() and L∗(()) for

a sequent  in L

We define (→ V
) and (

W→) in terms of repeated applications of (→ ∧) and (∨ →)
as follows: for Φ = {1  }  = 2 

Γ→ Θ 1 Γ→ Θ 2
Γ→ Θ∧Φ2
◦ ◦ ◦
◦ ◦ ◦

(→ ∧)

◦ ◦ ◦
Γ→ ΘVΦ−2 (→ ∧)

Γ→ Θ −1
Γ→ ΘVΦ−1 (→ ∧)

Γ→ Θ 

Γ→ ΘVΦ (→ ∧)

In the parallel manner, (
W→) is defined Both width and depth of (→ V

) (or (
W→))

are  while (→ ∧)[∧Φ] has width  and depth 2
From any proof  of  in logic L, we can obtain a proof  of () in logic L

by replacing applications of (→ ∧) and/or (∨ →) by the corresponding (→ V
) and/or

(
W→). This is stated in the following lemma.
Lemma 7.2. Let  be a proof of a sequent  in logic L = CL, IL. Then, there is a

proof  of () in L such that ( ) = ()

The depth of  is typically much deeper than that of 

It follows from Lemma 7.2 that L∗(()) ≤ L∗() for any  for L. Thus, if  is a
sequent for L we have L∗() ≤ L∗() On the other hand, we have L∗() ≥ L∗()
since a proof of  in L is also a proof in L. In sum, we have Lemma 7.1.

These lemmas may be interpreted as meaning that with respect to width, the choice

of the non-binary language P or binary P does not matter. However, we have an ex-
ample for L∗(())  L∗()

Example 7.1. Consider  = ∧{1  } → ∧{1  −1} in L We can show
L∗() = −1 However, () = V{1  }→ V{1  −1} and V{1  } =
∧{V{1  −1} } Then L∗(()) = 1 since () is proved as follows:V{1  −1}→ V{1  −1}

∧{V{1  −1} }→ V{1  −1} (∧ →)
We can state a sufficient condition for the equivalence between L∗() = L∗(())

in terms of L and L  The following holds.

26



Lemma 7.3. If L() = L(()) and L∗() = L(), then L∗() = L∗(())

Proof. By Theorem 4.4 for L we have L(()) ≤ L∗(()) Thus, L∗() =
L() = L(()) ≤ L∗(()) By Lemma 7.2, we have L∗() ≥ L∗(()) Thus,
L∗() = L∗(())

This means that as far as L() = L(()) and the LB-method gives the exact
value for L∗(), the two measures L∗ and L∗ are equivalent. Hence, our question
is now when L() = L(()) holds. We have not succeeded in finding good suffi-
cient conditions for this equivalence. Nevertheless, they take the same values in all the

examples in this paper except for Example 7.1.

8. Proof of Theorem 4.4

We prepare a few more proof theoretical concepts in order to prove Theorem 4.4.

8.1. Ancestors and Descendants in a Proof

Consider a proof tree  = (;) Let [ | ( )] · (or [ | ( )] ·) be an occurrence
relative to the sequent  = () ( ∈ ). Then, its occurrence relative to  = (;)
is defined by adding the address of  in  ;

[ | ] · [ | ( )] ·  (or [ | ] · [ | ( )] · ) (8.1)

We denote the occurrence of (8.1) by the symbol  The reference and target formulae

are also denoted by [] (= []) and  [] (=  [])
Since an occurrence in (8.1) contains all relevant information about the address of

[ | ( )] ·  or [ | ( )] ·  we can regard it as an occurrence relative to  = ()
Conversely, when an occurrence  relative to a sequent  is given and also a proof  of

 is given,  is regarded as an occurrence relative to  by adding [ | 0] ·  where 0 is
the root of  Hence, we use also symbol  when the reference sequent is well specified.

The introduction of an occurrence in a proof  = (;) enables us to define a
descendant and an ancestor. In each case of the 12 inference rules in Section 2, we need
to define immediate descendants and ancestors. However, since these are similar, we

give the definition only in the case of

Γ→ Θ
∧ΦΓ→ Θ (∧ →)[∧Φ] where  ∈ Φ

Suppose that this occurs in a proof  = () and that the upper and lower sequents
are given as () =  and (0) = 0 ( 0 ∈ ) Let  be a subformula occurring in

() = Γ→ Θ. Consider an occurrence  = [ | ]·[ | ( )]· or [ | ]·[ | ( )]·
with  [] =  and  = [[] |  : ].
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I1: Let [] be in Γ Then, an immediate descendant 0 of  is [ | 0] · [0 | ( 0)] · 
where formula [] is the 0-th formula in {∧Φ} ∪ Γ with respect to ≺ 

I2: Let [] be the side formula  of (∧ →) Then an immediate descendant 0 of  is
[ | 0] · [0 | ( 0)] ·0, where ∧Φ is the 0-th formula in {∧Φ}∪Γ and 0 = [ | (∧ ) · :
] i.e.,  is the -th formula in Φ

I3: If  is in the succedent of  = () i.e., it is [ | ] · [ | ( )] · then the immediate
descendant 0 of  is 0 = [ | 0] · [0 | ( )] · 

Under Stipulation S in Section 2, the following lemma holds.

Lemma 8.1.(Unique Immediate Descendant): Consider an occurrence  in  in

logic L, which is neither a cut-formula nor in the endsequent. It has a unique immediate

descendant.

We say that an occurrence 0 is called a descendant of  in a proof  if there is a

chain {0  } so that 0 =   = 0 and  is an immediate descendant of −1 for
 = 1  

When 0 is a descendant of  we say that  is an ancestor of 0 An immediate
ancestor may not be uniquely determined. In the above (2) for (∧ →)[∧Φ] if Γ contains
already ∧Φ then the occurrence of  in the lower sequent has two immediate ancestors
in the upper sequent. Also, since (→ ∧) (∨ →) or (⊃→) has multiple uppersequents,
 in its lowersequent may have multiple ancestors. However, Lemma 8.1 is enough for

the proof of Theorem 4.4.

The sign of an occurrence  = [ | ] · [ | ( )] ·  or [ | ] · [ | ( )] ·  in
 = (;) is simply the sign of [ | ( )] ·  or [ | ( )] ·  in  Then, we have:

Theorem 8.2.(Sign-Preservation Property): Let  be a proof in L = CL or IL.

Consider an occurrence  in  Every descendant of  has the same sign as that of .

8.2. Proof of Theorem 4.4 for Lf

First, we prove Theorem 4.4 for the cut-free case, i.e., L() ≤ Lf(). If  is not
provable, then Lf() = +∞ and nothing should be proved Let  be provable in L

Lemma 8.3 (Cut-Free Case). Let  be any cut-free proof of a given sequent  in

L. Then, there is a genuine set  of legitimate occurrences in  such that () ≤ ( ).

Proof. Let  be a legitimate occurrence in . As remarked above, this  can be regarded

as an occurrence relative to  We say that  is  -essential iff there is some uppermost

ancestor [] of  in  so that its target formula is the principal formula of (→ ∧) (∨ →)
or (⊃→) Let  be the set of all  -essential legitimate occurrences in 

This  satisfies condition (4.7): Indeed, suppose that  ∈  is a suboccurrence of

another legitimate occurrence  6=  in  = () Consider the uppermost ancestor
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[] of  so that it is the principal formula of (→ ∧) (∨ →) or (⊃→) The target
formula  [] is a subformula in a conjunct or a disjunct of  [] if  [] is expressed
as ∧Φ or ∨Ψ; or in  or  of  [] if it is  ⊃  Hence, there is an application of

(→ ∧) (∨ →) or (⊃→) between  and [] such that its principal formula is  []
Hence,  is  -essential, so  ∈ 

Now, let  01  
0
 be the other legitimate occurrences in  so that each  0 is not a

suboccurrence of any other  00 (0 6= ). Let 1   be new propositional variables.

Then, we replace all ancestors of  0 by  ( = 1  ) respectively, in proof  We
show that the replacement does not destroy the proof structure of  : Indeed, since 
is cut-free and each  0 has no companions, no uppermost ancestor is introduced by an
initial sequent. By the definition of  all the ancestors of each  0 are introduced by
() (∧ →) or (→ ∨) The endsequent obtained by this replacement is denoted by ∗.
Hence, `L ∗ Hence,  is a genuine set.

Finally, for each  ∈  we have an application of (→ ∧) (∨ →) or (⊃→) so that
its principal formula is  [] For any   0 ∈  if  6=  0 the uppermost ancestors are
different by Lemma 8.1. Hence, one occurrence  in  has at least one distinguished

application with its principal formula  [] Hence, by the definition (4.6) of  and

Lemma 4.3, we have () ≤ ( )

Proof of Theorem 4.4 for Lf. Let  be a cut-free proof of  Let  be the genuine

set of occurrences given in Lemma 8.3. Then, () ≤ ( ). By (4.9), we have L() =
min0∈ML ()(

0) ≤ () ≤ ( ) Since  is a cut-free proof of , we have L() ≤
Lf() = min{( ) :  is a cut-free proof of }

8.3. Proof of Theorem 4.4 for Lw

The proof of Lemma 8.3 does not work when a proof  has a (). However, we can
prove the same assertion for any proof  with ()’s, constructing a further argument
based on Lemma 8.3. For this purpose, we should refine the cut-elimination theorem

(Theorem 2.1).

Consider a proof  of  with/without cuts. Also consider applications (→ ∧)[∧Φ]
(∨ →)[∨Ψ] and/or (⊃→)[ ⊃ ] in  Suppose that the endsequent  has the descen-

dants 1 2 3 of the principal formulae ∧Φ ∨Ψ and/or  ⊃  of those applications

By Lemma 8.1, each descendant is uniquely determined. Hence, we can write (→
∧)[∧Φ]h1i (∨ →)[∨Ψ]h2i and/or (⊃→)[ ⊃ ]h3i For example, (→ ∧)[∧Φ]h1i
means that in  once an application of (→ ∧)[∧Φ] occurs and 1 is its descendant

in the endsequent  of  By this concept, we can distinguish between two applica-

tions with the same principal formulae, e.g., when (→ ∧)[∧Φ] occurs in two different
places in  they are distinguished by their descendants in the end sequent. We have

the possibility that  has ()’s and the endsequent does not have a descendant of
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the principal formula of such an application. But this possibility is irrelevant in the

following argument.

The following theorem can be proved in almost the same way as Gentzen’s [7] proof

of the cut-elimination theorems for CL and IL8.

Theorem 8.4 (Refinement of the Cut-Elimination Theorem): Let L be CL or

IL, and  any sequent in L. Let 1 be a positive occurrence in  with  [1] = ∧Φ and
let 2 3 be negative occurrences in  with  [2] = ∨Ψ  [3] =  ⊃ 

Let  be a proof of  in L. Then, there is a cut-free proof  0 of  such that if
 0 has applications of (→ ∧)[∧Φ]h1i (∨ →)[∨Ψ]h2i and/or (⊃→)[ ⊃ ]h3i then
 has applications of the same inferences with the same principal formulae and their

descendants 1 2 and/or 3 in the endsequent .

Using this theorem, we can modify Lemma 8.3 in the case for a proof with ()’
Once we have the following modification, the above proof of Theorem 4.4 is the same.

Lemma 8.30 (Case with Cuts). Let  be any proof of a sequent  with ()’s in
L. Then, there is a genuine set  of legitimate occurrences in  such that () ≤ ( ).

Proof. Let  0 be a cut-free proof given by Theorem 8.4. Then, let  be the set given

in the proof of Lemma 8.3 for  0 Although  is defined and proved to be a genuine set

depending upon  0, the definition of a genuine set does not depend upon the choice of
a proof. Hence,  is a genuine set.

Let  ∈  Then, we have an application of (→ ∧)[∧Φ]hi (∨ →)[∨Ψ]hi or (⊃→
)[ ⊃ ]hi in  0 Then, the original  has the corresponding application by Theorem

8.4. By Lemma 8.1, if  and  0 in  are different, then the corresponding applications

in  are different. Thus, by the definition (4.6) of  and Lemma 4.3, we have () ≤
( )

9. Conclusions and Some Remarks

We have developed a theory of the measure of inference for classical logic CL and

intuitionistic logic IL. In either L = CL or IL, the measure L∗ gives, to a given sequent
, the minimum number of the widths of possible proofs - - it counts the number of

indispensable contents included in  To calculate the exact value L∗(), we developed
the LB-method in Section 4, and using it, we calculated the values for various examples.

By these considerations, we have had certain important consequences both from the

viewpoints of logic as well as game theory/economics.

In Section 5, we studied the degrees of difficulties coming from two different decision

criteria: the dominant-strategy (DS) criterion and prediction-decision (PD) criterion.

We have shown a trade-off between the difficulties caused by these decision criteria. The

8A proof will be sent upon request.
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DS does not require interpersonal thinking; on the other hand, the PD does but may

simplify a lot his thinking to reach a decision.

Section 6 is about a contradictory sequent. In the Gentzen-style sequent formulation,

two sequents Γ→ and Γ→ ¬∧  are equivalent with respect to provability. However,
it was argued in Section 6.1 they may be different with respect to our measure L∗ :
In particular, the two cases with/without ()’s are quite different, and the succedent
¬ ∧  may perform in a similar way as () In Section 6.2, we considered also the
contradictory statement arising from economics. We can make the example so that the

value of L∗ for the sequent is arbitrary large. It means that when the value is very large,
the premises (antecedent) are contradictory from the objective point of view, while this

fact may be difficult to be perceived.

We have a lot of different aspects as well as a lot of applications to be considered.

Here, we will discuss a few aspects and applications to be emphasized.

(1): Refinement of the LB-Method: This works well in the examples in this paper

in that L() gives the exact value L∗() or approximates it Only two exceptions are
the sequents 0 and 1 given in (6.2) in that L() is very different from Lf(). This
is caused by the fact that the lower bound function L counts legitimate occurrences

as a summation form. However, in the examples 0 and 1 the ancestors of legitimate

occurrences are nesting, which requires us to count them as a multiplication form.

The difference caused by nesting can be seen more severely in the application of the

LB-method to the Pigeonhole Principle (see Buss [4], Arai [1]). A refinement of the

LB-method toward this direction is an important open question.

(2): Computational Complexity and Proof Search: By (1), we may recall the

literature of computational complexity and proof search. Once the measure of inference

is well developed, we can use it for an analysis of computational complexity for various

classes of problem instances as well as for proof search. This is a side problem along

the line of our original motivation. Nevertheless, it would be important to think about

this application.

(3): Epistemic Logics of Shallow Depths: This is closely related to the present

research in motivations, and was briefly discussed in the game with large and small

stores in Section 5. The extension of the measure L∗ itself to those epistemic logics is
straightforward, though we have different possible ways of counting epistemic depths.

Also, the function L and Theorem 4.4 can be extended to those logics. Then, we can

discuss the trade-off mentioned above in a more explicit manner.

(4):Mechanical Method of Calculations: Lemma 3.2 gave decomposition properties

along the principal formula of an application of an inference. However, it gave only

decompositions with inequalities, and does not help the calculation of L∗. Therefore, we
have developed the LB-method. However, when we restrict our attention to some class of

sequents, we can expect those decompositions with equalities, perhaps, for intuitionistic

31



logic L = IL. In fact, this is partially done for intuitionistic-based epistemic logics Then
we can calculate L∗ in a mechanical way, and expect to a mechanical construction of a
proof.

(5): Hilbert-Style Logic: Measure L∗ is system-specific, as it depends upon the
choice of a language. If we adopt a Hilbert-style formulation of classical or intuitionistic

logics, then the value changes a lot. There are diverse formulations of Hilbert-style

systems. In the case of classical logic, one system in Kaneko-Nagashima [11] may

be well comparable with the sequent formulation of the present paper. A proof in

a sequent calculus can be converted into the Hilbert-style formulation and vice versa.

For this conversion, () does play an important role. Since the LB-method works
even for CLw we would be able to compare our measure for that for the Hilbert-style

formulation.

(6): Connections to Inductive Game Theory: From our research viewpoint, it is

more direct to apply the theory to the induction process in inductive game theory of

Kaneko-Kline [10]. For example, the inductive process itself was not formulated in [10],

but it can be formulated as an algorithm from accumulated experiences to an individual

view. This algorithm can be formulated as a set of beliefs of a player, and he infers his

view based on this set of beliefs from his accumulated experiences. If our measure gives

a large number, he would have a difficulty in constructing his view.

The present authors have already developed some of those problems - - some papers

[16] and [17] will be available. Yet, we have a lot of open problems about the theory

presented here. We expect a lot of further contributions along the line of the research

given in this paper.
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