Implementation of Communication Equilibria
by Correlated Cheap Talk:
the Two-Player Case*

Péter Vida† and Françoise Forges‡

February 16, 2011

Abstract

We show that essentially every communication equilibrium of any finite Bayesian game with two players can be implemented as a strategic form correlated equilibrium of an extended game, in which before choosing actions as in the Bayesian game, the players engage in a possibly infinitely long (but in equilibrium almost surely finite), direct, cheap talk.

Keywords: Bayesian game, cheap talk, communication equilibrium, correlated equilibrium, pre-play communication.

JEL Classification Numbers: C72, D70.

*Péter Vida proved the main result of this paper as part of his doctorate thesis at the Universitat Autònoma de Barcelona. A preliminary version of the paper, by Péter Vida, circulated under the title “From Communication Equilibria to Correlated Equilibria”. The two authors had discussions on this research in 2005-2006 and completed the present version in 2010-2011. We wish to thank Elchanan Ben-Porath, Antoni Calvó-Armengol, Manfred Nermuth and the participants of the workshop “Decentralized Mechanism Design, Distributed Computing and Cryptography” held at Princeton in June 2010.

†University of Vienna, Department of Economics. E-mail: peter.vida@univie.ac.at
‡LEDa, Université Paris-Dauphine. E-mail: francoise.forges@gmail.com
1 Introduction

In a Bayesian game, the players simultaneously choose actions as a function of their private information (or type). This framework is useful to identify the parameters of the basic interactive decision problem but does not account for possible nonbinding communication between the players, which enables them to exchange information and to coordinate their actions. Such a communication typically takes place at the interim stage (namely, once the players know their type and before they choose an action) and is conveniently modelled in extensions of the Bayesian game.

As illustrated by a vast literature, communication may consist of a plain conversation between the players ("cheap talk") or be mediated by a third party; it may last for one or several stages or even involve no deadline (see, e.g., Forges and Koessler (2008) for a short survey). In spite of this variety, a generalized revelation principle holds: the set of all Nash equilibrium outcomes of all games that extend a given Bayesian game by allowing arbitrary communication is nicely characterized, as the set of all "canonical communication equilibria". These are achieved with the help of a mediator who first invites the players to reveal their types and then performs a lottery, in order to privately recommend an action to each of them, as a function of their reported types (see Forges (1986), Myerson (1986) and Myerson (1991), chapter 6).

Canonical communication equilibria are very tractable but rely on a centralized mediator, who collects the private information of the players. A plain conversation between the players is much more natural and preserves the players' privacy. Hence the question:

Can all canonical communication equilibrium outcomes be implemented by means of cheap talk, i.e., as Nash equilibrium outcomes of an appropriately designed extended game in which the players can talk?

Partially or even fully positive answers have been given in finite Bayesian games, in which types and actions take finitely many values, as soon as the number of players is at least three\(^1\). However, for two players, the answer is in general negative. Consider for instance the particular case where every player has a single type (complete information); in a plain conversation, both players know all the messages that they exchange, hence they cannot

simulate the private recommendations of a mediator. More precisely, in a bi-
matrix game, communication equilibria coincide with Aumann (1974, 1987)'s
correlated equilibria, while the set of Nash equilibrium outcomes of a cheap
talk extension of the game is always included in the convex hull of the set of
Nash equilibrium outcomes of the bi-matrix game.

As a very different particular case, consider a two-person (finite) Bayesian
game with a single informed player, whose actions are not payoff relevant,
and a decision maker. In the original Bayesian game, the players choose
their actions simultaneously so that the informed player cannot transmit
information to the decision maker. Allowing a single stage of cheap talk,
from the informed player to the decision maker, transforms the game into a
sender-receiver game2. Examples show that, in that framework, there may
exist communication equilibrium outcomes which cannot be achieved as Nash
equilibrium outcomes of the sender-receiver game (see, e.g., Forges (1985)3).
Even more, some communication equilibrium outcomes cannot even be im-
plemented by “long cheap talk”, in which both players exchange costless
messages for as many stages as they like (see Forges (1990a)4).

Should the previous negative results lead us to forget about implementing
communication equilibrium outcomes by cheap talk in two-person Bayesian
games? Of course, no: two-person games are \textit{the} prototype of interactive
decision problems, as illustrated by the most popular game theoretical ex-
amples. But the above counter-examples teach us that, to implement all
communication equilibrium outcomes of a two-person game, we have to re-
lax the notion of cheap talk in some way. For instance, Dodis, Halevy and

2Sender-receiver games were first studied by Crawford and Sobel (1982) and Green and
Stokey (2007). Their model involves types and actions in a real interval and thus does not
pertain to the finite setup that will be adopted in this paper.

3The framework in Forges (1985) is an infinitely repeated game but the results are easily
reformulated in one-shot games with cheap talk (see exercise 6.9 in Myerson (1991)).
Krishna and Morgan (2004) show that three stages of cheap talk enable the players to
strengthen this result by proving that, if the conflict of interest between the sender and
the receiver is not too large, the latter equilibria are optimal communication equilibria.
They further show that finitely many stages of cheap talk cannot replicate mediation when
the conflict of interest gets larger.

4The example in Forges (1990a) explicitly deals with long cheap talk before a single
decision stage, but relies on techniques developed by Hart (1985) and Aumann and Hart
use this approach to characterize all Nash equilibrium outcomes of any long cheap talk
game with a single informed player.
Rabin (2000) and Urbano and Vila (2002) rely on cryptographic tools developed in computer science, namely assume that the computational ability of the players is limited. Under this assumption, they show that the correlated equilibrium outcomes of any two-person game with complete information can indeed be implemented as \((\epsilon-)\) Nash equilibrium outcomes of a cheap talk extension of the game. Ben-Porath (1998) obtains a similar result by allowing the players not only to talk but also to make use of urns or envelopes. Generalizations to games with incomplete information have been proposed by R.V. Krishna (2007) and Izmalkov, Lepinski and Micali (2010) for the latter approach and by Urbano and Vila (2004) for the cryptographic one. The common feature of these solutions is that cheap talk is relaxed at every stage.

In this paper, we follow another avenue and maintain the standard notion of cheap talk, in which the players just exchange possibly simultaneous, costless, messages at every stage. They are not imposed any deadline but cannot use any common device (like urns, envelopes or recording machines) while they talk (but each player is of course free to use any personal device to make his own choices). However, we assume that, before they start to talk, the players can privately observe some signal, a sunspot, which is totally extraneous to the game (i.e., independent of the players’ types and without any direct effect on the payoffs). Following Aumann (1974, 1987), the players’ signals can be correlated and the set of all Nash equilibrium outcomes of the extended game in which the players first observe their signal has a tractable canonical representation. In our framework, the canonical signal of each player takes the form of a recommendation on how to talk and how to make a decision at the end of the cheap talk phase.

In other words, we consider strategic form correlated equilibria (in the sense of Aumann (1974, 1987)) of a long cheap talk game extending the original Bayesian game. Our main result can be stated as follows. Fix any two-person Bayesian game \(\Gamma\) and any communication equilibrium outcome of \(\Gamma\); we design a long cheap talk extension \(\text{ext}\Gamma\) of \(\Gamma\), with finitely many messages at every stage, together with a correlation device for the cheap talk game \(\text{ext}\Gamma\), with the following properties: (i) no player can gain by unilaterally deviating from the recommendation of the correlation device in \(\text{ext}\Gamma\).

\footnote{As in Forges (1988), we do not reserve the term “sunspot” to a common, public, extraneous signal. The interpretation is that every player observes the sunspots in his own way.}
and (ii) the outcome, namely the conditional probability distributions generated by the correlation device and strategies in \(ext \Gamma \) over actions given types, are exactly the same as in the communication equilibrium. In this construction, the size of the finite set of messages depends on the parameters of the Bayesian game and on the underlying communication equilibrium. By considering a countable set of messages, we can get at once all communication equilibrium outcomes of any Bayesian game as correlated equilibrium outcomes of a universal cheap talk game, as in Forges (1990b) for games with at least four players\(^6\). Our cheap talk game \(ext \Gamma \) is possibly infinitely long in the sense that its length is not fixed in advance, in a deterministic way, but depends endogenously on the messages exchanged by the players. Nevertheless, at the equilibrium that we construct, cheap talk ends up almost surely in finitely many stages.

Our result extends Forges (1985), which focuses on the case of a single informed player and a single decision maker. One stage of cheap talk suffices then to implement all communication equilibrium outcomes. Recently, Blume (2010) established a similar result in the context of Crawford and Sobel (1982)’s sender-receiver game. Forges (1985)’s construction goes through if payoff relevant actions are added for the single informed player. However, the general case, where both players are privately informed and make decisions, remained open until Vida (2006) proposed a first solution\(^7\).

When trying to implement a given communication equilibrium by cheap talk in a two-person game in which both players have private information and must take actions, the main problem is to guarantee that no player learns useful information before the other. Full detection of possible deviations during the cheap talk phase can be of no help if it happens too late. Indeed, there may be no way to “punish” a defector once he possesses the desired information. In order to solve the problem, the basic idea is that the correlation device selects a relevant stage \(t^* \) of the cheap talk phase, without telling it directly to the players. How will the players figure out when they reach it? At the end of every stage \(t \) of cheap talk, they simultaneously discover from their exchanged messages whether stage \(t \) was relevant (i.e., \(t = t^* \)) or not. Useful information is only exchanged at the relevant stage \(t^* \), but the players

\(^6\)Forges (1990b) also proposes a cheap talk game with a continuum of messages which is universal for all three person games.

\(^7\)The main result in this paper can already be found in Vida (2006)’s unpublished doctoral dissertation (see also Vida (2007a)). The proof proposed in this paper is a simplification of the original one.
realize this at the end of the stage. In addition, at every stage, each player can check whether the other’s message was legitimate or not. If the stage is not relevant, the players’ information is not updated so that illegitimate messages can give rise to punishments.

We implement communication equilibria of a given Bayesian game as correlated equilibria of the game preceded by cheap talk. Hence we replace the communication device by a correlation device, that is to say, a mediator by another! What do we really gain from our construction? As argued by Forges (1985, 1988, 1990b) and recently by Blume (2010), the mediators implicitly involved in the two solution concepts are very different from each other. In a (canonical) communication equilibrium of the original game, the mediator gets to know the whole information of every player. However, in a correlated equilibrium of the cheap talk game, the mediator does not receive any information from the players. He makes recommendations on how to exchange messages but remains fully ignorant of the players’ types. With such a mediator, players can preserve their privacy.

Let us turn to the organization of the paper. In the next section, we recall the concepts of Bayesian game and communication equilibrium. Then, in section 3, we describe the extension of the game in which the players can talk and we define correlated equilibrium in that game. The main result (i.e., every communication equilibrium of a Bayesian game can be implemented as a correlated equilibrium of the extension of the game) is formally stated in section 4; the reader familiar with our basic concepts can go to the statement right away. Section 5 illustrates that long cheap talk is necessary to our result: we provide an example in which a communication equilibrium outcome cannot be achieved as a correlated equilibrium outcome, in any cheap talk game with a bounded number of stages. Section 6 contains the proof of the main result. Finally, section 7 discusses some variants of the model.

2 Basic game, communication equilibrium

Let us fix a two-player finite Bayesian game \(\Gamma \equiv \langle \{L^i, A^i, g^i\} \rangle_{i=1,2}, p \rangle \): for every player \(i = 1, 2 \), \(L^i \) is a finite set of possible types, \(A^i \) is a finite set of actions and \(g^i : L \times A \rightarrow \mathbb{R} \) is a von Neumann-Morgenstern utility function, where \(L = L^1 \times L^2 \) and \(A = A^1 \times A^2 \); \(p \in \Delta L \) is the players’ common prior over \(L \).

\(\Gamma \) starts with a move of nature, which selects \(l = (l^1, l^2) \in L \) according
to p; player i is only informed of his own type l^i, $i = 1, 2$. Then the players simultaneously choose actions $a^1 \in A^1$ and $a^2 \in A^2$, respectively; let $a = (a^1, a^2)$. The respective payoffs are $g^1(l, a)$ and $g^2(l, a)$.

A (canonical) communication device8 q for Γ is a transition probability from L to A, $q : L \rightarrow \Delta A$, namely a system of probability distributions $q(l|\cdot)$ over A for every $l \in L$. By adding a communication device q to the Bayesian game, one generates an extended game Γ^q, which is played as follows:

1. Every player i learns his type l^i as in Γ, $i = 1, 2$.
2. Every player i sends a private message $\hat{l}^i \in L^i$ to the communication device q; let $\hat{l} = (\hat{l}^1, \hat{l}^2)$.
3. q selects an action profile $a = (a^1, a^2)$ with probability $q(a|\hat{l})$.
4. q sends a^i privately to player i, $i = 1, 2$.
5. The players choose actions and receive payoffs as in Γ.

Some strategies are of special interest in Γ^q: player i is sincere in Γ^q if he reveals his type to the communication device at stage 2, namely $\hat{l}^i = l^i$ for every $l^i \in L^i$; player i is obedient if at stage 5, he follows the recommendation a^i made by the communication device at stage 4, whatever his type. When both players are sincere and obedient, the expected payoff of player i of type l^i is9:

$$G^i[q|\hat{l}^i] = \sum_{l^i} p(\hat{l}^i | l^i) \sum_a q(a|l^i, \hat{l}^i) g^i((l^i, \hat{l}^i), a) \quad l^i \in L^i, i = 1, 2.$$ \hfill (1)

Let $G[q] = (G^i[q|\hat{l}^i])_{l^i \in L^i, i = 1, 2}$ be the pair of vector payoffs associated with q.

Definition 1 Let q be a (canonical) communication device for Γ. q is a (canonical) communication equilibrium of Γ if and only if the sincere and obedient strategies form a Nash equilibrium of Γ^q, namely, iff

$$G^i[q|\hat{l}^i] \geq \sum_{l^i} p(\hat{l}^i | l^i) \sum_{a^i, a^{-i}} q(a^i, a^{-i} | \hat{l}^i, l^{-i}) g^i((l^i, l^{-i}), r^i(a^i), a^{-i})$$

for $i = 1, 2, l^i, \hat{l}^i \in L^i$ and for all $r^i : A^i \rightarrow A^i$.

9When the index i refers to one of the two players, $\neg i$ refers to the other one.
Let $ME(\Gamma)$ be the set of communication equilibrium10 payoffs of Γ, namely

$$ME(\Gamma) = \{ G[q]|q \text{ is a communication equilibrium in } \Gamma \} \subset \mathbb{R}^{|L_1 \times L_2|}.$$

Thanks to the general revelation principle recalled in the introduction (see, e.g., Forges (1990b)), $ME(\Gamma)$ is the set of all payoffs that can be achieved at a Nash equilibrium of an arbitrary extension of Γ allowing the players to communicate (possibly with infinitely many stages and relying on a mediator at every stage).

Definition 2 A payoff vector $(x^i(l^i))_{l^i \in L^i} \in \mathbb{R}^{|L^i|}$ is (strictly) interim individually rational for player $i = 1, 2$ (or interim supportable with (strict) punishment) in Γ if there is a strategy of the other player in Γ, namely, a transition probability $y^{-i} : L^{-i} \to \Delta A^{-i}$, such that for all $l^i \in L^i$,

$$x^i(l^i) \geq (>) \max_{a^i \in A^i} \sum_{l^{-i}} p(l^{-i}|l^i) \sum_{a^{-i}} y^{-i}(a^{-i}|l^{-i}) g^i((l^i, l^{-i}), a^i, a^{-i}).$$

Let $(S)INTIR(\Gamma)$ be the set of vectors in $\mathbb{R}^{L_1 \times L_2}$ that are (strictly) interim individually rational for both players. Observe that, in general, $(S)INTIR(\Gamma)$ depends on the prior probability distribution p in Γ.

In games with complete information (i.e., when $|L_1| = |L_2| = 1$), the definition reduces to the standard one, namely x^i is (strictly) individually rational for player i iff

$$x^i \geq (>) \min_{y^{-i} \in \Delta A^{-i}} \max_{a^i \in A^i} \sum_{a^{-i}} y^{-i}(a^{-i}) g^i(a^i, a^{-i})$$

The following lemma, which will be used later, states that interim individual rationality always holds at a communication equilibrium.

Lemma 1 $ME(\Gamma) \subseteq INTIR(\Gamma)$.

Proof

Let q be a communication equilibrium and $l^i \in L^i$ be a type of player i; for any $b^i \in A^i$ and $\tilde{l}^i \in L^i$,

$$G^i[q|l^i] = \sum_{l^{-i}} p(l^{-i}|l^i) \sum_{a} q(a|l^i, l^{-i}) g^i((l^i, l^{-i}), a) \geq \sum_{l^{-i}} p(l^{-i}|l^i) \sum_{a} q(a|l^i, l^{-i}) g^i((\tilde{l}^i, l^{-i}), a).$$

10We use the notation ME as a reminder of “mediated equilibrium”; we keep CE for “correlated equilibrium”.

8
Hence one can set $y^{-i}(a^{-i}|l^{-i}) = q(a^{-i}|\hat{l}^{-i}, l^{-i})$ for some $\hat{l} \in L^i$ as punishment. ■

Observe that, in the previous proof, “punishment” is mostly a convenient terminology. More precisely, consider the following strategy of player i in Γ^0: at stage 2, he reports type \hat{l}^i whatever his type; at stage 5., he plays an arbitrary action b^i, independently of the recommendation of the communication device. This strategy of player i can be interpreted as “non-participation”. If player $j = -i$ plays the strategy y^{-i} in the previous proof, player i’s payoff is the same as when he does not participate.

3 Cheap talk game, correlated equilibrium

In this section, we first extend the basic game $\Gamma \equiv <\{L^i, A^i, g^i\}_{i=1,2}, p>$ by means of a long cheap talk phase; then we define correlated equilibria in this extended game.

Let M be a finite set of messages; let c (“continue”) and s (“stop”) be two additional messages available to the players. We define the multistage game $\text{ext}_M \Gamma$ as follows:

Stage 0: every player i learns his type l^i as in Γ, $i = 1, 2$.

Stage 1: the players simultaneously send the message c or s to each other. If they both selected c, they simultaneously send a message in M to each other and they proceed to stage 2. Otherwise, every player i chooses an action in A^i, payoffs are given as in Γ, the game stops.

Stage t ($t = 2, 3, ...$): if the game has not stopped at an earlier stage, the players simultaneously send the message c or s to each other. If they both selected c, they simultaneously send a message in M to each other and they proceed to stage $t + 1$. Otherwise, every player i chooses an action in A^i, payoffs are given as in Γ, the game stops.
The previous scenario fully describes the players’ possible moves in the game $\text{ext}_M \Gamma$, and the payoffs if the moves make the game stop at some stage t. The scenario also allows the game to go on forever, which is unavoidable if the length of communication is not fixed in advance (see, e.g., Forges (1990a), Gossner and Vieille (2001), Aumann and Hart (2003)). We thus have to define the payoffs in the case of infinitely long cheap talk, even if this event will typically be out of the equilibrium path. Since there is no particular outcome to be identified in our general Bayesian game, we assume, as Gossner and Vieille (2001) and Aumann and Hart (2003), that, if communication goes on forever, the players make their decisions “at infinity”.

Let $H_t = (M \times M)^{t-1}$, $t = 1, 2, \ldots$ be the set of all pairs of messages in M possibly sent before stage t and let $H_\infty = (M \times M)^\infty$. We provide these sets with a measurable structure, in the standard way: let \mathcal{H}_t be the algebra over H_t generated by cylinder sets of the form $h_t \in H_t$, where h_t is a sequence in H_t. Let \mathcal{H}_∞ be the σ-algebra over H_∞ generated by the algebras \mathcal{H}_t, $t = 1, 2, \ldots$

A pure strategy σ^i for player i ($i = 1, 2$) in $\text{ext}_M \Gamma$ is a sequence of measurable mappings, $\sigma^i = [(\delta^i_t, m^i_t, d^i_t), \delta^i_\infty, d^i_\infty]$, where

$$\delta^i_t : L^i \times H_t \to \{c, s\}, \quad m^i_t : L^i \times H_t \to M, \quad t = 1, 2, \ldots$$

$$d^i_t : L^i \times H_t \to A^i, \quad t = 1, 2, \ldots \quad d^i_\infty : L^i \times H_\infty \to A^i$$

These mappings are interpreted as follows: δ^i_t describes player i’s decision to continue or stop at stage t if the game is still going on at that stage, m^i_t describes which message in M he sends if both players have decided to continue at stage t, d^i_t describes the action he chooses if at least one of the players has decided to stop at stage t; d^i_∞ describes the action he chooses if communication goes on forever.

Let $\sigma = (\sigma^1, \sigma^2)$ be a pair of pure strategies in $\text{ext}_M \Gamma$ and let $l = (l^1, l^2)$ be a pair of types chosen at stage 0. If, for these types l, σ induces the game to stop at stage t, namely if σ leads one of the player to choose s at stage t, as a function of the past history, then the payoffs associated with l and σ are computed using the mappings d^i_t and the utility functions g^i. If for these types l, σ induces cheap talk to last forever, the payoffs associated with l and σ are computed in a similar way, using the mappings d^i_∞. Payoffs in $\text{ext}_M \Gamma$ are thus well-defined and the definition of the game is complete.

As explained in the introduction, the players cannot hope to implement all communication equilibrium outcomes of Γ by cheap talk, namely as equi-
librium outcomes of $\text{ext}_M \Gamma$ for some set of messages M, without randomizing their strategies in a correlated way.

A correlation device consists of a probability space $(\Omega, \mathcal{B}, \mu)$, together with sub-$\sigma$-algebras \mathcal{B}^1 and \mathcal{B}^2 of \mathcal{B}. $(\Omega, \mathcal{B}, \mu)$ represents extraneous events ("sunspots"), which happen independently of Γ (and $\text{ext}_M \Gamma$), in particular independently of the types in L; \mathcal{B}^i, $i = 1, 2$, represents player i’s private information on the extraneous events. In order to achieve our implementation goal, we shall only make use of simple and well-behaved correlation devices, typically describing discrete random variables.

By adding a correlation device $[((\Omega, \mathcal{B}, \mu), \mathcal{B}^1, \mathcal{B}^2)]$ to $\text{ext}_M \Gamma$, we get a new extended game, $(\text{ext}_M \Gamma)^\mu$, in which before stage 1 of $\text{ext}_M \Gamma$, every player i gets private information in \mathcal{B}^i on an extraneous event, selected in (Ω, \mathcal{B}) according to μ. This lottery can take place before or after stage 0, but is independent of the players’ prior p. In $(\text{ext}_M \Gamma)^\mu$, every player i makes his strategic choices as a function of his extraneous information, described by \mathcal{B}^i ($i = 1, 2$). Proceeding as in Aumann and Hart (2003), a pure strategy σ^i for player i ($i = 1, 2$) in $(\text{ext}_M \Gamma)^\mu$ is a sequence $\sigma^i = [(\delta^i_t, m^i_t, d^i_t)_{t\geq 1}, d^i_\infty]$ of $L^i \times \mathcal{H}_t \times \mathcal{B}^i$-measurable mappings describing player i’s move at stage t (including ∞), where

$$\delta^i_t : L^i \times \mathcal{H}_t \times \Omega \to \{c, s\}, \quad m^i_t : L^i \times \mathcal{H}_t \times \Omega \to M, \quad t = 1, 2, ...$$

$$d^i_t : L^i \times \mathcal{H}_t \times \Omega \to A^i, \quad t = 1, 2, ... \quad d^i_\infty : L^i \times \mathcal{H}_\infty \times \Omega \to A^i$$

Definition 3 A correlated equilibrium of $\text{ext}_M \Gamma$ is a Nash equilibrium of $(\text{ext}_M \Gamma)^\mu$, for some correlation device $[((\Omega, \mathcal{B}, \mu), \mathcal{B}^1, \mathcal{B}^2)]$.

The prior probability distribution p over L, the probability distribution μ of a correlation device and strategies (σ^i, σ^2) in $\text{ext}_M \Gamma$ induce a probability distribution over $\Omega \times L \times \mathcal{H}_\infty \times A$ and thus also conditional probability distributions over A, given every $l \in L$ (i.e., a communication device).

Let $CE(\text{ext}_M \Gamma)$ be the set ($\subset \mathbb{R}^{|L^1 \times L^2|}$) of all correlated equilibrium payoffs of $\text{ext}_M \Gamma$.
Implementing communication equilibria by
cheap talk

We are ready to state the main theorem:

Theorem 1 Let $\Gamma \equiv \{L^i, A^i, g^i\}_{i=1,2}, p >$ be a two-person finite Bayesian game and q be a communication equilibrium of Γ such that $G[q] \in SINTIR(\Gamma)$. There exist a finite set of messages M and a correlated equilibrium of $ext_M(\Gamma)$, the cheap talk extension of Γ with messages in M, which induces the conditional probability distribution $q(\cdot|l^1, l^2)$ over actions (i.e., over $A^1 \times A^2$) for every pair of types $(l^1, l^2) \in L^1 \times L^2$; in particular, the payoff of the correlated equilibrium is $G[q]$. Moreover, the correlated equilibrium of $ext_M(\Gamma)$ is such that cheap talk lasts for finitely many stages almost surely.

In this statement, the set of messages depends on the parameters of Γ and of q. If we allow for countably many messages, i.e., if we consider the extended cheap talk game $ext\Gamma$ in which $M = \mathbb{N}$, we can get all strictly individually rational communication equilibrium payoffs at once: $ME(\Gamma) \cap SINTIR(\Gamma) \subseteq CE(ext\Gamma)$. Recall that, by lemma 1, $ME(\Gamma) \subseteq INTIR(\Gamma)$; the restriction imposed on communication equilibrium outcomes is thus a relatively mild one. Conversely, by proceeding as in general versions of the revelation principle, one can show that $CE(ext\Gamma) \subseteq ME(\Gamma)$. Hence we get the following corollary:

Corollary 1 For any finite two-person Bayesian game Γ,

$ME(\Gamma) \cap SINTIR(\Gamma) = CE(ext\Gamma) \cap SINTIR(\Gamma)$

Remark 1 Once \mathbb{N} is the set of messages, cheap talk in $ext\Gamma$ is described in a universal way, i.e., independently of the underlying Bayesian game Γ, as in Forges (1990b).

Remark 2 The previous corollary can be interpreted as a characterization of the correlated equilibrium payoffs of the long cheap talk game $ext\Gamma$, since it states that $CE(ext\Gamma)$ and $ME(\Gamma)$ essentially coincide. Aumann and Hart (2003) show that, even if only one of the players has private information in Γ (if, e.g., $|L^2| = 1$), the characterization of the Nash equilibrium payoffs of the game $ext\Gamma$ is fairly complex, as it relies on the martingales generated by
the long cheap talk. On the contrary, most correlated equilibrium payoffs of \(\text{ext} \Gamma \) are characterized in a tractable way, as communication equilibrium payoffs of the original Bayesian game \(\Gamma \).

Remark 3 Denoting the closure of \(CE(\text{ext} \Gamma) \) as \(\overline{CE(\text{ext} \Gamma)} \), we deduce from lemma 1 and corollary 1 that

\[
\overline{CE(\text{ext} \Gamma)} = ME(\Gamma)
\]

The proof of theorem 1 is given in section 6. Before that, we propose an example.

5 An example

We consider a variant of the “secret sharing” problem, which is well-known in computer science (see for instance Abraham et al. (2008)). We show that the game has a communication equilibrium payoff which cannot be achieved as a correlated equilibrium payoff of any extension of the game in which the players talk for a given, fixed number of stages.

The secret sharing game \(\Gamma \) will be derived from an auxiliary game \(\hat{\Gamma} \), in which both players have two possible types in \(S^1 = S^2 = \{0, 1\} \). Types are chosen uniformly. Every player has two possible actions: \(A^1 = A^2 = \{0, 1\} \); the payoff functions \(g^i : S^1 \times S^2 \times A^1 \times A^2 \to \mathbb{R}, i = 1, 2 \), are summarized in the following table:

<table>
<thead>
<tr>
<th>(g)</th>
<th>(s^2)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s^1)</td>
<td>(A)</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3, 3, 6, -2</td>
<td>0, 0, -2, 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-2, 6, 0, 0</td>
<td>6, -2, 3, 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0, 0, -2, 6</td>
<td>3, 3, 6, -2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6, -2, 3, 3</td>
<td>-2, 6, 0, 0</td>
</tr>
</tbody>
</table>

The interpretation is as follows: the secret is \(s = s^1 + s^2 \) (mod 2). Given the secret \(s \in \{0, 1\} \), the “right” (resp., “wrong”) action is to play according to the secret, namely \(a^i = s \) (resp., \(a^i \neq s \)); both players have the same preferences: being the only one to take the right action is preferred to both taking the right action, which is preferred to both taking the wrong action, which is itself preferred to being the only one to take the wrong action. In
the game $\hat{\Gamma}$, the pair of expected payoffs $(3, 3)$ can only be achieved as a completely revealing outcome, in which both players take the right action11. But complete revelation cannot be achieved at a communication equilibrium of $\hat{\Gamma}$: every player can gain in lying unilaterally about his type in order to be the only one to take the right action.

Let us modify $\hat{\Gamma}$ into a more complex game Γ, in which the players can certify their type to some extent. Such a certification will be achieved by associating “codes” with the types. Let E be a finite set, containing at least 4 elements (the reason for this cardinality will be given later). The sets of types in Γ are $L^i = S^i \times E \times E \times E$, $i = 1, 2$. Nature first makes the following choices:

1. a pair $(s^1, s^2) \in S^1 \times S^2$ is chosen uniformly as in $\hat{\Gamma}$
2. two pairs $(e^1_0, e^1_1), (e^2_0, e^2_1) \in E \times E$ are chosen uniformly

Player i’s type is $l^i = (s^i, e^i_{s^i}, e^{-1}_0, e^{-1}_1)$, $i = 1, 2$. The action sets and the payoff functions in Γ are the same as in $\hat{\Gamma}$, in the sense that payoffs only depend on the first coordinate of the types and on the actions.

The interpretation of the types in Γ is that player i knows the code $e^i_{s^i} \in E$ of his type s^i but does not know the code of the other possible type he might have. If he can talk to the other player $j = -i$ and wants to reveal his type s^i to him, he also sends the code $e^i_{s^i}$, so that player j, who knows the code of the two possible types of player i, namely, e^i_0 and e^i_1, can check that player i’s reported type is consistent with the codes. If player i wants to lie on his type, he has to guess the corresponding code, with a probability of $\frac{3}{4}$ of being detected by player j. Even if no communication device is available, every player can detect a lie of the other with high probability, by checking the codes, but this typically happens after that useful information has been transmitted. The situation is very different when there is a communication device. In this case, the device does not release any information when it detects cheating, which protects the honest player. This effect cannot be simulated at a Nash equilibrium.

Let us show that the vector of conditional expected payoffs $((3, 3), (3, 3)) \in ME(\Gamma)$. For that, we describe a canonical communication device $q : L \rightarrow$

11In order to see this, let $q(\cdot | l)$, $l \in L$, be conditional probability distributions over actions given types achieving the pair of expected payoffs $(3, 3)$ in the game $\hat{\Gamma}$. Every $q(\cdot | l)$ is a distribution over the same payoffs $\{(0, 0), (-2, 6), (3, 3), (6, -2)\}$, in which $(3, 3)$ is an extreme point.
Every player i, $i=1,2$, reports a type (r^i,e^i,e_0^i,e_1^i) to the communication device q, which recommends then actions as follows:

1. if $e^i = e_{r^i}^i$ and $e^j = e_{r^j}^j$, q computes $r = r^1 + r^2 \pmod{2}$ and sets $a^1 = a^2 = r$.

2. otherwise, q chooses an action profile (a^1,a^2) uniformly.

Let us check that q defines a communication equilibrium. Assume that player j is honest and obedient and consider player $i = j$ with type (s^i,e^i,s_0^i,e_1^i). Suppose first that $r^i \neq s^i$, namely that player i lies on his component of the secret. He does not know the code $e_{r^i}^i$ and will guess it correctly with probability $\frac{1}{4}$ (recall that the set of possible codes E contains 4 elements). In this case, the device recommends actions $a^1 = a^2 = r^1 + s^i$; by playing against the recommendation of the device, player i gets the highest possible payoff, 6. Otherwise, if player i does not guess $e_{r^i}^i$ correctly, the device selects actions uniformly, and player i can as well play against the recommendation of the device. His total expected payoff is $\frac{1}{4} \times 6 + \frac{3}{4} \times \left[\frac{1}{4} \times 3 + \frac{1}{4} \times 6 + \frac{1}{4} \times (-2) \right] < 3$. All other possible deviations of player i, e.g., involving cheating in the other player’s codes, either give rise to a higher probability of being detected and reduce his expected payoff, or have no effect on the payoffs. As we already observed above, while completely revealing in terms of the original types (in $S_1 \times S_2$), the communication equilibrium expected payoff $(3,3)$ cannot be achieved as a Nash equilibrium of a cheap talk game like $\text{ext}_M \Gamma$.

The vector of conditional expected payoffs $((3,3),(3,3))$ is in $\text{SINTIR}(\Gamma)$: by playing both actions with probability $\frac{1}{2}$, independently of his type, player j guarantees that player $i = j$’s payoff does not exceed $\frac{3}{4}$, whatever his type and his action. Obviously, this punishment depends on the fact that player i does not know player j’s share of the secret. By theorem 1, $((3,3),(3,3))$ can thus be achieved as a correlated equilibrium of a long cheap talk game $\text{ext}_M \Gamma$, for some finite set of messages M. We show below that in any extended cheap talk game in which the number of stages is fixed, the players cannot reach $((3,3),(3,3))$.

Let us fix an extension $\text{ext}_M^T \Gamma$ of Γ in which the cheap talk phase cannot exceed T stages. Every stage $t = 0,1,\ldots,T$ of $\text{ext}_M^T \Gamma$ can be described as in $\text{ext}_M \Gamma$, for some set M of messages, but the moves in $\{c,s\}$ are not necessary: the game goes on for $T + 1$ stages, with final decisions at stage
$T + 1$, whatever the history12. Let us assume that $ext^T_M \Gamma$ has a correlated equilibrium achieving the expected payoff $(3, 3)$, namely complete revelation of the secret. At the last stage T, both players must know the secret on every possible history. Without loss of generality, this does not happen at stage $T - 1$, otherwise the deadline could be $T - 1$. Thus, at the end of stage $T - 1$, there exists a history (call it h_{T-1}), which has positive probability at equilibrium, for which at least one of the players, say player 1, does not know the secret, namely, player 1’s posterior probability that player 2’s type is 0 is not 0 or 1. Hence, on h_{T-1}, player 1 relies on player 2’s message at stage T to learn the secret. Note that the history h_{T-1} involves the choice of the underlying correlation device, hence is not necessarily fully identified by player 2. But player 2 can select his message uniformly, independently of the past, at stage T. If player 2 deviates in this way (only at stage T), while player 1 does not deviate, player 2 learns the secret at stage T, on every possible history, while player 1 does not learn it at least on h_{T-1}. In the next paragraph, we complete player 2’s deviation by describing how he chooses his action and we show that his deviation is profitable.

At the end of stage $T - 1$, player 2’s information consists of his type, the private extraneous signal from the correlation device and the messages exchanged at stages 1, ..., $T - 1$. Given his information, player 2 determines the message m_2^T he should send at stage T as if he did not deviate. Since there is no deviation at any stage 1, ..., $T - 1$, player 1 sends his message m_1^T at stage T as in equilibrium. Even if player 2 deviates at stage T, he has the same information, at the end of stage T, as when he does not deviate. In particular, m_1^T and m_2^T are part of player 2’s information. We complete his deviation as follows: after having sent his (uniformly selected) message \tilde{m}_2^T to player 1 and having received player 1’s message m_1^T, he chooses his action in A^2 according to his equilibrium strategy as if the messages at stage T were (m_1^T, m_2^T). This guarantees him a payoff strictly higher than 3 if the history h_{T-1} identified above occurs and no less than 3 otherwise. Hence player 2’s deviation is profitable.

The constructive proof of theorem 1 avoids the obstacles of a bounded cheap talk phase, by introducing extra uncertainty for the players about the time at which they reveal their part of the secret to each other. In such a construction, the number of conversation stages cannot be deterministically bounded. Nevertheless, in equilibrium, the players stop talking with prob-

12Hence, on some histories, cheap talk may become vacuous from some stage on.
ability one. The probability that a deviator can affect the conversation in a way that it lasts forever can be made arbitrarily small. The main idea is that, at every stage, player \(i \), say, does not know whether he will receive useful information from player \(j = -i \) in the following stage or not. Hence player \(i \) may not have any incentive to send a message which differs from the one prescribed by the correlation device. In particular, in our construction, with large probability, a deviation of player \(i \) is detected by player \(j \) before that player \(i \) learns the secret, so that player \(j \) can stop the conversation and punish player \(i \) in the initial Bayesian game \(\Gamma \), with prior \(p \).

6 Proof of Theorem 1

Let us fix a communication equilibrium \(q \) of \(\Gamma \), such that \(G[q] \in SINTIR(\Gamma) \). We shall construct a set of messages \(M \) and a correlated equilibrium of \(ext_M \Gamma \) which satisfy the requirements of the theorem. The precise size of \(M \) will be determined when we check the equilibrium conditions. We start by describing a correlation device, namely a probability space \((\Omega, \mathcal{B}, \mu) \), and private signals for every player, namely sub-\(\sigma \)-algebras \(\mathcal{B}_1 \) and \(\mathcal{B}_2 \); then we define the players’ strategies.

Items selected by the correlation device: \((\Omega, \mathcal{B}, \mu) \)

We make a list of the items selected by the correlation device. Unless specified otherwise, these items are selected uniformly in the finite set to which they belong and they are all selected independently of each other.

The correlation device selects:

1. for \(i = 1, 2 \), a permutation \(\eta^i \) of \(L^i \); let \(\eta = (\eta^1, \eta^2) \) and \(\eta(l) = (\eta^1(l^1), \eta^2(l^2)) \), for every \(l = (l^1, l^2) \in L \);

2. a stage \(t^* \in \{2, 3, \ldots\} \), according to a geometric distribution with success parameter \(z > 0 \) to be specified later;

3. for every \(l \in L \), a pair of actions \(a_{t^*, \eta(l)} \in A \), according to \(q(., |l) \);

4. for every \(l \in L \) and every \(t \in \{2, 3, \ldots\}, t \neq t^* \), a pair of actions \(a_{t, \eta(l)} \in A \);

5. for \(i = 1, 2 \), every \(l \in L \) and every \(t \in \{2, 3, \ldots\} \), a permutation \(\phi^i_{t, \eta(l)} \) of \(A^i \); let us set \(b^i_{t, \eta(l)} = \phi^i_{t, \eta(l)}(a^i_{t, \eta(l)}) \);
6. for $i = 1, 2$, every $l \in L$, every action $b^i \in A^i$ and every $t \in \{2, 3, \ldots\}$, a “code” $k^i(t, \eta(l), b^i) \in M$;

7. for $i = 1, 2$ and every $t \in \{2, 3, \ldots\}$, a pair of “labels” $\lambda^i_t \in M$ such that $\lambda^1_t = \lambda^2_t$ and $\lambda^1_t \neq \lambda^2_t$ if $t \neq t^*$;

8. for $i = 1, 2$, every $l \in L$, every $t \in \{2, 3, \ldots\}$ and every label $\lambda \in M$, a “code” $\kappa^i(t, \lambda) \in M$.

To sum up, only t^* in 1. and $a_{t^*, \eta(l)}$, $l \in L$, in 3. are selected according to a specific, non-uniform probability distribution. The stage t^* is the only random variable which is not finite. In 7., the labels λ^1_t and λ^2_t at stage t are not independent from each other, nor from t. The parameter z represents the probability that t^* be the next stage; z and the size of M will be computed at the end of the proof (see the expression (4) below).

Private extraneous information: B^i, $i = 1, 2$.

The correlation device sends the following private signal\(^{13}\) to player i, $i = 1, 2$:

- the permutation η^i of L^i selected in 1.

- the permutations $\phi^i_{t, \eta(l)}$ of A^i, $l \in L$, $t \in \{2, 3, \ldots\}$ selected in 5.

- the (encrypted, recommended) actions (for the other player, $-i$) $b^{-i}_{t, \eta(l)} \in A^{-i}$ for every $l \in L$, $t \in \{2, 3, \ldots\}$ defined in 5, together with their associated code $k^{-i}(t, \eta(l), b^{-i}_{t, \eta(l)})$ selected in 6.

- the code functions $k^i(t, \eta(l), :) : A^i \to M$ for every $l \in L$, $t \in \{2, 3, \ldots\}$, selected in 6.

- the labels λ^i_t, $t \in \{2, 3, \ldots\}$ selected in 7., together with their associated code $\kappa^i(t, \lambda^i_t)$ selected in 8.

- the code functions (of the other player, $-i$) $\kappa^{-i}(t, :) : M \to M$ for every $t \in \{2, 3, \ldots\}$, selected in 8.

\(^{13}\)It is understood that functions over $L = L^1 \times L^2$ are described as $L^1 \times L^2$ tables, for a given order on L^1 and L^2.
We denote player i’s private signal as

$$\omega^i = \begin{bmatrix} \eta^i \\ (b^{i}_{t,\eta(l)}, k^{-i}(t, \eta(l), b^{i}_{t,\eta(l)}), k^i(t, \eta(l), .))_{t \geq 2, l \in \Lambda} \\ (\lambda^i_t, k^i(t, \lambda^i_t), k^{-i}(t, .))_{t \geq 2} \end{bmatrix} \tag{2}$$

At this point, the description of the game $(ext_M \Gamma)^\mu$ is complete.

Equilibrium strategies (σ^1, σ^2) in $(ext_M \Gamma)^\mu$

We first give a rough description of the strategies (σ^1, σ^2) and of the way in which they combine with each other. The basic idea is that the geometric random variable t^* describes the only relevant stage, in which players determine the actions $a^i_{t^*,\eta(l)}$, $i = 1, 2$, to be played in the Bayesian game. For every l, the pair of actions $a^i_{t^*,\eta(l)}$ selected in 3. is distributed according to $q(.)|l)$. However, the players cannot fully reveal their types to each other nor know more than their own action. Hence permutations are applied both to the types (η^i, selected in 1.) and to the actions ($\phi^i_{t^*,\eta(l)}$, selected in 5.). At stage 1, the players send hidden types, $\eta^i(l)$, $i = 1, 2$, to each other. At stage t^*, every player i sends the message $b^{i}_{t^*,\eta(l)}$ to the other player. If player i indeed receives the message $b^{i}_{t^*,\eta(l)}$ from the other player, he is able to evaluate his action as $a^i_{t^*,\eta(l)} = (\phi^i_{t^*,\eta(l)})^{-1}(b^{i}_{t^*,\eta(l)})$, by applying the inverse of the permutation $\phi^i_{t^*,\eta(l)}$, and this action will be distributed as in the communication equilibrium. There remains to make every player able to identify t^*, only after having transmitted his recommended action $b^{i}_{t^*,\eta(l)}$ to the other player. This is the role of the labels selected in 7. By construction, as in the communication equilibrium, player i will not gain by pretending another type at stage 1 or deviating from his recommended action $a^i_{t^*,\eta(l)}$. But player i must transmit a recommended action $b^{i}_{t^*,\eta(l)}$ to the other player, which has no counterpart in the communication equilibrium. This is the role of the codes14 selected in 6. In order to prevent cheating in the labels, further codes are needed, selected in 8. We detail the equilibrium strategies in the next paragraph.

Given his private extraneous signal ω^i described above, player i’s equilibrium strategy in $ext_M \Gamma$ is as follows:

14Restricted to two stages, $t = 1$ and t^* chosen deterministically equal to 2, the correlation device is a variant of the one used in Forges (1990b) in the case of three players.
- at stage 1, player i chooses c; if both players select c, player i announces $\eta_i(l^i)$ if his type is l^i; otherwise, he plays a punishment action against the other player and the game stops (recall that q is individually rational, so that player i can select a punishment according to some $\eta(l) \in \Delta A^{-1}$); let $\eta(l)$ be the pair of announcements at the first stage (if (c, c) was chosen).

- at stage 2, player i chooses c

- at every stage $t \geq 2$, if both players select c, player i sends the message:

$$b_{i,\eta(l)}^{-i}, k^{-i}(t, \eta(l), b_{i,\eta(l)}^{-i}), \lambda_t^i, \kappa_t^i(t, \lambda_t^i)$$

- at stage 2, if (c, c) was not selected, player i punishes the other player, as in stage 1.

- at every stage $t \geq 2$, if (c, c) was selected, then, right after having received the other player’s last message, player i checks whether the latter is consistent with the codes, namely that player $-i$’s announcement $(b_t^i, k_t^i, \lambda_t^{-i}, \kappa_t^{-i})$ satisfies:

$$k_t^i = k_i(t, \eta(l), b_t^i), \kappa_t^{-i} = \kappa_i(t, \lambda_t^{-i})$$

If these equalities do not hold at stage t, player i stops the cheap talk, that is, he chooses s at the beginning of stage $t + 1$ and plays a punishment action against the other player as above.

- at every stage $t \geq 2$, if (c, c) was selected, player i also checks whether his label λ_t^i coincides with the label sent by the other player, namely whether $\lambda_t^i = \lambda_t^{-i}$. If yes, and no deviation was detected, player i concludes that $t = t^*$; he chooses to stop (namely, s) at the beginning of stage $t + 1$, the cheap talk ends and player i determines his action a_i^t by applying the inverse of the permutation $\phi_{i,\eta(l)}^j$ (which he received from the correlation device) to the message b_t^i (which he received from the other player):

$$(\phi_{i,\eta(l)}^j)^{-1}(b_t^i) = a_i^t$$

\footnote{To be consistent with our definition of strategies in $(ext_M \Gamma)^n$, in which all randomizations are made by the correlation device, possible punishment strategies should in fact be selected by the correlation device.}
- if, at the beginning of some stage \(t \geq 3 \), player \(i \) chooses \(c \) but the other player \(j \) (\(= -i \)) chooses \(s \), player \(i \) punishes player \(j \) as above.

- should cheap talk last forever, \(d^\infty_i (i = 1, 2) \) could be defined in an arbitrary way.

To sum up, if both players follow the prescribed strategies, the conversation lasts for at least 2 stages. Stage 1 is the only stage where the players send a type dependent message, but posteriors are not updated until stage \(t^* \) is reached. Stages \(t \geq 2 \) are used for possible coordination. Coordination happens when \(\lambda_i^1 = \lambda_i^2 \), namely when \(t = t^* \); in this case, final decisions are made at stage \(t^* + 1 \).

In order to check that the prescribed strategies form an equilibrium in the game \((ext_M \Gamma)^\mu\), we assume for simplicity that player 2 does not deviate in \((ext_M \Gamma)^\mu\) and consider possible deviations of player 1. Let \(l^1 \) be his type and \(\omega^1 \) be his extraneous signal, described as in (2). Since player 1’s payoff \(G^1[q] \) is individually rational, he cannot benefit from choosing \(s \) at the beginning of stage 1 of \((ext_M \Gamma)^\mu\); let thus \(\eta^1(\hat{l}^1) \) be his further message at stage 1, with \(\hat{l}^1 \) possibly different from \(l^1 \). We shall distinguish between several deviations of player 1. We start with deviations which are already feasible in the communication equilibrium and we show that they are unprofitable, namely, that the correlated equilibrium of \((ext_M \Gamma)^\mu\) “mimics” the communication equilibrium.

Equilibrium conditions: undetectable deviations

Let us assume that from stage 2 on, player 1 sends all his messages as prescribed by his correlated strategy. More precisely, let \(t \geq 2 \) be a stage \(t \) at which the conversation is still going on. Given our current assumptions, it must be that \(\lambda_i^1 \neq \lambda_i^2 \) for every stage \(r \) such that \(2 \leq r < t \). At the beginning of stage \(t \), player 1 has not learnt anything on \(t^* \), player 2’s type nor recommended actions, since all items that player 1 can interpret in \(\omega^1 \) have been selected uniformly (this holds in particular for *every* action \(b^2_{t, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)} \), including \(b^2_{t^*, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)} \), which is obtained by applying a random permutation to \(a^2_{t, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)} \)). Furthermore, at the beginning of stage \(t \), given \(\omega^1 \) and the sequence of moves in \((ext_M \Gamma)^\mu\) up to stage \(t \) (including his first move \(\eta^1(\hat{l}^1) \)), player 1 anticipates that the pair of actions to be determined (but not necessarily played) at the further stage \(t^* \) will be

\[
(\phi^i_{t^*, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)})^{-1}(b^i_{t^*, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)}) = a^i_{t^*, \eta^1(\hat{l}^1), \eta^2(\hat{l}^2)} \quad i = 1, 2
\]
By construction, given player 1’s information at the beginning of stage t, this pair of actions is distributed according to $q(.|\tilde{l}^1, l^2)$. To sum up, if player 2 does not deviate and player 1 of type l^1 sends $\eta^1(\tilde{l}^1)$ at the first stage and all his other messages as prescribed, the actions computed by the players at stage t^*, namely (3), are distributed exactly as the actions recommended by the communication device q when player 1’s reported type is \tilde{l}^1 and player 2’s type is l^2. Hence player 1 will not deviate at the first stage by lying on his type and/or at $t^* + 1$ by choosing another action than the one computed in (3).

The previous paragraph also shows that, if both players follow the prescribed strategies at every stage, the conditional probability distribution over actions (i.e., over $A_1 A_2$) given types $(\tilde{l}^1; l^2) \in S^1 \times S^2$ is $q(.|\tilde{l}^1, l^2)$; in particular, the expected payoffs are $G[\eta]$.

We consider further possible deviations of player 1.

Equilibrium conditions: deviations which are detectable with high probability

Let l^1, ω^1 and \tilde{l}^1 be as above. As already observed for stage 1, if player 2 does not deviate, player 1 cannot gain in sending his messages as prescribed and choosing s at the beginning of a stage at which he should choose c, since his payoff $G[\eta]$ is individually rational.

As above, let us consider a stage t at which the conversation is still going on; assume that player 1 does not send (at least one of) the prescribed variables $b^2_{t,\pi^1(\tilde{l}^1),\pi^2(l^2)}$ and λ^1_t in his message to player 2. Then, since the codes are chosen uniformly in M, the corresponding codes $k^2(t, \eta^1(\tilde{l}^1), \eta^2(l^2), b^2_{t,\pi^1(\tilde{l}^1),\pi^2(l^2)})$ and $k^1(t, \lambda^1_t)$, will be incorrect with probability (at least) $1 - 1/|M|$, in which case player 2 will detect an inconsistency, stop the conversation and choose his action according to a “punishment” strategy $y^2(.|l^2)$. If it turns out that $\lambda^1_t \neq \lambda^2_t$, player 1 will not have learnt anything; in particular his probability distribution over L^2 will still be $p(.|l^1)$. In this case, player 2 can pick the strategy $y^2(.|l^2)$ in such a way that player 1’s payoff does not exceed $G^1[\eta|l^1] - \epsilon$, for some $\epsilon > 0$, since $G^1[\eta]$ is strictly individually rational in the original game Γ (whose parameters involve the prior p). However, if $\lambda^1_t = \lambda^2_t$, so that $t = t^*$, player 1 acquires new information; the effect of the “punishment” strategy becomes unclear, except for the fact that player 1’s payoff cannot exceed the largest possible payoff in the game Γ, which we denote by α. Finally, if player 1’s deviation is not detected, his payoff can also be bounded by α (in this case, the conversation could be infinite). By recalling
that, at every stage t at which the game has not yet stopped, the probability
that $t = t^*$ is z, we compute the following upper bound on player 1’s payoff
$G_{dev}^1(l^1)$ when he deviates as described above:

$$G_{dev}^1(l^1) \leq (1 - 1/|M|)(z\alpha + (1 - z)(G^1[q|l^1] - \epsilon)) + \alpha/|M|$$ \hspace{1cm} (4)

If the set M of messages16 is large enough and the probability $z > 0$ is small
enough, the previous bound will not exceed $G^1[q|l^1]$, namely

$$G_{dev}^1(l^1) \leq G^1[q|l^1]$$

We have thus shown that the correlated strategies described above form an
equilibrium of the game $(ext_M\Gamma)^\mu$ which achieves the conditional probability
distributions $q(.|l)$ of the communication equilibrium, in particular, the payoff
$G[q]$. At equilibrium, given the geometric distribution of t^*, the conversation
ends with probability one. ■

7 Discussion: variants of the model

We start with a variant of the strategic form correlated equilibria considered
up to now. Then we consider two particular cases in which theorem 1 takes
a much simpler form. Finally, we address questions mostly motivated by
Ben-Porath (2003, 2006).

7.1 Extensive form correlated equilibria

The proof of theorem 1 makes use of typical correlation devices for the long
cheap talk game $ext_M\Gamma$, which select, before the beginning of game, an in-
finite sequence of extraneous signals to be used gradually by the players.
The corresponding correlated equilibria can be denoted as “strategic form
correlated equilibria”. What if the players do not have access to (or can-
not generate17) infinite sequence of correlated extraneous signals, at once,

16The bound (4) reflects the required size of M as far as codes are concerned. The set
M should of course be also large enough to contain the other messages to be transmitted
by the players (i.e., $|M| \geq \max \{ |L^i|, |A^i|, i = 1, 2 \}$).

17Players can simulate finite correlation devices by themselves by using simple machines
(like Turing machines, see Dodis, Halevy and Rabin (2000) and Urbano and Vila (2002))
or the AND signalling function (see Vida (2007b)).
at the beginning of the game? One could then consider *extensive form, autonomous* correlation devices which send one private signal to every player at every stage of $\text{ext}_M \Gamma$ (see Forges (2006) and Myerson (2006, 1991)). Such devices generate sunspots every day. They are independent of the cheap talk game, in the sense that they do not receive any input from the players and do not get any information on the players’ messages. They thus preserve the players’ privacy. The previous proof shows that theorem 1 still holds if “correlated equilibrium” is replaced by “extensive form, autonomous correlated equilibrium using *finitely* many signals at every stage”. Corollary 1 also holds for the set $\widetilde{CE}(\text{ext}\Gamma)$ of extensive form, autonomous correlated equilibrium payoffs, since $CE(\text{ext}\Gamma) \subseteq \widetilde{CE}(\text{ext}\Gamma) \subseteq ME(\Gamma)$.

7.2 Sender-Receiver games

As a particular case, let us assume that only player 1 possesses private information ($|L^2| = 1$) and that only player 2 makes a decision ($|A^1| = 1$). Under these assumptions, the cheap talk game becomes a “sender-receiver” game, in which the length of the players’ conversation is not fixed in advance (as in, e.g., Forges (1990a), Aumann and Hart (2003)\(^{18}\), Forges and Koessler (2008)). We shall deduce from the proof of theorem 1 that t^* can be chosen in a deterministic way, as $t^* = 1$. Let us set $L = L^1$ and $A = A^2$ and let us consider a correlation device as above, which selects the following items

1. a permutation η of L;
2. for every $l \in L$, an action $a_{\eta(l)} \in A$, according to $q(.|l)$;
3. for every $l \in L$, a permutation $\phi_{\eta(l)}$ of A; let us set $b_{\eta(l)} = \phi_{\eta(l)}(a_{\eta(l)})$;
4. for every $l \in L$ and every action $b \in A$, a “code” $k(\eta(l), b) \in M$;

The correlation device transmits

- to player 1: η and $(b_{\eta(l)}, k(\eta(l), b_{\eta(l)}))_{l \in L}$
- to player 2: $(\phi_{\eta(l)}, k(\eta(l), .))_{l \in L}$

Given the signal from the correlation device and his type l, player 1’s equilibrium strategy is to send $\eta(l)$, $b_{\eta(l)}$ and $k(\eta(l), b_{\eta(l)})$ to player 2 at a single

\(^{18}\)Aumann and Hart (2003) assume one sided private information, namely, $|L^2| = 1$, but allow both players to make decisions.
stage of information transmission. Given his private signal \((\phi_\eta(l), k(\eta(l), .))_{l \in L}\)
and player 1’s message \((\hat{l}, b, m)\), player 2 checks whether the code is correct, namely that
\(m = k(\hat{l}, b)\); if it is the case, he chooses the action \((\phi_\eta)^{-1}(b)\); otherwise he chooses his action according to \(q(.|l)\), for some arbitrary \(l \in L\).

By proceeding as above, one shows that these correlated strategies form an equilibrium, which is equivalent to the communication equilibrium \(q\). Forges (1985, lemma 2) establishes a slightly stronger result, namely that every communication equilibrium payoff (even not in \(SINTIR(\Gamma)\)) can be achieved as a correlated equilibrium payoff of the cheap talk game. As already pointed out, Blume (2010) proves an analog in Crawford and Sobel (1982)’s model.

7.3 Uniform punishments

The proof of theorem 1 simplifies dramatically if the communication equilibrium payoff of \(\Gamma\) to be achieved as a correlated equilibrium payoff of \(ext_M\Gamma\) belongs to \(SINTIR(\Gamma)\) for every prior probability distribution \(p\) in \(\Gamma\). This happens for instance if \(\Gamma\) has a “bad outcome” that every player can enforce, whatever the types.

More precisely, let \(\beta^1, \beta^2 \in \mathbb{R}\) and let \(b = (b^1, b^2) \in A\) be such that
\[g^i(l, (a^i, b^{-i})) \leq \beta^i \quad \text{for every} \quad i = 1, 2, \quad l \in L, \quad a^i \in A^i \]
and, recalling expression (1), let \(G[q] = (G^i[q\mid l^i])_{l^i \in L^i}\) be such that \(G^i[q\mid l^i] > \beta^i, \; i = 1, 2\). Then \(G[q] \in SINTIR(\Gamma)\), for every \(p \in \Delta L\). In the proof of theorem 1, to achieve \(G[q]\) as a payoff in \(CE(ext_M\Gamma)\), \(t^*\) can be chosen in a deterministic way, as \(t^* = 2\). The correlation device can dispense with selecting the labels and all items associated with \(t > 2\). Indeed, if player \(i\)’s code \(k^{-i}(2, \eta(l), b_{2,\eta(l)}^{-i})\) at stage 2 is not correct, player \(-i\) can punish him by playing the action \(b^{-i}\) guaranteeing that player \(i\)’s payoff does not exceed \(\beta^i\), independently of the information that player \(i\) may have acquired at stage 2. However, in many interesting situations, it is impossible to punish a player, when he has obtained further information, in a way that would deter him from cheating in transmitting his own information. This is exactly what happens in the example of section 5: once a player knows the secret, there is no way to punish him strictly below his communication equilibrium payoff.

The next remarks are specially motivated by questions raised in Ben-Porath (2003, 2006).
7.4 Credible punishments

The punishment strategies used in the proof of theorem 1 may not be credible, in the sense that they are akin to minmax strategies. An easy way to guarantee credible punishments is to focus on communication equilibrium payoffs that are not only strictly individually rational, but even dominate a Bayesian-Nash equilibrium. Ben-Porath (2003) studies the implementation of such particular communication equilibria in Bayesian games with three players or more.

Recalling (1), let us consider payoffs $G[q] = (G^i[q|l^i]|_{l^i \in L^i})_{i=1,2} \in ME(\Gamma)$ for which there exist (possibly equal) Bayesian-Nash equilibrium payoffs $x_1 = (x^i_1(l^i)|_{l^i \in L^i})_{i=1,2}$ and $x_2 = (x^i_2(l^i)|_{l^i \in L^i})_{i=1,2}$ in Γ such that

$$G^i[q|l^i] > x^i_1(l^i) \quad \text{for every } i = 1, 2 \text{ and } l^i \in L^i.$$

Then, in the proof of theorem 1, when player i deviates in a detectable way, the other player can punish him by playing the Nash equilibrium strategy associated with the payoff x_i ($i = 1, 2$).

Observe that such a punishment reaches its goal because in our proof, when a deviation is detected, the probability distribution over types is, with arbitrarily high probability, the prior p. Credible punishments are of course not necessarily uniform punishments (see Ben-Porath (2006)).

Observe also that we do not require that x_1 and x_2 coincide. In theorem 1 of Ben-Porath (2003), the communication equilibrium payoff to be implemented by cheap talk is required to dominate the same Bayesian Nash for all players (and all types). Such an assumption can be useful in games with more than two players, because the identification of a deviating player can then be an issue.

7.5 “Cheap talk” with delayed messages

The terminology “cheap talk” has been used to cover more or less sophisticated forms of communication between the players. In this paper, we just allow the players to talk for as long as they like by sending simultaneous messages to each other. Bárány (1992) and Ben-Porath (2006) consider more flexible procedures, like the safe recording, at some stage t, of a message that can possibly be released at some further stage t', as a function of the history at stage t'.

26
If such a relaxed form of cheap talk is allowed in the framework of the current paper, the proof of theorem 1 can easily be modified so as to achieve every payoff in $ME(\Gamma) \cap SINTIR(\Gamma)$ with only four stages of cheap talk. To see this, let us slightly modify the correlation device of the proof of theorem 1 by chosing t^* uniformly in some finite set T and interpreting it as an index (rather than a stage). At the first stage of cheap talk, the players exchange information $\eta(l)$ on their types as before. Then every player i secretly prepares $|T|$ envelopes, with envelope t containing the encrypted recommended action $b_{\eta(l)}^i$ of the other player, its code $k^{-i}(t, \eta(l), b_{\eta(l)}^i)$ and player i’s code function $k^i(t, \eta(l), \cdot)$. At the second stage of cheap talk, the players exchange their extraneous signals on the labels for all $t \in T$ at once (namely, $(\lambda^l_i, k^i(t, \lambda^l_i), k^{-i}(t, \cdot))_{t \in T}$). If no deviation is detected at this stage, they identify the index t^*. At the third stage of “cheap talk”, they reveal to each other the content of all envelopes with index $t \neq t^*$ and check that the codes are consistent. If again no deviation is detected, they open the two envelopes with index t^*.

The conclusion from this exercise is that allowing delayed messages in cheap talk is by no means innocuous. Indeed, in section 5, we have exhibited a communication equilibrium payoff which cannot be achieved as a correlated equilibrium payoff of any game in which cheap talk lasts for a fixed number of stages and does not involve any delayed message.

References

29

