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Abstract. Lotteries loom large in resource allocation when the resources assigned are

indivisible and monetary transfers are limited. We study random allocations by focusing

on the marginal distribution of objects to agents � rather than the joint lottery for all

objects and agents � an approach pioneered by Hylland and Zeckhauser (1979). We

show how to broaden the approach to accommodate various features and constraints

encountered in real-world markets, including group-speci�c quotas (�controlled choice�)

and endogenous capacities often present in school choice and housing allocation, and

scheduling and curriculum constraints arising in course allocation. We then apply the

method to �nd allocations that are ex ante fair and e�cient in the presence of these

constraints. The method can also be applied to certain two-sided matching problems to

produce a fair matchup design in interleague games and speed dating.

Keywords: Market Design, Random Assignment, Birkho�-von Neumann Theorem,

Probabilistic Serial, Pseudo-Market, Utility Guarantee, Assignment Messages.

1. Introduction

Lotteries are commonplace in everyday resource allocation. Lotteries are used to break

ties among students applying for overdemanded public schools and for popular after-school

programs, to ration o�ces, parking spaces, and tasks among employees, to allocate courses

and university dormitories among college students, and to assign jury and military duties
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among citizens.1 The ubiquitous ��rst-come �rst-served� method, or �queuing,� is often

only a less apparent way to include random elements in setting a priority order. Lotteries

are sensible in these examples and many others because the objects to be assigned are

indivisible and monetary transfers are limited or unavailable.2 In these circumstances,

any assignment of resources is likely to be unfair ex post, and, absent monetary transfers,

randomization promotes a perception of ex ante fairness that makes the ex post unfairness

more acceptable to participants. Naturally, lotteries �gure prominently in market design,

for these two features are present in many markets.

To �nd a desirable random allocation, it is useful to view each agent as directly con-

suming a lottery of goods.3 Since these random assignments�the lotteries of goods

received by agents�are �divisible� in probability units, one can then apply the classical

frameworks developed for divisible goods. Hylland and Zeckhauser (1979) (�HZ�) were

the �rst to apply this perspective to market design. Their pseudo-market mechanism

endows agents with (the same) �xed budget in a �ctitious currency, asks them to expend

their budget to �buy� probability shares of alternative goods, and the mechanism �nds a

competitive equilibrium by solving for prices (per unit probability of obtaining each good)

that clear the market. The resulting allocation is then ex ante e�cient by the �rst welfare

theorem. Bogomolnaia and Moulin (2001) (�BM�) also adopted the random assignment

approach to �nd an allocation that is fair and e�cient in the ordinal sense.4

1Lotteries played historical roles in assigning public lands to homesteaders (Oklahoma Land Lottery of

1901), and radio spectra to broadcasting companies (FCC assignment of radio frequencies during 1981-

1993). Lotteries are also used annually to select 50,000 winners of the US permanent residency visas

(�green cards�) from those quali�ed in the DoJ's immigration diversity program.
2The limitation of monetary transfers arises from moral objection to �commoditizing� objects such as

human organs and from fairness consideration. Assignment of resources based on prices often favor those

best endowed with money rather than those most deserving, and can be regarded as unfair for many

goods and services. See Che and Gale (2008) for making this point based on utilitarian e�ciency.
3The conventional perspective focuses on agents' ex post assignment of goods rather than the ex ante

lotteries they receive. That is, a mechanism typically identi�es ex post desirable allocations and, to

ensure ex ante fairness, randomizes among such allocations. The random serial dictatorship (RSD),

widely used in practice, is a case in point. In RSD, the agents are randomly ordered, and, following that

order, each agent is assigned his/her most preferred object not yet assigned. This resulting assignment

is ex post e�cient and ex ante fair, but is known to entail ex ante e�ciencies even in the ordinal

sense (see Bogomolnaia and Moulin (2001)). Other well known mechanisms such as Gale and Shapley's

deferred acceptance and top trading cycles follow this conventional approach and su�er similar ex ante

ine�ciencies, when ties arise and need to be broken randomly.
4BM's Probabilistic Serial mechanism takes agents' ordinal preference orders as input and runs an

�eating� algorithm, whereby each agent consumes probability shares of alternative goods at unit speed
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The random assignment method, such as HZ's and BM's mechanisms, has been devel-

oped so far in a simple setting in which n indivisible objects are assigned to n agents, one

for each agent. The purpose of the current paper is to broaden the random assignment

methodology (including HZ and BM) to enhance its practical applicability. For these

mechanisms to be applicable to practical assignment problems, one should be able to ex-

tend them to accommodate a variety of constraints and features present in practice. First

of all, the model itself need to be generalized. For instance, the mechanism must allow

for agents or objects to be unassigned, a possibility in school choice. For course allocation

problems, since a single course accepts multiple students, and a student takes multiple

courses, the extensions should accommodate many-to-many matchings.

More challenging are a variety of other constraints that practical mechanisms often

need to satisfy. A case in point is the so-called �controlled-choice� in school assignment.

Schools often seek to balance their student bodies in terms of gender, ethnicity, race, test

scores, and the geographic location of students' residence. For instance, public schools in

Massachusetts are discouraged by the Racial Imbalance Law from having student enroll-

ments that are more than 50% minority. Miami-Dade County Public Schools control for

the socioeconomic status of students in order to diminish concentrations of low-income

students at certain schools. In New York City, �Educational Option� (EdOpt) schools

must balance their student bodies in terms of students' test scores.5 Public schools in

Seoul restrict the number of seats for those students residing in distant school districts,

in order to alleviate morning commutes. In a course allocation problem, a student may

wish to enroll in no more than a certain number of courses in a given subject (curriculum

constraints) or in a given time slot (scheduling constraints). Finally, the objects may not

exist in �xed supply but may be adjusted based on the demands. For instance, schools

assign their students to di�erent foreign language programs, the exact composition of

which is adjustable to a degree determined by the available sta� and resource.

The presence of these constraints raises a methodological issue for the random assign-

ment method. Since the constraints apply to realized ex post assignments, it is not clear

how they restrict the set of feasible random assignments. In one direction, it is obvious

in the order of their preferences, starting with the most preferred object. The total cumulative shares

at time 1 then become random assignments. The resulting random assignment is ex ante e�cient in the

ordinal sense, namely, it is not dominated by any other random assignment in the sense of �rst-order

stochastic dominance.
5In particular, 16 percent of students that attend an EdOpt school must score above grade level on

the standardized English Language Arts test, 68 percent must score at grade level, and the remaining 16

percent must score below grade level (Abdulkadiroglu, Pathak, and Roth, 2005).
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that any lottery over deterministic assignments that each satisfying a set of constraints

must induce a random assignment which also satis�es the same constraints, but what

about the reverse implication? Namely, if a random assignment satis�es a set of con-

straints, can it be implemented by a joint lottery over deterministic assignments each

of which satis�es the same constraints? In the simple one-to-one matching environment

of HZ and BM, this issue is resolved by the celebrated Birkho�-von Neumann theorem

(Birkho�, 1946; von Neumann, 1953). To what extent this theorem can be generalized to

handle more complicated constraints is unclear.

The �rst part of the paper addresses this methodological challenge by maximally gen-

eralizing the Birkho�-von Neumann theorem. We consider a general model of indivisible

goods that allows for many-to-one and many-to-many matchings, as well as unassignment.

We then characterize an underlying structure of constraints�expressed in terms of sets

whose assignment are subject to maximal or minimal quotas�that is su�cient for a ran-

dom assignment to be implementable. We next provide a polynomial time algorithm that

implements any random assignment in the general environment satisfying the su�cient

condition. Last, we show that our su�cient condition is also necessary in typical bilateral

matching environments.

The second part of the paper applies the random assignment methodology to speci�c

market design contexts. Our �rst application is a generalization of BM's Probabilistic

Serial mechanism, to accommodate new kinds of supply-side constraints that may be

important in unit-demand applications such as school choice and dormitory assignment.

We show how to modify BM's algorithm to accommodate constraints such as controlled

choice and adjustable capacities and prove that the attractive properties of BM's algorithm

extends to this more general environment.

Our second application is a generalization of HZ's pseudo-market mechanism, to ac-

commodate new kinds of demand-side constraints that may express important aspects

of participants' preferences in multi-unit demand applications such as course allocation

and the assignment of supplier leads. We enrich the messages of the agents, via the �as-

signment messages� developed by Milgrom (2009), to allow them to express constraints

such as scheduling and curricular constraints (�I want just one course in �nance and at

most one course before noon�) arising in course allocation, and to express nonlinear pref-

erences such as diminishing marginal utilities for an item or category (�the second �nance

course is worth less to me than the �rst�), and we imbed these enriched messages to

develop a generalized multi-unit pseudo-market mechanism. We then establish existence

of competitive equilibrium prices in the pseudo-market, and invoke our su�ciency result
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to ensure implementability of the random assignment that results from this competitive

equilibrium. We �nally show that this generalization inherits the attractive e�ciency and

fairness properties of the original, which had limited attention to the case of unit de-

mand. This mechanism may be useful for practice, especially because several multi-unit

assignment mechanisms currently used in practice have been shown to have important

�aws with respect to both e�ciency and fairness (Sonmez and Unver 2010; Budish and

Cantillon, 2009).

Finally, our implementation result has an unexpected application for ensuring ex post

fairness in multi-unit resource allocation. When agents demand multiple goods there can

be many ways to implement a given random assignment, some of which may be fairer

than others. For instance, suppose there are two agents, 1 and 2, dividing four objects,

a, b, c, and d, which they prefer in the order listed. An ex ante fair allocation would be to

assign each agent each good with probability 0.5. One way to implement this outcome is

to assign a and b to 1 and c and d to 2 with probability one half and a and b to 2 and c and

d to 1 with the remaining probability one half. While ex ante fair, this implementation

will be ex post unfair since one agent always gets two best and the other gets the two

worst. There is another implementation of the same random assignment that is ex post

fair: whenever one agent gets one of the two best objects, he must also get one of the

two worst objects. It turns out our implementation result can be utilized to ensure this

latter implementation, more generally to ensure that every realized assignment chosen to

implement a random assignment approximiates the original random assignment in terms

of expected utilities. This procedure can be applied in the context of course allocation e.g.,

in conjunction with our generalization of HZ, or in other multi-unit demand environments

such as task assignment and fair division of estates. The utility guarantee can also be

adapted to a two-sided matching problem, in which both sides of the market are agents.

Starting with any random matching, we can introduce ex post utility guarantees on both

sides, ensuring ex post utility levels that are close to the promised ex ante levels. This

method can be used, for example, to design a fair schedule of inter-league sports matchups

or a fair speed-dating mechanism.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

presents the su�ciency and necessity results for implementing random assignments. Sec-

tion 4 presents the generalization of Bogomolnaia and Moulin's (2001) Probabilistic Serial

mechanism, for applications such as school choice. Section 5 presents the generalization

of Hylland and Zeckhauser's (1979) Pseudo-market mechanism, for applications such as
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course allocation. Section 6 presents the utility guarantee results, including the appli-

cation to two-sided matching. Section 7 collects some negative results for non-bilateral

matching environments. Section 8 presents the algorithm for implementing random as-

signments. Section 9 concludes.

2. Setup

An environment is a tuple E = 〈N,O,H, q〉 where N and O are sets of agents and

objects where |N |, |O| ≥ 2; H is a set of subsets of N × O that includes all singletons

(we call H a constraint structure); and q = (q
S
, qS)S∈H is the set of quotas associated

with each set in H. We call q
S
the �oor constraint and qS the ceiling constraint for

S. For each S ∈ H, we assume q
S
∈ Z ∪ {−∞} and qS ∈ Z ∪ {∞}, where Z is the set of

integers.

A (generalized) random assignment is a |N | × |O| matrix P = [Pia] where Pia ∈
(−∞,∞) for all i ∈ N, a ∈ O. A deterministic assignment is a random assignment P

each of whose entries is an integer. Note that we allow for assigning more than one unit of

a good and even for assigning a negative amount of a good. One interpretation of receiving

a negative amount of a good is supplying the good. Given environment E = 〈N,O,H, q〉,
P is said to be feasible in E if

q
S
≤ PS ≤ qS, for all S ∈ H,

where we de�ne

PS :=
∑

(i,a)∈S

Pia,

for any random assignment P and S ∈ H.

De�nition 1. The constraint structure H is decomposable if, for any random assign-

ment P and any quotas (q
S
, qS)S∈H, such that q

S
≤ PS ≤ qS for all S ∈ H, there exist

λ1, . . . , λK and P 1, . . . , PK such that

(1) P =
∑K

k=1 λ
kP k,

(2) λk > 0, k = 1, . . . , K, and
∑K

k=1 λ
k = 1,

(3) q
S
≤ P k

S ≤ qS for each k = 1, . . . , K and S ∈ H,
(4) P k

ia is an integer for each (i, a).

If H is decomposable, then every P satisfying all the given constraints in H can be

expressed as a convex combination of deterministic assignments satisfying the constraints.

In other words, any random assignment satisfying the constraints inH can be implemented

as a lottery over deterministic outcomes each of which respects constraints in H.
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Decomposability of a constraint structure has another, more convenient, formulation.

Since H is decomposable only if conditions (1)-(4) hold for any matrix P and quotas {qS}
satisfying the feasibility inequalities, the conditions must hold in particular for quotas

q
S

= bP c and qS = bP e.6 Conversely, for any given P , a decomposition that satis�es

(1)-(4) with quotas q
S

= bP c and qS = bP e also satis�es the conditions for every other

vector of quotas such that P is feasible. Consequently, H is decomposable if and only if

for every random assignment P there exist λ1, . . . , λK and P 1, . . . , PK such that

(1) P =
∑K

k=1 λ
kP k,

(2) λk > 0, k = 1, . . . , K, and
∑K

k=1 λ
k = 1,

(3) P k
S ∈ {bPSc , dPSe} for all k ∈ {1, . . . , K} and S ∈ H.

This alternative formulation requires that each assignment in the decomposition rounds

the random assignment either up or down to the nearest integer, with respect to every

constraint set.

Note that our notion of decomposability is de�ned for a constraint structure without

reference to speci�c quotas. This approach has at least two advantages. First, our formu-

lation produces a sharp result: A necessary and su�cient condition for decomposability

will be obtained in terms of constraint structures. Second, and more importantly, speci�c

quotas may vary over time or with market conditions, so it is desirable to characterize a

robust condition under which a random mechanism is guaranteed to work for any possible

quota.

3. Theory of Implementing Random Assignments

A constraint structure H is a hierarchy if S ⊂ S ′ or S ′ ⊂ S or S ∩ S ′ = ∅ for every
S, S ′ ∈ H.7 The following concept plays a central role in the rest of this paper.

De�nition 2. A set H ⊂ 2N×O is a bihierarchy if there exist HN and HO such that

(1) H = HN ∪HO and HN ∩HO = ∅, that is, HN and HO partition H, and
(2) HN and HO are hierarchies.

In many applications HN and HO include, respectively, sets of the form {i} × O and

N ×{a} where i ∈ N , a ∈ O. These sets represent constraints imposed on each agent and

object, thus the mnemonic notationHN and HO. However, at this point we do not impose

such a restriction, and we will state the restriction whenever applicable. (Partitions of

6For any x ∈ R, bxc and dxe are the largest integer no larger than x and the smallest integer no smaller

than x, respectively.
7A hierarchy is called a laminar family in the combinatorial optimization literature.
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the sets H into HN and HO need not be unique, either. For instance, singleton sets can

be partitioned into the two families in any arbitrary fashion.)

Theorem 1. (Rounding Theorem) If H is a bihierarchy, then it is decomposable.

Theorem 1 shows that any random assignment P can be decomposed into matrices

where the sum of the entries within each element of the bihierarchy is rounded up or

down to the nearest integer. It follows immediately from results of Ho�man and Kruskal

(1956) and Edmonds (1970). For the proof see Appendix A.

3.1. Corollary: the Birkho�-von Neumann Theorem. We denote the environment

studied by Birkho� and von Neumann by EBvN ≡ 〈N,O,HBvN , q〉 where

HBvN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N} ∪ {N × {a}|a ∈ O}

q{(i,a)} = 0, q{(i,a)} = 1, for all (i, a) ∈ N ×O,

q
S

= qS = 1, for all S ∈ H \ {{(i, a)}|(i, a) ∈ N ×O}.

This is an environment in which each agent receives exactly one object and each object

is allocated to exactly one agent, and no other constraints are imposed. HBvN is a

bihierarchy since it can be partitioned, for example, into HBvN
N and HBvN

O where

HBvN
N := {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N},

HBvN
O := {N × {a}|a ∈ O},

and clearly HBvN
N and HBvN

O are hierarchies.

A random assignment feasible in EBvN is called a bistochastic matrix or a doubly

stochastic matrix. Equivalently, P is a bistochastic matrix if

(1) Pia ≥ 0 for all i ∈ N and a ∈ O,
(2)

∑
a∈O Pia = 1 for all i ∈ N , and

(3)
∑

i∈N Pia = 1 for all a ∈ O.

An integer-valued bistochastic matrix is called a permutation matrix. Since HBvN is a

bihierarchy, the following Birkho�-von Neumann Theorem is an immediate corollary of

the Rounding Theorem.

Corollary 1. (Birkhoff, 1946; von Neumann, 1953) Any bistochastic matrix can be

written as a convex combination of permutation matrices.
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3.2. Necessity of a bihierarchical constraint structure. Theorem 1 shows that bi-

hierarchy is su�cient for decomposition. This section examines the sense in which it is

necessary. Doing so also provides an intuition about the role bihierarchy plays for im-

plementation of random assignments. We begin with an example of a non-bihierarchical

constraint structure that is not decomposable.

Example 1. Consider the following environment with 2 goods and 2 agents and the

constraint structure

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}.

Clearly, H is not a bihierarchy. Suppose each set in H has a common �oor and ceiling

quota of one. The following random assignment

P =

(
0.5 0.5

0.5 0.5

)
cannot be decomposed into feasible deterministic assignments. To see this �rst observe

that, for any convex decomposition of P , there exists P k that is part of the decomposition

of P with P k
1a = 1. Since the constraint set {(1, a), (1, b)} has a quota of one, it follows

that P k
1b = 0. Since the quota of one binds for {(1, b), (2, a)}, it follows that P k

2a = 1. This

is a contradiction because P k
{(1,a),(2,a)} = P k

1a+P k
2a = 2 violates the quota for {(1, a), (2, a)},

which is one.

Example 1 suggests that the failure of decomposability is caused by a �cycle� of an odd

number formed by constraint sets. In the above example, for instance, a cycle formed

by three constraint sets {(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)} leads to a situation

where at least one of the constraints is violated. Generalizing this idea, we say that a

sequence (S1, . . . , Sl) ∈ Hl is an odd cycle if Si 6= Sj for all i 6= j, l is odd, and there

exists a sequence (x1, . . . , xl) ∈ (N × O)l such that for each i = 1, . . . , l, xi ∈ Si ∩ Si+1

and xi /∈ Sj for any j 6= i, i+ 1, where subscript l+ 1 is understood to be 1. An argument

generalizing the above example yields the following (a formal proof is in the Appendix).

Lemma 1. (Odd Cycles) If H contains an odd cycle, then H is not decomposable.

An important role of the bihierarchy is to rule out odd cycles. To see this, suppose that

H = HN ∪HO is a bihierarchy that contains an odd cycle, {S1, . . . , Sl}. Assume without

loss S1 ∈ HN . Then, S2 must belong to HO, since S1 ∩ S2 6= ∅ and neither is a subset of

the other (since x2 ∈ S2 \ S1 and xl ∈ S1 \ S2). Arguing in the same fashion, S3 must be

in HN , S4 in HO, . . . , and Sl must be in HN since l is an odd number. But Sl ∩ S1 6= ∅
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and neither is a subset of the other. So HN cannot be a hierarchy, and H cannot be a

bihierarchy, a contradiction.

Is bihierarchy necessary for decomposition? The next example suggests that this is not

the case.8

Example 2. Consider an environment with 2 goods and 2 agents as before, but let

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, a), (2, b)}},

and the �oor and ceiling quotas for each constraint set be one. Any feasible random

assignment

P =

(
s t

t t

)
,

with s+ t = 1, can be decomposed by a convex combination of deterministic assignments

as

P =

(
s t

t t

)
= s

(
1 0

0 0

)
+ t

(
0 1

1 1

)
.

Note that the constraint structure does not allow for an odd cycle although it is not a

bihierarchy.

Notice, however, that Example 2 is somewhat non-standard in that some row and

column constraints are not present. Decomposability would fail if all row and column

constraints are added to the constraint structure of Example 2 as the new constraint

structure has an odd cycle. This observation turns out to be true more generally. We

show that bihierarchy is in fact necessary for decomposability in an important sense �

namely, whenever all the �standard� constraint sets are present.

Theorem 2. (Necessity) Suppose HBvN ⊂ H. If H is not a bihierarchy, then it is not

decomposable.

Recall that the condition HBvN ⊂ H is natural in bilateral matching settings and is

imposed in all applications in this paper.

The formal proof of Theorem 2 is in the Appendix. The basic strategy of the proof is

to show that there exists an odd cycle whenever H ⊃ HBvN is not a bihierarchy.

8The argument presented in the example does not show that the constraint structure is decomposable

since it limits attention to just a single set of quota constraints. It turns out that the dual of the constraint

structure (de�ned in Section 7) forms a bihierarchy, a condition that Theorem 5 shows is su�cient for

decomposability.
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Remark 1. In light of Examples 1 and 2, one might wonder whether an absence of

odd cycles is su�cient for decomposability. This turns out to be false. Consider H =

{{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, a), (2, b)}, {(1, a), (1, b), (2, a), (2, b)}}. This structure

does not contain an odd cycle (and it is not a bihierarchy). Assume the quota for each

of the �rst three sets is one and the quota for the last set is two. One can check that the

random assignment P above cannot be feasibly decomposed.

In Section 7 we consider a more general environment than the bilateral setting, and

present a further generalization of the Rounding Theorem to that environment. We also

use Lemma 1 to show that the decomposition result cannot be extended to any multilateral

matching of more than two kinds of agents or to roommate matching.

3.3. Examples of Bihierarchy. As discussed above, HBvN is a bihierarchy. This section

discusses more examples.

3.3.1. Flexible Capacity. Consider a school choice problem in which the school authority

wishes to run several education programs within one building. Several capacity constraints

can be represented using a hierarchy HO containing sets of the form S = N × O′. The

ceiling qS then describes the total capacity that can be allocated within O′, which can

apply to a program or a set of programs. Notice that the hierarchical structure HO allows

for the nested constraints on program sizes.

3.3.2. Group-speci�c Quotas. A�rmative action policies are sometimes implemented as

quotas on students �tting speci�c gender, racial, or economic pro�les.9 A similar math-

ematical structure results from New York City's Educational Option programs, which

achieve a mix of students by imposing quotas on students with test scores.(Abdulkadiro§lu,

Pathak, and Roth, 2005). Quotas may be based on the residence of applicants as well:

The school choice program set to begin in 2010 in Seoul, Korea, limits the percentage

of seats allocated to the applicants from outside the district.10 and a number of school

choice programs in Japan have similar quotas based on residential areas as well.

Such quotas can be incorporated by HO containing sets of the form N ′×{a} for a ∈ O
and N ′ $ N . The ceiling qN ′×{a} then determines the maximum number of agents school

a can admit from group N ′. Quotas on multiple groups can be imposed for each a without

violating a hierarchical structure of HO as long as they do not overlap with each other.

9Abdulkadiro§lu and Sönmez (2003) and Abdulkadiro§lu (2005) analyze assignment mechanisms under

a�rmative action constraints.
10See �Students' High School Choice in Seoul Outlined,� Digital Chosun Ilbo, October 16, 2008

(http://english.chosun.com/w21data/html/news/200810/200810160016.html).
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Moreover, a nested series of constraints can be accommodated. For instance, a school

system can require that a school admit at most 50 students from district one, at most 50

students from district two, and at most 80 students from either district one or two.

It is also possible to accomodate both �exible-capacity constraints and group-speci�c

quota constraints within the same hierarchy HO. Flexible-capacity constraints are de�ned

on multiple columns of a random assignment matrix P , whereas group-speci�c quota

constraints are de�ned on subsets of single columns of P . Any subset of a single column

will be a subset of or disjoint from any set of multiple columns.

3.3.3. Course Allocation. The course allocation problem begins with a set of students and

courses. Each student may enroll in multiple courses, but cannot receive more than one

seat in any single course. Moreover, each student may have preference or feasibility con-

straints that limit the number of courses taken from certain sets. For example, scheduling

constraints prohibit any student from taking two courses that meet during the same time

slot. Or, a student might prefer to take at most two courses on �nance, at most three on

marketing, and at most four on �nance or marketing in total.

Many such restrictions can be modeled using a bihierarchy such that HN ⊃ HBvN
N .

Setting q{(i,a)} = 1 and q{i}×O > 1 for each i ∈ N and a ∈ O ensures that each student i

can enroll in multiple courses but be assigned to at most one seat in each course. Letting

F and M be �nance courses and marketing courses, if HN contains {i}×F ,{i}×M and

{i} × (F ∪M), then we can express the constraints �student i can take at most q{i}×F
courses in �nance, q{i}×M courses in marketing, and q{i}×(F∪M) in �nance and marketing

combined.� Scheduling constraints are handled similarly; for instance, F and M are sets

of classes o�ered at di�erent times (e.g., Friday morning and Monday morning). It may

be impossible, however, to express both subject and scheduling constraints while still

maintaining a bihierarchy constraint structure.

Note that the �exible production and group-speci�c quota constraints described in

Sections 3.3.1-3.3.2 can also be incorporated into the course allocation problem without

jeopardizing the bihierarchical structure. These constraints pertain to HO, while the

preference and scheduling constraints described above pertain to HN . So long as HN and

HO are each hierarchies, H = HN ∪HO is a bihierarchy.

3.3.4. Interleague Play. Some professional sports associations, including Major League

Baseball (MLB) and the National Football League (NFL), have two separate leagues. In

MLB, teams in the American League (AL) and National League (NL) had traditionally

played against teams only within their own league during the regular season, but play
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across the AL and NL, called interleague play, was introduced in 1997.11 Unlike the

intraleague games, the number of interleague games is relatively small, and this can make

the indivisibility problem particularly di�cult to deal with in designing the matchups.

For example, suppose there are two leagues, N and O, each with 9 teams. Suppose each

team must play 15 games against teams in the other league. There are some matchup

constraints: Each team in N has a geographic rival in O, and they must play twice. For

fairness reasons, teams in each league must face opponents in the other league of similar

di�culty. Speci�cally, one could require each team to play at least 4 games with the

top 3 teams, 4 games with the middle 3 teams and 4 games with the bottom 3 teams of

the other league. It is not di�cult to see that the resulting constraint structure form a

bihierarchy.

4. A Generalization of Bogomolnaia and Moulin's Probabilistic Serial

Mechanism for Assignment with Single-unit Demand

In this section, we consider a problem of assigning indivisible objects to agents who can

consume at most one object each. Examples include university housing allocation, public

housing allocation, o�ce assignment, and student placement in public schools.

Formally, consider an environment E = 〈N,O,H, {q
S
, qS}S∈H〉, where the bihierarchy

H = HN ∪HO has the following structure:

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N}

and

N × {a} ∈ HO, ∀a ∈ O,

with constraints such that q{i}×O = q{i}×O = 1 for all i ∈ N and q
S

= 0 for all S ∈
H \ {{i} × O|i ∈ N}. The maximum quota for each object a, qN×{a}, can be arbitrary,

unlike in EBvN . It is understood also that O contains a null object ∅ with unlimited

supply, that is, qS = +∞ for any S ∈ HO with (N × {∅}) ∩ S 6= ∅.
As mentioned earlier, the bihierarchy structure in this section accommodates a range of

practical situations faced by a mechanism designer. First, the objects may be produced

endogenously based on the reported preferences of the agents, as in the case of school

choice with �exible capacity (Section 3.3.1). Second, a mechanism designer may need to

treat di�erent groups of agents di�erently in assignment, as in the case of school choice

with group-speci�c quotas (Section 3.3.2).

11See �Interleague play�, Wikipedia (http://en.wikipedia.org/wiki/Interleagueplay).
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To formally study the problem of assignment, we need to introduce the preferences

of agents. Each agent i ∈ N has a strict preference �i over O. We write a �i b if
either a �i b or a = b holds. When N and O are �xed, we write � for (�i)i∈N , �N ′ for
(�i)i∈N ′ where N ′ ⊂ N . A quadruple Γ = (N,O,H, {q

S
, qS}S∈H, (�i)i∈N) then de�nes a

random assignment problem. Recall that a feasible random assignment is a matrix

P = [Pia]i∈N,a∈O satisfying q
S
≤
∑

(i,a)∈S Pia ≤ q̄S for each S ∈ H. Recall that PE
denotes the set of all random assignments feasible in E = 〈N,O,H, q〉. A special case of

random assignment is a deterministic assignment, represented by a matrix P ∈ PE
with Pia ∈ {0, 1} for each (i, a) ∈ N ×O.
A solution used in many applications is random priority (Bogomolnaia and Moulin,

2001), also called random serial dictatorship (Abdulkadiro§lu and Sönmez, 1999),

originally studied under environment EBvN . In the current setup, we de�ne random

priority as follows: (i) randomly order agents with equal probability, and (ii) the �rst

agent obtains her favorite object, the second agent obtains her favorite object among the

remaining objects, and so on, as long as allocating the good to agents so far is consistent

with all ceiling constraints. In the environment EBvN , it is a familiar mechanism that

orders agents uniform randomly, and assigns the �rst agent her favorite object, the second

agent her favorite remaining object, and so forth.

While the random priority is a popular mechanism, it may result in e�ciency loss

(Bogomolnaia and Moulin, 2001). To see how the loss of e�ciency may occur in our

context, consider the following example, adapted from Bogomolnaia and Moulin (2001).

Example 3 (Random priority may result in a suboptimal production plan). Let N =

{1, 2, 3, 4}, O = {a, b, c, ∅}, HO = [
⋃
a′∈O{N × {a′}}] ∪ {N × {a, b, c}}. Assume qN×{a} =

qN×{b} = qN×{c} = 1, qN×{a,b,c} = 2. This is a situation in which each good has individual

quota of one, and furthermore only two out of three goods can actually be produced.

Let

�1: a, b, ∅,

�2: a, b, ∅,

�3: c, b, ∅,

�4: c, b, ∅,
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where the notation means that agent one prefers a to b to ∅, and so on. Under the random
priority mechanism, the assignment

RP =


5/12 1/12 0 1/2

5/12 1/12 0 1/2

0 1/12 5/12 1/2

0 1/12 5/12 1/2

 ,

will be obtained.12 The following random assignment is preferred by everyone.

P ′ =


1/2 0 0 1/2

1/2 0 0 1/2

0 0 1/2 1/2

0 0 1/2 1/2

 .

One notable feature of the random priority mechanism is that, under this mechanism,

good b is produced although everyone prefers some other good, a or c, to be produced.

Good b is produced either when agent 1 and 2 get highest priorities or when agent 3

and 4 get highest priorities. All agents will be made better o� if the social planner can

�rst decide to produce a and c and then allocate the goods: It is easy to see that random

assignment P ′ results if the random priority is conducted after the production plan is �xed

to producing a and c. Of course, such a production plan is ine�cient if agents prefer b to

other goods. Thus a good mechanism may be one that simultaneously decides production

of goods as well as the allocation of them, based on preference information reported by

agents.

We begin by introducing the e�ciency concept in our setup, called ordinal e�ciency. A

random assignment P ordinally dominates another random assignment P ′ ∈ PE at �
if for each agent i the lottery Pi �rst-order stochastically dominates the lottery P ′i , that

is, ∑
b�ia

Pib ≥
∑
b�ia

P ′ib ∀i ∈ N,∀a ∈ O,

12Given N = {1, 2, 3, 4}, O = {a, b, c, ∅} and random assignment P , we write

P =


P1a P1b P1c P1∅

P2a P2b P2c P2∅

P3a P3b P3c P3∅

P4a P4b P4c P4∅

 .

Similar notation will be used elsewhere in this paper as well.
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with strict inequality for some i, a (we say that Pi weakly stochastically dominates P ′i
when either Pi stochastically dominates P ′i or Pi = P ′i ). If P ordinally dominates P ′ at

�, then every agent i prefers Pi to P ′i according to any expected utility function with

utility index consistent with �i. The random assignment P ∈ PE is ordinally e�cient

at � if it is not ordinally dominated at � by any other random assignment in PE . Note
that our model allows for a variety of constraints, so the current notion has the �avor

of �constrained e�ciency� in that the e�ciency is de�ned within the set of assignments

satisfying the constraints.

Now we introduce the generalized probabilistic serial mechanism, which is a gener-

alization of the mechanism proposed by Bogomolnaia and Moulin to our setting. The idea

is to regard each object as a divisible object of �probability shares.� Each agent �eats�

the best available object with speed one at every time t ∈ [0, 1]. The resulting pro�le of

shares of objects eaten by agents by time 1 obviously corresponds to a random assignment

matrix, which we call the generalized probabilistic serial random assignment.

Before giving a formal de�nition, note that we will need to modify the de�nition of

the algorithm from the version of Bogomolnaia and Moulin (2001). First, we will specify

availability of goods with respect to both agents and objects in order to accommodate

complex constraints such as a�rmative action. Second, we need to keep track of multiple

constraints for each pair of agent-good pair (i, a) during the algorithm, since there are

potentially multiple constraints that would make the consumption of the good a by the

agent i no longer feasible.

Formally, the generalized probabilistic serial mechanism is de�ned through the follow-

ing symmetric simultaneous eating algorithm, or the eating algorithm for short.

Mechanism 1: Generalized Probabilistic Serial Mechanism. For any (i, a) ∈ S ⊆
N ×O, let

χ(i, a, S) =

1 if (i, a) ∈ S and a �i b for any b with (i, b) ∈ S,

0 otherwise,

be the indicator function that a is the most preferred object for i among objects b such

that (i, b) is listed in S.

Given a preference pro�le �, the eating algorithm is de�ned by the following sequence

of steps. Let S0 = N × O, t0 = 0, and P 0
ia = 0 for every i ∈ N and a ∈ O. Given
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S0, t0, [P 0
ia]i∈N,a∈O, . . . , S

v−1, tv−1, [P v−1
ia ]i∈N,a∈O, for any (i, a) ∈ Sv−1 de�ne

tv(i, a) = min
S∈HO:(i,a)∈S

sup

t ∈ [0, 1]|
∑

(j,b)∈S

[P v−1
jb + χ(j, b, Sv−1)(t− tv−1)] < qS

 ,(4.1)

tv = min
(i,a)∈Sv−1

tv(i, a),(4.2)

Sv = Sv−1 \ {(i, a) ∈ Sv−1|tv(i, a) = tv},(4.3)

P v
ia = P v−1

ia + χ(i, a, Sv−1)(tv − tv−1).(4.4)

Since N ×O is a �nite set, there exists v̄ such that tv̄ = 1. We de�ne PS(�) := P v̄ to be

the generalized probabilistic serial random assignment for the preference pro�le �.

The random assignment resulting from the generalized probabilistic serial mechanism

is implementable.

Proposition 1. For any preference pro�le �, the generalized probabilistic serial assign-

ment PS(�) can be implemented.

Proof. Follows immediately from Theorem 1, because the constraint structure HN ∪ HO

forms a bihierarchy and PS(�) satis�es all inequality constraints associated withHN∪HO

by construction. �

In this sense, the mechanism is well-de�ned as a random assignment mechanism in the

current setting.

4.1. Properties of The Generalized Probabilistic Serial Mechanism. Bogomol-

naia and Moulin (2001) show that the probabilistic serial mechanism results in an ordinally

e�cient random assignment in their simpli�ed setting EBvN . Their proof can be adapted

to our setting using Proposition 5, although the proof is somewhat more involved because

of the constraints that are not present in their setting.

Proposition 2. For any preference pro�le �, the generalized probabilistic serial random

assignment PS(�) is ordinally e�cient at �.

Bogomolnaia and Moulin (2001) also show that the probabilistic serial mechanism is

fair in a speci�c sense in their simple setting. Formally, a random assignment P is said

to be envy-free at � if Pi weakly �rst-order stochastically dominates Pj with respect

to �i for every j ∈ N . It turns out that the generalized generalized probabilistic serial

random assignment may not be envy-free in our environment. To see this point, consider a

random assignment problem in which N = {1, 2, 3}, O = {a, ∅}, HO = {{1, 2}×{a}, N ×
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{a}}, q{1,2}×{a} = 1, qN×{a} = 2, and a �i ∅ for every i ∈ N . In this problem it is easy to

see that

PS(�) =

0.5 0.5

0.5 0.5

1 0

 .

The generalized probabilistic serial random assignment PS(�) is not envy-free since

PS3(�) is not weakly stochastically dominated by PS1(�) with respect to �1 (indeed,

PS3(�) stochastically dominates PS1(�) in this example). However, existence of envy

may not immediately imply that the allocation is unfair. To see this point, note that it

is infeasible to assign a to agent 1 with higher probability simply by moving probability

share of a from agent 3 to agent 1, because there is a constraint on {1, 2} × {a}. In that

sense the envy is based on a desire of agent 1 that cannot be feasibly accommodated.

Motivated by this observation, we introduce the following concept. Random assignment

P ∈ PE is feasible envy-free at � if there is no i and j such that Pj 6= Pi, Pj is not

�rst-order stochastically dominated by Pi at �i and an assignment Q de�ned by

Qka =



Pja if k = i,

0 if k = j, a 6= ∅

1 if k = j, a = ∅

Pka otherwise,

(4.5)

is in PE .13 In the above example, PS(�) is feasible envy-free. This property turns out to

hold generally, as shown below.

Proposition 3. For any preference pro�le �, the generalized probabilistic serial random

assignment PS(�) is feasible envy-free at �.

Ordinal e�ciency and feasible envy-freeness are not satis�ed by random priority. In-

deed, random priority violates both properties even in the simplest setting EBvN (Bogo-

molnaia and Moulin, 2001).

Unfortunately the mechanism is not strategy-proof, that is, there are situations in

which an agent is made better o� misstating her preferences.14 However, Bogomolnaia

13Alternatively, one could de�ne P to allow for feasible envy if exchanging Pi and Pj between i and j

is feasible and Pj is not weakly stochastically dominated by Pi at i. This alternative de�nition is weaker

than our current de�nition. Thus, by Proposition 3, the generalized probabilistic serial mechanism is

feasible envy-free with this alternative de�nition.
14By contrast, the random priority mechanism is strategy-proof.
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and Moulin (2001) show that the probabilistic serial mechanism is weakly strategy-

proof, that is, an agent cannot misstate his preferences and obtain a random assignment

that stochastically dominates the one obtained under truth-telling. Formally, we claim

that the generalized probabilistic serial mechanism is weakly strategy-proof, that is, there

exist no �, i ∈ N and �′i such that PSi(�′i,�−i) stochastically dominates PSi(�) at �
in our more general environment.15

Proposition 4. The generalized probabilistic serial mechanism is weakly strategy-proof.

Proof. The proof is an adaptation of Proposition 1 of Bogomolnaia and Moulin (2001)

and we omit the proof. �

One limitation of our generalization is that the algorithm is de�ned only for cases with

maximum quotas: The minimum quota for each group must be zero. In the context

of school choice, this precludes the administrator from requiring that at least a certain

number of students from a group attend a particular school. Despite this limitation,

administrative goals can often be su�ciently represented using maximum quotas alone.

For instance, if there are two groups of students, �rich� and �poor�, a requirement that

at least a certain number of poor students attend some highly desirable school might be

adequately replaced by a maximum quota on the number of rich students who attend.

5. A Generalization of Hylland and Zeckhauser's Pseudo-market

Mechanism for Assignment with Multi-Unit Demand

In a seminal paper, Hylland and Zeckhauser (1979) propose an ex-ante e�cient mech-

anism for the problem of assigning n objects amongst n agents with single-unit demand.

It is based on the old idea of Competitive Equilibrium from Equal Incomes. Agents re-

port their von Neumann-Morgenstern preferences over individual objects. Each agent

is allocated an equal budget of an arti�cial currency. The mechanism then computes a

competitive equilibrium, where the goods being priced and allocated are probability shares

of objects. Each agent is allocated the vector of probability shares that maximizes her

expected utility subject to her budget constraint at the competitive equilibrium prices.

This random assignment is e�cient by the �rst welfare theorem, and it is envy free be-

cause agents have equal incomes. It can be implemented by appeal to the Birkho�-von

Neumann theorem.
15Kojima and Manea (2008) show that truthtelling becomes a dominant strategy for a su�ciently large

market under the probabilistic serial mechanism in a simpler environment than the current one. Showing

such a claim in a more general environment is beyond the scope of this paper, but we conjecture that the

argument readily extends.
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We propose a generalization of HZ's mechanism for application to assignment problems

with multi-unit demand, such as assigning course schedules to students.16 Multi-unit

assignment is well known to be a challenging market design problem: axiomatic analysis

of the problem is mostly negative,17 and the mechanisms used in practice are known to

su�er from ine�ciency and fairness problems.18 Our mechanism is ex-ante e�cient and

interim envy free like HZ's, and it allows for agents to express realistic preferences with

realistic constraints. As a caveat, we note that we are not able to allow for fully general

vNM preferences over bundles. If we allowed for fully general preferences, then competitive

equilibrium prices might not exist, and even when they do exist we might not be able to

guarantee that the resulting random assignment is implementable. Some examples that

illustrate the �exibility and limitations of our preference language are discussed below.19

In our generalization, agents report their von Neumann-Morgenstern preferences over

bundles using Milgrom's (2009) class of integer assignment messages. Speci�cally, each

agent i submits a �nite collection of Ki �bids�, with agent i's kth bid consisting of

• A vector of valuations, one for each object: vik = (vik1, . . . , vik|O|)

• A set Hik of constraint sets, which form a hierarchy. We require that each Hik

includes the �row� constraint {(i, k)}×O , where {(i, k)} indexes the row associated

with i's kth bid.

• Finite integral �oor and ceiling bounds for each constraint set, satisfying qSi ≤
0 ≤ q̄Si for each Si ∈ Hik.

The agent also submits a set Hi0 of multi-bid constraints, again satisfying qSi ≤ 0 ≤ q̄Si

for each Si ∈ Hi0. We require that the set Hi = ∪Kik=0Hik forms a hierarchy. Note that

the set HN = ∪|N |i=1Hi itself forms a hierarchy.

16Similar problems include the assignment of tasks within an organization, the division of heirlooms

and estates among heirs, and the allocation of access to jointly-owned scienti�c resources.
17Papai (2001) shows that sequential dictatorships are the only deterministic mechanisms that are

nonbossy, strategy-proof, and Pareto optimal; dictatorships are unattractive for many applications be-

cause they are highly unfair ex post. Ehlers and Klaus (2003), Hat�eld (2008), and Kojima (2008) provide

similarly pessimistic results.
18See Sönmez and Ünver (2008) and Budish and Cantillon (2009).
19Budish (2009) proposes a mechanism that adapts CEEI to multi-unit assignment in a di�erent way.

Whereas here agents consume their most preferred a�ordable random assignment of objects, in Budish's

mechanism agents consume their most preferred a�ordable sure bundle of objects. Randomness enters

through the budgets, which are approximately equal rather than exactly equal. Budish's mechanism

accommodates arbitrary ordinal preferences over schedules, but is only approximately ex-post e�cient

whereas our mechanism is exactly ex-ante e�cient. Additional discussion on the tradeo�s between these

two approaches can be found in Section 8.2 of Budish (2009).
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Each agent's collection of bids de�nes her utility function. Speci�cally, i's utility from

consumption bundle xi = (xi1, . . . , xi|O|) is the solution to the following linear program

ui(xi) = max

Ki∑
k=1

∑
a∈O

vikaxika subject to

Ki∑
k=1

∑
a∈O

xika = xi (adding up constraint)

qSi ≤
∑

{((i,k),a)}∈Si

xika ≤ q̄Si for all Si ∈ Hi (agent constraints)

xika ≥ 0 for all k, a

If there is no way for the agent to consume xi in a manner that is consistent with her

constraints Hi then her utility from xi is −∞. For technical convenience we require that

each agent has a unique bliss point.

In our generalization the object hierarchy HO is simple, consisting just of standard

column constraints. Write qa ∈ Z+ for the capacity of a ∈ O.

Mechanism 2: The Generalized Hylland-Zeckhauser Mechanism.

(1) Each agent i reports an integer assignment message as described above.

(2) Each agent i is given an equal budget of an arti�cial currency, say b∗ > 0

(3) The mechanism computes a vector of item prices, p∗ = (p∗1, . . . , p
∗
|O|), which clear

the market as described below

(4) Each agent i is allocated a bundle x∗i which maximizes her utility subject to her

preference and budget constraints. Speci�cally, x∗i solves the following linear pro-

gram

x∗i ∈ arg max

Ki∑
k=1

∑
a∈O

vikaxika subject to

Ki∑
k=1

∑
a∈O

p∗axika ≤ b∗ (budget constraint)

qSi ≤
∑

{((i,k),a)}∈Si

xika ≤ q̄Si for all Si ∈ Hi(agent constraints)
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(5) The probability-shares market clears in the sense of

|N |∑
i=1

Ki∑
k=1

xika ≤ qa for all a ∈ O (object constraints)

< qa only if p∗a = 0 (complementary slackness)

(6) The random assignment x∗ = (x∗1, . . . , x
∗
|N |) is implemented.

To show that the mechanism is well de�ned we need the following two Lemmas:

Proposition 5. There exist competitive equilibrium prices p∗ which clear the market in

the sense of Steps 3-5.

Proof. See the Appendix. �

Standard competitive equilibrium existence results cannot be applied here due to the

failure of local non satiation (e.g., each student requires at most one seat in any course and

at most a certain number of courses overall).20 Two features of our environment that we

exploit in our existence proof are (i) demand does not explode at price zero, speci�cally

because of satiation; and (ii) the price space can be bounded above, because we work

with an economy in which agents are endowed directly with �nite budgets, rather than

an exchange economy with probability-share endowments. It is also important for our

existence result that qS ≤ 0 ≤ q̄S for each constraint set S. This assumption, together

with the linearity of preferences, helps ensure that each agent's demand correspondence

is convex and upper-hemicontinuous in price. Hylland and Zeckhauser (1979) assume

strictly positive �oor constraints � in HZ, each agent requires exactly one object � and

for this reason their method of proof is more involved and does not readily generalize to

our environment.

Proposition 6. The random assignment x∗ produced in Step 6 of the Mechanism can be

implemented.

Proof. Follows immediately from Theorem 1, because HN ∪HO forms a bihierarchy. �

5.1. Properties of the Generalized HZ Mechanism. The original HZ mechanism is

attractive for single-unit assignment because it is ex-ante e�cient and interim envy free.

We show that these properties carry over to this more general environment.

20Hylland and Zeckhauser (1979) discuss the failure of standard existence proof techniques in their

footnote 14.
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Proposition 7. The random assignment x∗ is ex-ante Pareto e�cient, and every real-

ization of the lottery is ex-post e�cient.

Proof. Suppose there exists a random assignment x̃ that Pareto improves upon x∗. If

ui(x̃i) > ui(x
∗
i ) then revealed preference implies that p∗ · x̃i > p∗ · x∗i . Suppose ui(x̃i) =

ui(x
∗
i ). We claim that p∗·x̃i ≥ p∗·x∗i . Towards a contradiction, suppose that p∗·x̃i < p∗·x∗i .

Let x̄i denote i's bliss point. From our assumption that bliss points are unique it follows

that ui(x̄i) > ui(x̃i) = ui(x
∗
i ). By revealed preference, p∗ · x̄i > b∗. However, since

p∗ · x̃i < p∗ · x∗i ≤ b∗ there exists λ ∈ (0, 1) such that p∗ · (λx̄i + (1− λ)x̃i) ≤ b∗. By strict

convexity of preferences ui(λx̄i + (1− λ)x̃i) > ui(x̃i) = ui(x
∗
i ), which contradicts x∗i being

a solution to (4) for i. Hence p∗ · x̃i ≥ p∗ · x∗i .
From the above and from the assumption that x̃ is a Pareto improvement on x∗, we have

established that p∗·x̃i ≥ p∗·x∗i for all i with at least one strict. Thus
∑

i p
∗·x̃i >

∑
i p
∗·x∗i .

But this contradicts x∗ being a competitive equilibrium, since in a competitive equilibrium

(see (5.) above) any good that has a strictly positive price is at full capacity, hence no

feasible allocation can cost strictly more at p∗ than does x∗. Hence x∗ is (ex-ante) Pareto

e�cient.

Ex-ante e�ciency immediately implies ex-post e�ciency; if some realization of a lottery

were ex-post ine�cient, then by executing Pareto improvements for that realization we

could generate an ex-ante Pareto improvement. �

Proposition 8. The random assignment x∗ is interim envy free. That is, for any agents

i 6= j, ui(x
∗
i ) ≥ ui(x

∗
j).

Proof. Follows immediately from the de�nition of the mechanism given that all agents

have the same budget. �

Propostion 8 concerns interim fairness. The main result of Section 6 can be used to

enhance ex-post fairness in cases where agents' bids take a simple additive-separable form

without additional constraints.

5.2. Flexibility and Limitations of the Proposed Preference Language. Our pref-

erence reporting language allows agents to express several kinds of constraints that may

be useful for practice. To �x ideas we focus on constraints speci�c to the problem of

course allocation.

5.2.1. Scheduling Constraints. Scheduling constraints can often be expressed by means of

a hierarchy. One example is students at Harvard Business School, who require 10 courses
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per school year, of which 5 should be in each of the two semesters, and of which no more

than one should meet at any given time.

More generally, if there is a set of time slots, constraints of the form �no more than one

course at any time slot� form a simple kind of hierarchy.

5.2.2. Curricular Constraints. Students often seek variety in their schedules due to di-

minishing returns. Our language can accommodate constraints of the form �at most 2

courses in Finance�, and it can also accommodate more elaborate constraints like �at

most 2 courses in Finance, at most 2 courses in Marketing, and at most 3 courses in

Finance or Marketing.�

Our language is not able to accommodate most kinds of complementarity that arise

from curricular considerations. For instance, a student cannot express that they wish to

take Macroeconomics if and only if they can also take Microeconomics.

5.2.3. Diminishing Marginal Returns. An important feature of our language is that it

allows agents to express certain kinds of diminishing returns. This can be achieved by

submitting multiple bids, with constraints de�ned on each.

For instance, suppose that there are two �star professors�, a and b, and that agent i

has a high value for the �rst of these courses she gets to take, and a lower value for the

second. Then she can submit two bids: in the �rst bid, she expresses high values for the

�rst unit of a star-professor course, e.g., vi1 = (10000, 5000) with a ceiling constraint of

1. In the second bid, she expresses a lower value for the second unit of a star-professor

course, e.g.,vi2 = (1000, 500) with a ceiling constraint of 1. If needed, she could also have

a multi-row ceiling constraint de�ned on the sum of the amounts awarded across the two

bids.

Notice that the linear program in Mechanism 5 Step 4 will fully �ll the high-valued bid

before �lling any of the lower-valued bid.

5.2.4. Limitations. The primary limitation of our language is that these multiple uses

cannot be readily combined. For instance, if there is a Finance course and a Marketing

course that meets at time slot 1 (F1,M1), and another Finance course and another

Marketing course that meets at time slot 2 (F2,M2), then the scheduling constraints

on {F1,M1} and {F2,M2} and the curricular constraints on {F1, F2} and {M1,M2}
cannot coexist in the same hierarchy.
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6. The Utility Guarantee for Multi-Unit Assignment and Matching

We call our third application the �utility guarantee�. In general, there can be many

ways to implement a given random assignment, and the choice among them may be

important. To �x ideas, suppose that two agents are to divide 2n objects, that the agents'

preferences are additively separable, and that agents' ordinal rankings of the items are

the same. Suppose the �fair� random assignment speci�es that each agent receive half

of each object. One way to implement this is to randomly choose n objects to assign to

the �rst agent, and then give the remaining n objects to the other agent. This method,

however, could entail a highly �unfair� outcome ex post, in which one agent gets the n

best objects and the other gets the n worst ones.

Based on the Rounding Theorem, we provide a method to reduce the variation in utility

outcomes resulting from randomization. Formally, consider an input 〈N,O, P,H〉 where
H is a bihierarchy partitioned into hierarchies HO and HN = HBvN

N . Assume that P

satis�es
∑

a Pia ∈ Z for each i ∈ N . This assumption is without loss of generality because

any random assignment with non-integral row sums is equivalent to a random assignment

with an additional column representing a null object, the sole purpose of which is to

ensure that rows sum to integer amounts.

Theorem 3. (Utility Guarantee) Suppose that there is a set of values (via)(i,a)∈N×O

such that, for each i, agent i's expected utility from a random assignment P is
∑
a∈O

Piavia.

Then, for any P , there exists a decomposition of P that satis�es all of the conditions of

the Rounding Theorem, and also:

∑
a

P ′iavia −
∑
a

P ′′iavia ∈ [−∆i,∆i],(6.1)

∑
a

P ′iavia ∈

[∑
a

Piavia −∆i,
∑
a

Piavia + ∆i

]
,(6.2)

for each i and each P ′ and P ′′ in the convex combination, where ∆i := max{via−vib|a, b ∈
O,Pia, Pib /∈ Z}.

A proof sketch can be given based on the Rounding Theorem. The idea is to supplement

the actual constraints of the problem with a set of �utility proximity� constraints, as

follows. If there are n objects, for each agent we create n additional constraints. The

jth constraint set of agent i, Sij, consists of his 1st, 2nd, . . . , jth most preferred objects;

its �oor and ceiling constraints are
⌊∑

a∈Sij Pia

⌋
and

⌈∑
a∈Sij Pia

⌉
, respectively. The

resulting constraint structure is still a bihierarchy after this addition, so the Rounding
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Theorem guarantees that the random assignment can be implemented with all of the

constraints satis�ed. Satisfying the constraints on all of the arti�cial �upper contour� sets

means that in each realized assignment, each agent receives her j most preferred objects,

for each j, with approximately the same probability as in the original random assignment.

Our method thus ensures that each realized assignment inherits roughly the same fairness

properties as the original random assignment; more precisely, the approximation error is

at most the utility di�erence between the most valuable and the least valuable objects.

In principle Theorem 3 can be used to augment ex-post fairness in conjunction with

any multi-unit random assignment algorithm, as long as agents' preferences are additive

separable. One speci�c pairing that may be useful is with our multi-unit generalization

of HZ developed in Section 5. Multi-unit HZ is interim envy free because all agents have

the same budget and face the same prices; see Proposition 8. By utilizing the Utility

Guarantee as well, we can also ensure that ex-post envy is bounded.

6.1. Application: Two-Sided Matching. With slight modi�cation, the Utility Guar-

antee can also be applied to two-sided matching environments. Let N and O both be

sets of agents, and consider many-to-many matching in which each agent in N can be

matched with multiple agents in O, and vice versa.

Theorem 4. Consider a problem where the constraint structure is HBvN . Suppose that

there are sets of values (via)(i,a)∈N×O and (wia)(i,a)∈N×O such that, for each agent i ∈ N
(respectively agent a ∈ O), her expected utility from any random assignment P is

∑
a∈O

Piavia

(respectively
∑
i∈N

Piawia). Then, for any P , there exists a decomposition of P that satis�es

the conditions of the Rounding Theorem, and also:

∑
a

P ′iavia −
∑
a

P ′′iavia ∈ [−∆i,∆i]

∑
a

P ′iavia ∈

[∑
a

Piavia −∆i,
∑
a

Piavia + ∆i

]
,∑

i

P ′iawia −
∑
i

P ′′iawia ∈ [−∆a,∆a]

∑
i

P ′iawia ∈

[∑
i

Piawia −∆a,
∑
i

Piawia + ∆a

]
,

for each i, a and each P ′ and P ′′ being part of the convex decomposition, where ∆i =

max{via − vib|a, b ∈ O,Pia, Pib /∈ N} and ∆a = max{wia − wja|i, j ∈ N,Pia, Pja /∈ N}.
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Proof. The proof is a straightforward adaptation of the proof of Theorem 3 and hence is

omitted. �

Let us suggest one possible application. There are two leagues of sports teams N and O,

say the American League and National League in professional baseball, and the planner

wants to schedule interleague play. The planner wants to ensure that the strength of

opponents that teams in a league play against is as equalized as possible among teams

in the same league. For that goal, the planner could �rst give a uniform probability

for each match: That will give one speci�c random assignment in which any pair of

teams in the same league is treated equally. Then, using Theorem 4, the planner �nds

a deterministic assignment, in which di�erences in schedule strength are bounded by

the di�erence between one game with the strongest opponent and one with the weakest

opponent in the other league.

We note that transforming this feasible match into a speci�c schedule � i.e., not only

how often does Team A play Team B, but when � is considerably more complicated.

For example, the problem involves scheduling both intraleague and interleague matches

simultaneously, dealing with geographical constraints and so forth. See Nemhauser and

Trick (1998) for further discussion of sport scheduling.

7. Beyond Bilateral Assignment

Throughout the paper we have focused on a random assignment of objects (or agents)

to agents. However, some of our results can be extended beyond pairwise assignment, as

described below.

Let X be a �nite set and H be a collection of subsets of X. We call the pair X =

(X,H) a hypergraph. A (generalized) random assignment is a vector P = [Px] where

Px ∈ (−∞,∞) for all x ∈ X. For each S ∈ H, PS =
∑

x∈S Px. A deterministic

assignment is a random assignment each of whose entries is an integer. As before, the

constraint structure H is decomposable if, for each (q
S
, qS)S∈H and P with q

S
≤ PS ≤ qS

for all S ∈ H, there exist λ1, . . . , λK and P 1, . . . , PK such that

(1) P =
∑K

k=1 λ
kP k,

(2) λk > 0, k = 1, . . . , K, and
∑K

k=1 λ
k = 1,

(3) P k
x is an integer for each x,

(4) q
S
≤ P k

S ≤ qS for each k = 1, . . . , K and S ∈ H.

Equivalently, H is decomposable if and only if for every random assignment P there exist

λ1, . . . , λK and P 1, . . . , PK such that

(1) P =
∑K

k=1 λ
kP k,
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(2) λk > 0, k = 1, . . . , K, and
∑K

k=1 λ
k = 1,

(3) P k
S ∈ {bPSc , dPSe} for all k ∈ {1, . . . , K} and S ∈ H.

We say that X forms a bihierarchy if there exist H1 and H2 such that H1 ∪ H2 = H,
H1 ∩ H2 = ∅, and Hi is a hierarchy for each i = {1, 2}: if S, S ′ ∈ Hi, then S ∩ S ′ = ∅ or
S ⊂ S ′ or S ′ ⊂ S.

It is useful to de�ne the dual of a hypergraph. Given a hypergraph X = (X,H), its

dual is X T = (H, X). A bihierarchy can be de�ned for its dual. To this end, for each

x ∈ X, let S(x) := {S ∈ H|x ∈ S} be the collection of sets in H each containing x. We

say the dual of X forms a bihierarchy if there are X1 and X2 such that X1∪X2 = X,

X1 ∩X2 = ∅ and Xi, i = 1, 2, is a dual hierarchy: if x, x′ ∈ Xi, then S(x) ∩ S(x′) = ∅
or S(x) ⊂ S(x′) or S(x′) ⊂ S(x).

A hypergraph X = (X,H) can be represented by an incidence matrix A = [axS] such

that axS = 1{x∈S}. The incidence matrix of the dual X T is AT , the transpose of A.

Theorem 5. A hypergraph is decomposable if either it forms a bihiearchy or its dual

forms a bihierarchy.

The proof of Theorem 5 is in Appendix A. The key step in the proof, due to Edmonds

(1970), is to show that the incidence matrix A of a bihierarchical constraint structure

satis�es a condition called total unimodularity. By Ho�man and Kruskal (1956), this

implies that the set of random assignments satisfying a bihierarchical constraint structure

has integral extreme points, which enables decomposition because the set is convex.21

We present two examples of bihierarchies whose dual satis�es the bihierarchy condition.

Example 4. Consider X = {a, b, c, d, e, f}, and

H = {{a, d}, {a, e}, {a, f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}}.

The hypergraph X = (X,H) is in fact a bipartite graph in this case. Even though it does

not form a bihierarchy, its dual forms a bihierarchy. Its dual is an assignment between

three agents and three objects, with only row and column constraints.

Example 5. Consider X = {a, b, c, d, e, f, α, β, δ, ε}, and

H = {{a, d, α, δ}, {a, e, α, ε}, {a, f}, {b, d, β, δ}, {b, e, β, ε}, {b, f}, {c, d}, {c, e}, {c, f}}.

21We thank Tomomi Matsui and Akihisa Tamura for informing us of the connection with the mathe-

matics literature on matroids and Edmonds (1970).
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The hypergraph X = (X,H) again does not form a bihierarchy, but its dual forms a

bihierarchy. Its dual is the 3 by 3 matching, with row and column constraints, and two

subrow and two subcolumn constraints.

We note that Lemma 1 clearly holds in this general environment (with an identical

proof), providing a necessary condition for decomposability. We can apply this lemma to

show the di�culty one faces in implementing random assignments in multilateral matching

and roommate matching.

7.1. Multilateral Matching. Thus far, we have focused on bilateral matching in which

agents on one side are assigned to objects (or agents) on the other side. As noted,

many important market design problems fall into the bilateral matching environment.

Sometimes, however, matching involves more than two sides. For instance, students may

be assigned to di�erent schools and after-school programs, in which case the matching

must be trilateral, consisting of student/school/after-school triples. Or, manufacturers

may need to match with multiple suppliers, ensuring mutual compatibility of products or

the right combination of capabilities.

Our main point is most easily made by starting with a trilateral matching problem

in which we introduce another �nite set M of say agents, in addition to N and O. A

matching then consists of a triple (i, a,m) ∈ N × O ×M , and a random assignment is

de�ned by a pro�le [P(i,a,m)](i,a,m)∈N×O×M that assigns a real number to each triple (i, a,m).

Constraints on the random assignment can be described as before via the constraint

structure, i.e., the sets of (i, a,m)'s whose entries are subject to a ceiling or a �oor. That

is, the constraint structure H ⊂ 2N×O×M is a collection of subsets of N × O ×M . As in

the classical setup, the basic constraints arise from the fact that each agent in N , each

object in O and each agent in M must be assigned to some pair in the other two sides

(which may include a null object or null agent, by including such entities to the sets).

Hence, it is natural to assume that H contains the sets HBvN
:= {{i} × O × M |i ∈

N} ∪ {N × {a} ×M |a ∈ O} ∪ {N ×O × {m}|m ∈M}.
Notice that the problem reduces to that of bilateral matching if the cardinality of N or

O or M is one. It turns out that, except for such cases, no analogue of the Birkho�-von

Neumann theorem holds with a trilateral matching.

Theorem 6. (Impossibility with Trilateral Matching) In trilateral matching

with N ×O ×M where |N |, |O|, |M | ≥ 2, any H ⊃ HBvN
is not decomposable.

Proof. We prove the result by showing that any H ⊃ HBvN
contains an odd cycle. By

Lemma 1, this is su�cient for failure of decomposability. (Even though the proof of
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Lemma 1 formally deals with the bilateral matching setup, its proof does not depend on

it.)

Fix i ∈ N, a ∈ O,m ∈M and consider three sets Si := {i}×O×M,Sa := N×{a}×M ,

and Sm := N × O × {m}. Fix i′ ∈ N, a′ ∈ O,m′ ∈ M such that i′ 6= i, a′ 6= a, and

m′ 6= m (such i′, a′, and m′ exist since |N |, |O|, |M | ≥ 2). Then (i, a,m′) ∈ Si ∩ Sa \ Sm,
(i, a′,m) ∈ Si ∩ Sm \ Sa, and (i′, a,m) ∈ Sa ∩ Sm \ Si. We thus conclude that Si, Sa, and

Sm form an odd cycle. �

It is clear from the proof that the same impossibility result holds for any multilateral

matching of more than two kinds of agents.

Remark 2. (Matching with Contracts) Firms sometimes hire workers for di�erent

positions with di�erent terms of contract. For instance, hospitals hire medical residents for

di�erent kinds of positions (such as research and clinical positions), and di�erent positions

may entail di�erent duties and compensations. To encompass such situations, Hat�eld

and Milgrom (2005) develop a model of �matching with contracts,� in which a matching

speci�es not only which �rm employs a given worker but also at what contract terms. At

�rst glance, introducing contract terms may appear to transform the environment into a

trilateral matching setting. This is in fact not the case. If we let M denote the set of

possible contract terms, there is no sense in which the constraint structure contains sets

of the form N ×O×{m}. In words, there is no reason that each contract term should be

chosen by some worker-�rm pair. Rather, the matching with contracts can be subsumed

into our bilateral matching setup by rede�ning the object set as O′ := O ×M .

7.2. Roommate Matching. The �roommate problem� describes another interesting match-

ing problem, in which any agent can, in principle, be matched to any other. One example

is �pairwise kidney exchange� (Roth, Sonmez, and Ünver, 2005), in which a kidney patient

with a willing-but-incompatible donor is to be matched to another patient-donor pair. If

two such pairs are successfully matched, then the donor in each pair donates her kidney

to the patient of the other pair.

For our analysis, the important elements of a roommate matching problem include a

(�nite) set of agents, N , and a set XN := {{i, j}|i, j ∈ N} of possible (unordered) pairs
of agents who can be matched as roommates. If the pair {i, i} is formed, that means that

i is unmatched. Let HN be a collection of subsets of XN . A hypergraph XN = (XN ,HN)

allows us to capture the basic environment arising in roommate matching, and we can

describe a (generalized) random assignment as a vector P = [Px]x∈XN where Px ∈ [0, 1]

for all x ∈ XN . We assume that each i must be assigned to some agent (possibly himself),
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so HN must contain set Si := {{i, j}|j ∈ N} for each i ∈ N . We call a hypergraph XN
satisfying this property a canonical roommate matching problem with N agents.

Notice that the problem reduces to that of bilateral matching if |N | ≤ 2, implying that

any canonical roommate matching problem with such N is decomposable. The next result

shows that these are the only cases for which decomposability holds.

Theorem 7. (Impossibility with Roommate Matching) A canonical roommate

matching problem with N agents, |N | ≥ 3, is not decomposable.

Proof. We prove the result by showing that HN in the canonical roommate matching

contains an odd cycle. Consider i, j, k ∈ N , who are all distinct (such agents exist since

|N | ≥ 3). Then, {i, j} ∈ (Si ∩ Sj) \ Sk, {j, k} ∈ (Sj ∩ Sk) \ Si, and {i, k} ∈ (Si ∩ Sk) \ Sj.
We thus conclude that Si, Sj, and Sk form an odd cycle. �

8. Polynomial-Time Algorithm for Implementing Random Assignments

Theorem 5 demonstrates implementability of random assignments without revealing

the method. For practical purposes, knowing simply that a random assignment is imple-

mentable is not su�cient; implementation must be computable or su�ciently fast. Here

we provide an algorithm that implements random assignments in polynomial time.22 At

each step of the algorithm, which is described more fully in Appendix B, a given fea-

sible random assignment P is decomposed into a convex combination γP ′ + (1 − γ)P ′′

of two feasible random assignments, each of which has at least one more integer-valued

agent-object pair (or integer-valued constraint set). Then, a random number is generated

and with probability γ the algorithm continues by similarly decomposing P ′, while with

probability 1− γ the algorithm continues by decomposing P ′′. The algorithm stops when

it reaches an integer assignment.

We explain the decomposition method in the context of the following example. Consider

a hypergraph X = (X,H) where X = {x1, x2, x3, x4}, H = {{x1}, {x2}, {x3}, {x4}, S1, S2}
and S1 := {x2, x3} and S2 := {x3, x4}. Observe that H is a bihierarchy consisting of two

hierarchies, H1 = {{x1}, {x2}, {x3}, {x4}, S1} and H2 = {S2}, where S1 := {x2, x3} and
S2 := {x3, x4}. Suppose we wish to implement a random assignment P with P{x1} =

0.3, P{x2} = 0.7, P{x3} = 0.3 and P{x4} = 0.7. We represent the given random assignment

P as a network �ow. The particular way in which the �ow network is constructed is

22We thank Tomomi Matsui and Akihisa Tamura for suggesting this algorithm. An earlier draft of this

paper included an alternative algorithm generalizing the stepping-stones algorithm described by Hylland

and Zeckhauser (1979). We have made our old algorithm available in a Web Appendix.
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crucial for the algorithm, and we formally describe its construction in Appendix B. Here,

we present an informal discussion based on our example. See Figure 1.

0.3

0.7

0.3

0.7

0.3

0.3

0.3

0.3

0.7

0.7 0.7

0.7

1

1

Figure 1: A network �ow representation of the example P .

Intuitively, we view the total assignment as �ows that travel from source s to sink s′ of

a network (s and s′ can be interpreted as corresponding to the entire set X). First, the

�ows travel through the sets in one hierarchy H1, arranged in �descending� order of set-

inclusion; the �ows move from bigger to smaller sets along the directed edges representing

the set-inclusion tree, reaching at last the singleton sets. This accounts for the left side

of the �ow network in Figure 1, where the numbers on the edges depict the �ows. From

then on, the �ows travel through the sets in the other hierarchy H1 which is augmented,

without loss, to include the singleton sets and the entire set X, with primes attached for

notational clarity. These sets are now arranged in �ascending� order of set-inclusion; the

�ows travel from smaller to bigger sets along the directed edges representing the reverse

set-inclusion tree, reaching at the end the total set s′, or the sink.

Notice that the �ow associated with each edge re�ects the random assignment for

the corresponding set. For instance, the �ow from x2 to x′2 is the random assignment

P{x2} = 0.7 for set x2, and likewise the �ow from x3 to x′3 is P{x3} = 0.3. The �ow from

s to S1 represents the random assignment PS1 = 1 for set S1. Naturally, the latter �ow

must be the sum of the two former �ows. More generally, the additive structure of the

random assignment is translated into the �law of conservation�: the �ow reaching each

(intermediate) vertex must equal the �ow leaving that vertex.

Given the �ow network, the algorithm identi�es a cycle of agent-object pairs with

fractional assignments. Starting with any edge with fractional �ow, say (x2, x
′
2), we �nd
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another edge with a fractional �ow that is adjacent to x′2. Such an edge, (x′2, s
′), exists

due to the law of conservation: if all neighboring �ows were integer we would have a

contradiction. We keep adding new edges with fractional �ows in this fashion, the ability

to do so ensured by the law of conservation, until we create a cycle. In this case, the cycle

of vertices is x2 − x′2 − s′ − x′1 − x1 − s− x4 − x′4 − S2 − x′3 − x3 − S1 − x2. This cycle is

denoted by the dotted lines in Figure 1.

We next modify the �ows of the edges in the cycle. First, we raise the �ow of each

forward edge and reduce the �ow of each backward edge at the same rate until at least one

�ow reaches an integer value. In our example, the �ows along all the forward edges rise

from 0.7 to 1 and the �ows along all the backward edges fall from 0.3 to 0. Importantly,

this process preserves the law of conservation, meaning that the operation maintains the

feasibility of the new random assignment. The resulting network �ow then gives rise to

a random assignment P ′ where P ′{x1} = 0, P ′{x2} = 1, P ′{x3} = 0, and P ′{x4} = 1. Next, we

readjust the �ows of the edges in the cycle in the reverse direction, raising those with

backward edges and reducing those with forward edges in an analogous manner, which

gives rises to another random assignment P ′′ where P ′′{x1} = 1, P ′′{x2} = 0, P ′′{x3} = 1, and

P ′′{x4} = 0. We can now decompose P into these two matrices, i.e., P = 0.7P ′ + 0.3P ′′.

The random algorithm then selects P ′ with probability 0.7 and P ′′ with probability 0.3.

Since in this particular example both P ′ and P ′′ are integer valued, there is no need to

re-iterate the decomposition process. In general, each step in the algorithm reduces the

number of fractional �ows in the network, converting at least one to an integer. The total

number of steps in the random algorithm is therefore limited to the number of fractional

�ows. Also, each step visits each remaining fractional �ow at most once, so the total

number of visits grows at most as the square of the number of fractional �ows. Thus, the

run time of the algorithm is polynomial in |H|.

9. Conclusion

We generalize the Birkho�-von Neumann theorem by applying it to general real matri-

ces, rather than just bistochastic matrices, and allowing a much larger class of constraints,

rather than just row and column constraints. We show that if the constraints specify in-

teger �oors and ceilings for sums over sets of elements in the matrix, and if the constraint

sets form a bihierarchy, then the matrix is a convex combination of integer matrices each

of which also satis�es the constraints. This convex combination is a �decomposition� of

the expected allocation described by the originally given matrix. We also establish a

converse: if the constraint sets described above include row and column constraints but
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do not form a bihierarchy, then there are matrices and constraint bounds such that the

matrix is not a convex combination of feasible integer matrices. We show that these

results are usefully applicable to a range of matching problems, including (i) single-unit

assignment, (ii) multi-unit assignment, (iii) fair division, (iv) job scheduling, and (v)

two-sided matching, and that the results enable useful generalizations of Bogomolnaia

and Moulin's (2001) probabilistic serial mechanism and Hylland and Zeckhauser's (1979)

pseudo-market mechanism. We also introduce a polynomial algorithm that implements

the random allocation, selecting each pure outcome with the appropriate probability.

We investigate other kinds of constraints as well, mostly with negative results. There is

no similar decomposability of expected allocations for matching with three sides or more,

nor for roommate problems.

For the future, one may expect to �nd closer connections to similar decomposability

problems arising in optimal mechanism theory. But the goal of research in market design

is to facilitate applications, and we are most hopeful that the examples of implementable

random assignments described here herald still further applications to come.

Appendix A. Proofs of Theorems 1 and 5

Since Theorem 1 is a special case of Theorem 5, we prove the latter.

A matrix is totally unimodular if the determinant of every square submatrix is 0,

−1 or +1. We make use of the following result.

Lemma 2. (Ho�man and Kruskal (1956)) If a matrix A is totally unimodular, then the

vertices of the polyhedron de�ned by linear integral constraints are integer valued.

The proof strategy for Theorem 5 proceeds in two steps. First we show that if either

a hypergraph or its dual forms a bihierarchy, then the incidence matrix of the hyper-

graph is totally unimodular. Second we apply Lemma 2 to show that the hypergraph is

decomposable.

After an earlier draft was circulated, we were informed that Edmonds (1970) has pre-

viously shown that the incidence matrix of a bihierarchical constraint structure is totally

unimodular. We include our own proof for completeness below. The case in which the

dual of a hypergraph forms a bihierarchy is not in Edmonds (1970).

We utilize the following result for our proof.

Lemma 3. (Ghouila-Houri (1962)) A {0, 1} incidence matrix is totally unimodular if and
only if each subcollection of its columns can be partitioned into red and blue columns such



RANDOM ASSIGNMENTS 35

that for every row of that collection, the sum of entries in the red columns di�ers by at

most one from the sum of the entries in the blue columns.

Proof of Theorem 5. Suppose �rst X forms a bihierarchy, with H1 and H2 such that

H1 ∪H2 = H, H1 ∩H2 = ∅ and both H1 and H2 are hierarchies. Let A be the associated

incidence matrix. Take any collection of columns of A, corresponding to a subcollection

E of H. We shall partition E into two sets, B and R. First, for each i = 1, 2, we partition

E ∩Hi into nonempty sets E1
i , E

2
i , . . . , E

ki
i de�ned recursively as follows: Set E0

i ≡ ∅ and,
for each j = 1, . . . , we let

Ej
i := {S ∈ (E ∩Hi) \ (

j−1⋃
j′=1

Ej′

i ) |@S ′ ∈ (E ∩Hi) \ (

j−1⋃
j′=1

Ej′

i ∪ {S}) such that S ′ ⊃ S}.

(The non-emptiness requirment means that once all sets in E ∩Hi are accounted for, the

recursive de�nition stops, which it does at a �nite j = ki.) Since Hi is a hierarchy, any

two sets in Ej
i must be disjoint, for each j = 1, . . . , ki. Hence, any element of X can

belong to at most one set in each Ej
i . Observe next for j < l,

⋃
S∈Eli

S ⊂
⋃
S∈Eji

S. In

other words, if an element of X belongs to a set in El
i, it must also belong to a set in E

j
i

for each j < l.

We now de�ne sets B and R that partition E:

B := {S ∈ E|S ∈ Ej
i , i+ j is an even number },

and

R := {S ∈ E|S ∈ Ej
i , i+ j is an odd number }.

We call the elements of B �blue� sets, and call the elements of R �red� sets.

Fix any x ∈ X. If x belongs to any set in E ∩ H1, then it must belong to exactly

one set Sj1 ∈ E
j
1, for each j = 1, . . . , l for some l ≤ k1. These sets alternate in colors in

j = 1, 2, . . . , starting with blue: S1
1 is blue, S2

1 is red, S3
1 is blue, and so forth. Hence, the

number of blue sets in E ∩H1 containing x either equals or exceeds by one the number of

red sets in E∩H1 containing x. By the same reasoning, if x belongs to any set in E∩H2,

then it must belong to one set Sj2 ∈ E
j
2, for each j = 1, . . . ,m for some m ≤ k2. These

sets alternate in colors in j = 1, 2, . . . , starting with red: S1
2 is red, S2

2 is blue, S3
2 is red,

and so forth. Hence, the number of blue sets in E ∩ H2 containing x is less by one than

or equal to the number of red sets in E ∩ H2 containing x. In sum, the number of blue

sets in E containing x di�ers at most by one from the number of red sets in E containing

x. Thus A is totally unimodular by Lemma 3.
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Choose an arbitrary random assignment P and consider the set

{P ′|bPSc ≤ P ′S ≤ dPSe,∀S ∈ H}.(A.1)

By Lemma 2, every vertex of the set (A.1) is integer valued. Since (A.1) is a convex

polyhedron, any point of it (including P ) can be written as a convex combination of its

vertices. Since we chose P arbitrarily, the hypergraph X is decomposable.

We next consider the case where the dual of X forms a bihierarchy. To this end,

consider a hypergraph X ∗ = (X∗,H∗) such that X∗ = H and H∗ = X. That is, X∗ is

a �nite ground set whose elements share the same labels as the elements in H, and H∗

is a collection of subsets of H∗ that have the same labels as X. Assume that S ∈ X∗ is
an element of x ∈ H∗ in X ∗ if and only if x is an element of S in X . The fact that the
dual of X forms a bihierarchy means that (the primal of) X ∗ forms a bihierarchy. The

argument made above then implies that the incidence matrix A∗ associated with X ∗ is
totally unimodular. Since this matrix coincides with the incidence matrix of the dual of X ,
A∗ = AT . Since a transpose of a totally unimodular matrix is totally unimodular in general

by de�nition, it follows that the incidence matrix A of X must be also totally unimodular.

Hence, by an analogous argument to that above, the hypergraph X is decomposable. �

Appendix B. Algorithm for Implementing Random Assignments

This section provides a computable algorithm, which also serves as a constructive proof

for Theorem 5 for the bihierarchy case (and hence Theorem 1).

Let (X,H) be a hypergraph and assume that H is a bihierarchy, where H1 and H2

are hierarchies such that H = H1 ∪ H2. Let P = [Px] be a random assignment whose

entries sum up to an integer (the generalization to the case with a fractional sum is

straightforward). We construct a �ow network as follows. The set of vertices is composed

of the source s and the sink s′, two vertices vx and v′x for each element x ∈ X, and vS for

each S ∈ H\ [(
⋃
x∈X{x})∪ (N×O)]. We place (directed) edges according to the following

rule.23

(1) For each x ∈ X, an edge e = (vx, v
′
x) is placed from vx to v′x.

(2) An edge e = (vS, vS′) is placed from S to S ′ 6= S where S, S ′ ∈ H1, if S ′ ⊂ S and

there is no S ′′ ∈ H1 where S ′ ⊂ S ′′ ⊂ S.24

23An edge is de�ned as an ordered pair of verticies. All edges in this paper are directed, so we omit

the adjective �directed.�
24For the purpose of placing edges, we regard vx as a vertex corresonding to a singleton set {x} ∈ H1,

and v′x as a vertex corresonding to a singleton set {x} ∈ H2.
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(3) An edge e = (vS, vS′) is placed from S to S ′ 6= S where S, S ′ ∈ H2, if S ⊂ S ′ and

there is no S ′′ ∈ H2 where S ⊂ S ′′ ⊂ S ′.

(4) An edge e = (s, vS) is placed from the source s to vS if S ∈ H1 and there is no

S ′ ∈ H1 where S ⊂ S ′.

(5) An edge e = (vS, s
′) is placed from vS to the sink s′ if S ∈ H2 and there is no

S ′ ∈ H2 where S ⊂ S ′.

We associate �ow with each edge as follows. For each e = (vx, v
′
x), we associate �ow

Pe = Px. For each e that is not of the form (vx, v
′
x) for some x ∈ X, the �ow Pe is

(uniquely) set to satisfy the �ow conservation, that is, for each vertex v di�erent from

s and s′, the sum of �ows into v is equal to the sum of �ows from v. Observe that the

construction of the network (speci�cally items (2)-(5) above) utilizes the fact that H is a

bihierarchy.

We de�ne the degree of integrality of P with respect to H:

deg[P (H)] := #{S ∈ H|PS ∈ Z}.

Lemma 4. (Decomposition) Suppose a hypergraph X = (X,H) forms a bihierarchy.

Then, for any P such that deg[P (H)] < |H|, there exist P 1 and P 2 and γ ∈ (0, 1) such

that

(i) P = γP 1 + (1− γ)P 2:

(ii) P 1
S , P

2
S ∈ [bPSc , dPSe], ∀S ∈ H.

(iii) deg[P i(H)] > deg[P (H)] for i = 1, 2.

The following algorithm gives a constructive proof of Lemma 4 and hence the Theorem.

Let P be a random assignment on a bihierarchy H with deg[P (H)] < |H|.

� Decomposition Algorithm

(1) Cycle-Finding Procedure

(a) Step 0: Since deg[P (H)] < |H| by assumption, there exists an edge e1 =

(v1, v
′
1) such that its associated �ow Pe1 is fractional. De�ne an edge f1 =

(v1, v
′
1) from v1 to v′1.

(b) Step t=1,. . . : Consider the vertex v′t that is the destination of edge ft.

(i) If v′t is the origin of some edge ft′ ∈ {f1, . . . , ft−1}, then stop.25 The

procedure has formed a cycle (ft′ , ft′+1, . . . , ft) composed of edges in

{f1, . . . , ft}. Proceed to Termination - Cycle.

25Since there are a �nite number of vertices, this procedure terminates in a �nite number of steps.
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(ii) Otherwise, since the �ow associated with ft is fractional by construc-

tion and the �ow conservation holds at v′t, there exists an edge et+1 =

(ut+1, u
′
t+1) 6= et with fractional �ow such that v′t is either its origin or

destination. Draw an edge ft+1 by ft+1 = et+1 if v′t is the origin of et+1

and ft+1 = (u′t+1, ut+1) otherwise. Denote ft+1 = (vt+1, v
′
t+1).

(2) Termination - Cycle

(a) Construct a set of �ows associated with edges (P 1
e ) which is the same as

(Pe), except for �ows (Peτ )t′≤τ≤t, that is, �ows associated with edges that are

involved in the cycle from the last step. For each edge eτ such that fτ = eτ ,

set P 1
eτ = Peτ + α, and each edge eτ such that fτ 6= eτ , set P 1

eτ = Peτ − α,
where α > 0 is the largest number such that the induced random assignment

P 1 = (P 1
x )x∈X still satis�es all constraints in H. By construction, P 1

S = PS if

PS is an integer, and there is at least one constraint set S ∈ H such that P 1
S

is an integer while PS is not. Thus deg[P 1(H)] > deg[P (H)].

(b) Construct a set of �ows associated with edges (P 2
e ) which is the same as

(Pe), except for �ows (Peτ )t′≤τ≤t, that is, �ows associated with edges that are

involved in the cycle from the last step. For each edge eτ such that fτ = eτ ,

set P 1
eτ = Peτ − β, and each edge eτ such that fτ 6= eτ , set P 1

eτ = Peτ + β,

where β > 0 is the largest number such that the induced random assignment

P 2 = (P 2
x )x∈X still satis�es all constraints in H. By construction, P 2

S = PS if

PS is an integer, and there is at least one constraint set S ∈ H such that P 2
S

is an integer while PS is not. Thus deg[P 2(H)] > deg[P (H)].

(c) Set γ by γα + (1− γ)(−β) = 0, i.e., γ = β
α+β

.

(d) The decomposition of P into P = γP 1 + (1− γ)P 2 satis�es the requirements

of the Lemma by construction.

Appendix C. Proof of Propositions2 and 3

As with Bogomolnaia and Moulin (2001), a di�erent characterization of ordinal e�-

ciency proves useful. To this end, we �rst de�ne theminimal constraint set containing

(i, a):

ν(i, a) :=
⋂

S∈H(i,a)

S,

if the setH(i, a) := {S ∈ HO : (i, a) ∈ S,
∑

(j,b)∈S Pjb = qS} is nonempty. IfH(i, a) = ∅ (or
equivalently

∑
(j,b)∈S Pjb < qS for all S ∈ HO containing (i, a)), then we let ν(i, a) = N×O.
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We next de�ne the following binary relations on N ×O given (Γ, P ) as follows:26

(j, b)B1 (i, a) ⇐⇒ i = j, b �i a, and Pia > 0,

(j, b)B2 (i, a) ⇐⇒ ν(j, b) ⊆ ν(i, a).(C.1)

We then say

(j, b)B (i, a) ⇐⇒ (j, b)B1 (i, a) or (j, b)B2 (i, a).

We say a binary relation B is strongly cyclic if there exists a �nite cycle (i0, a0) B

(i1, a1)B · · ·B(ik, ak)B(i0, a0) such that B = B1 for at least one relation. We next provide

a characterization of ordinal e�ciency.

Lemma 5. Random assignment P ∈ PE is ordinally e�cient if and only if B is not

strongly cyclic given (Γ, P ).27

A remark is in order. In the environment EBvN , Bogomolnaia and Moulin (2001) de�ne

the binary relation B over the set of objects where b B a if there is an agent i such that

b �i b and Pia > 0. Bogomolnaia and Moulin show that, in EBvN , a random assignment is

ordinally e�cient if and only if B is acyclic. Our contribution over their characterization

is that we expand the domain over which the binary relation is de�ned to the set of

agent-good pairs, in order to capture the complexity that results from a more general

environment than EBvN .

Proof of Lemma 5. �Only if� part. First note that the following property holds.

Claim 1. B1 and B2 are transitive, that is,

(k, c)B1 (j, b), (j, b)B1 (i, a)⇒ (k, c)B1 (i, a),

(k, c)B2 (j, b), (j, b)B2 (i, a)⇒ (k, c)B2 (i, a).

Proof. Suppose (k, c) B1 (j, b) and (j, b) B1 (i, a). Then, by de�nition of B1, we have

i = j = k and (i) c �i b since (k, c) B1 (i, b) and (ii) b �i a since (j, b) B1 (i, a). Thus

c �i a. Since (j, b)B1 (i, a), we have Pia > 0. Therefore (k, c)B1 (i, a) by de�nition of B1.

26Given that HO has a hierarchical structure,

(j, b)B2 (i, a) ⇐⇒ (j, b) ∈ S for any S ∈ HO such that (i, a) ∈ S, PS = qS .

27In Kojima and Manea (2008), ordinal e�ciency is characterized by two conditions, acyclicity and

non-wastefulness. We do not need non-wastefulness as a separate axiom in our current formulation since

a �wasteful� random assignment (in their sense) contains a strong cycle as de�ned here.
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Suppose (k, c)B2 (j, b) and (j, b)B2 (i, a). Then ν(k, c) ⊆ ν(j, b) and ν(j, b) ⊆ ν(i, a) by

property (C.1). Hence ν(k, c) ⊆ ν(i, a) which is equivalent to (k, c) B2 (i, a), completing

the proof by property (C.1). �

To show the �only if� part of the Proposition, suppose B is strongly cyclic. By Claim

1, there exists a cycle of the form

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) in the cycle appears exactly once except for (i0, b0) which appears

exactly twice, namely in the beginning and in the end of the cycle. Then there exists δ > 0

such that a matrix Q de�ned by

Qia =


Pia + δ if (i, a) ∈ {(i0, b0), (i1, b1), . . . , (ik, bk)},

Pia − δ if (i, a) ∈ {(i0, a0), (i1, a1), . . . , (ik, ak)},

Pia otherwise,

is in PE . Since δ > 0 and bl �il al for every l ∈ {0, 1, . . . , k}, Q ordinally dominates P .

Therefore P is not ordinally e�cient.

�If� part. Suppose P is ordinally ine�cient. Then, there exists Q ∈ PE which ordinally

dominates P . We then prove that B, given (Γ, P ), must be strongly cyclic.

(1) Step 1: Initiate a cycle.

(a)

Claim 2. There exist (i0, a0), (i1, a1) ∈ N×O such that i0 = i1, Pi1a1 < Qi1a1

and (i1, a1)B1 (i0, a0) given (Γ, P ).

Proof. Since Q ordinally dominates P , there exists (i1, a1) ∈ N ×O such that

Qi1a1 > Pi1a1 and Qi1a = Pi1a for all a �i1 a1. So there exists a0 ≺i1 a1 with

Pi1a0 > Qi1a0 ≥ 0 since P{i1}×N = Q{i1}×N by assumption. Hence, we have

(i1, a1)B1 (i1, a0) = (i0, a0) given (Γ, P ). �

(b) If (i0, a0) ∈ ν(i1, a1), then (i0, a0) B2 (i1, a1) B1 (i0, a0), so we have a strong

cycle and we are done.

(c) Else, circle (i1, a1) and go to Step 2.

(2) Step t+ 1 (t ∈ {1, 2 . . . }): Consider the following cases.

(a) Suppose (it, at) is circled.

(i)
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Claim 3. There exists (it+1, at+1) ∈ ν(it, at) such that Pit+1at+1 >

Qit+1at+1. Hence, (it+1, at+1)B2 ν(it, at).

Proof. Note that ν(it, at) $ N ×O since if ν(it, at) = N ×O, then there

exists (it′ , at′) with t′ < t and (it′ , at′) ∈ ν(it, at), so we have terminated

the algorithm. Thus we have
∑

(i,a)∈ν(it,at)
Pia = qν(it,at). Since Pitat <

Qitat , there exists (it+1, at+1) ∈ ν(it, at) such that Pit+1at+1 > Qit+1at+1 .

�

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ < t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1, so we are done.

(iii) Else, square (it+1, at+1) and move to the next step.

(b) Case 2: Suppose (it, at) is squared.

(i)

Claim 4. There exists (it+1, at+1) ∈ ν(it, at) such that it+1 = it, Pit+1at+1 <

Qit+1at+1, and (it+1, at+1)B1 ν(it, at).

Proof. Since (it, at) is squared, by Claim 3, Pitat > Qitat . Since Q

ordinally dominates P , there must be (it+1, at+1) ∈ ν(it, at) with it+1 =

it such that Pit+1at+1 < Qit+1at+1 , and at+1 �it at. Since Pitat > Qitat ≥
0, we thus have (it+1, at+1)B1 ν(it, at). �

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ ≤ t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1, so we are done.

(iii) Else, circle (it+1, at+1) and move to the next step.

The process must end in �nite steps and, at the end we must have a strong cycle. �

Given the above lemma, we are ready to proceed to the proofs of Propositions 2 and 3.

Proof of Proposition 2. Although the proof is a relatively simple modi�cation of Theorem

1 of Bogomolnaia and Moulin (2001), we present the proof for completeness. We prove

the claim by contradiction. Suppose that PS(�) is ordinally ine�cient for some �. Then,
by Proposition 5 and Claim 1 there exists a strong cycle

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) appears exactly once except for (i0, b0) which appears exactly

twice, namely in the beginning and the end of the cycle. Let vl and wl be the steps of the

symmetric simultaneous eating algorithm at which (il, al) and (il, bl) become unavailable,

respectively (that is, (il, al) ∈ Svl−1 \Svl and (il, al) ∈ Swl−1 \Swl .) Since (il, bl)B1 (il, al),
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by the de�nition of the algorithm we have wl < vl for each l ∈ {0, 1, . . . , k}. Also,

by (il, al) B2 (il+1, bl+1), we have vl ≤ wl+1 for any l = {0, 1, . . . , k} (with notational

convention (ik+1, ak+1) = (i0, a0).) Combining these inequalities we obtain w0 < v0 ≤
w1 < v1 ≤ · · · ≤ wk < vk ≤ wk+1 = w0, a contradiction. �

Proof of Proposition 3. Let P = PS(�). Fix i ∈ N and let O be ordered in the decreasing

order of �i, that is, a1 �i a2 �i · · · �i a|N |. Let v1 be the step in which i stops receiving

probability share of a1. In that step we have Pia1 = P v1
ia1

= tv1 and there is S1 ∈ HO

such that (i, a1) ∈ S1 and P v1
S1

= qS1
. Suppose Pja1 > Pia1 for some j ∈ N. Then we

have (j, a1) /∈ S1 since Pja1 ≤ tv1 = Pia1 if (j, a1) ∈ S1 by de�nition of the algorithm.

Also S1 = N1 × {a1} for some N1 ⊆ N with i ∈ N1 and j /∈ N1 since (i, a1) ∈ S1 and

(j, a1) /∈ S1. Let Q be de�ned as in (4.5). Then, since i ∈ N1 and j /∈ N1,

QS1 ≥
∑
k∈N1

Pka1 − Pia1 + Pja1

>
∑
k∈N1

Pka1

≥
∑
k∈N1

P v1
ka1

= P v1
S1

= qS1
,

which implies that Q /∈ PE .
Let l ≥ 2 and vl be the step in which i stops receiving probability share of al. In that

step we have
∑l

m=1 Piam =
∑l

m=1 P
vl
iam

= tvl and there is Sl ∈ HO such that (i, al) ∈ Sl
and P vl

Sl
= qSl . Suppose

∑m′

m=1 Pjam ≤
∑m′

m=1 Piam for all m′ ≤ l − 1 and
∑l

m=1 Pjam >∑l
m=1 Piam for some j ∈ N. Then we have (j, al) /∈ Sl since

∑l
m=1 Pjam ≤ tvl =

∑l
m=1 Piam

if (j, al) ∈ Sl by de�nition of the algorithm. Also Sl = Nl × {al} for some Nl ⊆ N with

i ∈ Nl and j /∈ Nl since (i, al) ∈ Sl and (j, al) /∈ Sl. Let Q be de�ned as in (4.5). Then,

since i ∈ Nl and j /∈ Nl,
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QSl ≥
∑
k∈Nl

Pkal − Pial + Pjal

>
∑
k∈Nl

Pkal

≥
∑
k∈Nl

P vl
kal

= P vl
Sl

= qSl ,

which implies that Q /∈ PE . By induction, we complete the proof. �

Appendix D. Proofs of Lemma 1 and Theorem 2

Proof of Lemma 1. Suppose for contradiction that H is decomposable and contains the

odd cycle S1, . . . , Sl, with xi ∈ Si ∩ Si+1, i = 1, . . . , l − 1 and xl ∈ Sl ∩ S1. Consider a

random assignment P speci�ed by

Px =

1
2

if x ∈ {x1, . . . , xl},

0 otherwise,

where Px is the entry corresponding to x ∈ N × O. By de�nition of an odd cycle,

PSi = 1 for all i ∈ {1, . . . , k}. Since H is decomposable, there exist P 1, P 2, . . . , PK and

λ1, λ2, . . . , λK such that

(1) P =
K∑
k=1

λkP k,

(2) λk ∈ (0, 1] for all k and
∑K

k=1 λ
k = 1,

(3) P k
S ∈ {bPSc , dPSe} for all k ∈ {1, . . . , K} and S ∈ H.

In particular, it follows that P k
Si

= 1 for each i and k. Thus there exists k such that

P k
x1

= 1. Since P k
S2

= 1, it follows that P k
x2

= 0. The latter equality and the assumption

that P k
S3

= 1 imply P k
x3

= 1. Arguing inductively, it follows that P k
xi

= 0 if i is even and

P k
xi

= 1 if i is odd. In particular, we obtain P k
xl

= 1 since l is odd by assumption. Thus

P k
Sl

= P k
xl

+ P k
x1
>= 2, contradicting P k

Sl
= 1. �

Proof of Theorem 2. In order to prove the Theorem, we study several cases.

• Assume there is S ∈ H such that S = N ′ × O′ where 2 ≤ |N ′| < |N | and
2 ≤ |O′| < |O|. Let {i, j} × {a, b} ⊆ S, k /∈ N ′ and c /∈ O′ (observe that such

i, j, k ∈ N and a, b, c ∈ O exist by the assumption of this case). Then the sequence
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of constraint sets

S1 = S, S2 = {i} ×O, S3 = N × {c}, S4 = {k} ×O, S5 = N × {b},

is an odd cycle together with

x1 = (i, a), x2 = (i, c), x3 = (k, c), x4 = (k, b), x5 = (j, b).

Therefore, by Lemma 1, H is not decomposable.

• Assume there is S ∈ H such that, for some i, j ∈ N and a, b ∈ O, we have

(i, a), (j, b) ∈ S with i 6= j and a 6= b, and (i, b) /∈ S. Then the sequence of

constraint sets

S1 = S, S2 = {i} ×O, S3 = N × {b},

is an odd cycle together with

x1 = (i, a), x2 = (i, b), x3 = (j, b).

Thus, by Lemma 1, H is not decomposable.

By the above arguments, it su�ces to consider cases where all constraint sets in H have

one of the following forms.

(1) {i} ×O′ where i ∈ N and O′ ⊆ O,

(2) N ′ ×O where N ′ ⊆ N ,

(3) N ′ × {a} where a ∈ O and N ′ ⊆ N ,

(4) N ×O′ where O′ ⊆ O.

Therefore it su�ces to consider the following cases.

(1) Assume that there are S ′, S ′′ ∈ H such that S ′ = {i} × O′ and S ′′ = {i} × O′′ for
some i ∈ N and some O′, O′′ ⊂ O, S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a

superset of S ′′. Then we can �nd a, b, c ∈ O such that a ∈ O′ \ O′′, b ∈ O′ ∩ O′′

and c ∈ O′′ \O′. Fix j 6= i, who exists by assumption |N | ≥ 2. Then the sequence

of constraint sets

S1 = S ′, S2 = S ′′, S3 = N × {c}, S4 = {j} ×O, S5 = N × {a},

is an odd cycle together with

x1 = (i, a), x2 = (i, b), x3 = (i, c), x4 = (j, c), x5 = (j, a).

Therefore, by Lemma 1, H is not decomposable.
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(2) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ × O and S ′′ = N ′′ × O for

some N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′.

In such a case, we can �nd i, j, k ∈ N such that i ∈ N ′ \ N ′′, j ∈ N ′ ∩ N ′′ and
k ∈ N ′′ \N ′. Fix a, b ∈ O. The sequence of constraint sets

S1 = S ′, S2 = S ′′, S3 = N × {b},

is an odd cycle together with

x1 = (j, a), x2 = (k, b), x3 = (i, b).

Hence, by Lemma 1, H is not decomposable.

(3) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ × {a} and S ′′ = N ′′ × {a}
for some a ∈ O and some N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset

nor a superset of S ′′. This is a symmetric situation with Case 1, so an analogous

argument as before goes through.

(4) Assume that there are S ′, S ′′ ∈ H such that S ′ = N × O′ and S ′′ = N × O′′ for
some O′, O′′ ⊂ O, S ′∩S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′. This
is a symmetric situation with Case 2, so an analogous argument as before goes

through.

�

Appendix E. Proof of Proposition 5

(1) De�ne a price space, P = [0, |N |b∗]|O|.
(2) De�ne for each agent i his demand correspondence

d∗i (p) :=

{
(yia)a∈O ∈ R|O|+

∣∣∣∣∃(xika)k∈Ki,a∈O ∈ Xi(p) s.t.
∑
k∈Ki

xika = yia,∀a ∈ O

}
.

We show that d∗i (p) is nonempty and convex for all p ∈ R|O|+ , and upper hemicon-

tinuous in p. Proof. The demand correspondence is nonempty since the feasible

set of the linear program is nonempty (since zero demand for each (k, a) ∈ Ki×O
is feasible), since it is bounded (since 0 ≤ xika ≤ qika) and closed, so it is compact,

and since the objective function is continuous. The convexity of d∗i (p) is shown

as follows. Suppose y, y′ ∈ d∗i (p). Then, there are (xika)k∈Ki,a∈O, (x
′
ika)k∈Ki,a∈O ∈

Xi(p) such that xika = yia and x′ika = y′ia for each a ∈ O. Now �x any s ∈
(0, 1). Since the feasible set of the linear program is convex and since its ob-

jective function is quasi-concave (since it is linear), Xi(p) is convex. Hence,

s(xika)k∈Ki,a∈O + (1 − s)(x′ika)k∈Ki,a∈O ∈ Xi(p). It follows that sy + (1 − s)y′ =
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s(xika)k∈Ki,a∈O + (1 − s)(x′ika)k∈Ki,a∈O ∈ d∗i (p). We thus conclude that d∗i (p) is

convex for any p ∈ R|O|+ . The upper-hemicontinuity of d∗i (·) is shown as follows.

We �rst note that the correspondence Xi(p) is upper-hemicontinuous. This follows

from Berge's theorem of the maximum, since the objective function is continuous

and since the correspondence mapping from price vectors to the set of feasible

(xika)k∈Ki,a∈O's is continuous (ie., upper- and lower-hemicontinuous). Since d∗i (·)
is a continuous transformation of Xi(·), d∗i (·) is upper-hemicontinuous. Q.E.D.

(3) De�ne the excess demand correspondence z(p) in the usual way: z(p) =
∑

i d
∗
i (p)−

q. Note that it too is upper hemicontinuous and convex (as the linear sum of upper

hemicontinuous and convex functions)

(4) To handle some boundary issues that arise because we allow goods to be in excess

supply at price zero (and preferences are satiable, so prices of zero may actually

arise), do the following:

(a) Let q̄ = maxa∈O qa. It is wlog to restrict that each agent can demand at most

q̄ copies of any object.28

(b) De�ne an auxiliary enlargement of the price space, P̃ = [−q̄, |N |b∗ + |N |q̄]|O|

(c) De�ne a truncation function t : P̃ → P by

t(p) =
(
max (0,min(p1, |N |b∗)) , . . . ,max

(
0,min(p|O|, |N |b∗)

))
(5) De�ne a correspondence f : P̃ → P̃ by f(p) = t(p) + z(t(p)). To show that

we can apply Kakutani: First, note that z(t(p)) is uhc and convex on P̃ ; all the
truncation does is make z(t(p)) ��at� for p ∈ P̃\P . This implies that f(p) is uhc

and convex as well. Second, note that the range of t(p) + z(t(p)) for p ∈ P̃ lies

in P̃ as required, because the excess demand function is bounded below by −q̄
and above by |N |q̄. Thus f(p) is a uhc and convex correspondence de�ned on the

compact and convex set P̃ . Thus we can apply Kakutani: there exists p∗ ∈ f(p∗).

(6) The last step is to show that this �xed point yields a competitive equilibrium;

speci�cally, t(p∗) is a competitive equilibrium price vector. First, for arbitrary

a ∈ O, suppose that p∗a ∈ [0, |N |b∗], i.e., that the truncation doesn't bite for good

a. Then p∗ being a �xed point implies that za(t(p∗)) = 0, i.e., the market for good

a exactly clears at t(p∗). Second, suppose that p∗a < 0. Then p∗ being a �xed

point implies that za(t(p∗)) = p∗a < 0, i.e., good a is in excess supply at t(p∗). This

excess supply is �ne because ta(p∗) = 0. Last, suppose that p∗a > |N |b∗. Then

p∗ being a �xed point implies that za(t(p∗)) = p∗a − |N |b∗ > 0, i.e., good a is in

28In course allocation, we assume that each agent can demand at most a single copy of any object.
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excess demand at t(p∗). But this is impossible because ta(p∗) = |N |b∗, so even if

all agents spend their entire budget on good a at price vector t(p∗), total demand

is less than or equal to one (which is weakly less than supply by assumption).

Appendix F. Proof of Theorem 3

Proof. For each i ∈ N , let (a1
i , a

2
i , . . . , a

|O|
i ) be a sequence of objects in decreasing order of

i's preferences so that via1
i
≥ via2

i
≥ . . . , v

ia
|O|
i
. De�ne the class of sets H′ = H′N ∪H′O by

H′N = HN ∪

 ⋃
i∈N,

k∈{1,...,|O|}

{i} × {a1
i , . . . , a

k
i }

 ,

H′O = HO.

By inspection, H′ is a bihierarchy. Therefore, by Theorem 1, there exists a convex de-

composition such that

∑
(i,a)∈S

P ′ia,
∑

(i,a)∈S

P ′′ia ∈


 ∑

(i,a)∈S

Pia

 ,

∑

(i,a)∈S

Pia


 for all S ∈ H′,(F.1)

for any integer-valued matrices P ′ and P ′′ that are part of the decomposition. In particu-

lar, property (F.1) holds for each {(i, a)} ∈ H′N and {i}×{a1
i , . . . , a

k
i } ∈ H′N . This means

that

• Observation 1: For any i and k, P ′
iaki
− P ′′

iaki
∈ {−1, 0, 1}. This follows from the

fact that |P ′
iaki
− P ′′

iaki
| ≤ dPiaki e − bPiaki c ≤ 1 and that P ′

iaki
and P ′′

iaki
are integer

valued.

• Observation 2: By the same logic as for Observation 1, it follows that
∑k

j=1(P ′
iaji
−

P ′′
iaji

) ∈ {−1, 0, 1} for any i and k.

• Observation 3: Let (akli )ll=1 be the (largest) subsequence of (a1
i , . . . , a

k
i ) such

that P ′
ia
kl
i

6= P ′′
ia
kl
i

for all l. Then, (i) P
ia
kl
i

6∈ Z for all l, and (ii) P ′
ia
k2l′
i

− P ′′
ia
k2l′
i

=

−(P ′
ia
k2l′−1
i

− P ′′
ia
k2l′−1
i

) for any l′ = 1, . . . , l/2.

Observation 3 (ii) can be shown as follows. First, the result must hold for l′ = 1,

or else
∑k2

j=1(P ′
iaji
− P ′′

iaji
) = P ′

ia
k1
i

− P ′′
ia
k1
i

+ P ′
ia
k2
i

− P ′′
ia
k2
i

∈ {−2, 2}, which violates

Observation 2. Now, working inductively, suppose the statement holds for all
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l′ = 1, . . . ,m− 1 for m ≤ l/2. Then the statement must hold for l′ = m, or else

k2m∑
j=1

(P ′
iaji
− P ′′

iaji
)

=
m−1∑
l′=1

(
P ′
ia
k2l′−1
i

− P ′′
ia
k2l′−1
i

+ P ′
ia
k2l′
i

− P ′′
ia
k2l′
i

)
+ P ′

ia
k2m−1
i

− P ′′
ia
k2m−1
i

+ P ′
ia
k2m
i

− P ′′
ia
k2m
i

= P ′
ia
k2m−1
i

− P ′′
ia
k2m−1
i

+ P ′
ia
k2m
i

− P ′′
ia
k2m
i

must be either −2 or 2, which again violates Observation 2.

These observations imply that

∑
a∈O

P ′iavia −
∑
a∈O

P ′′iavia =

|O|∑
k=1

(P ′iaki
− P ′′iaki )viaki

=
l∑
l=1

(P ′
ia
kl
i

− P ′′
ia
kl
i

)v
ia
kl
i

≤
l/2∑
l′=1

v
ia
k2l′−1
i

− v
ia
k2l′
i

≤ v
ia
k1
i
− v

ia
k
l
i

≤ ∆i,

where the �rst inequality follows from viaki ≥ viak′i
for k < k′ and Observations 1 and

3-(ii), the second inequality follows from viaki ≥ viak′i
for k < k′, and the last inequality

follows from the de�nition of ∆i and Observation 3-(i). Therefore, we obtain property

(6.1). Property (6.2) follows immediately from property (6.1). �
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