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Abstract

We obtain a full characterization of the optimal contract for the limited lia-
bility model of agency with moral hazard using conditions that are generally
satis�ed in applied problems in economics and �nance. We show necessary
and su¢ cient conditions for the optimal contract to take the form of debt.
The analysis is based on two conditions: the distribution of shocks has a
monotone hazard rate and the shock and the agent�s e¤ort are complements.
The advantage of this approach is that it is readily satis�ed by several distri-
bution and production functions in applied problems. These conditions are
commonly applied in adverse selection models of agency. The two conditions
replace the traditional MLRP and CDFC assumptions, which are di¢ cult to
satisfy in applied problems.
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1 Introduction

Incentive contracts between principals and agents are fundamental for a wide

range of economic and �nancial transactions. Principals apply agency con-

tracts to provide incentives for employees, managers, entrepreneurs, insurance

buyers, sales personnel, business representatives, independent contractors, ten-

ant farmers, and regulated �rms. When the agent�s action is unobservable, the

optimal agency contract is designed to maximize the joint bene�ts of the par-

ties while mitigating moral hazard. Despite the importance of such contracts

and their widespread usage in the economy, the form of the contract remains

less well understood by researchers in economics and �nance. We derive the

optimal contract in an environment that corresponds to a wide range of ap-

plied problems in economics and �nance.

We study a model where the outcome of a task performed by the agent depends

on the e¤ort of the agent and a random shock. The principal observes the

outcome of the task, but cannot observe the agent�s e¤ort or the random

shock. The principal is unable to sell the task to the agent because of the

agent�s limited liability constraint, which prevents the contract from attaining

the �rst-best outcome. The second best contract e¤ectively sells the agent the

proceeds from the task in those states that provide more incentives per unit

of expected return. The main result of the analysis characterizes the optimal

contract based on the properties of a critical ratio that describes incentives

per unit of expected return in each state. The critical ratio equals the hazard

rate of the random shock times the marginal return to e¤ort over the marginal

return to the shock.

The ratio provides an intuitive and easily derived condition for characterizing

the form of the optimal contract. When the critical ratio is increasing in the

random shock, higher states are better in providing incentives . Therefore,



when the critical ratio is increasing in the random shock, it follows that the

optimal contract is debt. When the critical ratio is strictly decreasing in the

random shock, lower states are more e¢ cient at providing incentives and the

optimal contract is a call option. When the critical ratio is linear in the random

shock, all states are equally e¢ cient and only in that case are linear contracts

are e¢ cient.Applying these types of conditions in a moral hazard setting yields

a consistent characterization of the optimal contract based on assumptions

that can be easily veri�ed and occur in most applications in economics and

�nance.

Because the critical ratio is the hazard rate of the random shock multiplied by

the marginal return to e¤ort over the marginal return to the shock, determin-

ing its properties is straightforward. A su¢ ent condition for the critical ratio

to be increasing in the random shock is for both of its factors to be increas-

ing. This property holds for a wide range of applied models in economics and

�nance. The hazard rate of the shock is nondecreasing for many probability

distributions including the exponential family of distributions and the uniform

distribution. E¤ort and the shock are complements when the marginal return

to e¤ort over the marginal return to the shock is increasing in the random

shock. Complementarity is consistent with many types of models including ad-

ditive and multiplicative outcome functions. Outcome functions such that the

marginal return to e¤ort over the marginal return to the shock is increasing in

the random shock are used in models with uncertainty regarding prices, taxes,

subsidies, outputs, and technology. Such outcome functions also occur in mod-

els with uncertainty regarding discount rates, depreciation rates, failure rates,

and natural shocks such as weather and demographic changes. Parametric un-

certainty occurs in models with demand uncertainty, supply uncertainty, and

strategic uncertainty. Parametric uncertainty can takes the form of uncertain

lotteries with linear probabilities and random �nancial valuations. Parametric

uncertainty is important because it is consistent with empirical analysis in
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economics and �nance.

The critical ratio approach introduced here for moral hazard models turns

out to be analogous to familiar conditions in adverse selection models. First,

requirement that the probability distribution of random shocks has a non-

decreasing hazard rate corresponds to a common requirement for the distri-

bution of agent types in adverse selection problems. Second, the requirement

that the random shock and the agent�s e¤ort are complementary corresponds

to the familiar single-crossing or Spence-Mirrlees condition in adverse selec-

tion problems. An important bene�t of our approach is to identify fundamental

connections between moral hazard and adverse selection.

In agency models with moral hazard, the principal observes the outcome that

results from the agent�s e¤ort and random shocks. The standard approach is

to examine the probability distribution over outcomes induced by the agent�s

e¤ort. In contrast, the critical feature of our modeling approach is that we

explicitly consider random shocks rather than working with an induced distri-

bution over outcomes. By examining the interaction between random shocks

and the agent�s e¤ort, we can exploit a similarity between moral hazard models

and adverse selection models. The agent has private information in both types

of models. The agent has private information about his action in a moral haz-

ard model and the agent in an adverse selection model has private information

about his type but not his action. The key similarity between the two models

is the correspondence between the random shock in a moral hazard model

and the agent�s private information in an adverse selection model. The main

di¤erence between the two types of models is that the agent in a moral hazard

model moves before observing the outcome of the random shock whereas the

agent in an adverse selection model moves after observing his type.

We obtain necessary and su¢ cient conditions for the optimality of debt.

Our results provide intuition for the optimality of debt contracts that does
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not depend on the standard Monotone Likelihood Ratio Property (MLRP)

assumption but rather on the distribution of the shocks. The intuition can be

extended to derive the optimal contract in scenarios where debt fails to be the

optimal contract. We assume that the principal and the agent are risk neutral,

which allows for the study of situations in which risk preferences do not apply,

as occurs in contracting between �rms. The agent has limited liability, which

restricts his ability to take on risk. The agent�s limited liability makes debt a

powerful instrument for inducing e¤ort under uncertainty.

This approach highlights the importance of wealth constraints, see Innes (1990)

and Holmstrom and Tirole (1997). Our approach is closest to that of Innes

(1990) who shows that the optimal agency contract takes the form of debt.

Innes requires contracts to be chosen such that the principal�s bene�t is

monotonic in output. This feasibility condition is desirable because it guaran-

tees that the principal does not have an incentive to sabotage the outcome.

Otherwise, the principal would wish to impede the agent�s e¤orts so as to avoid

paying the reward for e¤ort. The monotonicity requirement also is desirable

in situations where agents can shirk and costlessly reduce their performance

reports. Given the monotonicity condition, Innes shows that the optimal con-

tract must resemble debt. Our results con�rm Innes� conclusion about the

optimality of debt-style contracts while substantially extending the analysis

of optimal contracts and providing new intuition for the results. Our results

remedy a critical shortcoming in Innes� (1990) analysis. His main assump-

tions, including implementability and MLRP, are extremely di¢ cult to satisfy

and do not hold in most economics and �nance analyses. To our knowledge,

there is no example in the literature that satis�es all of these assumptions.

In contrast, our main assumption that output is monotonic with respect to a

random shock is readily satis�ed in most economic and �nance models.

Our analysis of the problem of moral hazard with explicit modeling of un-
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certainty has implications for various economic and �nance applications. The

optimality of debt-style contracts implies that such contracts perform better

under uncertainty than other contractual forms. Perhaps most signi�cantly,

debt-style contracts perform better than linear sharing rules under uncertainty.

The economic model of agency has its origins in labor contracts in agrarian

economics, particularly sharecropping and piece-rate labor contracts, see Ot-

suka et al. (1992). Economic studies often assume that the contract is a linear

sharing rule, appealing to the dynamic aggregation result of Holmstrom and

Milgrom (1987). Debt-style contracts clearly have empirical implications. In

practice, debt-style contracts are widely used and correspond to all kinds of

compensation agreements with threshold e¤ects, such as bonuses for employ-

ees.

Clearly debt-style contracts with moral hazard have important �nancial

implications. The analysis implies that debt-style contracts are highly useful

when providing �nancing to entrepreneurs who devote unobservable e¤ort to

establishing a �rm. Our analysis provides a new "pecking order" result. My-

ers (1984) and Myers and Majluf (1984) establish a "pecking order" theory

of �nancing based on adverse selection when the entrepreneur has better in-

formation about the quality of the project than does the investor. Our result

extends this important insight to the moral hazard involved in �nancing the

entrepreneur. Moral hazard provides the agent with an incentive to provide

his own �nancing before seeking external �nancing. Moreover, moral hazard

provides the agent with an incentive to obtain debt before seeking equity

�nancing. This is because debt performs better than equity �nancing for en-

trepreneurs with unobservable e¤ort because equity corresponds to a sharing

rule.

Our analysis showing the greater e¢ ciency of debt in comparison with equity

also has important implications for managerial �nance. Debt-style contract
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provide a means of reducing the manager�s incentives to shirk. This addresses

the vast literature on corporate �nance, beginning with the work of Jensen

and Meckling (1976). When managers are risk neutral and have limited lia-

bility, debt-style contracts perform better that equity in providing incentives

to perform. Debt-style contracts also correspond to �nancial assets including

securities and bonds whose features resemble options, see for example Cox

and Rubinstein (1985). Real options are an important tool for analyzing in-

vestment under uncertainty, see Dixit and Pindyck (1994).The simplicity of

debt-style contracts and their optimality in a broad range of environments

helps to explain their wide-spread application.

Our explicit modelling of uncertainty di¤ers from the now standard approach

of working directly with the induced probability distribution on outcomes that

depends on e¤ort. Explicit recognition of uncertainty is present in Spence and

Zeckhauser (1971), Ross (1973), and Harris and Raviv (1976) who apply a �rst-

order approach with risk-averse agents. The reduced-form approach originates

with Mirrlees (1974, 1976) and Holmstrom (1979). By considering uncertainty

explicitly, we can obtain a characterization of the optimal contract based on

the underlying form of risk and the production function.

The paper is organized as follows. Section 2 presents the basic agency model.

Section 3 derives the optimal agency contract. Section 4 discusses the impli-

cations of the main results and provides formal proofs. Section 5 presents a

formal proof of the results. Section 6 examines necessary conditions for debt

contracts and derives optimal contracts that do not take the form of debt.

Section 7 concludes the discussion.
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2 The Basic Model of Agency

Consider two risk-neutral economic actors who enter into a contract. The

actor designated as the principal owns a task and the actor designated as the

agent performs the task. The task can represent various projects including

the following: the agent performs a service under authority delegated by the

principal, the agent produces a good within a �rm owned by the principal,

or the agent is an entrepreneur who uses �nancial capital provided by the

principal to establish a �rm.

The agent provides the production technology for the project and supplies

productive e¤ort, a. The agent owns a production technology given by

� = �(�; a); (1)

where � represents the outcome and � is a random variable. The principal

observes the outcome but cannot observe either the agent�s e¤ort a or the

random variable �. The agent chooses e¤ort before the realization of the ran-

dom variable occurs. Assume that � is twice di¤erentiable in a and �. The

random variable � has a density function f(�) with a connected support [0; �].

Assumption 1 The outcome function, � (�;a), is increasing in �:

This assumption allows us to de�ne b�(a;�) as the size of the shock that
satis�es

�(b�(a;�); a) = �; (2)

for any e¤ort, a, and realization of revenues, �.

Assumption 2 The outcome function, � (�;a), is increasing and concave in

a:

Assumption 2 guarantees the existence of a �rst best e¤ort level aFB; and

implies that the induced distribution satis�es �rst order stochastic dominance
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in a:

The contract can be based only on the outcome � because the agent�s choice

of e¤ort a; and the realization of the random variable, �, are not observable

to the principal. The agent has a disutility of e¤ort given by a: The contract

between the principal and the agent is fully described by a function of the

realized bene�t,

w = w(�): (3)

The agent0s net bene�t is given by

u(w; a;�) = w(�)� a: (4)

Given the contract, w, the agent chooses e¤ort to maximize his expected net

bene�t,

U(w; a) =
Z �

0
w(�(a; p))f(p)dp� a: (5)

The �rst-best e¤ort level aFB is the level that satis�es
R
�a(�; a)f(�)d� =

1:The agent�s incentive compatibility constraint is:

a 2 argmaxa
R �
0 w(�(�; a))f(�)d� � a:

The principal�s cost of providing the task to the agent is K > 0. For any

realization of �, the principal�s net bene�t is v(w;�) = � � w(�) � K:The

principal�s expected net bene�t given the form of the outcome function and

the distribution of the random shock equals

V (w; a) =
Z �

0
(�(�; a)� w(�(�; a)))f(�)d� �K: (6)

The optimal contract maximizes the net bene�t of the agent subject to an

individual rationality constraint for the principal. This approach follows that

of Innes (1990). It is the dual of the standard approach of maximizing the

principal�s net bene�t subject to the agent�s individual rationality constraint.

The principal�s individual rationality constraint is V (w; a) � 0:
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We de�ne a feasible contract based on several requirements.

De�nition 1 A contract w is said to be feasible if it satis�es two conditions.

(a) The principal�s net bene�t, v(w;�), is non-decreasing in �, b) The agent�s

payments are non-negative w � 0:

The monotonicity requirement on the principal�s net bene�t, v(w;�),

follows Innes (1990). As Innes explains, making the principal�s net bene�t

non-decreasing in � rules out situations in which the parties may subvert the

contract. Otherwise, if the principal�s return is decreasing in the outcome, the

principal may attempt to sabotage the task to avoid making payments to the

agent. Alternatively, an entrepreneur may costlessly borrow money to supple-

ment the return of the �rm and thereby increase his returns based on reported

performance. The monotonicity requirement rules out forcing contracts that

would lead to this type of behavior. The non-negativity requirement repre-

sents the fact that the agent has limited wealth, and it prevents the agent

from buying the �rm and achieving the �rst best.

De�nition 2 An e¤ort level a is implementable if there exists a feasible con-

tract w such that a)The e¤ort level a is incentive compatible a 2 argmaxU(w; a);

and b) The principal�s participation constraint holds V (w; a) � 0:

We assume that the set of implementable e¤ort levels is non empty. This

is basically a requirement that the principal�s cost, K, is not too large.

Assumption 3 There exists an implementable e¤ort level a.

This assumption guarantees that the task is viable.
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3 Optimal Agency Contracts

The optimal contract between the principal and the agent maximizes the

agent�s expected net bene�t over the set of feasible contracts,

max
w(:);a

U(w; a) subject to

a 2 argmaxU(w; a);

v(w;�) is (weakly) increasing in �;

V (w; a) � 0; w(�) � 0:

The maximization of the agent�s net bene�t helps to highlight the e¤ects of the

agent�s limited liability. There is no loss of generality. The results are consistent

with analyses of agency that maximize the principal�s net bene�t. Varying the

agent�s endowment generates other allocations of rents between the principal

and the agent without changing the characterization of the optimal contract.

Our �rst result apply three conditions that are consistent with most applica-

tions in economics and �nance. The �rst condition is on the distribution of

the shock.

Hazard Rate Condition The probability distribution f(�) satis�es the haz-

ard rate condition if f(�)
1�F (�) is non-decreasing in �:

The hazard rate condition is commonly used in adverse selection models such

as auctions and nonlinear pricing. A large class of distributions satis�es the

hazard rate condition. The hazard rate condition as applied in studies of reli-

ability lends itself to empirical testing and calibration 1 .

The second condition applies to the production function. Examples will

be given in the next section.

1 See for example Hall and Van Keilegom (2005).

10



Complementarity condition The outcome function � satis�es the comple-

mentarity condition if �a=�� is non-decreasing in �:

If the pro�t function � is concave in � , the complementarity condition is

implied by the increasing di¤erences condition �a� > 0 that is used monotone

comparative statics analysis, see Topkis (1998) and Milgrom and Shannon

(1994). Similar conditions appear frequently in the literature on adverse selec-

tion where it is referred to as the single-crossing or Spence-Mirrlees condition.

It will be shown that the optimal agency contract takes the form of debt.

Letting r be the face value of the debt, the agent obtains nothing if the outcome

is less than or equal to the face value of the debt. Otherwise, the agent obtains

the di¤erence between the outcome and the face value of the debt. With a debt

contract, the agent chooses the e¤ort level that solves:

max
a

Z �

0
maxf�(�; a)� r; 0gf(�)d� � a; (7)

The next condition is a regularity condition that rules out pathological cases

when there is a debt contract.

Weak implementability condition There exists at most one local interior

maximum in a standard debt contract.

The condition is not stated in terms of the parameters of the model, but is

easily satis�ed. 2 We have been unable to �nd an example that satis�es the

hazard rate and increasing di¤erences conditions, but fails to satisfy the weak

implementability condition.

2 In terms of the parameters of the model, a su¢ cient condition for the weak
implementability condition to hold is the following.

Z �

b�(r;a)�aaa(b�; a)f(�)d� � 2@b�@a�aa(b�; a)f(b�) + @2b�
@a2

�aa(b�; a)f(b�) < 0 8a; r
This is equivalent to a concavity condition on �:
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To illustrate how easy it is to satisfy this assumption, consider the additively-

separable model,

�(�; a) = � +Q(a): (8)

In this case the agent gets paid as long as � > r � Q(a) and therefore the

agent�s problem can be expressed as

max
a

Z �

r�Q(a)
[� +Q(a)� r]f(�)d� � a (9)

Any local interior maximum satisfy the �rst order condition,

Qa

Z �

r�Q(a)
f(�)d� = 1 (10)

The second order condition for a maximum is:

Qaa

Z �

r�Q(a)
f(�)d� +Q2af

 
r

Q

!
� 0 (11)

The second order condition is satis�ed as long as:

Qaa
Q2a

+
f (r �Q)

1� F (r �Q) � 0 (12)

If 12 is decreasing; then the weak implementability condition is satis�ed. The

reason is that if two local interior maximums exist then there exists a local

minimum in between two local maximums; but that is incompatible with the

second derivative being decreasing in a:

The second term in (12) is the hazard rate, it is decreasing in a since the

distribution satis�es the hazard rate condition. If the function Q is su¢ ciently

concave, the �rst term in (12) will also be decreasing, and the weak imple-

mentability condition will hold. For example if Q(a) = Ln(a+1) the condition

is satis�ed for any distribution of �: Recall that these conditions are su¢ cient,

many additive examples that do not satisfy these properties still satisfy the

weak implementability condition.
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To further illustrate the generality of the assumptions, consider a multiplica-

tively separable model,

�(�; a) = �Q(a):

Under these circumstances the agent gets paid as long as � > r
Q(a)

and therefore

the agent�s problem can be expressed as:

max
a

Z �

r=Q(a)
[�Q(a)� r]f(�)d� � a: (13)

The �rst order condition of the problem is:

Qa

Z �

r=Q(a)
�f(�)d� = 1: (14)

The second order condition is

Qaa

Z �

r=Q(a)
�f(�)d� + r

Q2a
Q3
f

 
r

Q

!
� 0: (15)

The second order condition can be re-written as:

QaaQ
3

rQ2a
+

f
�
r
Q

�
1� F

�
r
Q

� 1

E
h
�j� � r

Q

i � 0: (16)

The �rst term QaaQ3

Q2a
is decreasing for a large family of positive concave func-

tions such as for example, the function a
 with any 
 < 1, and logarithmic

functions. The second term is the multiplication of the hazard rate times one

over a conditional expectation. The hazard rate decreases in a by assumption;

however the conditional expectation also decreases. The complete term is de-

creasing for common distributions such as the uniform.

We now present our main result. The optimal contract takes the form of a

debt obligation.

Proposition 1 If the hazard rate, complementarity, and weak implementabil-
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ity conditions hold, then the optimal contract is a standard debt contract,

w(� ) =max f� � r ; 0g for some r � 0 : (17)

The optimal contract is nondecreasing in the outcome � and strictly increasing

in the outcome � when the payment to the agent is positive. As a result, the

expected payment is strictly increasing in the underlying e¤ort chosen by the

agent.

It is important to observe that although the optimal contract takes the form of

debt, it applies to any type of incentive contract with moral hazard including

situations that do not involve �nancial obligations. The face value of the debt

speci�ed by the contract is a cut-o¤ level such that the agent receives no

payment when the outcome � is below the cut-o¤ and the agent receives the

di¤erence between the outcome and the cut-o¤ value otherwise. This contract

is optimal because it selects good states in which the agent receives a reward

and speci�cs the incremental return in those states.

4 Discussion

4.1 Intuition and the Critical Ratio

The intuition for the main result can be explained as follows. Assume that

the solution to the problem is continuous and di¤erentiable. Moreover suppose

that it is the case that the �rst order condition approach is valid, and that any

e¤ort level is implementable with some debt contract. Then, given a contract

w(�), the e¤ort of the agent is described by the �rst order condition

Z �

0
w�(�(�; a))�a(�; a)f(�)d� = 1 (18)
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where w�(�) is used as a short of @w(�)=@� and�a as a short for @�(�; a)=@a:

The derivative of the left-hand side of equation (18) with respect to the slope of

the compensation (w�) is �af(�): Provided the �rst-order condition approach

is valid, the higher �af(�) is, the less we need to increase the payo¤ to induce

a given e¤ort level. The term �af(�) represents how powerful is a given state

in providing incentives. Intuitively, the greater are the likelihood of a state

and the marginal return to e¤ort, the more e¢ cient is the state in providing

incentives.

The bene�t of the contract to the agent is given by,

Z �

0
w(�(�; a))f(�)d� � a:

We can rewrite the bene�t as a function of w� using integration by parts

u(w; a) =
Z �

0
w�(�(�; a))(1� F (�))��d� � a: (19)

The derivative of the expected payo¤with respect to w� is (1�F (�))��. The

higher the term (1� F (�))�� is, the less we need to increase the slope of the

contract w� to provide a given compensation level to the agent: The term

(1 � F (�))�� represents how e¢ cient a state is in providing compensation.

Intuitively the lower the revenue and the faster the revenue increases in the

state of nature �; the more e¢ cient the state is in providing a compensation

to the agent.

The optimal contract depends on the critical ratio of incentives per unit

of compensation. The critical ratio is the product of the hazard rate and the

marginal product of the agent�s e¤ort over the marginal product of the random

shock in producing outcomes,
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� =
f(�)

1� F (�)
�a
��
; (20)

This ratio measures the relation between incentives and expected payo¤when

the slope of the contract w� changes. Because we have assumed that � has non-

decreasing hazard rate and since �a=�� = � is increasing in �, the ratio � is

also increasing in the state of nature �. Intuitively, contracts that are steeper

at high revenue realizations provide more incentives and less compensation

than contracts steeper at low revenue realizations. This makes debt contracts

the most e¢ cient, in the sense that among all the contracts that provide the

agent with a given level of compensation, debt contracts maximize the return

to investors. This is the �rst key characteristic of debt contracts. The second

characteristic of debt contracts is that the e¤ort level that the agent exerts

is (broadly speaking) decreasing in the face value of the debt. To see why,

observe that with a debt contract the expected net bene�t of the entrepreneur

is given by

max
a
U(a;R) =

Z �

0
maxf�(�; a)� r; 0gf(�)d� � a;

which has decreasing di¤erences in f�; ag since @2U=@r@a = �1=�b�(r;a) < 0:
By standard monotone comparative static results, this implies that the e¤ort

is decreasing in the face value of the debt.

The argument of the proof can be summarized as follows. Take a contract

w() that implements a: First notice that the debt contract that implement

the same e¤ort level a maximize the payo¤ to the principal and therefore the

principal�s participation constrained is not binding under the debt contract.

Because the participation constrain is not binding one can lower slightly the

face value of the debt r without violating any constraint. If we lower the face

value of the debt, the e¤ort the agent exerts increases, increasing the surplus. If
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we lower the face value of the debt until the investor�s participation constraint

becomes binding again, then the investor is by de�nition not better o¤, and

the agent is exerting more e¤ort. The fact that the agent exerts more e¤ort

implies that there is more surplus, and since the investor is no better, it must

be the case that the agent is strictly better.

The formal proof of this result is presented is section 5. The proof ad-

dresses four main issues. The �rst issue is to show that the optimal contract

is continuous, the second is to show that the �rst order condition approach is

valid, the third is to show that e¤ort levels that are not implementable with

debt contracts are never optimal and the fourth is to show the existence of an

optimal contract.

4.2 Comparison with Standard Model.

The standard assumptions in the literature are the Monotone Likelihood ratio

Property (MLRP) and the Convex Distribution Function condition or CDFC.

The last condition can sometimes been replaced by implementability assump-

tions weaker than CDFC. The objective of this section is to show that our

conditions (1-3) are di¤erent from standard conditions. We �rst show that our

assumptions do not imply MLRP and later we show that CDFC or equivalent

implementability conditions will not hold in this setting.

4.3 The MLRP Condition

Multiplicative examples are particularly relevant since many shocks in eco-

nomics such as prices and productivity shocks a¤ect revenues multiplicatively.

For example, in Stiglitz�(1974) classic model of sharecropping, the production

function has the multiplicative form
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� = �Q(a) (21)

Let the probability density be given by f(�) = 
 + �� with � < 1 : If Q(a)

is concave enough (see the discussion above) � satis�es the assumptions of

Proposition 1, but it doesn�t satisfy MLRP:

To see that the multiplicative form does not satisfy the standard a¢ liation

property or MLRP observe that the induced probability distribution over out-

comes is as follows,

g(�ja) = f(�=Q(a)) = f(b�(�; a)) (22)

Given the induced probability distribution, we can state the standard MLRP

condition.

MLRP condition

@

@�

 
ga(�ja)
g(�ja)

!
> 0 (23)

Applying the induced probability distribution on outcomes, observe that

ga(�ja)
g(�ja) = �

f 0((�=Q(a)))�Q0(a)

f(�=Q(a))Q2(a)
= �f

0(b�(�; a))
f(b�(�; a)) b�(�; a)Q

0(a)

Q(a)

Then, the following inequality must hold,

@

@�

 
ga(�ja)
g(�ja)

!
= �

 
f 0(�)

f(�)
+

"
�
f 00(�)f(�)� (f 0(�))2

f 2(�)

#!
=Q(a) > 0

This inequality implies that
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f 0(�) + �f 00(�)� �(f 0(�))2=f(�) < 0 (24)

From the form of the probability density, this inequality can be expressed as

�� � (�)2 = (
 + ��) < 0

If � is close to zero, this expression converges to �=
 > 0: So the MLRP

condition fails to hold.

4.4 The CDFC Condition .

The second standard assumption in the literature is the Convex Distribution

Function Condition or CDFC. The condition can be stated as follows

CDFCCondition For every contractw(�); the problemmaxa
R �
0 w(�)f(�)d��

a is concave.

Innes (1990) imposes an implementability assumption that is stronger than

our earlier weak implementability condition. CDFC implies Innes�strong im-

plementability condition. Innes (1990) requires the following.

Strong Implementability Assumption "When w(�) takes the standard

debt functional form w(�) = minf�; rg for some r > 0; there is a unique

solution to the agent�s e¤ort problem a:"

We now show that the CDFC condition or the strong implementability con-

dition cannot hold in the present model.

Proposition 2 The CDFC condition or the strong implementability assump-

tion do not hold.
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Proof : Because the CDFC condition is stronger than the strong implementabil-

ity condition , it is su¢ cient to show that the strong implementability condi-

tion does not hold. Suppose to the contrary that implementabiity holds. Then,

by the theorem of maximum there exists a continuous function a(r):Moreover

this function has support [0; a(0)]: This implies that any e¤ort level in [0; a(0)]

is implementable with a debt contract.

Note that in a debt contract, the agent�s expected utility has increasing di¤er-

ences in fr; ag. Therefore, by standard monotone comparative statics analysis,

the function a(r) must be non-increasing in r: Let a(br); be the e¤ort level
implemented by an arbitrary debt contract br with br > �(�; 0): Let a1 < a(br)
be an e¤ort level such that �(�; a1) < br: The level a1 exists since br > �(�; 0):
Because a1 < a(br) it must be implementable by some debt contract r1 and
because a(r) is non-increasing we know that r1 � br: Finally by de�nition it
must be the case that

a1 = arg max
a2[0;1)

Z �

0
max f�(a; �)� r1; 0g f(�)d� � a (25)

But since �(�; a1) < br for every � it is the case that max f�(a; �)� r1; 0g = 0
and therefore it means that

a1 = arg max
a2[0;1)

�a (26)

This is a clear contradiction since a = 0 is optimal in that problem.�

Jewitt (1988) observes that few distributions satisfy both the MLRP and

CDFC conditions. One distribution was provided by Rogerson (1985) (at-

tributed to Steve Matthews) and later two classes of di¤erentiable examples

were provided by Licalzi and Spaeter (2003). None of these examples satisfy

all the conditions assumed in Innes(1990). 3

3 Innes assumes the density g(�jz) where � satisfy all the following conditions:
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4.5 Comparison with adverse selection

As discussed in the introduction, the methodology used to study moral hazard

in this paper resembles the way we usually deal with adverse selection. To

understand the connection, we present the standard model of adverse selection

and show how it is related to the moral hazard model.

In the standard adverse selection, or "hidden information" model the

agent has a type � unknown by the principal. The agent can choose an output

� at a cost c(�j�): To incentivize the agent to pick the best possible output

the principal designs a contract w(�) that determines the payment to the

agent contingent on the output �:The agent�s problem is then given by

max
�
w(�)� c(�j�)

A di¤erent interpretation is that the agent chooses the cost c(�j�) depending

on his type � and the contract w: Let a = c(�j�): Then the output that agent

� obtains if the cost of e¤ort chosen is a is given by �(�; a) = c�1(aj�):

The standard assumptions in the adverse selection model is @
2c(�;�)
@�@�

< 0 , which

implies that �a� > 0; since �(�; c(e�j�)) = e� . This together with a concavity
assumption in � implies that �a

��
is nondecreasing in �;the complementarity

requirement used in proposition 1. The problem for the agent can be re-written

as

max
a
w(�(a; �))� a:

If the agent were to choose an action before he becomes aware of his own type

1) @
@�

�
gz(�jz)
g(�jz)

�
> 0;2) Unique implementation with debt (Which is implied by

CDFC); 3) g(�jz) > 08�; z � 0: 4)
R
�g(�j0)d� = 0:
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then the problem would be

max
a

Z �

0
w(�(a; �))f(�)d� � a;

This is precisely the agent�s problem in the moral hazard problem. In

this context the only di¤erence between the moral hazard and the adverse

selection model is that in the adverse selection version we assume the type �

is known to the agent but the principal only observes the distribution f(�);

while in the moral hazard version the type of the agent � is unknown by both

the principal and the agent. The fact that the type is unknown transforms

the hidden information (the type) into a hidden action (the e¤ort). We could

also interpret the di¤erence between the models as a problem of timing. In the

moral hazard model, the agent chooses an action before observing his type,

while in the adverse selection model, the agent chooses an after observing his

type.

5 Non-debt optimal contracts.

The model can be easily extended to derive the optimal contract in situations

that do not lead to debt contracts. In this section we restrict attention to

contracts which payments are required to be non-decreasing in output for

both agents.

The main idea of these section is that the form of the optimal contract

depends on the critical ratio � representing incentives per unit of compensa-

tion as de�ned in equation 20 in section 3. If the critical ratio is increasing

then high states are more e¢ cient at providing incentives and the optimal con-

tract is debt. If the critical ratio � is decreasing lower states are more e¢ cient

and the optimal contract is a call option �nally if � is constant then all con-
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tracts are equally good. A nice feature of the results presented in the following

propositions is that they do not require any implementability assumption.

Proposition 3 If the critical ratio � = (�a=��)f(�)=(1�F (�)) is decreasing,

then the optimal contract is a call option contract.

PROOF See the appendix.

Proposition 3 extends the result from Proposition 1. It shows that if the critical

ratio � is decreasing then low states are the most e¢ cient and it is optimal

for the agent to have a call option contract.

Consider now the implications of a constant critical ratio, �. For example, let

the production function have the additive form,

�(�; a) = � +Q(a) (27)

Also, let the probability distribution of the shock have the exponential form,

� � exp(�): In this case, both debt and call options are optimal. In fact, a

constant critical ratio � implies that all states are equally e¢ cient in providing

incentives.

Proposition 4 If the critical ratio (�a=��)f(�)=(1�F (�)) is constant, then

linear schemes are optimal.

PROOF See the appendix

This can also be understood as a negative result. If linear incentive schemes

are optimal, then it must be the case that all states are equally e¢ cient in

providing incentives. This would imply that the agent is indi¤erent between

all the contracts that implement a given e¤ort level a:This result is signi�cant

because of the great variety of applied work that assumes linear incentive

schemes and examines the choice of linear coe¢ cients.
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In propositions 1, 3 and 4, we have seen that in general the optimal contract

is the most e¢ cient in the sense that among all contracts that implement an

e¤ort level they provide the highest expected revenue to the principal. The

generalization of this principle is stated in the next proposition.

De�nition 3 A contract is of the class L if there exists � > 0 so that w0(�) =

1 if � > � and w0(�) = 0 if � < �:

The next proposition shows that the L class of contracts is in general better

from the principal�s perspective.

Proposition 5 Let l belong to the L class of contracts. Let a be an e¤ort

level that satis�es the IC constraint under the contract l and some arbitrary

contract w() then V (w; a) � V (l; a):

Proof See the appendix.

This proposition extends the idea that the optimal shape of the contract de-

pends on the behavior of the critical ratio �:

6 Formal Proof

The proof of Proposition 1 follows from a series Lemmas. The proof �rst

posits the optimality of a non-debt contract, and then shows that there exists

a feasible debt contract that gives the agent a higher utility. Finally it proves

that among debt contracts there must exists an optimal one.

The �rst thing to notice is that if the agent and the principal sign a debt

contract of face value r; then the agent gets paid only if �(�; a) � r: The

existence and uniqueness of the �rst-best e¤ort level, aFB, is given by the

assumption that � is concave in a: For a contract to be feasible, the return to

the investor v(�) = � � w(�) � K must be increasing in � ; and therefore
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v(�) has at most countably many jumps and it is di¤erentiable a:e. Let ki

be each point of discontinuity and �i be the size of every discontinuity; each

�i is strictly positive to keep v(�) increasing in �. There exists an increasing

continuous function ev(�) such that the following equality holds a:e:
v(�) +K = ev(�) + X

i:ki��
�i: (28)

Because the entrepreneur gets w(�) = � � v(�) +K then it is also the case

that a:e:

w(�) = �� ev(�)� X
i:ki��

�i: (29)

Because the equality holds a:e and the distribution does not have any mass

points; the utility of agents is the same if two contracts are equivalent a:e

: Therefore without loss of generality we can restrict attention to the set of

functions that can be expressed as the sum of a continuous function, and a

step function w(�) = ew(�) � P
i:ki���i where ew is di¤erentiable a:e and

ew0 � 1, so as to keep the payment to the investor increasing in output.
Lemma 1 The utility of the agent U(a; w) is di¤erentiable with respect to a:

PROOF By the de�nition of an integral
R P

i:ki���idF =
P
i�i

�
1� F (b�(ki; a)� :

The utility of the agent can therefore be written as:

U(w; a) =
Z
�
( ew(�(�; a)))f(�)d� �X

i

�i

�
1� F (b�(ki; a)�� a: (30)

And therefore Ua =
R
( ew�)�af(�)d�+ P

i�if(b�(ki; a))b�a � 1:Where we have
taken the derivative inside the integral by the Lebesgue dominated convergence

theorem.�

Observe that by the implicit function theorem, b�a=��a
��
, and thus any contract

that implements a > 0 must satisfy the condition:

Ua =
Z
( ew�)�af(�)d� �X

i

�if(b�(ki; a))�a
��
� 1 = 0: (31)
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De�nition 1 Let Z(r) be a set such that a belongs to Z(r) if and only if a

satis�es the agent IC constraint in a debt contract with face value r:Let a(r)

be the greatest element in Z(r):

Lemma 2 a(r) is decreasing in the face value of the debt r:

PROOF In a debt contract the agent solves:

max
a
U(a;R) =

Z �

0
maxf�(�; a)� r; 0gf(�)d� � a; (32)

U has increasing di¤erences in {a;�rg since @2U
@a@r

= � 1
�b�(r;a) � 0 and therefore

the result follows from Theorem 2.8.5 in Topkis (1998).�

Lemma 2 does not imply uniqueness or continuity of the e¤ort level a:Lemma

3 shows that di¤erent debt contracts implement di¤erent e¤ort levels.

Lemma 3 If a0 > 0 2 Z(r0) and a0 satis�es the �rst order condition in a

debt contract r then r = r0.

PROOF If a0 2 Z(r0) then it satis�es the �rst order conditionZ
�>b�(r0;a0)�a0f(�)d� = 1: (33)

Since �a > 0 and b�(r0; a0) is increasing in r there is only one level of r that
satis�es 33�

Lemma 4 If V (a; r0) = V and a 2 Z(r0) then given any 0 � V 0 � V there

exists a r0 � r0 such that V (a0; r0) = V 0 for some a0 2 Z(r0):

PROOF De�ne eV (r) = miner:er2[r;r0) V (a(er); er): eV (r) is increasing and con-
tinuous in r in all the interval [0; r0): Increasing follows by de�nition and

continuity follows because either V (a(r); r) is continuous in r or if discontin-

uous it is decreasing in r. Moreover eV (0) = 0 and eV (r0) > V 0: By continuity
there exists r0 2 [0; r0) such that eV (r0) = V 0 which by de�nition implies that
there exists r00 2 [r0; r0] such that V (a(r00); r00) = V 0 �
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In contrast the net expected bene�t of the entrepreneur is always continuous

and decreasing in r since it is given by maxa U(a; r)� a:

Lemma 5 Feasible contracts always induce an e¤ort level a � aFB:

PROOF Remember that we can restrict attention to contracts of the form

w(�) = ew(�)�Pi:ki���i. Where w0 � 1: The level of e¤ort a is either 0 or

satis�es the �rst order condition:

Z �

0
w0(�(�; a))�a(�; a)f(�)d� �

X
i

�a
��
f(b�(ki; a))�i = 1 (34)

If the contract implements a > aFB; then by the de�nition of aFB we know thatR
�af(�)d� < 1. Moreover we know thatw0 � 1 and therefore

R �
0 w

0(�(�; a))�a(�; a)f(�)d� <

1 which contradicts the fact that the �rst order condition is satis�ed.�

The utility of the agent in a debt contract is given by maxaU(a; r) = maxa
R
maxf�(�; a)�

r; 0g � a is decreasing and continuous in r: Let er be the smallest face value
of the debt such that maxaU(a; r) = 0: Whenever r < er ;then U(a; r) > 0

which means that an optimal level of a must be strictly positive and therefore

must be a local interior maximum. The weak implementability assumption

implies that whenever r < er there exists a unique a optimum in the agent

problem, since any optimum is interior, and there exists a unique local interior

optimum.

Lemma 6 Any e¤ort level a 2 [a(er); aFB] can be induced with a debt contract.
PROOF First observe that in [0; er) the e¤ort a is unique and, by the Theorem
of the Maximum, it is also continuous. Moreover limr!er� a(r) = a(er) since the
objective function is continuous in a and r and thus Z(r) is an upper semi-

continuous correspondence. Therefore a(r) is continuous and decreasing in

[0; er] and the lemma follows by the intermediate value theorem.�
The next Lemma is fundamental in proving the main result of the paper.
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Lemma 7 If a0 2 Z(r0) , a0 > a(er) and w is a contract di¤erent from debt

that implements a0; then V (a0; w) < V (a0; r0):

PROOF The proof shows that among all the contracts that satisfy the �rst

order condition at a0; V (a0; w) < V (a0; r0):

Consider the following problem:

max
w
V (a0; w) s/t Ua(a0; w) = 1; v(�) is non decreasing (35)

A solution to this problemmust exist since the problem can be stated as �nding

the optimal payment for the principal, �� w(�), which is weakly increasing

and bounded in a bounded interval. Since increasing bounded functions in a

bounded interval are compact in the relevant metric (L1) the problem must

have a solution. 4 .

Since maximizing the expected return to the principal is equivalent to mini-

mizing it for the agent the problem can be rewritten as:

min
w;ki;�i

Z �

0

0@w (�(�; a)) + X
i:ki��

�i

1A f(�)d�; (36)

subject to:

Z �

0
w0(�(�; a))�a(�; a)f(�)d� �

X
i

�a
��
f(b�(ki; a))�i = 1; (37)

w(�) � 0; (38)

w0(�) � 1: (39)

We �rst claim that the optimal contract has no discontinuities. To the contrary

suppose that the optimal w has a �i > 0 at some � = ki

Consider the alternative contract bw that only di¤ers from w in two ways,

1) The discontinuity at ki decreases in �

4 For a proof of this see Dunford and Schwartz Corollary 11 page 294.

28



2) A new discontinuity of � f(b�(ki;a)�a=��(ki:a)
f(b�(ki�";a)�a=��(ki�":a) is created at �(b� � "; a):

First observe that by construction the constraint 37 is still satis�ed.

Second observe that the objective function changes in:

�

"
1� F (b�)
f(b�) ��(b�)

�a(b�) �
1� F (b� � ")
f(b� � ") ��(b� � ")

�a(b� � ")
#

(40)

This is strictly negative, since we have assumed that f(�)
1�F (�) and �a=�� are

increasing in � . This contradicts the assumption that the optimal contract

was w; and therefore the optimal contract cannot have any discontinuities :

Therefore without loss of optimality we can restrict attention to continuous

a:e di¤erentiable functions w: The problem then becomes:

min
w

Z �

0
w(�(�; a))f(�)d� (41)

subject to Z �

0
w0(�)�af(�)d� = 1; (42)

w0 � 1; (43)

w � 0: (44)

Integrating by parts
R �
0 w(�)f(�)d� = w(0) +

R �
0 w

0(�)(1� F (�))��d�;

Therefore we can express the problem with the Lagrangian: 5

min
w0;w0

$ = w(0) +
Z �

0
w0(�)(1� F (�))�� � �f(�)�a)d� (45)

subject to w0 � 1 and w0 � 0 if w = 0: First it is clear that it is optimal to

set w(0) = 0:

The problem is linear in w0 and the variation with respect to w0 is the term

(1� F (�))�� � �f(�)�a) proportional to 1=�� �a
��

f(�)
1�F (�) : The second term is

5 An alternative proof using convex duality is available upon request from the
authors.
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the hazard rate times �a
��
; both increasing in � by complementarity and the

hazard rate condition. The optimal contract will have the smaller possible w0

for small levels of � and the highest possible for high levels of �: Because for

low levels of �; w = 0 the optimal contract is w0 = 0 if b�(�; a) < �� and w0 = 1
otherwise. Because � is increasing in �; this is precisely the form of a debt

contract.

If there exists an optimal contract, it is a debt contract r; that satis�es the

�rst order condition. By Lemma 3, the contract must be the debt contract

that implements a0:�

We are now ready to prove the main proposition of the paper.

PROOF of Proposition 1 To the contrary assume the optimal contract w

is di¤erent from a debt contract and implements an e¤ort level a0:

i) If a0 � a(er) then by Lemma 7 there exists a debt contract r0 that im-
plements a0: By Lemma 4, V (a0; r0) > V (a0; w): By Lemma 5, there exists

r1 < r0 such that V (a(r1); r1) = V (a0; w): Therefore r1 satis�es the princi-

pal�s IR constraint. Finally since a0 < a1 � aFB;E(�(�; a0)) = V (a0; w)+U(

a0; w) < V (a1; r1) + U( a1; r1) = E(�(�; a1)) and because by de�nition of

r1; V (a(r1); r1) = V (a0; w) then U( a0; w) < U( a1; r1) which violates the

optimality of w:

ii) If a0 < a(er); then consider the debt contract with face value er. Since a0 <
a(er), ( V (a0; w)+U( a0; w) < V (a(er); er)+U(a(er); er) and since U(a(er); er) = 0;
V (a(er); er) > V (a0; w): Moreover, by Lemma 5, there exists r1 < er such that
V (a(r1); r1) = V (a(er); er): Therefore r1 satis�es the principal�s IR constraint.
Finally since a0 < er � aFB; V (a0; w) + U( a0; w) < V (a1; r1) + U( a1; r1) and
because V (a(r1); r1) = V (a0; w) then U( a0; w) < U( a1; r1) which violates the

optimality of w:
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We have shown that if an optimal contract exists, it must be a debt contract.

To show existence of an optimal debt contract, note that the face value of debt

contracts can be bounded above by r = �(aFB; �) therefore the set of all debt

contracts is [0; r]; compact, and an optimal contract exists by the Weierstrass

Theorem. �

7 Conclusion

The paper develops a basic model of agency with risk neutrality and unobserv-

able e¤ort. Moral hazard ine¢ ciencies arise as a consequence of the agent�s

limited liability. We provide su¢ cient and necessary conditions for the optimal

contract to be debt. We characterize a critical ratio that determines the form

of the optimal contract. This ratio is equal to the hazard rate of the shock

times the marginal return on e¤ort over the marginal return of the shock.

The result that the optimal contract takes the form of debt when monotonic-

ity holds, as Innes understood, has far reaching implications. Debt-style con-

tracts help to explain the use of performance targets and rewards in a wide

variety of economic situations. Therefore, debt-style contracts are optimal for

sharecropping contracts, employee performance contracts, procurement con-

tracts, and regulatory incentives. Moreover, debt-style contracts are at the

heart of �nancial contracts and performance rewards for entrepreneurs and

managers. Debt contracts are extremely simple to design and apply, and have

important properties that allow for market pricing and trading.

Our analysis emphasizes explicit uncertainty by considering shocks to the out-

put function. By directly examining the random variable that a¤ects the out-

come, we can apply two conditions that are familiar from the adverse selec-

tion model of agency. The two conditions are that the random variable has

a monotonic hazard rate, and the agent�s e¤ort and the random variable are
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complements. They are easily veri�ed for most economics and �nance models

simply by checking the distribution of the random variable and the form of the

production technology. What is most important is that these conditions hold

for a very wide range of applications in economics and �nance. Our approach

should help researchers to derive optimal contracts within many economic and

�nancial models. The assumptions allow for tractable economic analysis that

should yield comparative statics results pertaining to uncertainty, technology,

and wealth e¤ects.

The present analysis suggests that incentive contracts can have critical

performance levels rather than more complex performance schedules. It may

be useful to reevaluate many standard analyses of performance incentives by

explicitly modeling uncertainty. Our analysis contrasts with the standard re-

sults based on an induced probability distribution. The standard results gen-

erally apply the MLRP and CDFC conditions which tend not to be satis�ed

by most models in economics and �nance. Such models with implicit uncer-

tainty tend to suggest that performance rewards take the form of piece-rate

compensation and linear sharing rules. The present analysis suggests instead

that agency contracts can feature critical performance targets, bonus schemes,

and performance guarantees.

An important aspect of our analysis is that it identi�es a close connection

between moral hazard and adverse selection. The uncertainty in the moral

hazard setting corresponds to the unobservable type in the adverse selection

setting. What is critical is the timing of the agent�s decision. Before choosing

his e¤ort level, the agent does not observe the outcome of uncertainty in

the moral hazard model while the agent observes his type in the adverse

selection model. The agent�s e¤ort in the moral hazard setting depends on the

probability distribution on states of the world, which can be interpreted as

the agent�s future type. In the moral hazard setting, the agent�s action thus
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depends on anticipating his future type.
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Appendix

PROOF of Proposition 3 The proof follows by contradiction. Take a con-

tract w that implements ba and suppose that there exists a set of values of
� S1 with w0 > " and � < � and a set S2 with w0 < 1 � " and � > �:
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Without loss of generality we can assume both sets are of equal measureR
S1
�dF (�) =

R
S2
�dF (�) (otherwise we can always take subsets of the original

sets).We shall prove that there exists a contract that makes the agent strictly

better .

Consider a contract that di¤ers from w only in that it decreases w0 in "1 at

S1 and increases w0 in "2 at S2 where "1 and "2 are such that

"1

Z
S1
�af(�)d� = "2

Z
S2
�af(�)d�

First notice that this contract will still implement ba since it will continue
to satisfy the agent�s �rst order condition which is necessary and su¢ cient.

Notice also that the net expected bene�t of the investor changes in

"2

Z
S2
��(1� F (�))d� � "1

Z
S1
��(1� F (�))d�

Which is proportional to

Z
S2
��af(�)d� �

Z
S1
��af(�)d�

Which by construction is positive.

At this new contract the same e¤ort level is induced, and the principal is

strictly better o¤.

Take the new contract w(�), and de�ne the contract w(l;�) as follows.

w�(l;�) = w�(�) + l(1� w�):

With l 2 [0; 1] :Notice that U( w(l;�); a) has increasing di¤erences in l; a which
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implies that the e¤ort level is increasing in l: By the theorem of maximum we

also now that a is continous in l: Finally increase l untill the principal�s par-

ticipation constraint becomes binding. Clearly this contract makes the agent

better o¤.�

PROOF of Proposition 4

The proof of proposition 3 is presented after a series of lemmas.

Consider a call option contract with strike price r: The return to the agent is

given by:

U =
Z maxfr�Q(a);0g

0
[� +Q(a)]f(�)d� +

Z �

maxfr�Q(a);0g
rf(�)d� (46)

Lemma 8 E¤ort is increasing and continous in the strike price r:

PROOF First notice that it is always the case that Q(a) < r; then U is

concave in a; since Uaa = Q00(a)F (r � Q(a)) � Q0(a)2f(r � Q(a)): Therefore

the �rst order condition Q0(a)F (r � Q(a)) = 1 is a su¢ cient and necessary

condition for optimality. The e¤ort a is therefore continous by the theorem of

maximum and increasing by the implicit function theorem.

Lemma 9 Call option contracts maximize the return to investors

PROOF Consider the problem:

min
w

Z �

0
w(�(�; a))f(�)d� (47)

Z �

0
w0(�)�af(�)d� = 1 (48)

w0 � 1 (49)

w � 0 (50)

Integrating by parts
R �
0 w(�)f(�)d� = w(0; a) +

R �
0 w

0(�)(1� F (�))��d�;
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Therefore we can express the problem with the Lagrangian:

min
w0;w0

$ = w(0; a) +
Z �

0
w0(�)(1� F (�))�� � �f(�)�a)d� (51)

subject to w0 � 1 and w0 � 0: First it is clear that it is optimal to set

w(0; a) = 0:

The problem is linear in w0 and the variation with respect to w0 is the term

(1 � F (�))�� � �f(�)�a) proportional to 1=� � Qa f(�)
1�F (�) : The second term

is the hazard rate The optimal contract will have the smaller possible w0 for

higher levels of � and the lowest possible for low levels of �: This is the call

option contract that implements a:�

PROOF of Proposition 3 To the contrary assume that the optimal contract

is w (di¤erent from an option contract) and it implements an e¤ort level a0:

Note that by Lemma 8 there exists an option contract r0 that implements a0:

By Lemma 9 V (a0; r0) > V (a0; w): By Lemma 8 there exists r1 > r0 such that

V (a(r1); r1) = V (a0; w): Therefore r1 satis�es the principal�s IR constraint.

Finally since a0 < a1 � aFB;E(�(�; a0)) = V (a0; w)+U( a0; w) < V (a1; r1)+

U( a1; r1) = E(�(�; a1)) and because by de�nition V (a(r1); r1) = V (a0; w)

then U( a0; w) < U( a1; r1) which violates the optimality of w:�

PROOF of Proposition 4 First observe that with a linear contract of the

form

w(�) = l�

the agent�s problem is concave in the e¤ort level a and therefore has a unique

solution. Moreover linear incentive contracts can implement any e¤ort level

in [0; aFB]: We will show that no contract can be better for the agent than a

linear contract. To prove this suppose to the contrary that a contract w() that

implements ba; is strictly better for the entrepreneur that any linear contract.
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Let bl be the linear contract that at ba satis�es
Z �

0
w0(�)�af(�)d� = bl Z �

0
�af(�)d� (52)

It is clear that the linear scheme bl implements ba . By the assumption that
the agent is better o¤ under w() it must be the case that

Z �

0
w(�)f(�)d� > bl Z �

0
f(�)d� (53)

Which integrating by parts imply that

Z �

0
w0(�)��(1� F (�))d� > bl Z �

0
��(1� F (�))d� (54)

Dividing and multiplying by �af(�); and remembering that � = �a
��

f(a)
(1�F (a)) is

constant he get

�
Z �

0
w0(�)(�af(�))d� > �bl Z �

0
�af(�)d�

Which contradicts (52) .�

Proof of proposition 5

It follows directly from considering the problem

min
w

Z �

0
w(�(�; a))f(�)d� (55)

Z �

0
w0(�)�af(�)d� = 1 (56)

w0 � 1 (57)

w � 0 (58)

Integrating by parts
R �
0 w(�)f(�)d� = w(0; a) +

R �
0 w

0(�)(1� F (�))��d�;
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Therefore we can express the problem with the Lagrangian:

min
w0;w0

$ = w(0; a) +
Z �

0
w0(�)(1� F (�))�� � �f(�)�a)d� (59)

subject to w0 � 1 and w0 � 0: The optimal contract in this problem is of the

class L: Moreover if it implements a then it satis�es the �rst order condition

constraint, and therefore it must give the agent a smaller utility under the

e¤ort level a than any other arbitrary contract w:�
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