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Abstract

This paper studies repeated games with imperfect public monitoring
where the players are uncertain both about the payoff functions and about
the relationship between the distribution of signals and the actions played.
To analyze these games, we introduce the concept of perfect public ex-post
equilibrium (PPXE), and show that it can be characterized with an extenstion
of the techniques used to study perfect public equilibria. We then develop
identifiability conditions that are sufficient for a folk theorem; these condi-
tions imply that there are PPXE in which the payoffs are approximately the
same as if the monitoring structure and payoff functions were known.
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1 Introduction

The role of repeated play in facilitating cooperation is one of the main themes of
game theory. Past work has shown that reciprocation can lead to more cooperative
equilibrium outcomes even if thereirmperfect public monitoringso that players

do not directly observe their opponents’ actions but instead observe noisy public
signals whose distribution depends on the actions played. This work has covered
a range of applications, from oligopoly pricing (e.g. Green and Porter (1984)
and Athey and Bagwell (2001)), repeated partnerships (Radner, Myerson, and
Maskin (1986)) and relational contracts (Levin (2003)). These applications are
accompanied by a theoretical literature on the structure of the set of equilibrium
payoffs and its characterization as the discount factor approdchesst notably
Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990, here-
after APS), Fudenberg and Levine (1994, hereafter FL), Fudenberg, Levine, and
Maskin (1994, hereafter FLM), and Fudenberg, Levine, and Takahashi (2007). All
of these papers assume that the players know the distribution of public signals as
a function of the actions played. In some cases this assumption seems too strong:
For example, the players in a partnership may know that high effort makes good
outcomes more likely, but not know the exact probability of a bad outcome when
all agents work hard. This paper allows for such uncertainty, and also allows for
uncertainty about the underlying payoff functions.

Specifically, we study repeated games in which the state of the world, chosen
by Nature at the beginning of the play, influences the distribution of public signals
and/or the payoff functions of the stage game. The effect of the state on the payoff
functions can be direct, and can also be an indirect consequence of the effect of
the state on the distribution of signals. For example, in a repeated partnership,
the players will tend to have higher expected payoffs at a given action profile at
states where high output is most likely, so even if the payoff to high output is
known, uncertainty about the probability of high output leads to uncertainty about
the expected payoffs of the stage game. While the study of uncertain monitoring
structures is new, there is a substantial literature on repeated games with unknown
payoff functions and perfectly observed actions, notably Aumann and Hart (1992),
Aumann and Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille
(2003), Wiseman (2005), dtner and Lovo (2008), Wiseman (2008), andrkkr,



Lovo, and Tomala (2008). Our work makes two extensions to this literature- first
to the case of unknown payoff functions and imperfectly observed actions but a
known monitoring technology, and from there to the case where the monitoring
structure is itself unknown.

Because actions are imperfectly observed, the players’ posterior beliefs need
not coincide in later periods, even when they share a common prior on the dis-
tribution of states. This complicates the verification of whether a given strategy
profile is an equilibrium, and thus makes it difficult to provide a characterization
of the entire equilibrium set. Instead, we consider a subset of Nash equilibria,
calledperfect public ex-post equilibriar PPXE A strategy profile is a PPXE if
it is public- i.e. it depends only on publicly available information- and if its con-
tinuation strategy constitutes a Nash equilibrium given any state and given any
history. In a PPXE, a player’s best reply does not depend on her belief, so that
the equilibrium set has a recursive structure and the analysis is greatly simplified.
As with ex-post equilibrium, PPXE are robust to variations in beliefs about the
underlying uncertainty- a PPXE for a given prior distribution is a PPXE for an
arbitrary prior?

PPXE is closely related to the “belief-free” equilibria used lyrker and Lovo
(2008) and Hrner, Lovo, and Tomala (2008) in their analyses of games with per-
fectly observed actions and incomplete information. This equilibrium concept
allows players to condition on their type, while PPXE does not, as it requires pub-
lic strategies. Nevertheless, PPXE can be used to analyze incomplete-information
games; here it amounts to a “pooling equilibrium” as players are not allowed to

1Cripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study
symmetric-information settings where actions and payoffs are perfectly observed, so players al-
ways have the same beliefs, and this difficulty does not arise. In Aumann and Hart (1992), Aumann
and Maschler (1995), dtner and Lovo (2008), Wiseman (2008), andrker, Lovo, and Tomala
(2008), players receive private signals about the payoff functions and so can have different beliefs.
(In Wiseman (2008) the players privately observe their own realized payoff each period, in the
other papers the players do not observe their own realized payoffs, and the private signals are the
players’ initial information or “type.”)

2See Bergmann and Morris (2007) for a discussion of various definitions of ex-post equilib-
rium. Miller (2007) analyzes a different sort of ex-post equilibrium: he considers repeated games
of adverse selection, where players report their types each period, as in section 8 of FLM, and
adds the restriction that announcing truthfully should be optimal regardless of the announcements
of the other players.



condition on their type. We say more about the comparison of these equilibrium
concepts in Section 7. In Fudenberg and Yamamoto (2009), we define the no-
tion of a “Bayesian perfect public ex-post equilibrium,” which allows players to
condition on their initial private information in addition to the public history, and
develop an analog of the linear programming characterization of limit equilibrium
payoffs. This equilibrium concept reduces to the belief-free equilibriumashier

and Lovo (2008) and &rner, Lovo, and Tomala (2008) when actions are perfectly
observed. The PPXE concept is also related to belief-free equilibria in repeated
games with private monitoring, as in Piccione (2002), Ely amdiraaki (2002),

Ely, Horner, and Olszewski (2005), Yamamoto (2007), Kandori (2008), and Ya-
mamoto (2009¥. However, unlike the belief-free equilibria in those papers, PPXE
does not require that players be indifferent, and so it is not subject to the robust-
ness critiques of Bhaskar, Mailath, and Morris (2008); this is what motivates our
choice of a different name for the concept.

To characterize the limit of the set of PPXE payoffs as the discount factor goes
to 1, we extend the FL linear programming characterization of the limit payoffs
of PPE. That is, we show in Section 3 that the limit of the set of payoff vectors
to PPXE as the discount factor goeslt the intersection of the “maximal half-
spaces” in various directions, where each compoagni) of the direction vector
A corresponds to the weight attached to playepayoff in statew. The main
new feature is that in a PPXE, the equilibrium payoffs are allowed to vary with
the state, and can do so even if the state does not influence the expected payoffs
to each action profile- for example there can be PPXE where plagees better
in statew, and player2 does better in statey. Thus PPXE can involve a form
of “utility transfer” across states. For this reason, the “maximal half space” in
these “cross-state directions” can be the whole space, while in FL the maximal
half space in each direction is bounded by the feasible set.

In Section 4, we use this characterization to prove an “ex-post” folk theo-
rem, asserting that for any map from states to payoff vectors that are feasible and
individually rational in that state, there is a PPXE whose payoffs in each state
approximate the target map as the discount factor tends Tthis theorem uses
individual and pairwise full rank conditions as in FLM, and adds the assumption

3Belief-free equilibria and the use of indifference conditions have also been applied to repeated
games with random matching (Takahashi (2008), Deb (2008)).
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that for every pair(i,w) and(j, @) of individuals and states, there is a profite

that has “statewise full rank,” which means roughly that the observed signals re-
veal the state regardless of whether j (but not both!) unilaterally deviate from

a.

Because our proof of the folk theorem uses the LP characterization, it does not
explicitly construct equilibrium strategies. To give some insight into the mechan-
ics of how PPXE work, Section 5 presents an explicit construction in two related
examples. These examples also help illustrate the role of information conditions
in ensuring that PPXE exist, and show how the ex-post folk theorem can apply
even though the game does not have a static ex-post equilibrium.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds under
milder informational conditions. Section 6.1 shows that pairwise full rank can be
replaced by the condition of “pairwise identifiability,” which can be satisfied with
a smaller number of signals and that statewise full rank can be relaxed to “state-
wise identifiability.” Both of these identifiability conditions are equivalent to their
full-rank analogs when individual rank conditions are satisfied, but in general they
are weaker and can be satisfied in models with fewer signals relative to the size
of the action spaces. Even the statewise identifiability condition is stronger than
needed, as shown in Section 6.2. In particular, when the individual full rank con-
ditions are satisfied, statewise identifiability requires more signals than in FLM,
but statewise distinguishability can be satisfied without a larger signal space. Very
roughly speaking, the key is that for every pair of playergand pair of states
w, @, there be a strategy profile whose signal distribution distinguishes between
the two states regardless of the deviations of plgyand such that continuation
payoffs can give a large reward to playen statecw without increasing playars
incentive to deviate and without affecting playjés payoff in statec.



2 Unknown Signal Structure and Perfect Public Ex-Post
Equilibria
2.1 Model

Letl ={1,---,1} represent the set of players. At the beginning of the game, Na-
ture chooses the state of the wodhdfrom a finite seQ = {wy, ..., o }. Assume
that players cannot observe the true staf@and letu € AQ denote the players’
common prior ovew.* For now we assume that the game begins with symmetric
information: Each player’s beliefs abowtcorrespond to the prior. We relax this
assumption in Section 7.

Each period, players move simultaneously, and player chooses an action
a from a finite setA;. Given an action profila = (a)ic; € A= x| A, players
observe a public signglfrom a finite sety according to the probability function
m“(a) € AY; we call the functionrt® the “monitoring technology.” Players
realized payoff isui (a,Y,w), so that her expected payoff conditionalere Q and
onac Aisg®(a) = yyey B°(a)Ui(a, Y, w); g¥(a) denotes the vector of expected
payoffs assomated with action profée

In the infinitely repeated game, players have a common discount factor
(0,1). Let(af,y") be the realized pure action and observed signal in peT,iadd
denote player’s private history at the end of periad> 1 by hf = (af,y")t_,. Let
h0 0, and for each > 1, let H! be the set of alh{. Likewise, a public history
up to periodt > 1 is denoted byn' = (y")}_,, andH! denotes the set of if. A
strategy for player is defined to be a mappirg: Ui oH! — AA. LetS be the
set of all strategies for playérand letS= xic|S. Note that the case of a known
public monitoring structure corresponds to a single possible $ate{ w}.

4Because our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of

equilibrium analysis and a non-common prior is hard to justify.
SIf u; depends omw, it might seem natural to assume that players do not observe the realized

value ofu; as the game is played; otherwise players might learn the state from observing their
realized payoff. Since we restrict attention to ex-post equilibria, where players’ belief about the
state do not matter, we do not need to impose this restriction.
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We define the set of feasible payoffs in a given stat® be

V(w) = cof(g”(a))lac A} = {g“(n)|n € A(A)};

whereA(A) is the set of all probability distributions ovér. As in the standard
case of a game with a known monitoring structure, the feasible set is both the set
of feasible average discounted payoffs in the infinite-horizon game when players
are sufficiently patient and the set of expected payoffs of the stage game that
can be obtained when players use of a public randomizing device to implement
distributionn over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V= XweQV(w)a

sothatapointeV = (v(w), - ,V(wo)) = ((va(wr), -, vi(wr)), -, (Vi(wo), - ,vi(wo)))-
Note that a giverv € V may be generated using different action distributions

n(w) in each statev. If players observev at the start of the game and are very

patient, then any payoff id can be obtained by a state-contingent strategy of the

infinitely repeated game. Looking ahead, there will be equilibria that approximate

payoffs inV if the state isdentifiedby the signals, so that players learn it over

time. Note also that, even if players have access to a public randomizing device,

the set of feasible payoffs of the stage game is the smaller set

VY = {g®(n)|n € AA) }oea,

because play in the stage game must be a constant independent of

2.2 Perfect Public Ex-Post Equilibria

This paper studies a special class of Nash equilibria caiéetect public ex-post
equilibria or PPXE; this is an extension of the concept of perfect public equi-
librium that was introduced by FLM. Given a public strategy pradite Sand a
public historyht € H!, let s|;x denote its continuation strategy profile aftér

Definition 1. A strategys € S is publicif it depends only on public information,
i.e., forallt>1,h = (a,y")t_; € H, andhf = (&, 7). _, € H! satisfyingy” =
forall T <t, s(h!) = s(ﬁ}). A strategy profiles € Sis publicif s is public for all
iel.



Definition 2. A strategy profiles € Sis aperfect public ex-post equilibriumhfor
everyw € Q the profile is a perfect public equilibrium of the game with known
monitoring structurgr®.b

Given a discount factod € (0,1), let E(J) denote the set of PPXE payoffs,
i.e.,E(9) is the set of all vectors = (Vi(w)) i w)ci xo € R*I?I such that there is
a PPXEs € Ssatisfying

(1-9)E [ZfSt_lgf’(at)

t=

S, a)] = Vj(w)

foralli € I andw € Q. Note thatv € E(d) specifies the equilibrium payoff for all
players and for all possible states. Note also that the set of PPXE can be empty, in
contrast to the case of perfect public equilibria of games with a known state.

The notion of minmax payoff extends to PPXE in a natural way.\@b) =
ming_, maxg, g (&, a—i) be the minmax payoff for playerin statec, and let

Vi={veV|Viel Vwe Q vi(w) > V,(w)}

be the subset of the feasible payoff state where each player receives at least her
minmax payoff in each state. Thd&f(d) C V¥, since any perfect public equi-
librium of the game with known monitoring structuremust give each playar

payoff at least;(w).

By definition, any continuation strategy of a PPXE is also a PPXE, so the set of
payoffs of PPXE equals the set of continuation payoffs of PPXE. This recursive
structure facilitates the use of dynamic programming techniques to characterize
the equilibrium payoff set.

Definition 3. For & € (0,1) andW C R'*I€l, a pair(a,Vv) € (xic; AA) x R *I@l
of an action profile and a payoff vector éx-post enforceable with respectdo

5That s, s is a public strategy, and for evesy Q, and any public historit € H!. the continu-
ation strategy profilg|; constitutes a Nash equilibrium of the “continuation game” corresponding
to {h',w}. In this continuation game, players know tha the state,iand because all opponents
are using public strategies, each player can compute the expected payoff to any of their strategies
(public or private) even thougfh', w} is not the root of a proper subgame.

"With a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium
of the repeated game. Similalry, repeated play of a static ex-post equilibrium is a PPXE, but static
ex-post equilibria need not exist.



andW if there is a functiorw : Y — W such that
Vi(w) = (1-8)g”(a)+ o ZY g (a)wi(y, )
ye
foralli €l andw € Q, and

M(©) 2 (1-0)5(@,a-) +8 Y @, o (e
=

foralliel, we Q, andag € A.

For eachd € (0,1), W C R*I®l anda e xic; AA, letB(5,W, a) denote the
set of all payoff vectors € R'*I®l such that(a,V) is ex-post enforceable with
respect tad andW. LetB(d,W) be a union oB(d,W, a) over alla € xic| AA;.

To prove our main results, we will use the fact that various useful properties
of PPE extend to PPXE.

Definition 4. A subset of R' %12 is ex-post self-generating with respectdaf
W C B(d,W).

Proposition 1. If a subsetW of R'*/? is bounded and ex-post self-generating
with respect t@, thenW C E(9).

Proof. See Appendix. The proof is very similar to APS; the key is that when

is ex-post self-generating, the continuation payeiffg) used to enforce a vector
veV c R*Q have the property that for eagte Y, the vectom(y) € R'*/9l can

in turn be ex-post generated using a single next-period actiindependent of

w) so that the strategy profile constructed by “unpacking” the ex-post generation
conditions does not directly depend an Q.E.D.

Definition 5. A subsetV of R' %19 is locally ex-post generatinifjfor eachv e W,
there existd, € (0,1) and an open neighborhodd|, of v such thatW NnU, C

B(dy,W).

Proposition 2. If a subsetW of R'*1€l is compact, convex, and locally ex-post
generating, then there i§ € (0,1) such thaWw C E(&) for all 6 € (3, 1).

Proof. See Appendix; this is a straightforward generalization of FLMQ.E.D.



3 Characterizing E(J)

3.1 Using Linear Programming to BoundE(9)

In this subsection, we provide a bound on the set of PPXE payoffs that holds
for any discount factor; the next subsection shows that this bound is tight as the
discount factor converges to one.

Consider the following linear programming problem. loet x| AA;, A €
R'*1Ql ands € (0,1).
(LP-Average) k*(a,A,0) = max A-v  subjectto

veR*1Q wY —RI*[Ql

() vi(w)=(1-9)g’(a)+0o Z T (o) wi (Y, )
ye

forallie |l andw € Q,
(i) vi(w)>(1-9)g"(a,a-i)+0 ;n}*’(au,a—i)wi(y, w)
ye

foralliel, we Q, andag € A,
(i) A-v>A-w(y) forallye.

If there is no(v,w) satisfying the constraints, lé&t(a,A,d) = —oo. If for ev-
ery K > 0 there is(v,w) satisfying all the constraints amtl-v > K, then let
K*(a,A,0) = co.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-
centive compatibility, and condition (iii) requires that the continuation payoffs lie
in half-space corresponding to direction vectoand payoff vector. Note that
when Aj(w) # 0 and Aj(&) # 0 for somew # @, condition (iii) allows “utility
transfer” across states. This utility transfer is the most significant way that LP-
average differs from the linear program in FL, so we will discuss it in more detail
below.

As we show in Lemma 1 (a), the valk&a, A, d) is independent o, so that
we denote it byk*(a,A). For eachA € R'*I?\ {0} andk € R, letH(A k) = {v e
RI*IQA .v < k}. Fork= oo, letH(A,k) = R, Fork= —o, letH (A k) = 0.
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Then, let

and

AcRIXIQN\ {0}

Lemma 1.
(@) k*(a,A,d) is independent ad.

(b) If (Ai(w))ic) # 0 for somew and(A;i(6))ic) = 0forall @+ w, thenk*(A) <
supg, A -g(a).

(c) If Aj(w) < O for some(i,w) and Aj(@w) = O for all (j,&) # (i,w) then
k() < A (@) ().

(d) Consequentl C V*.

Proof. Part (a) follows from the fact that the constraint set in (iii) is a half-
space: Suppose that w) satisfies constraints (i) through (iii) in LP-Average for
(a,A,d). Ford € (0,1), let

~

o8-8  3(1-9)
"W =51se) 51 Y

Then (v,W) satisfies constraints (i) through (iii) in LP-Average f(m,A,5), SO
that the set of feasiblein LP-Average is independent 6f and thus so ik*(a, A, J).
Let A* be the set oA € R'*I®l such that(A;(w))ic| # 0 for somew € Q and
(Ai(@))ie) = 0for all &+ w. Since parts (b) and (c) consider a single stateey
follow from FL Lemma 3.1. Thu§),ca- H*(A) C V¥, and part (d) follows from

QC Mren HH (A). Q.E.D.

Since we already know th&t(d) C V*, part (d) of this lemma shows th&t
is “not too big”: it doesn’t contain any payoff vector we can rule outaopriori
grounds. The next lemma shows tliais “big enough” to contain all the payoffs
of PPXE.
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Lemma 2. For everyd € (0,1), E(d) C E*(d) C Q, whereE*(9) is the convex
hull of E(9).

Proof. Itis obviousthaE(d) C E*(d). Suppos&*(d) £ Q. Then, since the score
is a linear function, there i< E(d) andA such thatA -v > k*(A). In particular,
sinceE(d) is compact, there exist € E(J) andA such thatA - v* > k*(A) and
A-vt > A-Vforall Ve E*(d). By definition,v* is enforced by(w(y))yey such
thatw(y) € E(8) CE*(8) CH(A,A -v") forally € Y. But this implies thak*(A)
is not the maximum score for directidn a contradiction. Q.E.D.

To help explain the role of cross-state utility transfers, we will show that the
conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the uniform-
over-states version

(iii") Z)\i(w)vi(w) > Z)\i(w)wi (yyw) forallweQandyeY.

The resulting “uniform” LP problem corresponds to a form of “ex-post” enforce-
ability on half-spaces, and it is fairly intuitive that the resulting set of payoffs
should be attainable by PPXE for large discount factors. However, this condition
is too restrictive to capture all of the payoffs of PPXE, as shown by the combina-
tion of the following claim and the example that follows it.

Claim 1. In the LP-Uniform problem formed by replacing (iii) in LP-Average with
(iii"), the solutiorkY (a,A,8) < A -g(a) for eacha andA. Thereforek” (A,d) =
sup, kY (a,A,8) < sup, A -g(a), and the computed s€ is a subset of payoffs
VY that can be attained with actions that are independent of the state.

Proof. Inspection of the constraints in the LP-Uniform problem shows that it
is equivalent to solving a separate LP problem for each stateQ in isola-
tion. As FL show, a solution to the LP problem for givém, w) cannot exceed
Sicr Ai(w)g®(a). Thereforek (a,A,d), the maximal score in LP-Uniform for

a givena, is at mosty weq Sic) Ai(w)g®(w) = A -g(a), sosup, kY (a,A,9) <
supg, A -g(a). Q.E.D.

In contrast, the following example shows how PPXE can generate payoffs
outside oY,

12



Example 1. There are two players, = {1,2}, and two possible state§) =
{w1,wn}. In every stage game, playé&rchooses an action from; = {U,D},
while player2 chooses an action frody, = {L, R}. Their expected payofig®(a)
are as follows.

L | R L | R
Uji22|(01 Ul|11|00
D|00|11 D|10[22

Here, the left table shows expected payoffs for stateand the right table shows
payoffs for statew,. Suppose that the set of possible public signa¥isA x Q,
and that the monitoring technology is such th(a) = € > O for y # (a, ), and
n’(a) =1-"7efory=(a w).

Note that(U,L) is a static Nash equilibrium for each state. Hence, play-
ing (U,L) in every period is a PPXE, yielding the payoff vectd®, 2),(1,1)).
Likewise, playing(D,R) in every period is a PPXE, yielding the payoff vector
((1,1),(2,2)). “Always (U,L)” Pareto-dominates “alway&®,R)” for state w,,
but is dominated for state,. Note that these equilibrium payoff vectors are in
the setvY. LetY(wy) be the sefy = (a,w) € Y|w = w;}, andY(wy) be the set
{y=(a,w) € Y|w= w,}. Consider the following strategy profile:

e In period one, playU,L).
e If yeY(wy) occurs in period one, then play, L) afterwards.

e If ye Y(wp) occurs in period one, then pldp, R) afterwards.

After every one-period public histohy € H, the continuation strategy profile
is a PPXE. Also, given 6 any state< Q, nobody wants to deviate in period one,
since(U, L) is a static Nash equilibrium and players cannot affect the distribution
of the continuation play. Therefore, this strategy profile is a PPXE; its payoff
vector converges to* = ((2—4¢,2—4¢),(2—4¢,2—4¢)) asd — 1. Observe
thatv* ¢ VY if € € (0, %). In particular, this equilibrium approximates the efficient
payoff vector((2,2),(2,2)) as the noise parameteigoes to zero.

The idea of this construction is that players wait one period to learn the state of
the world, and once they learn the true state, they adjust their continuation strategy
accordingly. When players obseryec Y (wy) and learn thatu; is more likely,

13



they choose “alway$U,L)” to achieve an efficient payoff2,2) for w; (while

it gives an inefficient outcomél, 1) for wy). Likewise, when players observe
y € Y(wp) and learn thatw, is more likely, they choose “alway®, R)” to achieve
an efficient payoff(2,2) for wp. Notice that when players obserye= Y (w;)

in period one, they choose the continuation payoff veetorn = ((2,2),(1,1)),
which yields more payoffs thawt for ay but less payoffs fow,. This is the sense
in which the PPXE allows “utility transfers” across states.

The uniform feasibility constraint (i} in LP-Uniform problem rules out this
equilibrium because it does not allow utility transfer across states. For example,
for A =(1,1),(1,1)), kY (A) = 6 while A - v = 8 16¢.

Example 1 is misleadingly simple, because there is an ex-post equilibrium of
the static game, and for this reason there is a PPXE for all discount factors. It
is also very easy to construct equilibria that approximate efficient payoffs in this
example: simply specify thaU,L) is played forT periods, and then eith¢d L)
or (D,R) is played forever afterwards, depending on which state is more likely. In
section 5, we present an example where there is no static ex-post equilibrium, and
hence no PPXE for a range of small discount facdsat where the folk theorem
still applies.

3.2 Computing the Limit of E(J) as Players Become Patient

Now we show that the sé&(d) of PPXE payoffs expands to equal all@fas the
players become sufficiently patient, provided that a full-dimensionality condition
Is satisfied.

Definition 6. A subsetW of R'*I€l is smoothif it is closed and convex; it has a
nonempty interior; and there is a unique unit normal for each point on its bound-
ary?

Y.

Lemma 3. If dimQ = | x |Q|, then for any smooth strict sub3at of Q, there is
5 € (0,1) such thaw C E(d) for 6 € (5,1).

8To see this note that the equilibrium payoffs of a PPXE for given discount faataust lie in
the convex hull of the payoffs to strategies of the discounted repeated game, and that\is set
will be close tovY when the discount factor is close to zero.

9A sufficient condition for each boundary point\W to have a unique unit normal is that the
boundary of is aC2-submanifold ofR! </,
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Proof. From lemma 1 (d)Q is bounded, and hend# is also bounded. Then,
from Proposition 2, it suffices to show thét is locally ex-post generating, i.e.,
for eachv € W, there exis®, € (0,1) and an open neighborhotlj of v such that
WNUy C B(&,W).

First, considernv on the boundary o¥W. Let A be normal tow at v, and
letk=A-v. SinceW C Q C H*(A), there exista, V, and (W(y))ycy Such that
A-V>A-v=Kk, (a,V)is enforced using continuation payoff&(y))ycy for some
5e (0,1), andw(y) € H(A,A -V) forally € Y. For eachd € (5, 1) andy e, let

-6 6(1-8) (. . vV
W0 = S8 T s 5) (W(y) 5 )

By construction{a, V) is enforced byw(y, d))ycy for &, and there i > 0 such
that|w(y,d) —v| < k(1—9). Also, sinceA -V > A -v=kandW(y) € H(A,A - V)
for ally € Y, there ise > 0 such that¥(y) — %7 isinH(A,k—¢) forallye,
thereby

w(y,d0) e H ()\,k— 5<1_5)£>

5(1-9)
for all y € Y. Then, as in the proof of Theorem 3.1 by FL, it follows from the
smoothness &V thatw(y, d) € intW for sufficiently larged, i.e.,(a, V) is enforced
with respect to inV. To enforceu in the neighborhood of, usea and a translate
of (W(y, 3))yev-

Next, considew in the interior ofW. ChooseA arbitrarily, and leta and
(w(y, d))yey be as in the above argument. By constructi@n,v) is enforced by
(W(Y,9))yey. Also, w(y,d) € intW for sufficiently larged, since|w(y,d) —Vv| <
K(1—90) for somek > 0 andv € intW. Thus,(a,V) is enforced with respect to
intW whend is close to one. To enforaein the neighborhood of, usea and a
translate ofw(y, 8))yev, as before. Q.E.D.

These two lemmas establish the following proposition.
Proposition 3. If dimQ =1 x |Q|, thenlims_,; E(d) = Q.

It is possible thadimQ < | x |Q|, so that this proposition does not apply, but
thatlims_,, E(J) # 0. A trivial example of this occurs when the stabas no ef-
fect on either the monitoring structure or the payoffs, so that it cannot possibly be
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observed, but is simply a nuisance parameter. InE(\&) is a subset of the space

VY of payoff that can be generated with actions that are independent of the state,
soQ C E(0) has dimension at most In this particular case, the solution is obvi-
ously to ignore the state and characterize the perfect public equilibria of the game
where (any)w is known; these equilibria correspond to the ful set of PPXE of the
game with the noise parameter added. More generally, the full-dimension condi-
tions could fail due to the imperfect observability @f but o might matter for

the payoff functions. In this case one might be able to charactiémze . E(J)

using an extension of the iterative algorithm in Fudenberg, Levine, and Takahashi
(2007), but this remains a topic for future research.

4 A Perfect Ex-Post Folk Theorem

In this section we give sufficient conditions for a folk theorem to hold in PPXE.
This theorem shows that any map from states of the world to payoffs that are
feasible and individually rational in that state can be approximated by equilibrium
payoffs as the discount factor goesltoand in particular by payoffs of a PPXE.
More formally, our folk theorem gives conditions under whighs_,E(d) =

V*.10 When this is true, so that efficient payoffs can be approximated by PPXE,
the players have little reason to play other sorts of equilibria or to try to change
the monitoring structure. Conversely, when the set of PPXE is empty, or when all
PPXE are far from efficient but there are efficient sequential equilibria, the PPXE
restriction might be less compelling.

Since we have already shown tiaC V* and thatim 5_,; E(8) = Q under the
full-dimension condition, it remains to show that C Q, which is equivalent to
showing thak*(A) > max.cy- A - v for each direction . Our sufficient conditions
are actually stronger than that: they will imply tHé&tA) = o for directionsA
with non-zero components in two or more states. Conversely, the folk theorem
fails if there is aA such thak*(A) < maxey+A -v; we use this fact in Example 4
below.

Foreach €1, a € xjel AA, andw € Q, letl; ) (ar) represent a matrix with
rows (1i°(a, a-i) )yey for all a € A.

10Recall thatv* = {ve V|Vi € | Yo € Q vi(w) > vi(w).
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Definition 7. Profile a hasindividual full rank for (i, w) if M ., (o) has rank
equal to|A;|. Profilea hasindividual full rankif it has individual full rank for all
players and all states.

Let i o) (j,a) () be a matrix constructed by stacking matri€es,, (a) and

Definition 8. For each €I, j #i, andw € Q, profile a haspairwise full rank for
(i,w) and (j, @) if T o) (j.w) (@) has rank equal tpA;| 4 |Aj] — 1.

Definition 9. Foreach €1, j €|, w e Q, and® # w, profile a hasstatewise full
rank for (i, w) and (j, @) if M 4)(j.@) () has rank equal tA | + |A;|.

Note that both pairwise full rank and statewise full rank imply individual full
rank. Note also that the pairwise full rank conditions require as many signals as in
FLM, and the statewise full rank conditions require at most twice as many signals.
(Statewise full rank requires only one more signal than FLM if all players have
the same number of actions; it requires twice as many signals if one player has
more than two actions and all the other players have only two.)

One way of thinking about the statewise full rank condition is that it guarantees
that the observed signals will reveal the state, regardless of the play of player
i in statew and the play of playej (possibly equal ta) in stateé, assuming
that everyone else plays accordingao This condition is more restrictive than
necessary for the existence of a strategy that allows the players to learn the state:
For that it would suffice that there be a single profilevhere the distributions
on signals are all distinct, which requires only two sigrfal©n the other hand,
the condition is less restrictive than the requirement that the state is revealed to
an outside observer even if a pair of players deviates. For example, statewise
full rank is consistent with a signal structure where a joint deviation by plalyers
and2 could conceal the state from the outside observer, as in a two-player game
with A; = A; = {L,R} and i’(L,R) = (R,L). Intuitively, since equilibrium
conditions only test for unilateral deviations, the statewise full rank condition is

UNote that the learnability of the state does not requires that the signal distributions correpond-
ing to each state be linearly independent. This is because the players only need to distinguish
between a finite set of signal distributions, and not between all possible convex combinations of
them.
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sufficient for the existence of an equilibrium where the players eventually learn the
state. In Section 6, we introduce the more complicated but substantially weaker
condition of statewise distinguishability, and show that it is sufficient for a static-
threat version of the folk theorem.

The following proposition establishes an ex-post folk theorem. Note that the
set of assumptions of this proposition is generically satisfi¢d|it> 2|A;| for all
iel.

Condition 1. Every pure action profile has individual full rank.

Condition 2. For each(i, w) and(j, w) satisfyingi # j, there is an action profile
a that has pairwise full rank fafi, w) and(j, w).

Condition 3. For eachi, w) and(j, @) satisfyingw # ¢, there is an action profile
a that has statewise full rank.

Proposition 4. Suppose that Conditions 1 through 3 hold. Then, for any smooth
strict subseW of V*, there isd € (0,1) such thatv C E(5) for all & € (3, 1).

The following lemmas are useful in this proof.

Lemma 4. Suppose that Condition 2 holds. Then, there is an open and dense set
of profiles each of which has pairwise full rank for &ll w) and (], w) satisfying

I # .

Proof. Analogous to that of Lemma 6.2 of FLM. Q.E.D.

Lemma 5. Suppose that Condition 1 holds. Then, for asyl, w € Q, ande > 0,
there is a profilex  such thatr € argmax, g*(ai, a®;); |g°(a®) —vi(w)| < €;
and a® has individual full rank for all(j, @) # (i, w).

Proof. Analogous to that of Lemma 6.3 of FLM. Q.E.D.

Lemma 6. Suppose that a profile has statewise full rank fofi, w) and (j, @)
satisfyingw # @ and thata has individual full rank for all players and states.
Thenk*(a,A) = o for a directionA such thatAj(w) # 0 andA;(&) # 0.

Remark 1. Becaus&k*(a,A) < A -g(a) in the known-monitoring-structure case
of FL, this lemma shows a key difference between that setting and the uncertain
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monitoring structure case we consider here. The idea is that under statewise full
rank, the continuation payoffs in such half-spaces can give plagefery large
payoff in statew by giving playerj a very low payoff in that state, while reversing
this transfer in staté.

Remark 2. The proof of this lemma is complicated, so we illustrate it here with

a simple example. Assum& = {&,a'} andAj = {&j,a]}, and consider LP-
Average problem for a directioh such tha#; (w) = A; (&) = 1 and all other com-
ponents ofA are zero. Constraints (i) and (ii) fét, @) € | x Q\ {(i,w), (j, @)}

can be satisfied by some choice(of (y, @) )ycy because of individual full rank,

and constraint (iii) is vacuous for these coordinates. So the LP problem reduces
to finding (wi(y, @) )yey and (w;j(y, (I)))er to solve

kK'(a,A,d) = n\)s\vxvi(w) +V; ()
subject to

vi(w) = (1-9)g"(a +5;n§° Wi (Y, @

Vi(®) = (1-9)gf(a +5;n§“ Wi (y, &
vi(w) > (1-9)g”(ai,a-i) + 0 Zr(j’ 8, 0 )Wi(y, W), Va €A
vi(®) > (1-8)g°(aj,a +52n§” aj, a_j)wj(y, @), Vaj € A

Vi(w) +Vj (@) > wi(y, w) +wj(y,®), YyeY.

We claim thatk*(a,A,d) = « if a has statewise full rank. It suffices to show
that for any sufficiently large;(w) andv; (@), there exis{wi(y, w),w;(y, &) )yecy
that satisfy the first four constraints with equalities and

Wi (ya Ct)) +WJ (y? d)) - 07 vy cvy.

Eliminate this last equation by solving ferj(y, ). Then the coefficient matrix
for the set of the remaining four equations is

(1°(a, a-i) Jyev



The statewise full rank condition guarantees that this matrix has rank four, so the
system has a solution for anfy;(w),Vv;j(&)), and thusk*(a,A) = . Intuitively,
this construction makew (y, w) large for signalsy that are more likely under
in statew than in statew and makesw;(y, w) negative for signals that are more
likely under @, while keeping player indifferent between all actions in state
w, and playerj indifferent in statew’. This would not be possible if the signal
distribution were the same at the two states, or more generally if the above matrix
is were singular.

This example only explains why tlk& can be made aribitrarily large when ex-
actly two components of are non-zero. And a similar idea applies eveh lias
other nonzero components. For example, suppose\tfial = Aj(©0) = A|(@w) =
1 and other components are zero. First, chqogev), vj (), wi(w),w;()) as in
the above example, so that constraints (i) and (ii)(fow) and(j, ) are satis-
fied,vi(w) andvj(®) are enough large, and (y, w) +wij(y,0) =0forally €Y.
What remains is to finglj (@) that satisfy constraints (i) and (i) fgf, w) and the
feasibility constraint

Vi (@) + V(@) + Vi (@) = Wiy, w) +W;(y, @) + Wi (Y, @), VY€ Y.

But note thatv; (y, w) +w;j(y, @) = 0 andv; (w) +V; () can be arbitrarily large; so
the left-hand side can be infinitely large while the right-hand side (g ). This
shows that the feasibility constraint impose no restriction in choosirg @),
and thanks to the individually full rank condition, we can findy, @) that satis-
fies constraints (i) and (ii).

Proof of Lemma 6Let (i,w) and(j, @) be such thaf(w) # 0, Aj(&) # 0, and
W # w. Leta be a profile that has statewise full rank for éllcw) and (j, &)
satisfyingw # @.

First, we claim that for everl{ > 0, there existz (y, w), zj(y, @) )yey Such that

y; g (a,a-i)z(y,w) = (@) 1)

forall g € A,

Z(rl;*’a,, )Zj(y, @) =0 (2)

for all aj € Aj, and
Ai(w)z(w) +Aj(@)z(y, @) = (3)
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for all y € Y. To prove that this system of equations indeed has a solution, elim-
inate (3) by solving for;j(y,®). Then, there remaifA| + |Aj| linear equations,
and its coefficient matrix i§l; ). @) (@). Since statewise full rank implies that
this coefficient matrix has rani;| + |Aj|, we can solve the system.

Next, for each(l, @) € | x Q, we chooséw (Y, @) )ycy So that

(1-3)g(a,a_1)+9 Z(T‘ff’(ahaﬁwl (y,0) =0 4)
ye

for all a € A;. Note that this system has a solution, simcéas individual full
rank. Intuitively, continuation payoff@/(y) are chosen so that players are indif-
ferent over all actions and their payoffs are zero.

LetK > maxey A -W(y), and choos€z (y, w) )yey and(zj(y, @) )yey to satisfy
(1) through (3). Then, let

Wi(y, @) +z(y.0) if (1,@)=(,w)
Wiy, @) = Wiy, @) +z(y,®) if (I,@)=(],o)
Wi (Y, @) otherwise

for eachy € Y. Also, let

v (@) = ﬁ if (I,c_o):(i,w).
0 otherwise

We claim that thigv,w) satisfies constraints (i) through (iii) in LP-Average. It
follows from (4) that constraints (i) and (ii) are satisfied for@llw) € (1 x Q) \
{(i,w),(j,6)}. Also, using (1) and (4), we obtain

(1-0)g”(a,a-i) +9 Z (&, a-i Wi (Y, w)
yE

=(1-9)g”(a,a-i)+0 Z o (ay, ai) (Wi(y, w) +z(y, w))
ye

K
= 1—5 |w i, d—j +5 i, U—j ~i 5 +
(( 6(@,0.)+0 3 BP(@.a- iy w)) o

K

Ai(w)

for all & € A;. This shows thafv,w) satisfies constraints (i) and (ii) fdr, w).
Likewise, from (2) and (4)(v,w) satisfies constraints (i) and (ii) fdyj, ¢). Fur-
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thermore, using (3) and > maxcy A - W(y),

A -W(y) = A -W(y) + Ai(w)z (Y, @) + Aj(D)Zj (Y, @)

A-W(y)<K=A-v

for all y € Y, and hence constraint (iii) holds.
Thereforek*(a,A) > A -v=K. SinceK can be arbitrarily large, we conclude
K*(a,A) = oco. Q.E.D.

Lemma 7. Suppose that a profile has pairwise full rank for alli, w) and(j, w)
satisfyingi # j. Thenk*(a,A) = A -g(a) for directionA such thatAi(w))ie has
at least two non-zero components for somhile Aj(@w) =0 for all j € | and
W+ w.

Proof. It follows from Lemma 1 (b) thak*(A,a) < A -g(a). Thus, in what fol-
lows, we establish th&t*(A,a) > A -g(a). To do so, we need to show that there
exist continuation payofféw(y))yey in H(A,A -g(a)) that enforcg a,g(a)).

As in the proof of Lemma 6, for eadte | andd # w, there existwi (Y, @))yey
such that

(@)= (1-0)5 (@, a-) +8 Y mP@, o)
yE

for all a5 € A;. Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that
there exis{wi(y, w))iy) such that

(@)= (1-0)g(@,a-) +8 Y (@, o (e
yE

foralli € | andg € Aj, and

Wy):Z)\i( Wi (Y, W Z)\ -V,

Obviously, the specified continuation payoffs areH(A,A - g(a)) and enforce
(a,9(a)), as desired. Q.E.D.

Lemma 8. Suppose thatr has individual full rank for all(j, @) # (i, w) and has
the best-response property for playeand for statew. Thenk*(a,A) =A -g(a)
for a directionA such thatAj(w) # 0 andAj(w) = Ofor all (j, &) # (i, w).
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Proof. This is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.
Q.E.D.

Proof of Proposition 4.From Lemma 3, it suffices to show th@=V*. To do
so, we will compute the maximum scdkg(A ) for each directior.

Case 1. Considet such thatAj(w) # 0 andAj(@) # 0 for somed # w and
i possibly equal tg. In this case, players can transfer utilities across different
statesw and @ while maintaining the feasibility constraint, and this construction
allowsk*(a,A,d0) > A -g(a), as Example 1 shows. In particular, from Condition
3 and 6 we obtai* (A ) = oo for this directionA.

Case 2. Consider such thatAj(w))ic| has at least two non-zero components
for somew while Aj(&) = 0 for all ie | and@ # w. It follows from Lemmas 4
and 7 thak*(A) = sup, k*(A,a) = maxev A - V.

Case 3. Considek such thatA;(w) # 0 for some(i,w) andAj(®) = 0 for
all (j,&) # (i,w). Suppose first thadj(w) > 0. Since every pure action pro-
file has individual full ranka* € argmaxcag®(a) also has individual full rank.
Therefore, from Lemma 8,

() = K (@A) = A (w)gh(a’) = maxh -
On the other hand, from Lemma 1 (K;(A) < maxev A -v. Hence, we have
K*(A) = maxev A - V.

Next, suppose thak;(w) < 0. It follows from Lemmas 5 and 8 that for every
€ > 0, there is a profile® such thatk*(a®,A) — Aj(w)v;(w)| < €. Since Lemma
3.2 by FL asserts th&t (A) < Aj(w)V;(w), we havek*(A) = Aj(w)Vvi (w).

Combining these cases, we obt&n=V*. Q.E.D.

Because it relies on local generation and Proposition 3, Proposition 4 does not
explicitly construct PPXE strategies. To help illustrate how PPXE work, the next
section gives an explicit construction of a PPXE. The example also shows how the
folk theorem can apply even though the set of PPXE is empty for small discount
factors.
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5 Explicit Examples of PPXE

Suppose that there are two playdrss {1,2}, and two stateQ = {w1, wp}. In
every stage game, playgchoose$) or D while player2 chooses or R. Players’
expected payoffg”(a) are as follows.

o] L R wy | L R
U 10-4 1,1 Uu 00 1,1
D 11 0,0 D|11]|10 -4

Note that these are the payoff matrices in Example 2a@ifndr and Lovo (2008).
Note also that the minimax payoffév; (), Vo (o)), (Vo (wr),Vo(wr))) are((1, %), (1, %)),
and that the se&f* has non-empty interior: di¥ = dimV* (o) +dimV*(wp) =
2+ 2 =4, whereV*(w) is the set of feasible and individually rational payoffs
given a statev € Q. This stage game does not have a static ex-post equilibrium,
so we know that regardless of the monitoring structure it does not have a PPXE
for a range of discount factors ndar

We will now consider two repeated games with these payoff matrices and dif-
fering monitoring structures.

Example 2a. First, as in Hhrner and Lovo (2008), assume that actions are observ-
able, but states (and rewards) are not. That'is; Aandr’(a) = 1if y=a. In

this case, it is easy to adapt the argument ofri¢r and Lovo (2008) to show that
there is no PPXE. In a PPXE, a player’s equilibrium payoff conditionabaran-

not fall below the minimax payoff for thab. In particular, playel's equilibrium
payoff conditional orw; must be positive. This implies that the outcodé, —4)
realizes at most the fifth of the time, and hence playgequilibrium payoff con-
ditional onay is at most1—54. Likewise, playerl’s equilibrium payoff conditional

on wy is at most1—54. However, if playerl randomizeg.5U,.5D) independent of
the state, she earns at le@sh one of the states. Therefore, there is no PPXE for
any discount factor.

Note that with this monitoring structure, the statewise full rank condition is
not satisfied. Indeed, since players directly observe the actions but not the states,
the matrices1; .,)(a) andl; ., (a) are identical, meaning that no profdehas
statewise full rank fo(i, ) and(i, wp).
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Example 2b. Now suppose that the set of possible public signafsisAx Q, and

that the monitoring technology is perfeet’(a) = 1if y = (a, w), andrg’(a) =
otherwise. This monitoring structure satisfies all of our full rank conditions, so
the perfect ex-post folk theorem applies, and in particular a PPXE exists. We will
now explicitly construct a PPXE whose payoffs converge to the efficient frontier
in each state.

Let Y(wy) be the sefy = (a,w) € Y|w = w1}, andY(wy) be the sefy =
(a,w) € Y|w = wp}. To make our exposition as simple as possible, we assume
that players can observe two additional public signaksndx, fromU [0, 1] at the
beginning of every stage game, but this is not essential.

Our equilibrium strategy profile is implemented by an automaton with six
phases. As usual, each of these six phases is represented by its target payoff
vector.

Phase 1((2, g) , (8(19_ ) + 290, 8(19_ ) +%>) )

Phasez( (1 0)+20,(1 6)+%)),
Phase3(( 1 2511086)),((1—6) +20 %—@)),
(2252 2,2.. %) (:3))
Phase 5(( (1-9)+20,(1-9)+ ) (1, ))
45 1401 5) ( 1 2511085)»‘

Phase 6( ((1— 0)+20,—

Note that the target payoff in Phase 1 attains a Pareto-efficient out(czyrg‘l)efor
statewr, and that payoffs in Phases 2 and 3 approximate the minimax payoffs to
playersl and2, respectively, for statey. Likewise, for statew,, the target payoff
in Phase 4 attains a Pareto-efficient outcc(m%), while the payoffs in Phase 5
and 6 approximate the minimax payoffs to playgend?2, respectively.

The play for Phases 1 through 3 is specified as follows.

e In Phase 1, mixU,L) and (D,L) with probability § and §, using public
randomizatiorxy. If y € Y(wi) and playerl unilaterally deviates, then go
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to Phase 2. Iy € Y(w1) and playeR unilaterally deviates, then go to Phase
3. If y € Y(wp) and nobody deviates, then go to Phase 4.4fY (w,) and
playerl unilaterally deviates, then go to Phase 5 &Y (wy) and player2
unilaterally deviates, then go to Phase 6. Otherwise, stay.

e In Phase 2, playU, R) to punish played for . If y € Y(w,) and nobody
deviates, then go to Phase 4y K Y (wp) and player unilaterally deviates,
then go to Phase 5. ¥f€ Y (wy) and player2 unilaterally deviates, then go
to Phase 6. Otherwise, stay.

e InPhase 3, playgU + 2D, R) to punish playeg for w. If y= ((U,R), w),
then stay. Ify= ((D,R), wy ), then mix Phase 1 and Phase 3 with probability
p andl— p wherep = %, using public randomizatiory. If y € Y (1)
and player2 deviates, then stay. f = ((U,R), ), then go to Phase 4.
If y=((D,R),w), then mix Phases 4 and 5 with probability- p and p
9(1-9)

wherep = ==, using public randomizatior,. If y € Y(wy) and player

2 deviates, then go to Phase 6.

Roughly speaking, given that the true statejsthe play in Phases 1 through 3
corresponds to a subgame-perfect equilibrium yielding the Pareto-efficient payoff
(Z,g). Phase 1 is a regular phase, so that players (dipt) and (D,L) with
probability  and$ to achieve the target paycf®, §). Players remain Phase 1, as
long as nobody deviates (agc: Y (wy)). If player 1 deviates, then they move to
Phase 2, in which players minimaxes plagsrpayoff by (U,R). Since(U,R) is a
Nash equilibrium for statey, players do not have to move, as longyasY (w,).
Likewise, if player2 deviates in Phase 1, then players move to Phase 3 to punish
player2. Here, playet needs to mix betwedd andD to minimax player2, and
hence the continuation play must be chosen so that plagandifferent between
these two actions. Specifically, when playlechoosesD and so gets a lower
payoff, players move to Phase 1 with small probability to reward playér

It is easy to see that all the incentive constraints in sigtare satisfied, pro-
vided thatd is sufficiently large. To be a PPXE, the constructed strategies also
need to satisfy the incentive constraints in stage Our solution is very simple;

12This use of future reward to induce randomization is similar to a construction in Fudenberg
and Maskin (1986).
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in Phase 1 or Phase 2)yifc Y () occurs and nobody deviates today, then go to
Phase 4; ify € Y(wp) occurs and playet unilaterally deviates, then go to Phase
5; and ify € Y (ap) occurs and playe2 unilaterally deviates, then go to Phase 6.
Since Phases 5 and 6 minimax play&rand?2 respectively, players do not want
to deviate today for sufficiently larg®, even if the true state iay. In Phase 3,
we need to make playdrindifferent betweerd andD, so players need to mix
Phases 4 and 5 as before. Thus, the target payoff vectors for Phases 1 through 3
are enforceable for each statec Q, as long a® is close to one.

The play for Phases 4 through 6 is specified in a similar way.

e The play in Phase 4 is defined as a “mirror image” of that in Phase 1. Specif-
ically, mix (D,R) and(U, R) with probability% andg, using public random-
izationxy. If y € Y(wp) and playerl unilaterally deviates, then go to Phase
5. If y € Y(wp) and player2 unilaterally deviates, then go to Phase 6. If
y € Y(wy) and nobody deviates, then go to Phase ¥.4dfY («w;) and player
1 unilaterally deviates, then go to Phase 2y &Y (wy) and player unilat-
erally deviates, then go to Phase 3. Otherwise, stay.

e Likewise, the plays in Phases 5 and 6 are defined as those in Phases 2 and
3, respectively. We omit a precise description.

The play in Phases 4 through 6 corresponds to a subgame-perfect equilibrium
yielding the Pareto-efficient payof®, g), when the true state i@p. Thus one
can see that all the incentive constraints dgrare satisfied for sufficiently large
d. Also, the incentive constraints foy, are satisfied as before, so that the target
payoff vectors in Phase 4 through 6 are enforceable for eachstat@ as long
as o is close to one. Summing up, we can conclude that the specified strategy
profile is a PPXE. Note that this equilibrium is almost efficientdas> 1, since
the target payoff vectors in Phase 1 and 4 approxirf(@e), (2, §)), which is on
the Pareto frontier 0¥ .

Because the stage game does not have a static ex-post equilibrium, the strate-
gies in each period must provide future incentives to prevent current deviations.
And for such forward-looking strategies to be a PPXE, the strategies in each pe-
riod must prescribe continuation play and continuation punishments that would be
optimal in each statey, even those that past signals have ruled out. This was not
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the case in Example 1, where we considered a PPXE in which players play a static
ex-post equilibrium in every period. In that construction, there was no need for
intertemporal incentives, so the PPXE we constructed could ignore all the signals
from period2 on.

6 Weaker Sufficient Conditions for Weaker Folk Theorems

6.1 Ex-Post Threat Folk Theorem

Of course our folk theorems give only sufficient conditions for the folk theorem,
and the full folk theorem can hold even if the stated conditions*failn this
section we present a few alternative theorems that use weaker informational con-
ditions to prove “ex-post-threats” folk theorems, meaning that the theorems only
ensure the attainability of payoffs that Pareto-dominate the payoffs of a static ex-
post equilibrium. Consequently, these theorems assume that a static ex-post equi-
librium exists. This is always true when the state only matters for the monitoring
structure but has no impact on the expected payoffs (thgf'(ia) = g(a)), and

it is also satisfied for generic payoff functiogsvhen the state has a sufficiently
small impact on the payoff function. Several of our other assumptions in this sec-
tion seem more likely to be satisfied if the uncertainty is “small,” though that is
not (j, ), as shown by Example 3, and we have not tried to prove formal results
along those lines.

Definition 10. For each €1, j #i, andw € Q, a profilea is pairwise identifiable
for (i, w) and (|, w) if rankl; 4 (j.) (0) = rank; ) (a) +rankj ) (a) — 1.

This is exactly the FLM definition of pairwise identifiability. (Recall that pair-
wise full rank is equivalent to the combination of individual full rank and pairwise
identifiability.)

Definition 11. For eachi€ |, je |, we Q, and® # w, a profilea is state-
wise identifiable for(i,w) and (j, @) if rankl; ) @ (a) = rankl o (a) +
ranM‘I(j@)(a).

BFor example, as in FLM the linear independence conditions implicit in the full rank conditions
can be weakened to only consider convex combinations of the pure actions.
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Note that statewise full rank is the combination of individual full rank and
statewise identifiability. Thus when individual full rank is satisfied, statewise
identifiability requires just as many signals as statewise full rank, in contrast to
the statewise distinguishability condition in the next subsection.

We say thatr is ex-post enforceable if it is ex-post enforceable with respect to
R!*I? and & for somed € (0,1). This is equivalent tar being enforceable with
respect toR' andé for each information structurg® in isolation.

Condition 4. If a pure action profilea € A gives a Pareto-efficient payoff vector
for somew € Q, then it is ex-post enforceable and for eachl andj #1i, ais
pairwise identifiable fo(i, w) and( ], w).

Condition 5. If a pure action profile € A gives a Pareto-efficient payoff vector
for somed € Q, then it gives a Pareto-efficient payoff vector for evesye Q,
andforeach e |, j #i, andw € Q, ais pairwise identifiable fo(i, w) and(j, w).

Condition 5 is typically satisfied ifi(y,a;, w) is independent of (or very in-
sensitive to)w and the various distributioris® are sufficiently similar.

Lemma 9. If u(y,a, w) is independent afo and Condition 5 holds, then Condi-
tion 4 holds.

Proof. Because each player’'s payoff depends only on their own action and the
realized signal, Lemma 6.1 of FLM applied to each stata isolation implies
that profilea is enforceable for eact. Q.E.D.

Condition 6. Foreachi e |, je |, w e Q, and® # w, there is a profile that is
ex-post enforceable and statewise identifiabl€fap) and(j, &).

Intuitively, it is this condition that will allow the players to “learn the state” in
a PPXE. It can be replaced by the less restrictive but harder to check condition of
statewise distinguishability, as we present in the next subsection.

Proposition 5. Suppose Condition 2 or Condition 4 holds. Suppose also that
Condition 6 holds. Assume that there is a static ex-post equilibadrand let
VO={veV|vicl Ywe Q vi(w) > g®(a’)}. Then, for any smooth strict subset
W of V9, there isd € (0,1) such thaW C E(J) for all & € (5,1).
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This proposition is established by the following lemmas that determine the
maximal scoré* in various directions. The next lemma says that score of a static
ex-post equilibrium can be enforced in any direction; this score will be used to
generate the score in directions that minimize a player’s payoff.

Lemma 10. Suppose that there is a static ex-post equilibrimtn Thenk*(a®,A) >
A -g(a®) for any directionA .

Proof. Letvi(w) = wi(y,w) = g®(a®) foralli € 1, w € Q, andy € Y. Then, this
(v,w) satisfies constraints (i) through (iii) in LP-Average, ahdv = A - g(a©).
Hencek*(a® A) > A -g(a?). Q.E.D.

Lemma 11.

(a) Suppose that Condition 4 holds, and éebe a profile that gives a Pareto-
efficient payoff for some» € Q. Then,k*(a,A) = A - g(a) for direction A
such that(Ai(w))ic| has at least two non-zero components whjl&o) = 0
forall j el and® # w.

(b) Suppose that Condition 4 holds. Thé&hA) = maxey A - v for direction
A such thatAj(w) > 0andA; (&) = O0for all (j,®) # (i, w).

Proof. Part (a). Lemma 1 (b) shows that the maximum score in directi®at

mostA - g(a). Because is a pure action profile, and it is enforceable for all

and pairwise identifiable from Condition 4, it is enforceable on hyperplanes cor-

responding ta\ from Theorem 5.1 of FLM, so the scole g(a) can be attained.
Part (b). Leta be a Pareto-efficient profile that maximizes playgpayoff in

statew. By Condition 4, this is ex-post enforceable, and since the profile has the

best-response property in stabelemma 5.2 of FLM implies it is enforceable on

A. Q.E.D.

Lemma 12. Suppose that Condition 6 holds. Thdgi(A) = o for direction A
such that there existe I, j €|, w € Q, and @ # w such thatAj(w) # 0 and
)\j ((;)) #0.

Proof. See Appendix. As in Lemma 5.5 of FLM, the idea is that if proile
is enforceable, then any acti@+ a; leading to the same distribution of public
signals asy; cannot increase playeés payoff and so can be ignored. Statewise
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identifiability condition assures that once we delete these redundant actions, the
matrix M ) (j,@) corresponding to the remaining actions satisfies statewise full
rank. Therefore, as in Lemma 6, we can choose continuation payoffs to attain
infinitely large maximal score while maintaining exact indifference among the
remaining actions. These continuation payoffs also deter deviations to the deleted
actions. Q.E.D.

6.2 Relaxing Statewise ldentifiability

When individual full rank holds, statewise identifiability implies statewise full
rank, which can require that there be twice as many signals as required by the
FLM folk theorem. The following, more complex, condition can be satisfied with
far fewer signals.

Definition 12. Foreachie I, je |, we Q, and® # w, a profilea statewise
distinguishesi, w) from (j, @) if there isA" C A such that

(i) supp; C A

(i) rankl‘l(iywyAi*)(a)+ran|d‘|(j@)(a):ranld‘l(w’pﬁ*)(m)(a):ranld‘l(i7w)(j7a,)(a)
wherel; ,, a+) () is the submatrix of1; . (o) that includes only the rows
corresponding to actiors € A, andl’l(wA*)(j’a)) (a) is the matrix with the
rows of; o, ar) () andlj o (a);

(iii) for eacha; € A"\ suppm;, the vectow(r(j*’(aa,a—i))yey is not a linear combi-
nation of (71°(&, a_i) )yey for & € A"\ {a}; and

(iv) for eacha; ¢ Af, there existk®(&))gca: and(K&’(aj))aj ea; such that

and for ally € Y,

a,a)= S k@)@, a )+ Y k®@)n(ay,a ;).
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To understand this definition, note first that it is asymmetric: it can beghat
statewise distinguishés w) from (], @) but thata does not statewise distinguish
(j, @) from (i, w). Next note that wheA = A;, the third and fourth clauses of the
definition are vacuously satisfied, and the maftix,, a+)(j.@)(a) is the same as
Mi.w)(j,@)(a), so the conditions of the definition are then equivalent to statewise
identifiability. However, allowingA’ to be a strict subset of; allows clause
(i) of the definition to be satisfied when there are too few signals for statewise
identifiability, as in the example below. The third clause of the definition says that
at statew, actionsa; € A’ \ supm; can be distinguished from actionsAi. This
condition is a weaker condition than individual full rank for playeat statew,
which requires that all actions can be distinguished; in particular, the third clause
is vacuous whed\" = suppmi. Just as individual full rank for playdrimplies
that all deviation by player can be deterred, clause (iii) implies that there are
continuation payoffs that deter deviations to actiong\ifysupp;. Clause (iv)
implies that the continuation payoffs can give playan arbitrarily large reward
in statew without increasing players incentive to playa; ¢ A", and without
affecting playerj’s payoff in stated.1*

In the proof of Lemma 13, we show that if profite statewise distinguishes
(i, w) from (j, @), then theA" can be chosen so thaf = supmi U(A;; NA),
WhereA{j C AiUA| provides a basis for the space spanned by

{(7¢ (&, a-i))yevlai € A | {(8(aj, 0_j))yevlaj € Aj}

This says that actions iﬁ{j can generate all of the distributions that playeould
cause in statey or that playerj could cause ir.

The following partnership-game example illustrates how the folk theorem still
holds when statewise identifiability is replaced by statewsie distinguishability.

Example 3. There are two players, two states, and three outcafre$H , M, L}.Each
playeri’s action space i\ = {C;,D;}, and the monitoring structurg is as fol-

14To see this, note that if we increase playsrexpected continuation payoff conditional on
a € supm; by K, then player’s expected continuation payoff when he deviates A increases
bY ¥ arcsupm; K (&) timesK. Since clause (iv) says that the coefficigh. sy, kK (af) cannot
exceed one, this change in continuation payoffs does not tempt playeeviate tay; ¢ A". Also,
this does not affect playgts payoff in statedd, as clause (ii) assures that playj&ractions can be
distinguished from actions iq;.

32



lows. (We display the probability of the outcomidsandM; their sum is always
less tharl, with the remaining probability is assignedLtg

(T5(C1,Ca), Ty (C1,C2)) = (OH + PH +GH, OM + Py + Om)
(15"(D1,C2), " (D1,C2)) = (01 + G, Om + Q)

(13" (C1,D2), 7y (C1,D2)) = (OH + PH,0m + Pm)
(15" (D1,D2), " (D1,D2)) = (0, 0m)
(T52(C1,Ca), My?(C1,C2)) = (OH + PH +GH, OM + Py +Om)
(13%(D1,C2), Tiy*(D1,C2)) = (OH + PH,0M + Pm)
(15%(C1,D2), y*(C1,D2)) = (01 + G, Om +qm)
(132(D1,D2), my?(D1,D2)) = (0, 0m)

Note that the baseline probabilities ldfandM if both players choos® are in-
dependent of the state, and that in each state the monitoring structure is additive:
the change in probabilities induced by playerchanging fromC; to D; is the
same regardless of the action of the other player. Moreover, in this example the
uncertainty is symmetric in the state: In statg if player 1 choose<C; instead
of D4, then the probabilities dl andM increase bypy and pym, while player2’s
choice ofC; increases the probabilities loy; andqy; in stateay, the roles are
reversed.

The payoffs are

ui(G,y)=ri(y)—e& and ui(Dj,y) =ri(y)
for eachi € | andy € Y. We assume that for eack I,

ri(H) >ri(M) >ri(L),
& > pr(ri(H) —ri(L)) + pm(ri(M) —ri(L)),

& > qu(ri(H) —ri(L)) +am(ri(M) —ri(L)).

Here the left-hand side of the second inequality is the cost of plEyehoice of

C, for statew, (or the cost of playe?’s choice ofC, for statewy), and the right-
hand side is an increase in playles benefit from the project when he choosis
instead ofD; for statew, (or an increase in playet's benefit when he chooses
C, for statewp). Since the left-hand side is greater than the right-hand side, we
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conclude thaD; strictly dominate<C; for statew,, andD- strictly dominate<,
for statew,. Likewise, the third inequality asserts tHat strictly dominatesCy
for statew,, andD>, strictly dominate<£, for statew;. Thus,D; strictly dominates
C; for each state. Moreover, we assume that for each,

& < pH(Ur(H) +uz(H) —u (L) —uz(L)) + pm(ur(M) + uz(M) —ug (L) — uz(L))

and

& < gn(Ur(H) +uz(H) —ug(L) —uz(L)) +agm(Us(M) + u(M) — ug (L) — uz(L)).

This means that choosii@gj instead oD; always increases the total surplus. Sum-
ming up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma
for each sate; henc¥," has a non-empty interior ari{@1,D,) is a static ex-post
equilibrium.

Note that individual full rank is satisfied, and that pairwise full rank is satisfied
at every profile and every state if

PH Pwm
g Qm

has full rank. For example, the matiik ¢,)(2 ) (D1,C2) is represented by

OH + OH oM + Qm 1—(OH+0H +Om+0m)
OH+PH+0H OmM+Pv+0v 1—(OH + PH +0QH +Om + Pv +0am)
OH + OH Om +Qm 1— (04 +0H+Om+0m) 7
OH oM 1— (o4 +o0m)

and this matrix has rank three if the above two-by-two matrix has a full rank.
Therefore, the profil¢D,,Cy) has pairwise full rank fofl, «;) and(2, ;). On

the other hand, statewise identifiability is not satisfied at any profile, as there are
only three signals, while four signals would be needed to satisfy statewise identi-
fiability and individual full rank.

Condition 7. Foreach e I, j €1, w € Q, and® # w, there is a profile that is
ex-post enforceable and statewise distinguighes) from (j, @).
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In the example(D1,C,) statewise distinguishes all eight of the relevant com-
parisons. Consider for example distinguishifige,) from (2,wp). Let A =
{D1}, then

(1§2(D1,C2))yey )
( :

and

(15(D1,C2))yev
MiLaoan@e) (@) =| (§*(D1,C)yer |
(T#)Z(Dla DZ))yGY
and so the equalities in the second clause of the definition are satisfied. The third
clause is vacuous. The fourth clause requires that

*(Cy, Cz) = k“*(D1) 1 (D1, C2) + K “2(D2) 12(Dy, D2) + K “?(C2) 14 (D1, Co),

with k“1(D1) < 1. Substituting for the distributions, this requires that

(OH + PH =+ Th, OM + PM + Om)
=K“L(D1)(OH +0H,0m +0am) +K“2(D2) (0H,0m) +K*“2(C2) (01 + PH, OM + PMm)

so we can tak&® (Dy) = k2(Cp) = 1, k2(Dy) = —1.1°

On the other hand, the condition does not hold for any pat) versus
(j, @) at(Cq,Cy). Intuitively, this is because the distribution of signalg@t,C,)
does not reveal the state. Formally, there aren’'t enough signals for the defini-
tion to be satisfied witth" = {C;,D;}, and if A" = C;, then rankin” = 2 while
rank; o)(j,a) (C1,C2) = 3.

Now we state the ex-post threat folk theorem with statewise distinguishability.

Proposition 6. Suppose Condition 2 or Condition 4 holds. Suppose also that
Condition 7 holds. Assume that there is a static ex-post equilibadrand let
VO={veVViel,VoecQ vi(w) >g?(a®)}. Then, for any smooth strict subset
W of VO, there isd € (0,1) such thaW C E(J) for all & € (,1).

15 ikewise, the profilea = (Dy,C;) statewise distinguishe$, w) from (j, @) for anyi € 1,
jel, weQ, and® # w. To see this, when# |, let A" = suppm, k() = 1 for g € supp;,
k®(aj) = —1for a; € supmj, andk“(a;) = —1 for a; ¢ supprj. Wheni = j, let A’ = supp;,
k®(a) = 0for g € supmi, k“(a;) = 0 for a; € supmj, andk®(a;) = 1 for a; ¢ supm;. Then,
we can confirm that all the clauses in the definition of statewise distinguishability are satisfied.
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The proof is almost the same as that of Proposition 5. The only difference is
to use Lemma 13 instead of Lemma 12 to show Ki&i ) = o for cross-state and
nonnegative\ .

Lemma 13. Suppose that a profile is ex-post enforceable and statewise distin-
guisheqi, w) from(j, ®). Thenk*(a,A) = o for directionA such thatA;(w) >0
andA;j(@) # 0.

Proof. See Appendix. The difference from Lemma 12 is that even after we delete
all the redundant actions, the resulting mafriy . j ) may not satisfy state-
wise full rank1® To fix this problem, we also delete @l ¢ A7. Then the matrix
Mi,w)(j,@ corresponding to the remaining actions has full rank, so we can choose
continuation payoffs to make the maximal score infinitely large while maintaining
exact indifference among the remaining actions. The fourth clause of the defini-
tion of statewise distinguishability assures that playgoes not want to deviate

to a; ¢ A’ under these continuation payoffs. Q.E.D.

Note that all the assumptions in Proposition 6 are satisfied in Example 3. In-
deed, every profiler has pairwise full rank for every state, and the prdfide,C,)
statewise distinguishes all four of the relevant comparisons. Therefore, any payoff
vector inV? can be achieved by PPXE for sufficiently large

Statewise distinguishability is only a sufficient condition for the folk theo-
rem, but the following example suggests that some condition like statewise distin-
guishability may be needed. Here in the absence of incentive problems it would
be possible to learn the state, but nevertheless the folk theorem fails, because of
the lack of statewise distinguishability.

Example 4. This is a slightly modified version of the partnership game of Exam-
ple 3. As before, there are two players, two actibns- {C;, D;}, two states, and

18To see this, considex{ ¢ A7. Under statewise distinguishability, it might be that playing
a ¢ A is statistically distinguished froiiis deviations, but not from playejs. This implies that
& survives the deletion process in the proof of Lemma 12, and the resulting mMateix ;.o does
not have full rank
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three outcome¥ = {H,M,L}. The monitoring structure is different:

(13"(C1,C2), iy (C1,Ca)) = (OH + PH +0H,0M + PM + M)
(m1(Dy,Cp), My (D1, (OH +QH,0m +0m)
(M3*(C1,D2), TﬁlCl,D = (OH + PH,0M + Pm)

(15" (D1,D2), " (D1,D2)) = (0, 0m)
(M5?(C1,C2), 42 (C1,C2)) = (OH + Pr + BOH, Om + Pm + Bowm)
(12(D1,C2), jy2(D1,C2)) = (O + BGH, Om + Bam)

(1447 (C1,D2), T4y*(C1,D2)) = (OH + PH,0m + Pm)
(13%(D1,D2), y*(D1,D2)) = (01, 0m)

where € (0,1]. Note that if played choose£; instead oD;, then the probabili-
ties ofH andM increase by andpy, independent of the state. The contribution
of player2’s choice ofC; is discounted by in statewy: if player 2 choose<,
instead ofD,, then the probabilities dff andM increase bygy andqy in state
wy, but they increase only gy andfqw in statecw,.

Note that if 3 = 1 the outcome distributions in the two states are identical,
so as we discussed at the end of section 4, the folk theorem as we have defined
it fails, as does clause (ii) of statewise distinguishability..f1k 1, the states
have different outcome distributions, so can be identified by repeated observation.
However, as we explain below, statewise distinguishability fails, and the PPXE
payoffs are bounded away from efficiency.

As in Example 3, the payoffs are

u(C,y)=ri(y)—e and ui(Di,y)=ri(y)

for eachi € | andy € Y. We again make assumptions on theao that the stage
game payoffs in each state correspond to a prisoner’s dilerbmia:a dominant
strategy, sqD1,D>) is a static ex-post equilibriun{C;,C,) is efficient, andv*
has a non-empty interidr.

The conditions on the payoffs arerij(H) > ri(M) > ri(L); e > pu(ro(H) —ro(L)) +
pm(ri(M) —ra(L)); € > au(rz(H) —ra(L)) +am(ra(M) —ra(L)); 1 < pu(ur(H) + uz(H) —
up(L) —uz(L)) + pm(ur(M) +uz(M) —ug (L) — ux(L)); andez < Ban (Ua(H) +uz(H) —ug(L) —
uz(L)) + Bam (U1 (M) +uz(M) —ua (L) — uz(L)).
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Individual full rank and the pairwise full rank are satisfied at every profile and
every state, if the matrix
( PH  Pm )
Q4 Om

has full rank, as in Example 3. However, no profile can statewise distinguish
(1, c0) from (2, wy). To see this, note first that if supp= {C1,D1}, thena can-
not statewise distinguisfi, ;) from (2, ). Indeed, if supp1 = {Cq,D1}, the
first clause of the definition requires tht={Cy, D1}, butthen ranKi q o a:)(ar) +
rankl z o, (o) = 2+2> 3 =rank1(y g az)2,0)(Q)-

Note next thata such that supp; = {a1} cannot distinguisi{1, w;) from
(2,ar). If it could, then eitherA] = {a;} or A} = {Cq,D1}. If A} = {a;} then
since

(1™ (a1, 2) yey
Mi1w.a)2w) (@) = | (157(a1,C2))yey
(1% (a1,D2))yey

and

(4 (aq, a2))yey = %2(C) B —0a2(C)

B B

we have ranﬂ(lmin)(z,wz)(a) =2<3=rank (g 4)2,w) (). Thus, the second
clause of the definition does not hold. If supp= {a;} andA] = {Cy,D1}, then,
rank (g o ap) () +rankl (2 g, (o) = 2+ 2> 3 =rankT(g g a5)2,w,) (), @S be-
fore, so that the second clause is not satisfied. Hence, no pratée distinguish
(1, 0) from (2, wp).

In what follows, we prove that the folk theorem fails in this example due to
the failure of statewise distinguishability. Specifically, we show that the max-
imal scorek*(A) in directionA’ = ((1,0),(0,1)) is strictly less than the value
A"-9(C1,Cy) < maxey+A’-v. To do this, we use the fact that the monitoring
technology has an additive form, so that it suffices to consider only the pure ac-
tion profiles, as in Lemma 4.1 of FI8

(2(a1,C2) yey + (152(a1, D2) )yev,

8FL used a more restricitve definition of “additive monitoring structure,” but the proof of their
Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of signals
is independent of the action of the other player.
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Claim 2. For a = (C1,Cy),

€(a,2') <A g(C1.Cr) — 5 (G2(C1. D) ~ 6°(C,Co)).

Proof. See Appendix. The intuition is that we need to deter pl&sdeviation
to D, for statewp, and this punishment is somewhat costly foxc 1. To see
this, note first that whep = 1 so that playef’s contribution is not discounted,
then the scor&*((Cy,C;),A’) attains the efficient valug’ - g(Cy,Cy).*° However,
for B < 1, the distribution of public signals b§C;,C,) for statecw, is a linear
combination of that for the case @ = 1 and the distribution by(C;,D>) for
statew,. This implies that playe?’s continuation payoff afte(C,,Cy) for state
wy is given by an average of that f@ = 1 and the continuation payoff after
(C1,Dy) for statewy. Recall that the continuation payoff afté€;, D,) must be
low, in order to deter the deviation @,. Hence, playef’s continuation payoff
after (C1,Cy) is lower than that fo3 = 1, which givesk*((C1,Cz),A’) less than
A’-g(C1,Cp). Note that this inefficiency vanishes As— 1, since the coefficient
on the continuation payoff aftédC;,D>) is (1—f3). Q.E.D.

Claim 3. For a = (D1,Cp), k"(a,A") <A’-g(D1,Ca) — 152 (g§%(D1,D2) — g5%(D1,Cy)).
Proof. The same as in the previous claim. Q.E.D.
Claim 4. For a = (C1,D2), k*(a,A’) < A’-g(Cy,D»).

Proof. Sincery™(Cy,D,) = 152(Cy,Dz) and 5™ (D1, D) = 152(D1, D) for all
y €Y, the set of the constraints in the LP-Average problemifois isomorphic
with that forA” = ((0,0),(1,1)). Then the maximal score far’ equals that for
A", and the statement follows from Lemma 1 (b). Q.E.D.

Claim 5. For a = (D1,D3), k*(a,A’) <A’-g(D3,D>).

Proof. The same as in the last lemma. Q.E.D.

19The reason is as follows. F¢@ = 1, the payoffs and the distribution of public signals do
not depend on state. Then the LP-Average problem fa¥’ is identical with the LP prob-
lem for a single statev, e.g., the LP-Average problem far= ((1,1),(0,0)) Since the matrix
M(1,0p)(2.w) (C1,C2) has pairwise full rank, we obtaki = A-g(Cq,Cy).
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Now we combine these claims to show thafA’) < A’-g(Cy,Cp). Since
9;*(C1,D2) = g7%(C1,D2), we have

A’-g(C1,D2) = g3*(C1,D2) + 952(C1,D2) = 932(C1,D2) + g5 2(C1, D)
< 972(C1,C2) + 952(C1,C2) < 97*(C1,Co) + 952(C1,C2) = A’ - g(C1,C).

Also,

A’-9(D1,C2) =g (D1,C2) 4 95%(D1,C2)
=0;*(C1,C2) + 932(C1,C2)
+(91*(D1,C2) 4+ 95*(D1,C2) — g7 (C1,C2) — 93" (C1,C))
<071 (C1,C2) + 952(C1,Co)
=A"-9(C1,Cy).

Here, the second equality comes from the additive structure, which implies that
g(ZUl(DLCZ) - g(ZUl(CLCZ)) = g(2})2<D17C2) - g;)z(C].aCZ) Combined with the pre-
vious claims, it follows from the above claims that{A’) < A’-g(Cy,Cy). Thus
PPXE cannot approximate the efficient payoff ved(;,C,).

7 Incomplete Information and Belief-Free Equilibria

7.1 PPXE of Incomplete-Information Games

So far we have assumed that the players have symmetric information about the
state. Now suppose that each playebserves a private signél € ©; at the be-
ginning of the game, wher®; is a partition ofQ. Any public strategys of the
game where playdrhas a trivial partition®; = {(Q)} induces a public strategy

for any non-trivial partition®;: playeri simply ignores the private information
and sets(h, 6) = s(h) for all hand all6. Since by definition play in a PPXE

is optimal regardless of the state, any PPXE for the symmetric-information game
(where all players have the trivial partition) induces a PPXE for any incomplete-
information game (any partition®;) with the same payoff functions and prior.
That is, if strategy profiles is a PPXE of the symmetric-information game, then
the profiles' wheres/(h, 6,) = s(h) for all playersi, types@, and histories is

40



a PPXE of the incomplete-information game. Moreover, si@ces private in-
formation, any strategy that conditions énwill not be a function of only the
public information. Thus the PPXE of the incomplete-information games are iso-
morphic to the PPXE of the associated symmetric-information game, so the limit
PPXE payoffs can be computed using LP-average, and our sufficient conditions
for the folk theorem still apply.

However, we would expect the folk theorem to hold under weaker conditions
if players are allowed to condition their play on their private information. Player
cancondition on their private information in the “belief-free equilibrium” studied
by Horner and Lovo (2008) anddfiner, Lovo, and Tomala (2008). These papers
define a belief-free equilibrium for games with observable actions and incomplete
information to be a strategy profiesuch that for each stai®, profile sis a
subgame-perfect equilibrium of the game where all players know the statéis

When the information partitions are trivial (and actions are perfectly observed)
belief-free equilibrium is equivalent to PPXE. In this case the game is one of com-
plete information, and players have no way to learn the state, so one way to study
the game is to replace the payoff functions in each state with their expected value,
and apply subgame-perfect equilibrium to the resulting standard game. It may be
that the folk theorem holds in this game, but the set of PPXE is empty, which
might raise some questions about the strength of the robustness argument for ex-
post equilibria; we are agnostic on the status of PPXE when the folk theorem fails
but efficient payoffs can be supported by other sorts of equilibria.

When the information partitions are non-trivial, belief-free equilibrium allows
a larger set of strategies than does symmetric-information PPXE, so the limit
PPXE payoffs must be a weak or strict subset of the limit payoffs of belief-free
equilibria. In the next subsection we study games with the monitoring structure of
Horner and Lovo (2008) anddtiner, Lovo, and Tomala (2008), and show that the
inclusion is strict: some limit payoffs of belief-free equilibria are not limit pay-
offs of PPXE. In ongoing work Fudenberg and Yamamoto (2009), we define the

20H®rner and Lovo (2008) study two-player games where the information partition has a product
structure; Hhrner, Lovo, and Tomala (2008) extends the analysis to general partitioh plager
games. These papers assume that players do not observe their realized payoffs as the game is
played: The players’ only information is their initial private sig@lahnd the sequence of realized
actions.
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notion of a “Bayesian perfect public ex-post equilibrium,” which allows players
to condition on their initial private information in addition to the public history.
This equilibrium concept reduces to the belief-free equilibrium éfrér and

Lovo (2008) and HMrner, Lovo, and Tomala (2008) when actions are perfectly ob-
served. We then develop the appropriate linear programming characterization of
limit equilibrium payoffs, which we hope to use to extend the results @inidr,

Lovo, and Tomala (2008) to games where actions are imperfectly observed and
the monitoring structure is unknown.

7.2 Incomplete Information and Perfectly Observed Actions

Consider the following example fromdfiner and Lovo (2008). There are two
players,| = {1,2}, and two statesQ = {wy, wp}. Playerl knows the state, but
player2 does not:©; = {(wy),(wp)} and®, = {(Q)}. Playeri € | chooses
actionsg; € A = {T,B}, and observes a public signat A. Assume thatt?’(a) =
1fory=a, so that actions are perfectly observable, and players cannot learn the
state from the signals. The payoff matrix conditionalconis

T B
T 11 -L,1+6G
B|1+G,—L 0,0

where0 < L — G < 1. This game can be regarded as prisoner’s dilemma where
is cooperation anB is defection. On the other hand, the payoff matrix conditional
on anw; is

L R
U 0,0 -L,1+G
D|-L1+G 1,1

Note that this game is also prisoner’s dilemma, but now the role of each action is
reversedB is cooperation and is defection.

Horner and Lovo (2008) show that playBs best limit payoff in belief-free
equilibrium is1+ FGL in each state, which is the highest payoff consistent with
individual rationality for playe® in the games where the state is known. We will
show that PPXE cannot attain this high limit payoff. Intuitively, this is because (a)
the public signals do not directly reveal the state, so with trivial partiti@is<
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{(Q)}) there is no way players can learn the state, and (b) the same conclusion
obtains if playerl does start out knowing the state but we restrict attention to
equilibria in which played’s play doesn’t depend on his prior information.

Because the PPXE payoff set for games with asymmetric information is iden-
tical with that for the corresponding symmetric-information game, we can com-
pute the limit set of PPXE payoffs for asymmetric-information games by using
LP-Average.

Lemma 14. Suppose tha¥ = A and ii’(a) = 1 for y = a. Thenk*(a,A) <
A-g(a)forall o andA.

Proof. Let (v,w) be a solution to LP-Average associated with a, ). By def-
inition, (v,w) satisfies all the constraints in LP-Average, and sivice A we can
treat the continuation payoffs as a function of the realized actions. Then,

k*(a,)\):z ZQ)\i(w)-vi(w)

=3 3 Al ><<1 o) (@)+8 3 o vwaw)
= (1-8)A g(a +52\ a)A -w(a)

<(1-8)A g(a +52\ a)k*(a,A)

= (1—8)A-g(a) + ok*(a, A).

(The inequality follows from constraint (iii) in LP-Average.) Subtractdig (a,A)
from both sides and dividing byl — d), we obtaink*(a,A) < A -g(a), as de-
sired. Q.E.D.

ConsiderA such thatA1(wr) = A1(ap) =1 andAz(wr) = A2(wp) = 0. It fol-
lows from the above lemma that for any

k'(a,A) <A-g(a) =gy (a)+0r2(a).

Note that the valugs™(a) +g;?(a) is maximized bya = (T, T) or a = (B,B),
and its value id. Hence,

K*(A) =supk®(a,A) =1
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This result shows th@is contained in the hyperplaf&(A, 1) = {ve R *I® vy (cop) +
vi(wp) < 1}, so that

Vv e ClsimlE(cS), vi(w) +vi(ap) < 1.

In words, the sum of playel’'s equilibrium payoffs for statex and forw, cannot
exceedl. On the other hand, since the equilibrium payoff must be above the
minimax payoff for each state, we have

Vv e (lsimlE(é)’ vi(w) >0 and vi(ap) > 0.

Therefore, we obtain

Vv e (IsimlE(cS), 0<vi(ewn) <1 and 0<vi(wp)<1

Obviously, this value is less than the best belief-free equilibrium payeff;S;.

8 Concluding Remarks

This paper has restricted attention to the set of PPXE, and analyzed them with
extensions of the techniques used to analyze PPE in games where the monitoring
structure is known. When the statewise full rank conditions hold, along with the
standard individual and pairwise full rank conditions, the set of PPXE satisfies an
ex-post folk theorem, even if the set of static ex-post equilibria is empty. When a
static ex-post equilibrium does exist, there is an ex-post PPXE folk theorem under
even milder informational conditions.

Of course for a given discount factor the full set of sequential equilibria of
these games is larger than the set of PPXE, and can permit a larger set of payoffs.
In particular, because the game has finitely many actions and signals per period
and is continuous at infinity, sequential equilibria exist for any discount factor,
even if the set of PPXE is empty,so PPXE is not well-adapted to the study
of games with uncertain monitoring structures and very impatient players. Con-
versely, when players are patient and mostly concerned with their long-run payoff,

21This follows from the facts that sequential equilibria exist in the finite-horizon truncations
(Kreps and Wilson (1982)) and that the set of equilibrium strategies is compact in the product
topology (Fudenberg and Levine (1983)).
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our informational conditions imply that there are PPXE where players eventually
learn what the state is, and obtain the same payoffs as if the state was publicly
observed.

Appendix

A.1 Proof of Proposition 1

Proposition 1. If a subsetW of R'*I€ is bounded and ex-post self-generating
with respect t@, thenW C E(9).

Proof. Let ve W. We will construct a PPXE that yields Sincev € B(J,W),
there exist a profiler and a functiow:Y — W such thata,v) is ex-post enforced
by w. Set the action profile in period one to §g = a and for eacth! =yl €Y,
setv|,. =w(ht) € W. The play in later periods is determined recursively, usipg
as a state variable. Specifically, for each?2 and for eactt—1 = (yT)tT‘:l1 e H 1,
given av|,;-1 € W, let a1 andw|-1 : Y — W be such thata|i-1,V|j-1) is
ex-post enforced by|,;-1. Then, set the action profile after histany to be
Slp-1 = -1, and for eacy! € Y, setvly_ -1y = Wip-1(y) € W.

BecauseV is bounded and < (0,1), payoffs are continuous at infinity so
finite approximations show that the specified strategy prefideS generates as
an average payoff, and its continuation strategyyields v|;; for eachht € H.
Also, by construction, nobody wants to deviate at any moment of time, given any
statew € Q. Because payoffs are continuous at infinity, the one-shot deviation
principle applies, and we conclude tlsas a PPXE, as desired. Q.E.D.

A.2 Proof of Proposition 2

Proposition 2. If a subsetW of R'*1?l is compact, convex, and locally ex-post
generating, then there i € (0,1) such thaWw C E(&) for all & € (5, 1).

Proof. Suppose thaiV is locally ex-post generating. Sing&y }yew is an open
cover of the compact s#¥, there is a subcoveiym}r, of W. Let & = maxydym.
Chooseu € W arbitrarily, and letUym be such thati € Uym. SinceW NUym C
B(dm, W), there existry andwy : Y — W such that ay, u) is ex-post enforced by
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wy for &m. Given ad € (8,1), let

o5& &(1-9)
WY = Sa—ay ' sa-a)

wu(y)

forally € Y. Then, it is straightforward thdtr, u) is enforced by(w(y))yey for
0. Also, w(y) e W for all y € Y, sinceu andw(y) are inW andW is convex.
Therefore,u € B(8,W), meaning thaW C B(d,W) for all 5 € (8,1). (Recall
thatu andd are arbitrarily chosen froW and(d8,1).) Then, from Proposition 1,
W C E(8) for & € (8,1), as desired. Q.E.D.

A.3 Proof of Lemma 12

Lemma 12. Suppose that Condition 6 holds. Thdgi(A) = o for direction A
such that there existe I, j € |, w € Q, and & # w such thatA;(w) # 0 and
)\j ((I)) #0.

Proof. Let (i, w) and (], ) be such thaf(w) # 0, Aj(&) # 0, andd # w. Let
a be a profile that is ex-post enforceable and statewise identifiablé, toy and
(j,®). In what follows, we show thadt*(a,A) = .

First, we claim that for everK > 0, there exist(z(y, w), zj(y, @))yevy such
that (1) holds for alla; € A;, (2) holds for allaj € Aj, and (3) holds for all
y €Y. To prove that this system of equations indeed has a solutioA [etA,
provide a basis for the space spanned i/ (a;, a-i))yey, meaning that the set
{(7§°(&,a1)yev } . o is @ basis for the space, so that rBifk,, (a) = rank1; ) (a) =
|A{|. Then if (1) holds for alla; € A}, then (1) fora!’ ¢ Al is satisfied as well.
Likewise, letAj C A; provide a basis for the space spannec{taj}(a’j ,a_j))yey
for all & € Aj; if (2) holds for all & € Aj, then (2) fora] ¢ A; is satisfied.
Thus, for the above system to have a solution, it suffices to show that there exist
(z(y, w),2j(y, @))yey such that (1) holds for ali € A/, (2) holds for alla;j € A,
and (3) holds for aly € Y. Eliminate (3) by solving fog;(y, ®). Then, there re-
main |A{|+ |Aj| linear equations, and its coefficient matrix1§ , ; z (), which
is constructed by stacking two matridé%vw)(a) andl'l’(m)(a). It follows from
statewise identifiability that

/ /

rankl(; ) ;@) (@) = rankj , (@) +rank(; o (a) = |A] + |Aj].

46



Therefore, we can indeed solve the system.

Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A -V, and choosé€z (y, w), zj (Y, @) )yey to satisfy
(1) through (3). Then, let

Wiy, w)+z(y,w) if (o) =(,w)
Wiy, @) = § Wj(y,®)+z(y,®) if (I, 0)=(j,o)

Wi (y, @) otherwise
for eachy € Y. Also, let
W)+ 5l i 1.0)=(,0)
Vi (@) =1 V() if (lLw)=(j,®) -
Vi (@) otherwise

Then, as in the proof of Lemma 6, thig w) satisfies constraints (i) through (iii)
in LP-Average. Therefor&k*(a,A) > A -v= A -V+K. SinceK can be arbitrarily
large, we conclud&*(a,A) = . Q.E.D.

A.4 Proof of Lemma 13

Lemma 13. Suppose that a profile is ex-post enforceable and statewise distin-
guisheqi, w) from(j,®). Thenk*(a,A) = o for directionA such thatA;(w) >0
andAj(@) # 0.

Proof. Fix an A’ consistent with the statewise distinguishability condition. Let
A C supp; provide a basis for the space spanned by

{(° (&, a-i))yev|ai € suppi},

andA’j C Aj provide a basis for the space spanned by

{(m(a, aj))yevlaj € Aj}-

Then, IetAi’j C A"UA, provide a basis for the space spanned by

(T (e, a-i))yev|af € A} | L&), a-)))yev|d]| € A}
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such that(A{UA]) C Aj;. Note that the second equality of clause (ii) of statewise
distinguishability guarantees the existence of a basis with elemeAts ji\, and
thata € Ai’j N(A \ supp;) if and only if a; € A"\ supp;.

First, we claim that for everl( > 0, there existz (y, w), zj(y, @) )yey Such that

K
y;"?’(ai,ai)a(y,w): h(w) (5)

for all & € supp;, <
y;rkj”(a,a—im(y,w) < (@) (6)

for all g ¢ supp;,

Z/ n;) aja ZJ y7 (7)

for all aj € Aj, and
Ai(w)z(w) +Aj(@)z(y, &) = (8)

for all y € Y. To prove this claim, eliminate (8) by solving faj(y,). Then,
instead of (7), we have

;rf(aj,a_na(y, w) =0 9)
ye

for all aj € Aj. By construction, for eac € supm \Ai’j , avector(nf,”(a;,a_i»er
is represented by a linear combination(af’ (&, ai))yey for & € Ajj suppi.
Hence, if (5) holds for alf{ € Ai’j N suppi then (5) forg; € supm; \Ai’j is satisfied
as well. Likewise, if (9) holds for ati; € Aj; A, then (9) foraj € Aj\ A; is satis-
fied. Moreover, if (5) holds for al € Aj; M suppi, (9) holds for alla € Ajj N A,
and

Z(n;/n(ai”?a*i)zi(% w) =0 (10)
ye

for all &’ € Al; (A \ supmi), then (6) fora; € A\ (suppri U Aj) is satisfied, as a
vector(1° (&, a-i))yev is represented by a linear combinatior{ (&, a—i) )yey

for af € AjNA and (17°(aj,a-j))yey for & € AjjNA; with weights such that

Y alesupm k®(a)) < 1. Therefore, to establish the above claim, it suffices to show
that there existz (y, w) )yey such that (5) holds for a#l; € Ai’j (N supm;i, (10) holds

for all & € Al; (A \ suppri), and (9) holds for alk; € AjNA;. Note that this
system consists q;qu | linear equations, and its coefficient matrix consists of rows
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(15’ (a, a—i) )yey for & € AjjNA and (15°(&j, a—j))yey for &) € AjjNA;. Since
this matrix has rankA(;|, we can indeed solve the system.
Let (V,W) be a pair of a payoff vector and a function such tiiaénforces

(V,a). LetK > maxey A -W(y) — A -V, and choosé€z (y, w), zj (Y, @) )yey to satisfy
(5) through (8). Then, let

Wi (Y, @) = § Wi(y,®)+z(y,®) if (I,0)=(,o)
Wi (Y, @) otherwise
for eachy € Y. Also, let

i(w)+.L) it (l,o) =(i,w)
Vi (@) otherwise

We claim that thigv, w) satisfies all the constraints in LP-Average. Obviously,
constraints (i) and (ii) are satisfied for dll, @) € (1 x Q) \ {(i,w),(j,®)}, as
vi (@) = Vi(w) andw, (y, @) =W (Y, @). Also, since (5) and (6) hold anilenforces
(a,V), we obtain

(1-0)g”(a, a-i) +9 ; T (&, a—i ) Wi (Y, )
yE

=(1-9)g”(a,a-i)+90 ; (&, a-i) (Wi(y, w) +z(y, w))
ye

K
=| (1-9)g"(ai,a-i) +0 (&, 0—i)Wi (Y, ) | + 57—
( 2 ) A
=Vi(w) + n(@)
for all & € supm;, and

(1-0)g”(ai,a-i)+0 Z (&, a-i )Wi (Y, w)
ye

=(1-9)g”(ai,0-i) +0 2 T (ai, ai) (Wi (Y, w) +z(y, w))
ye
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for all & ¢ supmi. Hence,(v,w) satisfies constraints (i) and (ii) fdr, ). Like-
wise, it follows from (7) that(v,w) satisfies constraints (i) and (i) fa, ¢).
Furthermore, using (8) artd > max.cy A -W(y) — A -V,

A-w(y)

W(Y) +Ai(0)z(y, @) + A (D) (y, @)
-W(y)
+K

Il
>>>>
<<z

for ally € Y, and hence constraint (iii) holds.
Thereforek*(a,A) > A -v= A -V+ K. SinceK can be arbitrarily large, we
concludek*(a,A) = oo, Q.E.D.

A.5 Proof of Claim 2
Claim 2. For a = (C1,Cp) andA = ((1,0),(0,1)),

%(g(fz (C1,D2) — g37%(C1,Cy)).

Proof. Consider the associated LP-Average problem, and ch@osg to satisfy
constraints (i) through (iii) of this problem. From play&s IC constraint for state
wp, We have

K'(a,A) <A-9(Cy,Co) —

B(an (w2(H, w2) —wa(L, @2)) +aum (W2(M, wp) — wa(L, w2)))

1-9
> ——(0"(C1,D2) — 65" (C1,C2))-
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Then,
vi(wr) +V2(ar) =(1-8)gy"(C1,Cz) + 6 Z 5 (C1,Co)wa (y, wr)
ye
+(1-08)0;”(C1,C2) + 6 Z{ 152(Cp, Co)Wa(y, wp)
ye

=(1-9)(g;*(C1,C2) + g3%(C1,C2))
+9 Z 1 (C1, Co) (Wi (Y, 1) +Wa(y, @)
ye

— 01— B)(am (wa(H, wp) —wWa(L, w2)) + am (W2(M, @) —Wa(L, ar)))
<(1-8)(9"(C1,C2) +957(C1,Cp)) + S(va(wr) + Va(wp))

_ “—‘1#(9502(01, D2) — 65%(C1,C2))

Arranging,

vi(wr) +Va(ap) < g7 (C1,Cz) +952(C1,Co) — %(QS&(CL D2) —932(C1,C2)).
So we have
A-VEA-gCLCo) — 5 (687(C1.D) - (L. Co))

This proves the desired result. Q.E.D.
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