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Abstract

A �Sender�(internet advertising platform, seller, rating agency, or school) has a probabil-

ity distribution over �prospects�(internet ads, products, bonds, or students). Each prospect

is characterized by its pro�tability to the Sender and its relevance to a �Receiver�(internet

user, consumer, investor, or employer). The Sender privately observes the pro�tability and

relevance of the prospect, whereas the receiver observes only a signal provided by the Sender

(the prospect�s �rating�). The Receiver accepts a given prospect only if his Bayesian infer-

ence about its relevance exceeds a private opportunity cost that is uniformly drawn from

[0,1]. We characterize the Sender�s optimal information disclosure rule assuming commit-

ment power on her behalf. While the Receiver�s welfare is maximized by full disclosure,

the Sender�s pro�ts are typically maximized by partial disclosure, in which the Receiver

is induced to accepting less relevant but more pro�table prospects (�switches�) by pooling

them with more relevant but less pro�table ones (�baits�). Extensions of the model include

maximizing a weighted sum of Sender pro�ts and Receiver welfare, and allowing the Sender

to subsidize or tax the Receiver.
�Acknowledgements to be added.
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1 Introduction

An Internet advertising platform can provide some information to users about the relevance

its ads. This information can be signaled by such features as the ad�s position on the web

page, its font size, color, �ashing, etc. Suppose that users have rational expectations and are

sophisticated enough to interpret these signals. Then user welfare would be maximized by

communicating the ads�relevance to them, allowing them to make fully informed decisions

about which ads to click.

The platform, however, may care not just about user welfare, but about its own pro�ts.

Suppose that each potential ad is characterized by its value to consumers and its per-click

pro�ts to the platform, and the two are not always aligned. Then the platform would increase

its pro�ts by inducing users to click on more pro�table ads.

While the platform would not be able to fool rational users systematically to induce them

to click more on less relevant ads, a similar e¤ect could be achieved by withholding some

information from them, pooling the less relevant but more pro�table ads with those that are

more relevant and less pro�table.

Similar information disclosure problems arise in other economic settings:

1. A seller chooses which information to disclose to consumers about its products, which

vary both in their pro�tability to the seller and their value to consumers.

2. A bond rating agency chooses what information to disclose to investors about bond

issuers, who also make payments to the agency for the rating.

3. A school chooses what information to disclose to prospective employers about the

ability of its students, who also pay tuition to the school.

In each of these cases, the pro�t-maximizing information disclosure rule may be partially

but not fully revealing.

This paper characterizes the optimal information disclosure rule in such settings. Our

basic model has two agents - the �Sender� and the �Receiver.�The Sender (who can be

alternatively interpreted as an advertising platform, seller, rating agency, or school) has a

probability distribution over �prospects� (ads, products, bonds, or students, respectively).

Each prospect is characterized by its pro�tability to the Sender and its value to the Receiver

(user, consumer, investor, or employer), which are not observed by the Receiver. First,

the Sender chooses an information disclosure rule about the prospects. Then a prospect is
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drawn at random and a signal about it is shown to the Receiver according to the rule. The

Receiver then makes a rational inference about the prospect�s value from the disclosed signal

and chooses whether to accept the prospect (click on the ad, buy the product, invest in the

bond, hire the student) or to reject it.

The problem of designing the optimal information disclosure rule turns out to be amenable

to elegant analysis under the special assumption that the Receiver�s private reservation value

(equivalently, opportunity cost of accepting a prospect) is drawn from a uniform distribu-

tion, with support normalized to the interval [0,1]. Then the probability of a prospect�s

acceptance simply equals the Receiver�s expectation of its value. For convenience, we also

assume that the distribution from which prospects come is �nite-valued, and that the Sender

can randomize in sending signals.1 Under these assumptions, we characterize the optimal

disclosure rule. In particular, we establish that this rule must have the following properties:

� It is optimal to pool two prospects (i.e., to send the same signal for each of them with
a positive probability) when they are �non-ordered�(i.e. one has a higher and lower

value than the other). When two prospects �ordered�(i.e. one dominates the other in

both value and pro�t), it is never optimal to pool them.

� When we describe each potential signal shown to the Receiver by the prospect�s ex-
pected pro�t and expected value conditional on the signal, the set of such signals must

be ordered, i.e., for any two signals, one must dominate the other in both value and

pro�t.

� Any set of prospects that are pooled with each other (i.e., result in the same signal)
with a positive probability must lie on a straight line in the (pro�t,value) space. For

the �generic�case in which no three prospects are on the same line, this implies that

any signal can pool at most two prospects.

� Two intervals connecting pooled prospects cannot intersect in the (pro�t,value) space.

� When one prospect is higher than another in both value and pro�t, it can only be
pooled into a higher signal than the other.

1We believe that such randomization would become unnecessary with a continuous convex-support dis-
tribution of prospects, but the full analysis of such a case is technically more challenging and we have not
attempted it yet
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� In the �generic�case, the set of prospects can be partitioned into three subsets: �pro�t�
prospects, �value� prospects, and �isolated� prospects, so that any possible pooling

involves one �pro�t� prospect and one �value� prospect, with the �pro�t� prospect

having a higher pro�t and a lower value than the �value�prospect it is pooled with.

Each �pro�t�or �value�prospect is pooled with some other prospect with probability

1, whereas each �isolated�prospect is never pooled.

While these results tell us a great deal about the optimal disclosure mechanism, they do

not fully describe it: They still leave many ways to choose the pooling graph, and to choose

probabilities with which a given prospect is pooled with its potential pooling partners. For-

tunately, the Sender�s expected pro�t-maximization problem with these probabilities turns

out to have a concave objective function and linear constraints (that the probabilities add up

to 1). Its solution can then be characterized by the �rst-order conditions, which we derive.

A complication arises due to the fact that the objective function is not di¤erentiable in the

probabilities of pooling with a given signal when this signal has probability zero. This mat-

ters because typically only a subset of signals can have positive probabilities at a solution.

One way to overcome this problem is by trying di¤erent subset of signals (pooling pairs),

using �rst-order conditions to �nd optimal probabilities of pooling into these signals, and

then choose the subset with the maximal expected pro�ts. Another way is by �rst solving the

perturbed maximization problem subject to the additional constraint that each prospect is

pooled with each potential partner with probability at least epsilon, and then taking epsilon

to zero to approach the solution to the unconstrained problem.

In the general analysis we take the pro�tability of each prospect to the Sender as given.

Yet we can apply this analysis to applications in which the Sender is an intermediary between

the Receiver and an independent Advertiser who owns the prospects. The Sender�s mecha-

nism design problem then includes the design of payments that the Advertiser is charged for

the signal about his prospect that is shown to the Receiver. For example, an online advertis-

ing platform charges advertisers di¤erent payments for di¤erent signals (ad placement etc.).

In the extreme case where the Sender has full information about the Advertiser�s pro�ts, he

can charge him payments that extract these pro�ts fully, in which case the disclosure rule

design problem becomes the same as if she owned the prospects. But we also consider the

more interesting case in which the Advertiser has private information about the prospects�

pro�tability to them. For example, online advertisers may have private information about

their per-click pro�ts, and so any mechanism designed by the platform will leave advertis-
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ers with some information rents. By subtracting these rents from the total pro�ts, we can

calculate the pro�ts collected by the platform as the Advertiser�s �virtual pro�ts,�which is

the part of his pro�ts that can be appropriated by the platform.

We consider an application with this structure, where the Advertiser�s private information

is his per-click pro�t �. In addition, there is a signal � of the Advertiser�s relevance that

is observed both by the Sender and the Advertiser. The prospect�s value to consumers is

given by a function v(�; �), which allows for the Advertiser�s private information to a¤ect

the prospect�s value to the Receiver. For example, v(�; �) could be increasing in � because

an Advertiser who sells more relevant or higher-quality wares has a higher probability of

concluding a mutually bene�cial transaction with the user, or it could be decreasing in �

because an Advertiser whose store has higher prices is more pro�table but o¤ers less value

to consumers.

The Sender (e.g., an advertising platform) o¤ers a mechanism to the Advertiser, which

without loss can be a direct revelation mechanism: the Advertiser reports his pro�ts � (e.g.,

through his bid per click), which together with the relevance parameter � determines the

probability distribution over the signals revealed to the Receiver about the prospect, as well

as the Advertiser�s payment to the Sender. (It doesn�t matter in the model whether the

payment is �per click� or �per signal/impression� since the Advertiser and the platform

are equally able to predict the clickthrough rate based on the signal shown.) When the

platform maximizes payments under the Advertiser�s incentive and participation constraints

for a given information disclosure rule, its expected payo¤ can be calculated as the expected

virtual pro�ts, given by some function � (�; �). (The function depends on � if and only if

� and � are correlated, in which case the marginal distribution of � depends on �.) The

one complication brought about by the Advertiser�s private information is the additional

�monotonicity constraint�: in any incentive-compatible mechanism, the expected acceptance

rate for an Advertiser must be nondecreasing in the Advertiser�s private pro�tability � for

any given �.

If the monotonicity constraint can be ignored, we can simply characterize the ads with

their virtual pro�ts and values (� (�; �) ; v (�; �)) and apply the basic analysis above to de-

termine the optimal information disclosure rule. Then we have to check that the solution

satis�es the monotonicity constraint. In particular, we show that the constraint is satis�ed

whenever both the virtual pro�t � (�; �) and the Receiver�s value v (�; �) are increasing in �.

In other cases, the constraint may bind, in which case the problem becomes substantially

5



more complicated. To simplify analysis, we focus on the case in which � and � can each take

just two possible values. We identify some cases in which the monotonicity constraint does

not bind, and the solution can be easily found.

Finally, we consider a few extensions of the model. First, if instead of a monopolistic

platform there are several platforms competing for users, we may expect a di¤erent Pareto

optimal information disclosure rule to emerge, which maximizes a weighted sum of expected

pro�ts and consumer welfare. The problem of maximizing this weighted sum is mathemati-

cally equivalent to the original problem, upon a linear change of coordinates. As the relative

weight on consumer welfare goes up, the optimal rule becomes more revealing (in the limit,

it becomes fully revealing).

The second perturbation is to allow the platform to o¤er monetary subsidies or taxes per

click. We �nd that given the optimal choice of subsidies/taxes, it becomes optimal to have

a fully revealing disclosure rule.

Finally, we have assumed that Receiver has a uniformly distributed private reservation

utility. This is a very special distributional assumption. (Although similar assumptions

have proven necessary to obtain tractable results in other communication models, such as

Crawford-Sobel, 1982, and Athey-Ellison, 2008). For general distributions, the mathematical

problem becomes a lot more challenging, but we hope that the essential qualitative features

will be preserved.

2 Related Literature

There exists a large literature on communicating information in Sender-Receiver games,

using costly signals such as education (Spence 1977) or advertising (Nelson, 1974, Kihlstrom

and Riordan, 1984), disclosure of veri�able information (e.g., Milgrom�s 2008 survey), or

cheap talk (Crawford and Sobel, 1982). Our approach is distinct from this literature in

two key respects: (1) our Sender is able to commit to a disclosure rule (thus, formally, we

consider the Stackelberg equilibrium rather than the Nash equilibrium of the game), and

(2) our Sender has two-dimensional rather than one-dimensional private information. These

di¤erences fundamentally alter information disclosure outcomes.

We believe that commitment to an information disclosure rule is a sensible assumption

in the applications discussed in the introduction. We can view the Sender as a �long-run�

player facing a sequence of �short-run�Receivers. In such a repeated game, a patient long-
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run player will be able to develop a reputation to play its Stackelberg strategy, provided

that enough information is revealed concerning history of play (Fudenberg and Levine 1989).

While an internet advertising platform may be tempted in the short run to fool users into

clicking more pro�table ads by overstating their relevance, pursuing this strategy would be

detrimental to the platform�s long-run pro�ts.

Several papers have considered commitment to optimal disclosure policy by an auctioneer

using a given auction format (Milgrom and Weber 1982) and by a monopolist designing

an optimal price-discrimination mechanism (Ottaviani and Prat 2001). The literature has

focused on providing su¢ cient conditions for full information disclosure to be optimal (e.g.,

using the �linkage principle�). In our main model, the Sender does not have a pricing choice,

and full information disclosure is generally not optimal.

Another literature related to this paper is that on certi�cation intermediaries, starting

with Lizzeri (1999). In Lizzeri�s basic model, the certi�cation intermediary is able to cap-

ture the whole surplus by revealing either no information, or just enough information for

consumers to make e¢ cient choices. The ability to extract consumer surplus is due to the

assumption that consumers have no private information (the demand curve is perfectly elas-

tic), as well as the ability to vary the price to consumers (which is not present in our main

analysis). The ability to extract producer surplus is due to the producers having no infor-

mational advantage over the intermediary (in contrast to our application in which prospects�

pro�tability is their private information). The key feature distinguishing our model from

this literature is the two-dimensional space of prospects: they di¤er not just in their value to

consumers but in their pro�tability (equivalently, costs) to sellers. The key new conclusion in

this two-dimensional space is that we have partial information disclosure and partial pooling

in speci�c directions. Adding some price �exibility to our model (such as per-click subsidies

or taxes considered in Subsection 7.2) may make it more appropriate for some applications.

Our model is also closely related to Rayo (2005), who examines the optimal mechanism

for selling conspicuous goods (such as luxury watches, pens, jewelry, or cars) whose only

purpose is assumed to be signaling of wealth. This is parallel to our model once we interpret

the seller as the Sender, consumers as prospects, and conspicuous goods as signals. (The

Receiver is present in Rayo�s model in reduced form only, whose beliefs enter the consumer�s

utility.) The main di¤erence from our model is again in the dimension of the type space:

in Rayo�s model type is one-dimensional and prospects/consumers who have a higher type

(i.e., higher value) are also the ones for whom signaling a higher type is more pro�table.
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Finally, Athey and Ellison (2008) examine the inferences of rational users about ad rel-

evance in sponsored-search position auctions, and the design of auctions that take these

inferences into account. While they are concerned with similar issues, their model is dif-

ferent in a number of respects. First, they do not consider general information disclosure

mechanisms, instead focusing on auctions where the only signal of an ad�s relevance is its

ranking on the screen. Second, they focus on one-dimensional advertiser type with the sort-

ing condition in the right direction, so that the more pro�table ads are also more valuable to

users. On the other hand, they focus on some aspects of sponsored-search auctions that we

abstract from, in particular on users�short-run learning about the relevance of a given ad

panel by clicking on other ads, and the externalities among ads due to substitution among

their products (a consumer who �nds a match on one advertised website does not click on

any more ads).

3 Setup

We begin with two players: the Sender and the Receiver. The Sender is endowed with a

prospect, which is randomly drawn from a �nite set P = f1; : : : ; Ng. The probability of
prospect i being realized is denoted by pi > 0, with

X
i2P

pi = 1. Each prospect i 2 P

is characterized by its payo¤s (�i; vi) 2 R2, where �i is the prospect�s pro�tability to the
Sender and vi is its value to the Receiver.

The realized prospect is not directly observed by the Receiver. Instead, the Receiver is

shown a signal about this prospect, according to an information disclosure rule:

De�nition 1 A �disclosure rule�h�; Si consists of a �nite set S of signals2 and a mapping
� : P ! �(S) that assigns to each prospect i a probability distribution � (i) 2 �(S) over
signals.

For example, at one extreme, the �full separation� rule is implemented by taking the

signal space S = P and the disclosure rule �s (i) = 1 if s = i and �s (i) = 0 otherwise. At

the other extreme, the �full pooling�rule is implemented by letting S be a singleton.

After observing the signal s, the Receiver decides whether to �accept�(a = 1) or �not

accept� (a = 0) the prospect. Whenever the Receiver accepts the prospect, he forgoes an

2The restriction to a �nite set of signals is without loss of generality in this setting.
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outside option worth r 2 R. Thus, the Sender and Receiver obtain payo¤s equal respectively
to a� and a (v � r) :
We assume the Sender commits to a disclosure rule before the prospect is realized. Thus,

the timing is as follows:

1. The Sender chooses a disclosure rule h�; Si.

2. A prospect i 2 P is drawn.

3. A signal s 2 S is drawn from distribution � (i) and shown to the Receiver.

4. The Receiver accepts or rejects the prospect.

Example 1 A search engine (the Sender) shows a consumer (the Receiver) an online ad-

vertisement with a link. Based on the characteristics of this advertisement (s), and his own

opportunity cost (r), the consumer decides whether or not to click on the link. The online

advertisement, for instance, may describe a product sold by a separate �rm, in which case

the search engine�s payo¤ (�) may correspond to a fee paid by such �rm. We consider this

possibility in greater detail in Section 6.

In principle, the Sender may be able to �exclude�a prospect (e.g., by not showing it to

the Receiver at all), thus enforcing acceptance decision a = 0. For expositional simplicity

for now we do not consider this possibility. Our analysis will thus apply conditional on the

probability distribution of the prospects that are not excluded. (And when all prospects

have nonnegative pro�ts, the Sender will indeed �nd it optimal not to exclude any of them.)

We explicitly introduce optimal exclusion decisions below in Section 6.

The Receiver knows his outside option r but must make an inference about the prospect�s

value v from the signal s shown to him. Accordingly, the Receiver optimally sets a = 1 if

and only if his expected value conditional on the signal, E[vj s], exceeds r. In what follows,
we assume that r is drawn from a uniform distribution with support normalized to [0; 1].

For simplicity, we also restrict v to be in [0,1]. Under these assumptions, conditional on

receiving a given signal s; the probability that a = 1 (the Receiver�s �acceptance rate�) is

equal to E[vj s]. The resulting expected surplus obtained by the Receiver is given byZ 1

0

max fE[vj s]� r; 0g dz = 1

2
E[vj s]2:

9



As for the Sender, her expected pro�t from signal s being accepted is E[�j s], hence her
expected pro�t from sending the signal is E[�j s] � E[vj s]. Taking the ex ante expectation
over the signals, the Receiver and Sender�s expected payo¤s for a given disclosure rule can

be written, respectively, as

UR = E[
1

2
E[vj s]2]; (1)

US = E [E[�j s] � E[vj s]] : (2)

Observe that for the purposes of computing the parties�payo¤s, an information disclosure

rule h�; Si is characterized by the total probabilities qs =
X
i2P

pi�s (i) that signals s 2 S are

sent as well as the parties�posterior expected payo¤s conditional on these signals:

E[vj s] = 1

qs

X
i2P

pi�s (i) vi, E[�j s] =
1

qs

X
i2P

pi�s (i)�i:

Thus, showing the Sender a signal s is equivalent to showing him a single disclosed prospect

with payo¤s (E[�j s];E[vj s]). This observation will prove useful in analyzing optimal disclo-
sure rules.

Note, in particular, that if we have two di¤erent signals with the same expected payo¤s

(E[�j s];E[vj s]), they can be merged into one signal with their combined probability. Thus,
we can restrict attention without loss to disclosure rules that are non-redundant, i.e., where

di¤erent signals have di¤erent expected payo¤s (E[�j s];E[vj s]), and all signals are sent
with positive probabilities. We will also view di¤erent disclosure rules that coincide up to

a relabeling of signals as equivalent. For example, we can then say that there is a unique

(non-redundant) full-separation rule and a unique (non-redundant) full-pooling rule.

Now we consider the e¤ect of information disclosure on the two parties�payo¤s. As far as

the Receiver is concerned, it is clear that the more information is disclosed to him, the higher

is his expected payo¤. Thus, the Receiver�s expected payo¤ is maximized by full separation

rule, which gives him a payo¤ of E[1
2
v2]. One way to see this is using Jensen�s inequality.

Namely, for any disclosure rule,

E
�
1

2
E[vj s]2

�
� E(1

2
E[v2

�� s]) = E[1
2
v2]:

At the other extreme, under full pooling, the Receiver�s expected payo¤ is only 1
2
E[v]2. Again
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by Jensen�s inequality, this is the smallest possible payo¤ among all disclosure rules:

1

2
E[v]2 =

1

2
[E(E[vj s])]2 � 1

2
E
�
E[vj s]2

�
:

We now turn to the problem of choosing the disclosure rule to maximize the Sender�s

expected payo¤, which proves to be substantially more complicated and which in general is

not solved by either full separation or full pooling.

4 Characterizing Pro�t-Maximizing Disclosure

The goal is to �nd a disclosure rule that maximizes the expected product of the two coordi-

nates E[�j s] and E[vj s]:
E (E[�j s] � E[vj s]) : (3)

We begin with a simple exercise that will then be used as a key building block for the

analysis. The Sender�s expected gain from pooling two prospects i and j into one signal ŝ

(while disclosing information about the other prospects as before) is given by:

(pi + pj)E[�kjk 2 fi; jg] � E[vkjk 2 fi; jg]� pi�ivi � pj�jvj (4)

= (pi + pj) �
pi�i + pj�j
pi + pj

� pivi + pjvj
pi + pj

� pi�ivi � pj�jvj

= � pipj
pi + pj

(�i � �j)(vi � vj):

Thus, we see that the pro�tability of pooling two prospects depends on how their payo¤s

are ordered:

De�nition 2 Two prospects�payo¤s (�i; vi) ; (�j; vj) 2 R2 are are ordered if either (�i; vi) �
(�j; vj) or (�j; vj) � (�i; vi). The two prospects are unordered if (�i;�vi) � (�j;�vj) or
(�j;�vj) � (�i;�vi). The two prospects are strictly ordered if they are ordered and not
unordered; they are strictly unordered if they are unordered and not ordered.

Examination of (4) immediately yields:
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Lemma 1 Pooling two prospects yields (strictly) higher pro�ts for the Sender than separating

them if the prospects are (strictly) unordered, and yields (strictly) lower pro�ts if the prospects

are (strictly) ordered.

A simple intuition for this result is that pooling two prospects preserves the expected

acceptance rate but shifts it from the more valuable to the less valuable prospect. When the

more valuable prospect is also more pro�table (the �ordered� case), this shift reduces the

Sender�s expected pro�ts. When instead the more valuable prospect is less pro�table (the

�unordered�case), this shift raises the Sender�s expected pro�ts.

A more formal explanation for the same result comes from examining the curvature of

the product function in di¤erent directions (��;�v) :

d2

dt2
[(� + t��) (v + t�v)] = 2���v,

and so the function is convex when sign (��) = sign (�v), but concave when sign (��) 6=
sign (�v). Thus, by Jensen�s inequality, full separation is optimal in the directions of con-

vexity while full pooling is optimal in the directions of concavity.

This simple observation has far-reaching implications for the optimal disclosure rule with

any number of prospects. The simplest one is

Lemma 2 In a pro�t-maximizing disclosure rule, the set of the signals�payo¤s

f(E[�js];E[vjs]) : s 2 Sg

is ordered (i.e., any two of its elements are ordered).

Proof. If there were two signals s1; s2 2 S sent with positive probabilities such that

(E[�js1];E[vjs1]) and (E[�js2];E[vjs2]) are not ordered, then by Lemma 1 the expected pro�ts
would be increased by pooling these two signals into one.

For example, if we just have N = 2 prospects, and the prospects are strictly unordered,

optimal information disclosure must involve full pooling, for otherwise there would be two

strictly unordered signals. If we instead have N = 2 prospects that are strictly ordered,

optimal information disclosure must involve full separation, for otherwise by Lemma 1 we

would improve by breaking any signal into separation of the prospects.

For cases with more than two prospects, characterization of optimal disclosure requires

more work, as it is typically neither full separation nor full pooling.
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De�nition 3 The pool of a signal s 2 S is the set of prospects for which signal s is sent
with positive probability, i.e.,

Ps = fi 2 P : �s (i) > 0g :

Lemma 3 In a pro�t-maximizing disclosure rule, for any given signal s 2 S, the payo¤s
of the prospects in the pool of s, f(�i; vi) : i 2 Psg, lie on a straight line with a nonpositive
slope.3

Proof. (See Figure 1 for reference.) First, suppose in negation that the payo¤s do not lie

on a straight line. Then the convex hull of f(�i; vi) : i 2 Psg, which we denote by H, has a
nonempty interior, which contains (E[�js];E[vjs]). Then H also contains (E[�js];E[vjs]) �
(�; �) for small enough � > 0; i.e., there exists � 2 �(Ps) such that

(E[�js];E[vjs])� (�; �) =
P
i2Ps

�i � (�i; vi):

Now replace the original signal s with two new signals s1; s2 and consider the new dis-

closure rule �̂ that for each i 2 Ps has �̂s1 (i) = "�i and �̂s2 (i) = �s (i)� "�i, where " > 0 is
chosen small enough so that �̂s2 (i) � 0 for all i 2 Ps. (Let �̂t (i) = �t (i) for all t 2 Sn fsg,
i 2 PnPs.) By construction, we obtain

(E[�js1];E[vjs1]) = (E[�js];E[vjs])� (�; �) and
"

qs
� (E[�js1];E[vjs1]) +

qs � "
qs

� (E[�js2];E[vjs2]) = (E[�js];E[vjs]) :

This in turn implies

(E[�js2];E[vjs2]) = (E[�js];E[vjs]) +
"

qs � "
(�; �) :

Thus, the points (E[�js1];E[vjs1]) and (E[�js2];E[vjs2]) are strictly ordered, and by
Lemma 1 the expected pro�t from separating signals s1 and s2 is strictly higher than the

expected pro�t from pooling them into one signal s. This contradicts the optimality of the

3Note that it is important for this lemma, unlike the previous results, that randomized disclosure rules
be allowed. By virtue of this lemma, allowing for randomization actually simpli�es the characterization of
optimal information disclosure, contrary to what one might expect a priori. We expect that randomization
becomes super�uous when the prospects are drawn from a continuous distribution on a convex set; however,
analysis of such a case requires di¤erent techniques and is not undertaken here.
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original disclosure rule.

Finally, if the straight line containing Ps were strictly upward sloping, then by Lemma 1

the expected pro�ts would be increased by breaking up signal s into full separation.

Lemma 4 In a pro�t-maximizing disclosure rule, suppose we have ia1; i
b
1 2 Ps1 and ia2; ib2 2

Ps2 for two signals s1; s2 2 S. Then, if the intervals
h�
�ia1 ; via1

�
;
�
�ib1 ; vib1

�i
and

h�
�ia2 ; via2

�
;
�
�ib2 ; vib2

�i
intersect,4 then they either just share an endpoint or they both lie on the same line.

Proof. (See Figure 2 for reference.) Let xikj =
�
�ikj ; vikj

�
for each j = 1; 2, k = a; b.

By Lemma 2, E [(�; v) js1] and E [(�; v) js2] must be ordered. If they were not strictly
ordered, then by Lemma 1 it would be weakly optimal to pool them together, which by

Lemma 3 can only occur when the four points xikj are on a straight line. Thus, we can focus

on the case where the two signals are strictly ordered; for de�niteness let E [(�; v) js1] �
E [(�; v) js2]. Also, let

L = f�E [(�; v) js1] + (1� �)E [(�; v) js2]j� 2 Rg :

For each j = 1; 2, since E [(�; v) jsj] 2
h
xiaj ; xibj

i
, the two endpoints of the interval must

lie in di¤erent half-planes divided by L. For de�niteness, let xia1 ,xib2 lie above L and xib1 ; xia2
lie below L for each j = 1; 2. Then L should also intersect intervals

�
xia1 ; xia2

�
and

h
xib1 ; xib2

i
.

Let A = L \
�
xia1 ; xia2

�
and B = L \

h
xib1 ; xib2

i
.

Now, when the interiors of intervals
h
xia1 ; xib1

i
and

h
xia2 ; xib2

i
intersect, these intervals

must be two diagonals of the quadrilateral with vertices xikj , j = 1; 2, k = a; b and edges�
xia1 ; xia2

�
;
h
xia2 ; xib1

i
;
h
xib1 ; xib2

i
, and

h
xib2 ; xi

a
1

i
. Since E [(�; v) js1], E [(�; v) js2] are in the in-

terior of the quadrilateral, they must be contained in the interior of [A;B]. For de�niteness,

we can focus on the case where

A� E [(�; v) js1]� E [(�; v) js2]� B:

(When instead an endpoint of one of the intervals
h
xia1 ; xib1

i
,
h
xia2 ; xib2

i
is contained in the

other, one of the extreme strict equalities above becomes an equality, but the argument

below is preserved.)

4Where [x; y] = f�x+ (1� �) y : � 2 [0; 1]g.
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Now add two more signals: sA and sB, and consider the disclosure rule that for each

j = 1; 2, k = a; b, has

�̂sj
�
ikj
�
= (1� "j)�sj

�
ikj
�
,

�̂sk
�
ikj
�
= "j�sj

�
ikj
�
:

In other words, when i 2
�
iaj ; i

b
j

	
and the old disclosure rule sent signal sj, the new rule

sends signal sj with probability 1 � "j and with probability "j sends signal sA when i = iaj
and signal sB when i = ibj. Then by construction we have that under the new disclosure rule,

E�̂ [(�; v) js1] = E� [(�; v) js1] and E�̂ [(�; v) js2] = E� [(�; v) js2] , while

E�̂ [(�; v) jsA] 2 [xa1; x
a
2] and E�̂ [(�; v) jsB] 2 [xab ; xab ] .

Furthermore, we can choose "1; "2 � 0 so that E [(�; v) jsA] = A 2 L. Finally, note that for
all "1; "2 we must have X

i=1;2;A;B

Pr fs = sigE [(�; v) jsi]

= E�E [(�; v) js 2 fs1; s2g] 2 L,

hence we must also have E [(�; v) jsB] 2 L, and therefore E [(�; v) jsB] = B.
Now we show that the probabilities (q̂A; q̂1; q̂2; q̂B) of the signals (sA; s1; s2; sB) in the new

disclosure rule can be obtained from probabilities (q1; q2) of signals (s1; s2) in the original

disclosure rule via a combination of two mean-preserving spreads: (i) spread probability

q1� q̂1from signal s1 into signals sA and sB, and (ii) spread probability q2� q̂2 from signal s2
into signals sA and sB. Indeed, note that after these two spreads, the probabilities of signals

sA and sB must add up to

q0A + q
0
b = (q1 � q̂1) + (q2 � q̂2) = q̂A + q̂B;

and by mean preservation of the set of signals we must have

q0AA+ q
0
BB = q̂AA+ q̂BB,

and these two equations are solved only by (q0A; q
0
B) = (q̂A; q̂B). Since the mean-preserving
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spreads of probability are along the upward-sloping line L, they raise expected pro�ts by

Lemma 1.

Lemma 5 In any optimal disclosure rule, for any two signals s; s0 2 S and any two prospects
i 2 Ps, i0 2 Ps0, whenever (�i0 ; vi0) � (�i; vi) and the two points do not coincide, either

E [(�; v) js0] � E [(�; v) js], or it is optimal to pool the two signals.

Proof. By Lemma 2, we must either have E [(�; v) js0] � E [(�; v) js] or E [(�; v) js0] �
E [(�; v) js]. Suppose in negation that (a) the former inequality does not hold, hence the latter
one holds, and (b) it is not optimal to pool the two signals, hence E [(�; v) js0] 6= E [(�; v) js].
Let

x = (�i; vi) ; x
0 = (�i0 ; vi0) ; y = E [(�; v) js] ; y0 = E [(�; v) js0] ;

L = f�x+ (1� �) yj� 2 Rg , L0 = f�x0 + (1� �) y0j� 2 Rg .

By Lemma 3, both L and L0 must have a non-positive slope. If L = L0, then by Lemma 1 it

is optimal to pool signals s and s0. Thus we can focus on the case where L 6= L0, hence the
two lines have at most one intersection.

Since by assumption x0 is strictly above L and y0 is below L, there exists C 2 [x0; y0] such
that fCg = L \ L0. By the symmetric argument, we also have C 2 [x; y].
But then we can �nd j 2 Ps, j0 2 Ps0 such that the interiors of intervals [(�i; vi) ; (�j; vj)]

and [(�i0 ; vi0) ; (�j0 ; vj0)] intersect at C, and since we also know that the lines L;L0 on which

they lie do not coincide, by Lemma 4 this contradicts optimality of the disclosure rule.

We can further narrow down the structure of optimal pooling when we focus on the

�generic�case:

De�nition 4 The problem is �generic� if no three prospects lie on the same straight line.

In this case, Lemma 3 tells us that no more than two types can share a given signal s.5

Thus, any given signal s either fully reveals a speci�c prospect i, or, alternatively, it pools

exactly two di¤erent prospects fi; jg. Then the disclosure rule induces a �pooling graph�on
P , in which two prospects are linked if and only if they are pooled into one signal. (Note that

by Lemma 2 it cannot be optimal to have two distinct signals that both pool two strictly

5Clearly, if we instead considered a continuous distribution of prospects, then this notion of genericity
would not be appropriate, and we would typically expect many prospects to be pooled into one signal.
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unordered prospects, since then the two signals would themselves be strictly unordered.) In

the generic case, we can say even more about the pooling graph:

De�nition 5 For two prospects i; j 2 P , if �i � �j and vi � vj then we say that i is �to

the SE�of j, and that j is �to the NW�of i:

Lemma 6 In the generic case, an optimal information disclosure rule partitions P into

three subsets: the set V of �value prospects,�the set � of �pro�t prospects,�and the set I of

�isolated prospects,�so that for any signal s, the pool Ps consists either of a single prospect

i 2 I or of two prospects fi; jg with i 2 V and j 2 �, with i being to the NW of j.

Proof. Observe that a given prospect i cannot be optimally pooled with a prospect iSE
to the SE of it and also with another prospect iNW to the NW of it. Indeed, were this to

happen, letting sSE and sNW represent the two respective signals, the respective posteriors

E [�; vjsSE] ; E [�; vjsSW ] would be strictly unordered (here also using genericity), and so by
Lemma 2 this could not be an optimal disclosure rule.

Thus, for any given prospect i, there are just three possibilities: (i) it does not participate

in any pools, in which case we assign i to I, (ii) all of its pooling partners are to the SE of

i, in which case we assign it to V , and (iii) all of its pooling partners are to the NW of i, in

which case we assign it to �.

Intuitively, Lemma 6 allows us to interpret the prospects from set � as �pro�t�prospects

and those from set V as �value� prospects. A value prospect is always used as a �bait�

to attract consumers, while a pro�t prospect is always used as a �switch� to exploit the

attracted consumers. (Of course, since consumers are rational, they take the probability of

being �switched� into account.) The substantive contribution of the lemma is in showing

that the role of a pooled prospect in the optimal disclosure rule cannot change: it is either

always used as the �bait�or always used as the �switch.�

Example 2 (Taxonomy of optimal pooling with 4 prospects) Focusing on the case

where all prospects are pooled (I = ?), these are all the possibilities:

a) jV j = 1, j�j = 3 or jV j = 3, j�j = 1; 3 signals (�Fan�)

b) jV j = j�j = 2:

b.1) 2 signals, 1-to-1 pooling between V and � (�Two lines�)
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b.2) 3 signals (�Zigzag�)

b.3) 4 signals (�Cycle�)

Furthermore, it turns out that cycles are �fragile:� they can only be optimal for non-

generic parameter combinations, and even for such combinations there exists another optimal

pooling graph that does not contain cycles.

5 Solving for Optimal Disclosure

The lemmas in the previous section tell us a great deal about the optimal disclosure rule, but

do not fully nail it down. In this section we discuss how to solve for the optimal rule. For

simplicity we restrict attention to the generic case, in which, by Lemma 3, we can restrict

attention to signals that either pool a pair of prospects or separate a prospect. Thus, we can

take S = fs � P : jsj = 1 or jsj = 2g, where a single-element signal fig separates prospect i
while a two-element signal fi; jg is a pool of prospects i and j.
One way to describe such a disclosure rule is by de�ning, for any two-element signal

fi; jg � P , the weight �ij = pi�fi;jg (i) �i.e., the mass of point i that is pooled into signal
fi; jg. Given these weights, we can calculate the Sender�s expected payo¤ (3) as follows. For
each signal fi; jg that is sent with a positive probability (i.e., �ij + �ji > 0), the expected
payo¤ from using this signal relative to that from breaking it up into separation can be

obtained using formula (4), substituting into it pi = �ij and pj = �ji. Thus, the seller�s

expected payo¤ can be written as

F (�) =
X
i2P

pi�ivi �
X

fi;jg�S

g
�
�ij; �ji

�
Zij, (5)

where g (b1; b2) =

(
b1b2= (b1 + b2) if b1 + b2 > 0;

0 otherwise,

and Zij = (vj � vi) (�j � �i) for all i; j 2 P .

The Sender will choose nonnegative weights to maximize this function subject to the

constraints

X
fj;jg�P

�ij � pi for all i 2 P ,

�ij � 0 for all fi; jg � P:
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(When the �rst constraint holds with strict equality for some prospect i this means that

with the remaining probability the prospect is separated.)

Furthermore, note that the seller strictly prefers not to use any signals fi; jg for which
Zij > 0, i.e., that are strictly ordered. (This is also clear from Lemma 1.) Thus, we can

restrict attention to pools from the set

U = ffi; jg � P : Zij � 0g :

Thus, the Sender�s program can be written as

max
�2RU

X
i2P

pi�ivi �
X

fi;jg2U

g
�
�ij; �ji

�
Zij, s.t. (6)

X
fj;jg�U

�ij � pi for all i 2 P; (7)

�ij � 0 for all (i; j) 2 U: (8)

Lemma 7 The objective function in (6) is continuous and concave on RU+.

Proof. For continuity, it su¢ ces to show that the function g (b1; b2) is continuous on (b1; b2) 2
R2+. Continuity at any point (b1; b2) 6= (0; 0) follows from the fact that it is a composition of
continuous functions. To see continuity at (0; 0), note that

0 � g (b1; b2) � b1; b2, hence

lim
b1;b2!+0

g (b1; b2) = 0 = g (0; 0)

For concavity, since Zij � 0 for all fi; jg 2 U , it su¢ ces to show that g (b1; b2) is a concave
function on R2+. We �rst show that it is concave on R2+n f(0; 0)g by expressing its Hessian
at any (b1; b2) 6= (0; 0) as

D2g(b1; b2) =
2

(b1 + b2)
3

 
�b22 b1b2

b1b2 �b21

!
;

and noting that it is negative semide�nite. Moreover, since g is continuous at (0; 0), its

concavity is preserved when adding this point to the set.
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The Lemma implies that the set of solutions to the above program is continuous and

convex. We proceed to write �rst-order conditions for the this program. However, before

doing so, a word of caution is in order: The function F (�) proves non-di¤erentiable in�
�ij; �ji

�
at points where �ij = �ji = 0. Indeed, on the one hand, the partial derivative of

F with respect to either �ij or �ji is zero at any such point. This is simply because raising

one of the weights while holding the other at zero has no e¤ect on the information disclosure

rule. However, the directional derivative of F in any direction in which �ij and �ji are raised

at once is not zero: in particular, it is positive when i and j are strictly unordered.

We can still make use of �rst-order conditions for program (6) in the variables �ij; �ji
for signals fi; jg such that

�
�ij; �ji

�
6= (0; 0), holding the set of such signals �xed at some

Ŝ � U . Letting �i denote the Lagrange multipliers with adding-up constraints (7), the

�rst-order conditions can be written as:

�2ji�
�ij + �ji

�2 jZijj � �i, with equality if �ij > 0: (9)

In particular, for signals fi; jg and fi; kg to both be sent with a positive probability, we must
have

1 + �ij=�ji
1 + �ik=�ki

=

r
Zij
Zik
:

Thus, one way to solve for an optimal disclosure rule is by trying di¤erent sets of signals

Ŝ � U , writing interior �rst-order conditions for all signals from Ŝ to be sent with a positive
probability, solving for the optimal disclosure rule given Ŝ, and calculating the resulting

expected pro�t of the Sender. Then we can choose the set Ŝ that maximizes the Sender�s

expected pro�ts. We can use Lemma 6 to narrow down the set of possible signal combinations

that could be optimal. Still, when the set P of prospects is large, this procedure may be

infeasible, since the set of possible signal combinations Ŝ can grow exponentially with the

number of prospects. For such cases, we propose an alternative approach: choose " > 0

and add the constraints �ij + �ji � " for each (i; j) 2 U . Within the constrained set, the
objective function is totally di¤erentiable, hence the solutions can be characterized by �rst-

order conditions to the problem. Then, by taking " to zero, we will approach a solution to

the unconstrained program.

Finally, while so far we have not allowed the Sender to exclude prospects, it is easy

to introduce this possibility, by letting the Sender choose any pi � pi, where pi is the true
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probability of prospect i, and the prospect is therefore excluded with probability pi�pi. Note
that the Sender will never exclude a prospect with a positive pro�t, since it can always be

separated from the others. But the Sender may choose not to exclude even some prospects

with a negative pro�t, since if this prospect has a high value the Sender may bene�t by

pooling it with another, pro�table prospect.

6 An Independent Advertiser

Here we assume that the prospect is owned by a new player, called the Advertiser, rather

than the Sender. This prospect is characterized by a parameter vector y = (�; �) that is

randomly drawn from a �nite set Y � R2. The �rst component � represents the pro�t
obtained by the Advertiser if the prospect is accepted (a = 1). The second component �

is a �relevance� parameter that, in combination with �; determines the bene�t obtained

by the Receiver conditional on a = 1. This bene�t, in particular, is given by a function

f(�; �) 2 [0; 1]; which with slight abuse of notation we denote v(�; �):
The prospect�s pro�t parameter � is privately observed by the Advertiser and its relevance

parameter � is jointly observed by the Advertiser and the Sender. In this way, the Sender

enjoys at least partial knowledge of v: (The Receiver observes neither � nor �.) Let h(� j �)
denote the probability of � conditional on �; with cumulative function H(� j �):
The Sender sells a signal lottery to the Advertiser using a direct-revelation mechanism.

For each value of �; this mechanism requests a report b� of the Advertiser�s pro�tability
� and, based on this report, determines: (1) a lottery �(b�; �) 2 �(S) and (2) a monetary
transfer t(b�; �) 2 R from the Advertiser to the Sender. The goal of the Sender is to maximize
expected revenues E [t(�; �)] subject to the relevant participation and incentive constraints.
The timing is as follows:

1. The Sender chooses a mechanism consisting of a disclosure rule � : Y ! �(S) and a

transfer rule t : Y ! R.

2. The Advertiser draws prospect parameters (�; �) 2 Y .

3. The Advertiser reports b� and transfers t(b�; �) to the Sender.
4. A signal s 2 S is drawn from distribution �(b�; �)
5. The Receiver observes s and his reservation value r.
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6. The Receiver accepts or rejects the prospect.

We assume that the Receiver has knowledge of the mechanism chosen by the Sender as

well as the prior distribution of (�; �): Accordingly, for any given s; the Receiver�s acceptance

rate is given by E [v j s] = E [v(�; �) j s] ; where the expectation is taken over (�; �):
On the other hand, for any given mechanism, the net expected pro�t obtained by an

Advertiser who is endowed with parameters (�; �); and who reports type b�; is given by
� � E

h
E [v j s] j �(b�; �)i� t(b�; �);

where the �rst expectation is taken over s according to the lottery �(b�; �): The participation
and incentive constraints indicate, respectively, that this payo¤ must be non-negative and

maximized at b� = �.
For any given �; the highest transfers that the Sender can obtain are determined by a

binding participation constraint for the Advertiser with the lowest value of �; and a binding

downward-adjacent incentive constraint for all other Advertisers. Accordingly, the Sender�s

objective becomes

E [t(�; �)] = E (E [�(�; �) j s] � E [v(�; �) j s]) ; (10)

where �(�; �) denotes the �virtual pro�t�that the Sender obtains from an Advertiser with

parameters (�; �). This virtual pro�t is given by

�(�; �) = � � (�0 � �)1�H(� j �)
h(� j �) ;

where �0 denotes the type immediately above � (provided such a type exists) and 1�H(�j�)
h(�j�) is

the inverse hazard rate for �:

In addition, the incentive constraints indicate that the Sender must restrict to disclosure

rules h�; Si that result in a monotonic allocation. Namely, for any given �; the expected
probability that a = 1 must be a nondecreasing function of the Advertiser�s pro�t parameter

�:

E [E [v j s] j �(�; �)] is non-decreasing in � for all �: (M)

Notice that, other than the monotonicity constraint, the Sender�s problem of maximizing

(10) is identical to the original problem of maximizing (3), where � and v are now simply

indexed by y = (�; �): Consequently, whenever the monotonicity constraint is slacked, all
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results derived in Section 5 apply. The following conditions guarantee that this constraint is

in fact slacked:

Condition 1 �(�; �) is increasing in � for all �:

Condition 2 v(�; �) is nondecreasing in � for all �:

Lemma 8 Under conditions 1 and 2 the monotonicity constraint (M) does not bind.

Proof. Consider a disclosure rule h��; Si that maximizes (10) and is such that the posterior
payo¤s of all signals are strictly ordered (which is without loss for the Sender due to Lemma

2 and the fact that any pair of signals with posterior payo¤s that are both ordered and

unordered can be pooled without changing her objective). We show that such disclosure rule

satis�es (M).

Suppose not. Then, for some �; there must exist a pair �1; �2; with �1 < �2; such that

E [E [v j s] j ��(�1; �)] > E [E [v j s] j ��(�2; �)] :

This inequality in turn implies that there exist two signals s1; s2, with ��s1(�1; �); �
�
s2
(�2; �)

> 0; such that

E [v j s1] > E [v j s2] : (11)

When combined with the fact that the posterior payo¤s of all signals are strictly ordered,

this inequality implies that

E [� j s1] > E [� j s2] : (12)

On the other and, since v and � are, respectively, nondecreasing and increasing in �; we have

v(�1; �) � v(�2; �) and �(�1; �) < �(�2; �): But when combined with (11) and (12), these

inequalities contradict Lemma 5.

6.1 The 2� 2 Case

Here we consider the special case in which � and � can each take one of two values: � 2
f�L; �Hg and � 2 f�L; �Hg: Accordingly, the Sender has four prospects with respective payo¤s
xij = (�(�i; �j); v(�i; �j)); for i; j 2 fL;Hg:We refer to these four prospects as LL; HL; LH;
and HH, according to the respective values of � and �.
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In this case, for each �, the Sender�s virtual pro�ts become

�(�H ; �) = �H ; and

�(�L; �) = �L � (�H � �L)
h(�H j �)
h(�L j �)

:

In other words, the virtual pro�ts for both HL and HH are equal to the Advertisers actual

pro�ts �H ; whereas the virtual pro�ts for both LL and LH are lower than the Advertisers

actual pro�ts �L. As a result, condition 1 is automatically met. Moreover, the virtual pro�t

for LL is smaller (resp. larger) than the virtual pro�t for LH whenever the random variables

� and � are negatively (resp. positively) a¢ liated.

In order to add further structure to the problem, we assume that the following conditions,

in addition to condition 2, are met:

Condition 3 For all prospect parameters y; virtual pro�ts �(y) are positive.

Under this condition, the Sender will bene�t from serving the Advertiser regardless of

the value of y. We later consider an example in which this condition is not met.

Condition 4 The relevance parameter � conveys dominant information concerning the Re-

ceiver�s value:

� < �0 implies that max
�
v(�; �) < min

�
v(�; �0):

This condition tells us that prospects with higher relevance � deliver a higher value for

the Receiver, regardless of the Advertiser�s pro�t �.

From here, we divide the analysis into two sub-cases, according to whether � and � are

negatively or positively a¢ liated. These sub-cases are illustrated in Figure 3. Notice that

conditions 1-4 are also embedded in this �gure.

1. Negative a¢ liation. In this case, as shown in Figure 3.A, every pair of prospects is

ordered except for the pair LH and HL. We therefore obtain a simple solution: the Sender

fully separates the ordered prospects LL and HH; and pools the unordered prospects LH and

HL with each other. In the pool LH-HL; the high-value prospect LH acts as bait for the

high-pro�t prospect HL.

2. Positive a¢ liation. In this case, as shown Figure 3.B, the high-value prospect LH

is to the NW of two low-value prospects: LL and HL: As before, LH serves as bait, but the

24



Sender now faces the problem of spreading the total mass of this bait between two potential

switches. The solution to this problem is readily derived from the �rst-order conditions 9. In

particular, if we let

wmin �
pLL

pLH + pHL
; wmax �

pLH + pLL
pHL

; and A � pLL
pHL

�
s
ZLH;LL
ZLH;HL

;

the solution is (uniquely) determined by the following condition over the total masses wLH;LL
and wLH;HL assigned, respectively, to the joint signals LH-LL and LH-HL:

wLH;LL
wLH;HL

=

8>><>>:
A if wmin < A < wmax;

wmin if A � wmin;
wmax if A � wmax:

(13)

The �rst case corresponds to an interior solution in which a positive fraction of the bait�s

mass is dedicated to each partner. The second case is a corner solution in which the bait is

exclusively pooled with HL (as in the case of negative a¢ liation). And the last case is the

opposite corner solution in which the bait is exclusively pooled with LL: Each one of these

cases is possible under speci�c parameter values. Finally, notice that point HH; which is

always ordered, is optimally separated from the rest.

In summary, in this four-point example, the low-pro�t/high-value prospect LH serves as

bait for either LL; HL, or both, whereas the high-value/high-pro�t prospect HH is always

separated from the rest.

Negative Virtual Pro�ts and Exclusion

Recall that a prospect such that �(y) < 0 does not constitute a direct source of pro�ts

for the Sender. However, provided v(y) is high, this prospect may still be used as bait to

increase the acceptance rate of its pooling partners. Here we illustrate this possibility in the

2� 2 case by relaxing condition 3 �so that � may be negative for prospects LL and/or LH.
When virtual pro�ts are negative for LL; this prospect is always excluded since, having

the lowest receiver value v across prospects, it has no use as bait. Matters are di¤erent when

virtual pro�ts are negative for prospect LH: In particular, since this prospect delivers higher

value than both LL and HL; it may still potentially serve as bait for either one of the two.

The di¤erence with the case in which this prospect had positive virtual pro�ts is that, in
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addition to serving as bait, it may be excluded with positive probability. As depicted in

Figure 4, we separate the analysis into two cases, according to whether or not the low-value

prospect LL also delivers negative virtual pro�ts.

Case A: �LH < 0 and �LL < 0 (Figure 4.A). In this case, the low-value prospect LL

is automatically excluded, whereas the ordered prospect HH is fully separated from the rest.

What remains to determine is how the mass of the bait LH is split between the switch HL

and exclusion. The answer is uniquely determined by the �rst-order condition for �LH;HL
(the mass of LH destined to pool HL-LH). In particular, if we let

B = pHL

r
Zij

�LH � vLH
� pHL;

this �rst-order condition implies

�LH;HL =

8>><>>:
B if 0 < B < pHL;

0 if B < 0;

pHL if B > 0:

(14)

The �rst case corresponds to an interior solution in which a positive fraction of LH�s

mass is dedicated to both the pool HL-LH and exclusion The second case is a corner solution

in which LH is fully excluded, which occurs whenever �LH is su¢ ciently negative. And the

last case is the opposite corner solution in which LH is fully pooled with LH: The reason

why we may obtain an interior solution with partial exclusion is that, as �LH;HL is increased,

the virtual pro�ts for the pool HL-LH diminish, which in in turn makes it less desirable, in

the margin, to continue adding mass to this pool.

Case B: �LH < 0 and �LL > 0 (Figure 4.B). This case is identical to the case of positive

a¢ liation considered above, where both LL and HL become potential pooling partners for

LH; with the only di¤erence that a fraction of LH�s mass pLH may now be excluded. Thus,

the Sender must decide how to allocate the mass pLH between �LH;LL (for pool LL-LH),

�LH;LH (for pool HL-LH), and exclusion.

Two possibilities arise, according to whether or not a the full mass pLH is included in the

pools. If so (�LH;LL+ �LH;LH = pLH), the solution is simply characterized by equation (13).

This case arises, for example, when �LH is close to zero or vLH is large.

Otherwise (�LH;LL + �LH;LH < pLH), the optimal levels of �LH;LL and �LH;LH are de-

termined independently from each other. In particular, �LH;LH is determined as in case A
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by equation (14), and �LH;LH is determined by an analogous equation with LL in the place

of HL: As before, when increasing these weights, the Sender must balance an increased

acceptance rate for LL and HL against lower virtual pro�ts received upon acceptance.

In summary, when condition 3 is relaxed, we obtain the same solution as above except

for the fact that when prospect LL has negative virtual pro�ts it is always excluded, and

when LH has negative virtual pro�ts it may be partially excluded in addition to partially

serving as bait for the lower-value prospects LL and HL:

Decreasing Receiver Value

Here we consider an example in which the Receiver�s value is decreasing in �; but we

assume that the remaining conditions (1, 3, and 4) still hold. To simplify this example, we

further assume that � and � are independently distributed. As we will see, this condition is

su¢ cient for the monotonicity constraint to remain slacked. This case is illustrated in Figure

5. As indicated by the dashed lines in the �gure, the potential pooling partners are LL-HL;

HL-LH; and LH-HH: This con�guration is a special case of the �zigzag� con�guration

discussed in Example 2 above.

Prospects HL and LH always serve, respectively, as switch and bait, but not necessarily

for each other. Indeed, the solution is fully characterized by the values of �HL;LH and �LH;HL
�the masses of prospects HL and LH that are dedicated to their joint pool HL-LH: The

remaining masses of these prospects (namely, pHL � �HL�LH and pLH � �LH;HL) are then
pooled, respectively, with their alternative partners LL and HH:

The speci�c solution depends on the underlying parameters. In one extreme, we may

obtain �HL;LH = PHL and �LH;HL = PLH : In this case, the pool HL-LH absorbs the full

masses of HL and LH and, consequently, the remaining two prospects LL and HH are fully

separated (Figure 5.A). This case arises, for example, when the masses of LL and HH are

relatively small or, alternatively, when � has only a small e¤ect over v so that prospects LL

and HH are close to being ordered, respectively, with HL and LH:

In the other extreme, we may obtain �HL;LH = �LH;HL = 0: In this case, the pool HL-

LH disappears altogether and the pools LL-HL and LH-HH absorb the full weight of their

corresponding prospects (Figure 5.B). This example di¤ers from all cases considered thus far

in that pooling now occurs between �rms with the same value of � and no prospect is fully

separated from the rest. In order to implement this allocation, the Sender simply sells the

same signal to both Advertisers with a given value of �.
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In addition to these two extreme possibilities, we may also obtain an interior solution in

which all three pools in the zigzag receive positive weight (Figure 5.C). Consequently, as in

the previous case, no prospect is fully separated from the rest.

Finally, that the monotonicity constraint is automatically met follows from the fact that,

among the low-relevance prospects (� = �L); LL is never pooled with a partner other than

HL (and therefore the latter receives a weakly higher acceptance rate, as required by the

constraint) and, among the high-relevance prospects (� = �H); HH is never pooled with a

partner other than LH (and therefore the former receives a weakly higher acceptance rate.)

7 Extensions

7.1 Pareto Optimal Allocations

Here we consider the more general problem of maximizing a weighted average of expected

Receiver surplus and expected Sender pro�t, rather than focusing on expected pro�t alone.

The objective becomes

�E
�
1

2
E [v j s]2

�
+ (1� �)E (E [� j s] � E [v j s]) ; (15)

where � 2 [0; 1] represents an arbitrary Pareto weight on the Receiver. For example, when
facing competitive pressure, a platform (Sender) may wish to increase the welfare of each

user (Receiver) in order to increase the total number of users that patronize this platform.

As before, we can interpret the Sender as either the direct owner of each prospect or simply

as an intermediary between an Advertiser and the Receiver.

From linearity of the expectation operator, the above objective can be expressed as

E
��
�

2
E [v j s] + (1� �)E [� j s]

�
� E [v j s]

�
=

E
�
E
�
�

2
v + (1� �)� j s

�
� E [v j s]

�
:

It follows that the problem of maximizing (15) is mathematically equivalent to the original

problem after a linear transformation of the prospect�s payo¤s (�; v) into the new payo¤s

(b�(�); v); with b�(�) = �
2
v+(1��)�:6 Graphically, as shown in Figure 6, we can think of this

6For the case in which the sender acts as an intermediary (section 4), the assumption that � is increasing
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transformation as a horizontal shift of all payo¤s toward a ray from the origin with slope 2,

where the new payo¤s correspond to a weighted average between the original payo¤s (�; v)

and the point (1
2
v; v):

The di¤erence with the basic case in which � = 0 is that the optimal rule becomes

progressively more revealing as � increases. For instance, in the extreme when � = 1

the Sender cares exclusively about Receiver surplus and, therefore, full separation becomes

optimal (i.e., all new payo¤s lie on the ray with positive slope and therefore are strictly

ordered).

For intermediate levels of �; it may still be optimal to pool some pairs of prospects but

not others. Let

Zij(�) = (b�j(�)� b�i(�))(vj � vi)
=

�

2
(vj � vi)2 + (1� �)(�j � �i)(vj � vi);

so that the payo¤s of any two prospects i and j are ordered if any only if Zij(�) � 0: For

instance, if the original payo¤s of these prospects ((�i; vi) and (�j; vj)) were strictly ordered,

it follows that the new payo¤s are strictly ordered as well and therefore these prospects are

never pooled with each other.

On the other hand, if the original payo¤s of the prospects were unordered, then the new

payo¤s remain weakly unordered as long as � 2 [0; b�ij]; where
b�ij = (�j � �i)

(vi � vj)

�
1 +

(�j � �i)
(vi � vj)

��1
;

which is inversely proportional to the slope of the line connecting the original payo¤s (�i; vi)

and (�j; vj); measured in absolute value. Beyond this critical value for �; the payo¤s of i

and j become strictly ordered and therefore these prospects no longer constitute potential

pooling partners for each other.

Note that for the generic case we have b�ij 6= b�ik for all i 6= j 6= k: Thus, as � increases,
each prospect i progressively loses its potential pooling partners j, one at a time, in inverse

order of the slopes (�j��i)
(vi�vj) :

and v is nondecreasing in � remains su¢ cient for the monotonicity constraint to have slack. Indeed, when
� < 1; this assumption implies that e�(�) is also increasing in � (as required by lemma XX), and when � = 1
we obtain full separation, in which case the monotonicity constraint is automatically met.
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7.2 Receiver Incentives

Here we return to the original problem of maximizing expected pro�ts but we consider the

case in which the Sender o¤ers the consumer a subsidy (or tax) conditional on accepting

the prospect. We allow the Sender to use a potentially di¤erent subsidy for each signal s.

For expositional clarity, we begin with the case in which both � and v lie in [0; 1]; and then

consider the case in which � can also be negative or larger than 1: For this section, it is also

convenient to break any indi¤erence in favor of separating two prospects.

For any given s; with posterior payo¤s E [�; v j s] ; the optimal subsidy, denoted �(s),
solves:

max
�

E [� � � j s] � E [v + � j s] ;

where the subsidy is added to consumer value (resulting in a higher acceptance rate) but is

also subtracted from the Sender�s pro�ts. The solution to this problem is uniquely given by

�(s) =
1

2
E [(� � v) j s] ;

where a negative subsidy �(s) < 0 corresponds to a tax. Accordingly, the net expected pro�t

and acceptance rate are both equated to 1
2
E [(� + v) j s] :

Substituting this solution in the objective, the optimized payo¤ for the Sender (condi-

tional on s) becomes

US =
1

4
E [(� + v) j s]2 :

This expression has a simple structure, as it is convex in � and v (and strictly convex in

all directions ��;�v except those in which �� +�v = 0). Thus, from Jensen�s inequality

we conclude that full separation is optimal. In particular, for any disclosure rule h�; Si ;

E
�
1

4
E [(� + v) j s]2

�
� E

�
1

4
E
�
(� + v)2 j s

��
� E

�
(� + v)2

�
;

where E [(� + v)2] corresponds to expected pro�ts under full separation. Consider, moreover,
the �generic� case in which the sum (�i + vi) is never equal for two di¤erent projects. In

this case, it is strictly optimal to fully separate every prospect because, along the interval

connecting the payo¤s of any two prospects, the payo¤ function is strictly convex.

Recall that the original motivation for pooling was to increase the acceptance rate of

high-pro�t prospects by pooling these �switch�prospects with �bait�prospects. But once
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subsidies are allowed, the Sender e¤ectively replaces this strategy with (more e¢ cient) direct

monetary incentives. Of course, o¤ering such subsidies may prove impractical because the

Receiver can potentially game the contract (e.g., there may exist a mass of strategic internet

users with very low clicking costs that are not interested in the Advertiser�s product per se,

but nevertheless click on the ad in order to exploit the subsidy), or it may prove infeasible if

the Sender cannot directly contract with the Receiver (e.g., a university may not be capable

of o¤ering payments to future employers of its students).

We now extend the above results to the case in which � is allowed to lie anywhere along

the real line. In this case, we must explicitly restrict the Receiver�s acceptance a to lie in

[0; 1]; which, from the Sender�s standpoint, is equivalent to restricting E [v j s]+�; for each s,
to lie in this interval. (Notice that when both � and v belonged to [0; 1] this restriction was

automatically met since the optimized acceptance rate was v+�(s) = 1
2
(E [� j s]+E [v j s]):)

The resulting constrained problem is

max
�

E [� � � j s] � E [v + � j s]

s:t:

0 � E [v j s] + � � 1:

Since the unconstrained optimal subsidy is b�(s) = 1
2
E [(� � v) j s] ; the constrained solution

becomes

�(s) =

8>><>>:
�E [v j s] if b�(s) � 0;b�(s) if 0 < b�(s) < 1;
1� E [v j s] if b�(s) > 1:

The �rst case corresponds to the corner solution in which a = 0 (representing exclusion),

the second case corresponds to an unconstrained interior solution, and the last case is the

opposite corner solution in which a = 1 (representing 100% acceptance rate).

The optimized payo¤ for the Sender (conditional on s) is therefore

US =

8>><>>:
0 if b�(s) < 0;

1
4
E [(� + v) j s]2 if 0 � b�(s) � 1;
� + v � 1 if b�(s) > 1:

This function is continuous and, since each of its segments is either linear or convex, it

remains weakly convex. As a result, the full separation rule remains weakly optimal. What
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is new relative to the case in which � 2 [0; 1] is that any prospect with a negative combined
payo¤ (�i + vi) < 0 is optimally excluded (a = 0), and any prospect with an average payo¤
1
2
(�i + vi) greater than 1 receives 100% acceptance rate (a = 1). Notice, �nally, that when

two prospects receive 100% acceptance rate they become weakly ordered and therefore the

Sender is indi¤erent between separating and pooling these prospects.

That full disclosure is optimal when transfers are allowed is consistent with the �ndings

of Ottaviani and Prat (2001), who show that a monopolist designing a price-discrimination

mechanism �nds it optimal to commit to publicly reveal information a¢ liated to the con-

sumer�s valuation.
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Figure 1: Pooling along Straight Lines

Black balls: prospects 

White ball: signal that pools all prospects

Grey balls: new signal (small ball) and

new position of original signal (larger ball) 
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Figure 2: Pooling Lines do not Intersect

Black balls: prospects 

White balls: signals s1 and s2 involving intersecting pooling lines

Grey balls: new signals sA and sB

(Note: white balls shrink after new signals are added)
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Figure 3: 2×2 Case

Panel A (top): Negative affiliation. Panel B (bottom): Positive affiliation.

Black balls represent individual prospects. White balls represent pools. The 

size of each ball is proportional to its mass. 
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Figure 4: Exclusion

Panel A (top): LL is excluded. Panel B (bottom): LL is included.

LH may be partially excluded (missing mass in the ball).
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Figure 5: Decreasing Receiver Value

Panel A (top left): Corner solution with three signals

Panel B (top right): Corner solution with two signals

Panel C (bottom): Interior solution
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Figure 6: Pareto-Weighted Payoffs

λ = 0 (black balls): pairs {1,2} and {1,3} are strictly unordered
λ = ½ (grey balls): only pair {1,2} is strictly unordered
λ = 1 (white balls): all pairs are strictly ordered
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