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This paper studies repeated games with imperfect public monitoring

where the players are uncertain both about the payoff functions and about

the relationship between the distribution of signals and the actions played.

To analyze these games, we introduce the concept of perfect public ex-post

equilibrium (PPXE), and show that it can be characterized with an extenstion

of the techniques used to study perfect public equilibria. We then develop
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1 Introduction

The role of repeated play in facilitating cooperation is one of the main themes of

game theory. Past work has shown that reciprocation can lead to more cooperative

equilibrium outcomes even if there isimperfect public monitoring, so that players

do not directly observe their opponents’ actions but instead observe noisy public

signals whose distribution depends on the actions played. This work has covered

a range of applications, from oligopoly pricing (e.g. Green and Porter (1984)

and Athey and Bagwell (2001)), repeated partnerships (Radner, Myerson, and

Maskin (1986)) and relational contracts (Levin (2003)). These applications are

accompanied by a theoretical literature on the structure of the set of equilibrium

payoffs and its characterization as the discount factor approaches1, most notably

Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990, here-

after APS), Fudenberg and Levine (1994, hereafter FL), Fudenberg, Levine, and

Maskin (1994, hereafter FLM), and Fudenberg, Levine, and Takahashi (2007). All

of these papers assume that the players know the distribution of public signals as

a function of the actions played. In some cases this assumption seems too strong:

For example, the players in a partnership may know that high effort makes good

outcomes more likely, but not know the exact probability of a bad outcome when

all agents work hard. This paper allows for such uncertainty, and also allows for

uncertainty about the underlying payoff functions.

Specifically, we study repeated games in which the state of the world, chosen

by Nature at the beginning of the play, influences the distribution of public signals

and/or the payoff functions of the stage game. The effect of the state on the payoff

functions can be direct, and can also be an indirect consequence of the effect of

the state on the distribution of signals. For example, in a repeated partnership,

the players will tend to have higher expected payoffs at a given action profile at

states where high output is most likely, so even if the payoff to high output is

known, uncertainty about the probability of high output leads to uncertainty about

the expected payoffs of the stage game. While the study of uncertain monitoring

structures is new, there is a substantial literature on repeated games with unknown

payoff functions and perfectly observed actions, notably Aumann and Hart (1992),

Aumann and Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille

(2003), Wiseman (2005), Ḧorner and Lovo (2008), Wiseman (2008), and Hörner,
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Lovo, and Tomala (2008). Our work makes two extensions to this literature- first

to the case of unknown payoff functions and imperfectly observed actions but a

known monitoring technology, and from there to the case where the monitoring

structure is itself unknown.

Because actions are imperfectly observed, the players’ posterior beliefs need

not coincide in later periods, even when they share a common prior on the dis-

tribution of states.1 This complicates the verification of whether a given strategy

profile is an equilibrium, and thus makes it difficult to provide a characterization

of the entire equilibrium set. Instead, we consider a subset of Nash equilibria,

calledperfect public ex-post equilibriaor PPXE. A strategy profile is a PPXE if

it is public- i.e. it depends only on publicly available information- and if its con-

tinuation strategy constitutes a Nash equilibrium given any state and given any

history. In a PPXE, a player’s best reply does not depend on her belief, so that

the equilibrium set has a recursive structure and the analysis is greatly simplified.

As with ex-post equilibrium, PPXE are robust to variations in beliefs about the

underlying uncertainty- a PPXE for a given prior distribution is a PPXE for an

arbitrary prior.2

PPXE is closely related to the “belief-free” equilibria used by Hörner and Lovo

(2008) and Ḧorner, Lovo, and Tomala (2008) in their analyses of games with per-

fectly observed actions and incomplete information. This equilibrium concept

allows players to condition on their type, while PPXE does not, as it requires pub-

lic strategies. Nevertheless, PPXE can be used to analyze incomplete-information

games; here it amounts to a “pooling equilibrium” as players are not allowed to

1Cripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study

symmetric-information settings where actions and payoffs are perfectly observed, so players al-

ways have the same beliefs, and this difficulty does not arise. In Aumann and Hart (1992), Aumann

and Maschler (1995), Ḧorner and Lovo (2008), Wiseman (2008), and Hörner, Lovo, and Tomala

(2008), players receive private signals about the payoff functions and so can have different beliefs.

(In Wiseman (2008) the players privately observe their own realized payoff each period, in the

other papers the players do not observe their own realized payoffs, and the private signals are the

players’ initial information or “type.”)
2See Bergmann and Morris (2007) for a discussion of various definitions of ex-post equilib-

rium. Miller (2007) analyzes a different sort of ex-post equilibrium: he considers repeated games

of adverse selection, where players report their types each period, as in section 8 of FLM, and

adds the restriction that announcing truthfully should be optimal regardless of the announcements

of the other players.
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condition on their type. We say more about the comparison of these equilibrium

concepts in Section 7. In Fudenberg and Yamamoto (2009), we define the no-

tion of a “Bayesian perfect public ex-post equilibrium,” which allows players to

condition on their initial private information in addition to the public history, and

develop an analog of the linear programming characterization of limit equilibrium

payoffs. This equilibrium concept reduces to the belief-free equilibrium of Hörner

and Lovo (2008) and Ḧorner, Lovo, and Tomala (2008) when actions are perfectly

observed. The PPXE concept is also related to belief-free equilibria in repeated

games with private monitoring, as in Piccione (2002), Ely and Välimäki (2002),

Ely, Hörner, and Olszewski (2005), Yamamoto (2007), Kandori (2008), and Ya-

mamoto (2009).3 However, unlike the belief-free equilibria in those papers, PPXE

does not require that players be indifferent, and so it is not subject to the robust-

ness critiques of Bhaskar, Mailath, and Morris (2008); this is what motivates our

choice of a different name for the concept.

To characterize the limit of the set of PPXE payoffs as the discount factor goes

to 1, we extend the FL linear programming characterization of the limit payoffs

of PPE. That is, we show in Section 3 that the limit of the set of payoff vectors

to PPXE as the discount factor goes to1 is the intersection of the “maximal half-

spaces” in various directions, where each componentλi(ω) of the direction vector

λ corresponds to the weight attached to playeri’s payoff in stateω. The main

new feature is that in a PPXE, the equilibrium payoffs are allowed to vary with

the state, and can do so even if the state does not influence the expected payoffs

to each action profile- for example there can be PPXE where player1 does better

in stateω1 and player2 does better in stateω2. Thus PPXE can involve a form

of “utility transfer” across states. For this reason, the “maximal half space” in

these “cross-state directions” can be the whole space, while in FL the maximal

half space in each direction is bounded by the feasible set.

In Section 4, we use this characterization to prove an “ex-post” folk theo-

rem, asserting that for any map from states to payoff vectors that are feasible and

individually rational in that state, there is a PPXE whose payoffs in each state

approximate the target map as the discount factor tends to1. This theorem uses

individual and pairwise full rank conditions as in FLM, and adds the assumption

3Belief-free equilibria and the use of indifference conditions have also been applied to repeated

games with random matching (Takahashi (2008), Deb (2008)).
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that for every pair(i,ω) and( j, ω̃) of individuals and states, there is a profileα
that has “statewise full rank,” which means roughly that the observed signals re-

veal the state regardless of whetheri or j (but not both!) unilaterally deviate from

α.

Because our proof of the folk theorem uses the LP characterization, it does not

explicitly construct equilibrium strategies. To give some insight into the mechan-

ics of how PPXE work, Section 5 presents an explicit construction in two related

examples. These examples also help illustrate the role of information conditions

in ensuring that PPXE exist, and show how the ex-post folk theorem can apply

even though the game does not have a static ex-post equilibrium.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds under

milder informational conditions. Section 6.1 shows that pairwise full rank can be

replaced by the condition of “pairwise identifiability,” which can be satisfied with

a smaller number of signals and that statewise full rank can be relaxed to “state-

wise identifiability.” Both of these identifiability conditions are equivalent to their

full-rank analogs when individual rank conditions are satisfied, but in general they

are weaker and can be satisfied in models with fewer signals relative to the size

of the action spaces. Even the statewise identifiability condition is stronger than

needed, as shown in Section 6.2. In particular, when the individual full rank con-

ditions are satisfied, statewise identifiability requires more signals than in FLM,

but statewise distinguishability can be satisfied without a larger signal space. Very

roughly speaking, the key is that for every pair of playersi, j and pair of states

ω, ω̃, there be a strategy profile whose signal distribution distinguishes between

the two states regardless of the deviations of playerj, and such that continuation

payoffs can give a large reward to playeri in stateω without increasing playeri’s

incentive to deviate and without affecting playerj ’s payoff in stateω̃.
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2 Unknown Signal Structure and Perfect Public Ex-Post

Equilibria

2.1 Model

Let I = {1, · · · , I} represent the set of players. At the beginning of the game, Na-

ture chooses the state of the worldω from a finite setΩ = {ω1, ...,ωO}. Assume

that players cannot observe the true stateω, and letµ ∈ 4Ω denote the players’

common prior overω .4 For now we assume that the game begins with symmetric

information: Each player’s beliefs aboutω correspond to the prior. We relax this

assumption in Section 7.

Each period, players move simultaneously, and playeri ∈ I chooses an action

ai from a finite setAi . Given an action profilea = (ai)i∈I ∈ A≡ ×i∈I Ai , players

observe a public signaly from a finite setY according to the probability function

πω(a) ∈ 4Y; we call the functionπω the “monitoring technology.” Playeri’s

realized payoff isui(ai ,y,ω), so that her expected payoff conditional onω ∈Ω and

on a∈ A is gω
i (a) = ∑y∈Y πω

y (a)ui(ai ,y,ω); gω(a) denotes the vector of expected

payoffs associated with action profilea.5

In the infinitely repeated game, players have a common discount factorδ ∈
(0,1). Let (aτ

i ,y
τ) be the realized pure action and observed signal in periodτ, and

denote playeri’s private history at the end of periodt ≥ 1 by ht
i = (aτ

i ,y
τ)t

τ=1. Let

h0
i = /0, and for eacht ≥ 1, let Ht

i be the set of allht
i . Likewise, a public history

up to periodt ≥ 1 is denoted byht = (yτ)t
τ=1, andHt denotes the set of allht . A

strategy for playeri is defined to be a mappingsi :
⋃∞

t=0Ht
i →4Ai . Let Si be the

set of all strategies for playeri, and letS=×i∈I Si . Note that the case of a known

public monitoring structure corresponds to a single possible state,Ω = {ω}.

4Because our arguments deal only with ex-post incentives, they extend to games without a

common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of

equilibrium analysis and a non-common prior is hard to justify.
5If ui depends onω, it might seem natural to assume that players do not observe the realized

value ofui as the game is played; otherwise players might learn the state from observing their

realized payoff. Since we restrict attention to ex-post equilibria, where players’ belief about the

state do not matter, we do not need to impose this restriction.
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We define the set of feasible payoffs in a given stateω to be

V(ω)≡ co{(gω(a))|a∈ A}= {gω(η)|η ∈ ∆(A)};

where∆(A) is the set of all probability distributions overA: As in the standard

case of a game with a known monitoring structure, the feasible set is both the set

of feasible average discounted payoffs in the infinite-horizon game when players

are sufficiently patient and the set of expected payoffs of the stage game that

can be obtained when players use of a public randomizing device to implement

distributionη over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V ≡×ω∈ΩV(ω),

so that a pointv∈V =(v(ω1), · · · ,v(ωO))= ((v1(ω1), · · · ,vI (ω1)), · · · ,(v1(ωO), · · · ,vI (ωO))).
Note that a givenv∈V may be generated using different action distributions

η(ω) in each stateω. If players observeω at the start of the game and are very

patient, then any payoff inV can be obtained by a state-contingent strategy of the

infinitely repeated game. Looking ahead, there will be equilibria that approximate

payoffs inV if the state isidentifiedby the signals, so that players learn it over

time. Note also that, even if players have access to a public randomizing device,

the set of feasible payoffs of the stage game is the smaller set

VU = {gω(η)|η ∈ ∆(A)}ω∈Ω,

because play in the stage game must be a constant independent ofω.

2.2 Perfect Public Ex-Post Equilibria

This paper studies a special class of Nash equilibria calledperfect public ex-post

equilibria or PPXE; this is an extension of the concept of perfect public equi-

librium that was introduced by FLM. Given a public strategy profiles∈ Sand a

public historyht ∈ Ht , let s|ht denote its continuation strategy profile afterht .

Definition 1. A strategysi ∈ Si is public if it depends only on public information,

i.e., for allt ≥ 1, ht
i =(aτ

i ,y
τ)t

τ=1∈Ht
i , andh̃t

i =(ãτ
i , ỹ

τ)t
τ=1∈Ht

i satisfyingyτ = ỹτ

for all τ ≤ t, si(ht
i) = si(h̃t

i). A strategy profiles∈ S is public if si is public for all

i ∈ I .
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Definition 2. A strategy profiles∈ S is aperfect public ex-post equilibriumif for

everyω ∈ Ω the profile is a perfect public equilibrium of the game with known

monitoring structureπω .6

Given a discount factorδ ∈ (0,1), let E(δ ) denote the set of PPXE payoffs,

i.e.,E(δ ) is the set of all vectorsv = (vi(ω))(i,ω)∈I×Ω ∈ RI×|Ω| such that there is

a PPXEs∈ Ssatisfying

(1−δ )E

[
∑
t=1

δ t−1gω
i (at)

∣∣∣∣∣s,ω

]
= vi(ω)

for all i ∈ I andω ∈Ω. Note thatv∈ E(δ ) specifies the equilibrium payoff for all

players and for all possible states. Note also that the set of PPXE can be empty, in

contrast to the case of perfect public equilibria of games with a known state.7

The notion of minmax payoff extends to PPXE in a natural way. Letvi(ω) =
minα−i maxai g

ω
i (ai ,α−i) be the minmax payoff for playeri in stateω, and let

V∗ ≡ {v∈V|∀i ∈ I ∀ω ∈Ω vi(ω)≥ vi(ω)}

be the subset of the feasible payoff state where each player receives at least her

minmax payoff in each state. ThenE(δ ) ⊆ V∗, since any perfect public equi-

librium of the game with known monitoring structureπ must give each playeri

payoff at leastvi(ω).
By definition, any continuation strategy of a PPXE is also a PPXE, so the set of

payoffs of PPXE equals the set of continuation payoffs of PPXE. This recursive

structure facilitates the use of dynamic programming techniques to characterize

the equilibrium payoff set.

Definition 3. For δ ∈ (0,1) andW ⊆ RI×|Ω|, a pair(α,v) ∈ (×i∈I4Ai)×RI×|Ω|

of an action profile and a payoff vector isex-post enforceable with respect toδ
6That is, s is a public strategy, and for everyω ∈Ω, and any public historyht ∈Ht . the continu-

ation strategy profiles|ht constitutes a Nash equilibrium of the “continuation game” corresponding

to {ht ,ω}. In this continuation game, players know tha the state isω, and because all opponents

are using public strategies, each player can compute the expected payoff to any of their strategies

(public or private) even though{ht ,ω} is not the root of a proper subgame.
7With a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium

of the repeated game. Similalry, repeated play of a static ex-post equilibrium is a PPXE, but static

ex-post equilibria need not exist.
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andW if there is a functionw : Y→W such that

vi(ω) = (1−δ )gω
i (α)+δ ∑

y∈Y
πω

y (α)wi(y,ω)

for all i ∈ I andω ∈Ω, and

vi(ω)≥ (1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

for all i ∈ I , ω ∈Ω, andai ∈ Ai .

For eachδ ∈ (0,1), W ⊆ RI×|Ω|, andα ∈ ×i∈I4Ai , let B(δ ,W,α) denote the

set of all payoff vectorsv ∈ RI×|Ω| such that(α,v) is ex-post enforceable with

respect toδ andW. Let B(δ ,W) be a union ofB(δ ,W,α) over allα ∈ ×i∈I4Ai .

To prove our main results, we will use the fact that various useful properties

of PPE extend to PPXE.

Definition 4. A subsetW of RI×|Ω| is ex-post self-generating with respect toδ if

W ⊆ B(δ ,W).

Proposition 1. If a subsetW of RI×|Ω| is bounded and ex-post self-generating

with respect toδ , thenW ⊆ E(δ ).

Proof. See Appendix. The proof is very similar to APS; the key is that whenW

is ex-post self-generating, the continuation payoffsw(y) used to enforce a vector

v∈V ⊂ RI×|Ω| have the property that for eachy∈Y, the vectorw(y)∈ RI×|Ω| can

in turn be ex-post generated using a single next-period actionα (independent of

ω) so that the strategy profile constructed by “unpacking” the ex-post generation

conditions does not directly depend onω. Q.E.D.

Definition 5. A subsetW of RI×|Ω| is locally ex-post generatingif for eachv∈W,

there existδv ∈ (0,1) and an open neighborhoodUv of v such thatW ∩Uv ⊆
B(δv,W).

Proposition 2. If a subsetW of RI×|Ω| is compact, convex, and locally ex-post

generating, then there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

Proof. See Appendix; this is a straightforward generalization of FLM.Q.E.D.
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3 Characterizing E(δ )

3.1 Using Linear Programming to BoundE(δ )

In this subsection, we provide a bound on the set of PPXE payoffs that holds

for any discount factor; the next subsection shows that this bound is tight as the

discount factor converges to one.

Consider the following linear programming problem. Letα ∈ ×i∈I4Ai , λ ∈
RI×|Ω|, andδ ∈ (0,1).

(LP-Average) k∗(α,λ ,δ ) = max
v∈RI×|Ω|,w:Y→RI×|Ω|

λ ·v subject to

(i) vi(ω) = (1−δ )gω
i (α)+δ ∑

y∈Y
πω

y (α)wi(y,ω)

for all i ∈ I andω ∈Ω,

(ii) vi(ω)≥ (1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

for all i ∈I , ω ∈Ω, andai ∈ Ai ,

(iii) λ ·v≥ λ ·w(y) for all y∈Y.

If there is no(v,w) satisfying the constraints, letk∗(α ,λ ,δ ) = −∞. If for ev-

ery K > 0 there is(v,w) satisfying all the constraints andλ · v > K, then let

k∗(α ,λ ,δ ) = ∞.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-

centive compatibility, and condition (iii) requires that the continuation payoffs lie

in half-space corresponding to direction vectorλ and payoff vectorv. Note that

when λi(ω) , 0 and λ j(ω̃) , 0 for someω , ω̃, condition (iii) allows “utility

transfer” across states. This utility transfer is the most significant way that LP-

average differs from the linear program in FL, so we will discuss it in more detail

below.

As we show in Lemma 1 (a), the valuek∗(α ,λ ,δ ) is independent ofδ , so that

we denote it byk∗(α,λ ). For eachλ ∈ RI×|Ω| \{0} andk∈ R, let H(λ ,k) = {v∈
RI×|Ω||λ ·v≤ k}. Fork = ∞, let H(λ ,k) = RI×|Ω|. Fork =−∞, let H(λ ,k) = /0.
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Then, let

k∗(λ ) = sup
α

k(α ,λ ),

H∗(λ ) = H(λ ,k∗(λ )),

and

Q =
⋂

λ∈RI×|Ω|\{0}
H∗(λ ).

Lemma 1.

(a) k∗(α,λ ,δ ) is independent ofδ .

(b) If (λi(ω))i∈I , 0 for someω and(λi(ω̃))i∈I = 0 for all ω̃ ,ω, thenk∗(λ )≤
supα λ ·g(α).

(c) If λi(ω) < 0 for some(i,ω) and λ j(ω̃) = 0 for all ( j, ω̃) , (i,ω) then

k∗(λ )≤ λi(ω)vi(ω).

(d) ConsequentlyQ⊆V∗.

Proof. Part (a) follows from the fact that the constraint set in (iii) is a half-

space: Suppose that(v,w) satisfies constraints (i) through (iii) in LP-Average for

(α ,λ ,δ ). For δ̃ ∈ (0,1), let

w̃(y) =
δ̃ −δ

δ̃ (1−δ )
v+

δ (1− δ̃ )
δ̃ (1−δ )

w(y).

Then(v, w̃) satisfies constraints (i) through (iii) in LP-Average for(α ,λ , δ̃ ), so

that the set of feasiblev in LP-Average is independent ofδ , and thus so isk∗(α ,λ ,δ ).
Let Λ∗ be the set ofλ ∈ RI×|Ω| such that(λi(ω))i∈I , 0 for someω ∈ Ω and

(λi(ω̃))i∈I = 0 for all ω̃ ,ω. Since parts (b) and (c) consider a single stateω they

follow from FL Lemma 3.1. Thus
⋂

λ∈Λ∗ H∗(λ ) ⊆V∗, and part (d) follows from

Q⊆⋂
λ∈Λ∗ H∗(λ ). Q.E.D.

Since we already know thatE(δ ) ⊆V∗, part (d) of this lemma shows thatQ

is “not too big”: it doesn’t contain any payoff vector we can rule out ona priori

grounds. The next lemma shows thatQ is “big enough” to contain all the payoffs

of PPXE.
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Lemma 2. For everyδ ∈ (0,1), E(δ ) ⊆ E∗(δ ) ⊆ Q, whereE∗(δ ) is the convex

hull of E(δ ).

Proof. It is obvious thatE(δ )⊆E∗(δ ). SupposeE∗(δ )*Q. Then, since the score

is a linear function, there isv∈ E(δ ) andλ such thatλ ·v > k∗(λ ). In particular,

sinceE(δ ) is compact, there existv∗ ∈ E(δ ) andλ such thatλ · v∗ > k∗(λ ) and

λ · v∗ ≥ λ · ṽ for all ṽ ∈ E∗(δ ). By definition,v∗ is enforced by(w(y))y∈Y such

thatw(y) ∈ E(δ )⊆ E∗(δ )⊆H(λ ,λ ·v∗) for all y∈Y. But this implies thatk∗(λ )
is not the maximum score for directionλ , a contradiction. Q.E.D.

To help explain the role of cross-state utility transfers, we will show that the

conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the uniform-

over-states version

(iii ′) ∑
i∈I

λi(ω)vi(ω)≥∑
i∈I

λi(ω)wi(y,ω) for all ω ∈Ω andy∈Y.

The resulting “uniform” LP problem corresponds to a form of “ex-post” enforce-

ability on half-spaces, and it is fairly intuitive that the resulting set of payoffs

should be attainable by PPXE for large discount factors. However, this condition

is too restrictive to capture all of the payoffs of PPXE, as shown by the combina-

tion of the following claim and the example that follows it.

Claim 1. In the LP-Uniform problem formed by replacing (iii) in LP-Average with

(iii ′), the solutionkU(α,λ ,δ )≤ λ ·g(α) for eachα andλ . Therefore,kU(λ ,δ )≡
supα kU(α ,λ ,δ )≤ supα λ ·g(α), and the computed setQU is a subset of payoffs

VU that can be attained with actions that are independent of the state.

Proof. Inspection of the constraints in the LP-Uniform problem shows that it

is equivalent to solving a separate LP problem for each stateω ∈ Ω in isola-

tion. As FL show, a solution to the LP problem for given(α,ω) cannot exceed

∑i∈I λi(ω)gω
i (α). Therefore,kU(α,λ ,δ ), the maximal score in LP-Uniform for

a givenα, is at most∑ω∈Ω ∑i∈I λi(ω)gω
i (ω) = λ · g(α), sosupα kU(α,λ ,δ ) ≤

supα λ ·g(α). Q.E.D.

In contrast, the following example shows how PPXE can generate payoffs

outside ofVU .

12



Example 1. There are two players,I = {1,2}, and two possible states,Ω =
{ω1,ω2}. In every stage game, player1 chooses an action fromA1 = {U,D},
while player2 chooses an action fromA2 = {L,R}. Their expected payoffsgω

i (a)
are as follows.

L R

U 2,2 0, 1

D 0,0 1, 1

L R

U 1,1 0, 0

D 1,0 2, 2

Here, the left table shows expected payoffs for stateω1, and the right table shows

payoffs for stateω2. Suppose that the set of possible public signals isY = A×Ω,

and that the monitoring technology is such thatπω
y (a) = ε > 0 for y, (a,ω), and

πω
y (a) = 1−7ε for y = (a,ω).

Note that(U,L) is a static Nash equilibrium for each state. Hence, play-

ing (U,L) in every period is a PPXE, yielding the payoff vector((2,2),(1,1)).
Likewise, playing(D,R) in every period is a PPXE, yielding the payoff vector

((1,1),(2,2)). “Always (U,L)” Pareto-dominates “always(D,R)” for stateω1,

but is dominated for stateω2. Note that these equilibrium payoff vectors are in

the setVU . Let Y(ω1) be the set{y = (a,ω) ∈Y|ω = ω1}, andY(ω2) be the set

{y = (a,ω) ∈Y|ω = ω2}. Consider the following strategy profile:

• In period one, play(U,L).

• If y∈Y(ω1) occurs in period one, then play(U,L) afterwards.

• If y∈Y(ω2) occurs in period one, then play(D,R) afterwards.

After every one-period public historyh1∈H1, the continuation strategy profile

is a PPXE. Also, given 6 any stateω ∈Ω, nobody wants to deviate in period one,

since(U,L) is a static Nash equilibrium and players cannot affect the distribution

of the continuation play. Therefore, this strategy profile is a PPXE; its payoff

vector converges tov∗ = ((2−4ε,2−4ε),(2−4ε,2−4ε)) asδ → 1. Observe

thatv∗ <VU if ε ∈ (0, 1
8). In particular, this equilibrium approximates the efficient

payoff vector((2,2),(2,2)) as the noise parameterε goes to zero.

The idea of this construction is that players wait one period to learn the state of

the world, and once they learn the true state, they adjust their continuation strategy

accordingly. When players observey ∈ Y(ω1) and learn thatω1 is more likely,
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they choose “always(U,L)” to achieve an efficient payoff(2,2) for ω1 (while

it gives an inefficient outcome(1,1) for ω2). Likewise, when players observe

y∈Y(ω2) and learn thatω2 is more likely, they choose “always(D,R)” to achieve

an efficient payoff(2,2) for ω2. Notice that when players observey ∈ Y(ω1)
in period one, they choose the continuation payoff vectorw(y) = ((2,2),(1,1)),
which yields more payoffs thanv∗ for ω1 but less payoffs forω2. This is the sense

in which the PPXE allows “utility transfers” across states.

The uniform feasibility constraint (iii′) in LP-Uniform problem rules out this

equilibrium because it does not allow utility transfer across states. For example,

for λ = (1,1),(1,1)), kU(λ ) = 6 while λ ·v∗ = 8−16ε.

Example 1 is misleadingly simple, because there is an ex-post equilibrium of

the static game, and for this reason there is a PPXE for all discount factors. It

is also very easy to construct equilibria that approximate efficient payoffs in this

example: simply specify that(U,L) is played forT periods, and then either(U,L)
or (D,R) is played forever afterwards, depending on which state is more likely. In

section 5, we present an example where there is no static ex-post equilibrium, and

hence no PPXE for a range of small discount factors,8 but where the folk theorem

still applies.

3.2 Computing the Limit of E(δ ) as Players Become Patient

Now we show that the setE(δ ) of PPXE payoffs expands to equal all ofQ as the

players become sufficiently patient, provided that a full-dimensionality condition

is satisfied.

Definition 6. A subsetW of RI×|Ω| is smoothif it is closed and convex; it has a

nonempty interior; and there is a unique unit normal for each point on its bound-

ary.9

Lemma 3. If dimQ = I ×|Ω|, then for any smooth strict subsetW of Q, there is

δ ∈ (0,1) such thatW ⊆ E(δ ) for δ ∈ (δ ,1).
8To see this note that the equilibrium payoffs of a PPXE for given discount factorδ must lie in

the convex hull of the payoffs to strategies of the discounted repeated game, and that this setVδ

will be close toVU when the discount factor is close to zero.
9A sufficient condition for each boundary point ofW to have a unique unit normal is that the

boundary ofW is aC2-submanifold ofRI×|Ω|.
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Proof. From lemma 1 (d),Q is bounded, and henceW is also bounded. Then,

from Proposition 2, it suffices to show thatW is locally ex-post generating, i.e.,

for eachv∈W, there existδv ∈ (0,1) and an open neighborhoodUv of v such that

W∩Uv⊆ B(δv,W).
First, considerv on the boundary ofW. Let λ be normal toW at v, and

let k = λ · v. SinceW ⊂ Q⊆ H∗(λ ), there existα, ṽ, and(w̃(y))y∈Y such that

λ · ṽ > λ ·v = k, (α, ṽ) is enforced using continuation payoffs(w̃(y))y∈Y for some

δ̃ ∈ (0,1), andw̃(y) ∈ H(λ ,λ · ṽ) for all y∈Y. For eachδ ∈ (δ̃ ,1) andy∈Y, let

w(y,δ ) =
δ − δ̃

δ (1− δ̃ )
v+

δ̃ (1−δ )
δ (1− δ̃ )

(
w̃(y)− v− ṽ

δ̃

)
.

By construction,(α,v) is enforced by(w(y,δ ))y∈Y for δ , and there isκ > 0 such

that |w(y,δ )−v|< κ(1−δ ). Also, sinceλ · ṽ > λ ·v = k andw̃(y) ∈ H(λ ,λ · ṽ)
for all y∈ Y, there isε > 0 such thatw̃(y)− v−ṽ

δ̃
is in H(λ ,k− ε) for all y∈ Y,

thereby

w(y,δ ) ∈ H

(
λ ,k− δ̃ (1−δ )

δ (1− δ̃ )
ε

)

for all y ∈ Y. Then, as in the proof of Theorem 3.1 by FL, it follows from the

smoothness ofW thatw(y,δ )∈ intW for sufficiently largeδ , i.e.,(α,v) is enforced

with respect to intW. To enforceu in the neighborhood ofv, useα and a translate

of (w(y,δ ))y∈Y.

Next, considerv in the interior ofW. Chooseλ arbitrarily, and letα and

(w(y,δ ))y∈Y be as in the above argument. By construction,(α,v) is enforced by

(w(y,δ ))y∈Y. Also, w(y,δ ) ∈ intW for sufficiently largeδ , since|w(y,δ )− v| <
κ(1− δ ) for someκ > 0 andv∈ intW. Thus,(α,v) is enforced with respect to

intW whenδ is close to one. To enforceu in the neighborhood ofv, useα and a

translate of(w(y,δ ))y∈Y, as before. Q.E.D.

These two lemmas establish the following proposition.

Proposition 3. If dimQ = I ×|Ω|, thenlimδ→1E(δ ) = Q.

It is possible thatdimQ < I ×|Ω|, so that this proposition does not apply, but

thatlimδ→1E(δ ) , /0. A trivial example of this occurs when the stateω has no ef-

fect on either the monitoring structure or the payoffs, so that it cannot possibly be
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observed, but is simply a nuisance parameter. In thisE(δ ) is a subset of the space

VU of payoff that can be generated with actions that are independent of the state,

soQ⊆ E(δ ) has dimension at mostI . In this particular case, the solution is obvi-

ously to ignore the state and characterize the perfect public equilibria of the game

where (any)ω is known; these equilibria correspond to the ful set of PPXE of the

game with the noise parameter added. More generally, the full-dimension condi-

tions could fail due to the imperfect observability ofω, but ω might matter for

the payoff functions. In this case one might be able to characterizelimδ→1E(δ )
using an extension of the iterative algorithm in Fudenberg, Levine, and Takahashi

(2007), but this remains a topic for future research.

4 A Perfect Ex-Post Folk Theorem

In this section we give sufficient conditions for a folk theorem to hold in PPXE.

This theorem shows that any map from states of the world to payoffs that are

feasible and individually rational in that state can be approximated by equilibrium

payoffs as the discount factor goes to1, and in particular by payoffs of a PPXE.

More formally, our folk theorem gives conditions under whichlimδ→1E(δ ) =
V∗.10 When this is true, so that efficient payoffs can be approximated by PPXE,

the players have little reason to play other sorts of equilibria or to try to change

the monitoring structure. Conversely, when the set of PPXE is empty, or when all

PPXE are far from efficient but there are efficient sequential equilibria, the PPXE

restriction might be less compelling.

Since we have already shown thatQ⊆V∗ and thatlimδ→1E(δ ) = Q under the

full-dimension condition, it remains to show thatV∗ ⊆ Q, which is equivalent to

showing thatk∗(λ )≥maxv∈V∗ λ ·v for each directionλ . Our sufficient conditions

are actually stronger than that: they will imply thatk∗(λ ) = ∞ for directionsλ
with non-zero components in two or more states. Conversely, the folk theorem

fails if there is aλ such thatk∗(λ ) < maxv∈V∗ λ ·v; we use this fact in Example 4

below.

For eachi ∈ I , α ∈×i∈I4Ai , andω ∈Ω, let Π(i,ω)(α) represent a matrix with

rows(πω
y (ai ,α−i))y∈Y for all ai ∈ Ai .

10Recall thatV∗ ≡ {v∈V|∀i ∈ I ∀ω ∈Ω vi(ω)≥ vi(ω).
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Definition 7. Profile α has individual full rank for (i,ω) if Π(i,ω)(α) has rank

equal to|Ai |. Profileα hasindividual full rank if it has individual full rank for all

players and all states.

Let Π(i,ω)( j,ω̃)(α) be a matrix constructed by stacking matricesΠ(i,ω)(α) and

Π( j,ω̃)(α).

Definition 8. For eachi ∈ I , j , i, andω ∈Ω, profileα haspairwise full rank for

(i,ω) and( j,ω) if Π(i,ω)( j,ω)(α) has rank equal to|Ai |+ |A j |−1.

Definition 9. For eachi ∈ I , j ∈ I , ω ∈Ω, andω̃ , ω, profileα hasstatewise full

rank for (i,ω) and( j, ω̃) if Π(i,ω)( j,ω̃)(α) has rank equal to|Ai |+ |A j |.

Note that both pairwise full rank and statewise full rank imply individual full

rank. Note also that the pairwise full rank conditions require as many signals as in

FLM, and the statewise full rank conditions require at most twice as many signals.

(Statewise full rank requires only one more signal than FLM if all players have

the same number of actions; it requires twice as many signals if one player has

more than two actions and all the other players have only two.)

One way of thinking about the statewise full rank condition is that it guarantees

that the observed signals will reveal the state, regardless of the play of player

i in stateω and the play of playerj (possibly equal toi) in stateω̃, assuming

that everyone else plays according toα . This condition is more restrictive than

necessary for the existence of a strategy that allows the players to learn the state:

For that it would suffice that there be a single profileα where the distributions

on signals are all distinct, which requires only two signals.11 On the other hand,

the condition is less restrictive than the requirement that the state is revealed to

an outside observer even if a pair of players deviates. For example, statewise

full rank is consistent with a signal structure where a joint deviation by players1

and2 could conceal the state from the outside observer, as in a two-player game

with A1 = A2 = {L,R} andπω
y (L,R) = π ω̃

y (R,L). Intuitively, since equilibrium

conditions only test for unilateral deviations, the statewise full rank condition is

11Note that the learnability of the state does not requires that the signal distributions correpond-

ing to each state be linearly independent. This is because the players only need to distinguish

between a finite set of signal distributions, and not between all possible convex combinations of

them.
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sufficient for the existence of an equilibrium where the players eventually learn the

state. In Section 6, we introduce the more complicated but substantially weaker

condition of statewise distinguishability, and show that it is sufficient for a static-

threat version of the folk theorem.

The following proposition establishes an ex-post folk theorem. Note that the

set of assumptions of this proposition is generically satisfied if|Y| ≥ 2|Ai | for all

i ∈ I .

Condition 1. Every pure action profile has individual full rank.

Condition 2. For each(i,ω) and( j,ω) satisfyingi , j, there is an action profile

α that has pairwise full rank for(i,ω) and( j,ω).

Condition 3. For each(i,ω) and( j, ω̃) satisfyingω , ω̃, there is an action profile

α that has statewise full rank.

Proposition 4. Suppose that Conditions 1 through 3 hold. Then, for any smooth

strict subsetW of V∗, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

The following lemmas are useful in this proof.

Lemma 4. Suppose that Condition 2 holds. Then, there is an open and dense set

of profiles each of which has pairwise full rank for all(i,ω) and( j,ω) satisfying

i , j .

Proof. Analogous to that of Lemma 6.2 of FLM. Q.E.D.

Lemma 5. Suppose that Condition 1 holds. Then, for anyi ∈ I , ω ∈Ω, andε > 0,

there is a profileαω such thatαω
i ∈ argmaxαi g

ω
i (αi ,αω

−i); |gω
i (αω)−vi(ω)|< ε;

andαω has individual full rank for all( j, ω̃) , (i,ω).

Proof. Analogous to that of Lemma 6.3 of FLM. Q.E.D.

Lemma 6. Suppose that a profileα has statewise full rank for(i,ω) and ( j, ω̃)
satisfyingω , ω̃ and thatα has individual full rank for all players and states.

Then,k∗(α ,λ ) = ∞ for a directionλ such thatλi(ω) , 0 andλ j(ω̃) , 0.

Remark 1. Becausek∗(α,λ )≤ λ ·g(α) in the known-monitoring-structure case

of FL, this lemma shows a key difference between that setting and the uncertain
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monitoring structure case we consider here. The idea is that under statewise full

rank, the continuation payoffs in such half-spaces can give playeri a very large

payoff in stateω by giving playerj a very low payoff in that state, while reversing

this transfer in statẽω.

Remark 2. The proof of this lemma is complicated, so we illustrate it here with

a simple example. AssumeAi = {a′i ,a′′i } and A j = {a′j ,a′′j }, and consider LP-

Average problem for a directionλ such thatλi(ω) = λ j(ω̃) = 1 and all other com-

ponents ofλ are zero. Constraints (i) and (ii) for(l ,ω) ∈ I ×Ω\{(i,ω),( j, ω̃)}
can be satisfied by some choice of(wl (y,ω))y∈Y because of individual full rank,

and constraint (iii) is vacuous for these coordinates. So the LP problem reduces

to finding(wi(y,ω))y∈Y and
(
w j(y, ω̃)

)
y∈Y to solve

k∗(α,λ ,δ ) = max
v,w

vi(ω)+v j(ω̃)

subject to

vi(ω) = (1−δ )gω
i (α)+δ ∑

y∈Y
πω

y (α)wi(y,ω),

v j(ω̃) = (1−δ )gω̃
j (α)+δ ∑

y∈Y
π ω̃

y (α)w j(y, ω̃),

vi(ω)≥ (1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω), ∀ai ∈ Ai

v j(ω̃)≥ (1−δ )gω̃
j (a j ,α− j)+δ ∑

y∈Y
π ω̃

y (a j ,α− j)w j(y, ω̃), ∀a j ∈ A j

vi(ω)+v j(ω̃)≥ wi(y,ω)+w j(y, ω̃), ∀y∈Y.

We claim thatk∗(α,λ ,δ ) = ∞ if α has statewise full rank. It suffices to show

that for any sufficiently largevi(ω) andv j(ω̃), there exist(wi(y,ω),w j(y, ω̃))y∈Y

that satisfy the first four constraints with equalities and

wi(y,ω)+w j(y, ω̃) = 0, ∀y∈Y.

Eliminate this last equation by solving forw j(y, ω̃). Then the coefficient matrix

for the set of the remaining four equations is



(πω
y (a′i ,α−i))y∈Y

(πω
y (a′′i ,α−i))y∈Y

(π ω̃
y (a′j ,α− j))y∈Y

(π ω̃
y (a′′j ,α− j))y∈Y



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The statewise full rank condition guarantees that this matrix has rank four, so the

system has a solution for any(vi(ω),v j(ω̃)), and thusk∗(α ,λ ) = ∞. Intuitively,

this construction makeswi(y,ω) large for signalsy that are more likely under

in stateω than in stateω̃ and makeswi(y,ω) negative for signals that are more

likely under ω̃, while keeping playeri indifferent between all actions in state

ω, and playerj indifferent in stateω ′. This would not be possible if the signal

distribution were the same at the two states, or more generally if the above matrix

is were singular.

This example only explains why thek∗ can be made aribitrarily large when ex-

actly two components ofλ are non-zero. And a similar idea applies even ifλ has

other nonzero components. For example, suppose thatλi(ω) = λ j(ω̃) = λl (ω) =
1 and other components are zero. First, choose(vi(ω),v j(ω̃),wi(ω),w j(ω̃)) as in

the above example, so that constraints (i) and (ii) for(i,ω) and( j, ω̃) are satis-

fied,vi(ω) andv j(ω̃) are enough large, andwi(y,ω)+w j(y, ω̃) = 0 for all y∈Y.

What remains is to findwl (ω) that satisfy constraints (i) and (ii) for(l ,ω) and the

feasibility constraint

vi(ω)+v j(ω̃)+vl (ω)≥ wi(y,ω)+w j(y, ω̃)+wl (y,ω), ∀y∈Y.

But note thatwi(y,ω)+w j(y, ω̃) = 0 andvi(ω)+v j(ω̃) can be arbitrarily large; so

the left-hand side can be infinitely large while the right-hand side iswl (y,ω). This

shows that the feasibility constraint impose no restriction in choosingwl (y,ω),
and thanks to the individually full rank condition, we can findwl (y,ω) that satis-

fies constraints (i) and (ii).

Proof of Lemma 6.Let (i,ω) and( j, ω̃) be such thatλi(ω) , 0, λ j(ω̃) , 0, and

ω̃ , ω. Let α be a profile that has statewise full rank for all(i,ω) and ( j, ω̃)
satisfyingω , ω̃.

First, we claim that for everyK > 0, there exist(zi(y,ω),zj(y, ω̃))y∈Y such that

∑
y∈Y

πω
y (ai ,α−i)zi(y,ω) =

K
δλi(ω)

(1)

for all ai ∈ Ai ,

∑
y∈Y

π ω̃
y (a j ,α− j)zj(y, ω̃) = 0 (2)

for all a j ∈ A j , and

λi(ω)zi(ω)+λ j(ω̃)zj(y, ω̃) = 0 (3)
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for all y∈Y. To prove that this system of equations indeed has a solution, elim-

inate (3) by solving forzj(y, ω̃). Then, there remain|Ai |+ |A j | linear equations,

and its coefficient matrix isΠ(i,ω)( j,ω̃)(α). Since statewise full rank implies that

this coefficient matrix has rank|Ai |+ |A j |, we can solve the system.

Next, for each(l ,ω) ∈ I ×Ω, we choose(w̃l (y,ω))y∈Y so that

(1−δ )gω
l (al ,α−l )+δ ∑

y∈Y
πω

y (al ,α−l )w̃l (y,ω) = 0 (4)

for all al ∈ Al . Note that this system has a solution, sinceα has individual full

rank. Intuitively, continuation payoffs̃w(y) are chosen so that players are indif-

ferent over all actions and their payoffs are zero.

Let K > maxy∈Y λ · w̃(y), and choose(zi(y,ω))y∈Y and(zj(y, ω̃))y∈Y to satisfy

(1) through (3). Then, let

wl (y,ω) =





w̃i(y,ω)+zi(y,ω) if (l ,ω) = (i,ω)
w̃ j(y, ω̃)+zj(y, ω̃) if (l ,ω) = ( j, ω̃)
w̃l (y,ω) otherwise

for eachy∈Y. Also, let

vl (ω) =

{
K

λi(ω) if (l ,ω) = (i,ω)

0 otherwise
.

We claim that this(v,w) satisfies constraints (i) through (iii) in LP-Average. It

follows from (4) that constraints (i) and (ii) are satisfied for all(l ,ω) ∈ (I ×Ω)\
{(i,ω),( j, ω̃)}. Also, using (1) and (4), we obtain

(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

=(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)(w̃i(y,ω)+zi(y,ω))

=

(
(1−δ )gω

i (ai ,α−i)+δ ∑
y∈Y

πω
y (ai ,α−i)w̃i(y,ω)

)
+

K
λi(ω)

=
K

λi(ω)

for all ai ∈ Ai . This shows that(v,w) satisfies constraints (i) and (ii) for(i,ω).
Likewise, from (2) and (4),(v,w) satisfies constraints (i) and (ii) for( j, ω̃). Fur-
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thermore, using (3) andK > maxy∈Y λ · w̃(y),

λ ·w(y) = λ · w̃(y)+λi(ω)zi(y,ω)+λ j(ω̃)zj(y, ω̃)

= λ · w̃(y) < K = λ ·v

for all y∈Y, and hence constraint (iii) holds.

Therefore,k∗(α,λ )≥ λ ·v= K. SinceK can be arbitrarily large, we conclude

k∗(α ,λ ) = ∞. Q.E.D.

Lemma 7. Suppose that a profileα has pairwise full rank for all(i,ω) and( j,ω)
satisfyingi , j . Then,k∗(α,λ ) = λ ·g(α) for directionλ such that(λi(ω))i∈I has

at least two non-zero components for someω while λ j(ω̃) = 0 for all j ∈ I and

ω̃ , ω.

Proof. It follows from Lemma 1 (b) thatk∗(λ ,α) ≤ λ ·g(α). Thus, in what fol-

lows, we establish thatk∗(λ ,α)≥ λ ·g(α). To do so, we need to show that there

exist continuation payoffs(w(y))y∈Y in H(λ ,λ ·g(α)) that enforce(α,g(α)).
As in the proof of Lemma 6, for eachi ∈ I andω̃ ,ω, there exist(wi(y, ω̃))y∈Y

such that

vi(ω̃) = (1−δ )gω̃
i (ai ,α−i)+δ ∑

y∈Y
π ω̃

y (ai ,α−i)wi(y, ω̃)

for all ai ∈ Ai . Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that

there exist(wi(y,ω))(i,y) such that

vi(ω) = (1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

for all i ∈ I andai ∈ Ai , and

λ ·w(y) = ∑
i∈I

λi(ω)wi(y,ω) = ∑
i∈I

λi(ω)vi(ω) = λ ·v.

Obviously, the specified continuation payoffs are inH(λ ,λ · g(α)) and enforce

(α ,g(α)), as desired. Q.E.D.

Lemma 8. Suppose thatα has individual full rank for all( j, ω̃) , (i,ω) and has

the best-response property for playeri and for stateω. Then,k∗(α ,λ ) = λ ·g(α)
for a directionλ such thatλi(ω) , 0 andλ j(ω̃) = 0 for all ( j, ω̃) , (i,ω).
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Proof. This is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.

Q.E.D.

Proof of Proposition 4.From Lemma 3, it suffices to show thatQ = V∗. To do

so, we will compute the maximum scorek∗(λ ) for each directionλ .

Case 1. Considerλ such thatλi(ω) , 0 andλ j(ω̃) , 0 for someω̃ , ω and

i possibly equal toj. In this case, players can transfer utilities across different

statesω andω̃ while maintaining the feasibility constraint, and this construction

allowsk∗(α ,λ ,δ ) > λ ·g(α), as Example 1 shows. In particular, from Condition

3 and 6 we obtaink∗(λ ) = ∞ for this directionλ .

Case 2. Considerλ such that(λi(ω))i∈I has at least two non-zero components

for someω while λi(ω̃) = 0 for all i∈ I andω̃ , ω. It follows from Lemmas 4

and 7 thatk∗(λ ) = supα k∗(λ ,α) = maxv∈V λ ·v.

Case 3. Considerλ such thatλi(ω) , 0 for some(i,ω) andλ j(ω̃) = 0 for

all ( j, ω̃) , (i,ω). Suppose first thatλi(ω) > 0. Since every pure action pro-

file has individual full rank,a∗ ∈ argmaxa∈Agω
i (a) also has individual full rank.

Therefore, from Lemma 8,

k∗(λ )≥ k∗(a∗,λ ) = λi(ω)gω
i (a∗) = max

v∈V
λ ·v.

On the other hand, from Lemma 1 (b),k∗(λ ) ≤ maxv∈V λ · v. Hence, we have

k∗(λ ) = maxv∈V λ ·v.

Next, suppose thatλi(ω) < 0. It follows from Lemmas 5 and 8 that for every

ε > 0, there is a profileαω such that|k∗(αω ,λ )−λi(ω)vi(ω)|< ε. Since Lemma

3.2 by FL asserts thatk∗(λ )≤ λi(ω)vi(ω), we havek∗(λ ) = λi(ω)vi(ω).
Combining these cases, we obtainQ = V∗. Q.E.D.

Because it relies on local generation and Proposition 3, Proposition 4 does not

explicitly construct PPXE strategies. To help illustrate how PPXE work, the next

section gives an explicit construction of a PPXE. The example also shows how the

folk theorem can apply even though the set of PPXE is empty for small discount

factors.
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5 Explicit Examples of PPXE

Suppose that there are two players,I = {1,2}, and two states,Ω = {ω1,ω2}. In

every stage game, player1 choosesU or D while player2 choosesL or R. Players’

expected payoffsgω
i (a) are as follows.

ω1 L R

U 10,−4 1, 1

D 1,1 0, 0

ω2 L R

U 0,0 1, 1

D 1,1 10,−4

Note that these are the payoff matrices in Example 2 of Hörner and Lovo (2008).

Note also that the minimax payoffs((v1(ω1),v2(ω1)),(v1(ω2),v2(ω2))) are((1, 1
6),(1, 1

6)),
and that the setV∗ has non-empty interior: dimV∗ = dimV∗(ω1)+dimV∗(ω2) =
2+ 2 = 4, whereV∗(ω) is the set of feasible and individually rational payoffs

given a stateω ∈ Ω. This stage game does not have a static ex-post equilibrium,

so we know that regardless of the monitoring structure it does not have a PPXE

for a range of discount factors near0.

We will now consider two repeated games with these payoff matrices and dif-

fering monitoring structures.

Example 2a.First, as in Ḧorner and Lovo (2008), assume that actions are observ-

able, but states (and rewards) are not. That is,Y = A andπω
y (a) = 1 if y = a. In

this case, it is easy to adapt the argument of Hörner and Lovo (2008) to show that

there is no PPXE. In a PPXE, a player’s equilibrium payoff conditional onω can-

not fall below the minimax payoff for thatω. In particular, player2’s equilibrium

payoff conditional onω1 must be positive. This implies that the outcome(10,−4)
realizes at most the fifth of the time, and hence player1’s equilibrium payoff con-

ditional onω1 is at most14
5 . Likewise, player1’s equilibrium payoff conditional

on ω2 is at most14
5 . However, if player1 randomizes(.5U, .5D) independent of

the state, she earns at least3 in one of the states. Therefore, there is no PPXE for

any discount factor.

Note that with this monitoring structure, the statewise full rank condition is

not satisfied. Indeed, since players directly observe the actions but not the states,

the matricesΠ(i,ω1)(α) andΠ(i,ω2)(α) are identical, meaning that no profileα has

statewise full rank for(i,ω1) and(i,ω2).
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Example 2b.Now suppose that the set of possible public signals isY = A×Ω, and

that the monitoring technology is perfect:πω
y (a) = 1 if y= (a,ω), andπω

y (a) = 0

otherwise. This monitoring structure satisfies all of our full rank conditions, so

the perfect ex-post folk theorem applies, and in particular a PPXE exists. We will

now explicitly construct a PPXE whose payoffs converge to the efficient frontier

in each state.

Let Y(ω1) be the set{y = (a,ω) ∈ Y|ω = ω1}, andY(ω2) be the set{y =
(a,ω) ∈ Y|ω = ω2}. To make our exposition as simple as possible, we assume

that players can observe two additional public signalsx1 andx2 fromU [0,1] at the

beginning of every stage game, but this is not essential.

Our equilibrium strategy profile is implemented by an automaton with six

phases. As usual, each of these six phases is represented by its target payoff

vector.

Phase 1:

((
2,

4
9

)
,

(
8(1−δ )

9
+2δ ,

8(1−δ )
9

+
4δ
9

))
,

Phase 2:

(
(1,1) ,

(
(1−δ )+2δ ,(1−δ )+

4δ
9

))
,

Phase 3:

((
1,

1
6

+
25(1−δ )

108

)
,

(
(1−δ )+2δ ,

4δ
9
− 14(1−δ )

6

))
,

Phase 4:

((
8(1−δ )

9
+2δ ,

8(1−δ )
9

+
4δ
9

)
,

(
2,

4
9

))
,

Phase 5:

((
(1−δ )+2δ ,(1−δ )+

4δ
9

)
,(1,1)

)
,

Phase 6:

((
(1−δ )+2δ ,

4δ
9
− 14(1−δ )

6

)
,

(
1,

1
6

+
25(1−δ )

108

))
.

Note that the target payoff in Phase 1 attains a Pareto-efficient outcome(2, 4
9) for

stateω1, and that payoffs in Phases 2 and 3 approximate the minimax payoffs to

players1 and2, respectively, for stateω1. Likewise, for stateω2, the target payoff

in Phase 4 attains a Pareto-efficient outcome(2, 4
9), while the payoffs in Phase 5

and 6 approximate the minimax payoffs to players1 and2, respectively.

The play for Phases 1 through 3 is specified as follows.

• In Phase 1, mix(U,L) and (D,L) with probability 1
9 and 8

9, using public

randomizationx2. If y∈Y(ω1) and player1 unilaterally deviates, then go
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to Phase 2. Ify∈Y(ω1) and player2 unilaterally deviates, then go to Phase

3. If y∈Y(ω2) and nobody deviates, then go to Phase 4. Ify∈Y(ω2) and

player1 unilaterally deviates, then go to Phase 5. Ify∈Y(ω2) and player2

unilaterally deviates, then go to Phase 6. Otherwise, stay.

• In Phase 2, play(U,R) to punish player1 for ω1. If y∈Y(ω2) and nobody

deviates, then go to Phase 4. Ify∈Y(ω2) and player1 unilaterally deviates,

then go to Phase 5. Ify∈Y(ω2) and player2 unilaterally deviates, then go

to Phase 6. Otherwise, stay.

• In Phase 3, play(1
6U + 5

6D,R) to punish player2 for ω1. If y= ((U,R),ω1),
then stay. Ify= ((D,R),ω1), then mix Phase 1 and Phase 3 with probability

p and1− p wherep = 1−δ
δ , using public randomizationx1. If y ∈ Y(ω1)

and player2 deviates, then stay. Ify = ((U,R),ω2), then go to Phase 4.

If y = ((D,R),ω2), then mix Phases 4 and 5 with probability1− p and p

wherep = 9(1−δ )
δ , using public randomizationx1. If y∈Y(ω2) and player

2 deviates, then go to Phase 6.

Roughly speaking, given that the true state isω1, the play in Phases 1 through 3

corresponds to a subgame-perfect equilibrium yielding the Pareto-efficient payoff

(2, 4
9). Phase 1 is a regular phase, so that players mix(U,L) and (D,L) with

probability 1
9 and 8

9 to achieve the target payoff(2, 4
9). Players remain Phase 1, as

long as nobody deviates (andy∈Y(ω1)). If player1 deviates, then they move to

Phase 2, in which players minimaxes player1’s payoff by(U,R). Since(U,R) is a

Nash equilibrium for stateω1, players do not have to move, as long asy∈Y(ω1).
Likewise, if player2 deviates in Phase 1, then players move to Phase 3 to punish

player2. Here, player1 needs to mix betweenU andD to minimax player2, and

hence the continuation play must be chosen so that player1 is indifferent between

these two actions. Specifically, when player1 choosesD and so gets a lower

payoff, players move to Phase 1 with small probability to reward player1.12

It is easy to see that all the incentive constraints in stateω1 are satisfied, pro-

vided thatδ is sufficiently large. To be a PPXE, the constructed strategies also

need to satisfy the incentive constraints in stateω2. Our solution is very simple;

12This use of future reward to induce randomization is similar to a construction in Fudenberg

and Maskin (1986).
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in Phase 1 or Phase 2, ify∈Y(ω2) occurs and nobody deviates today, then go to

Phase 4; ify∈Y(ω2) occurs and player1 unilaterally deviates, then go to Phase

5; and ify∈Y(ω2) occurs and player2 unilaterally deviates, then go to Phase 6.

Since Phases 5 and 6 minimax players1 and2 respectively, players do not want

to deviate today for sufficiently largeδ , even if the true state isω2. In Phase 3,

we need to make player1 indifferent betweenU andD, so players need to mix

Phases 4 and 5 as before. Thus, the target payoff vectors for Phases 1 through 3

are enforceable for each stateω ∈Ω, as long asδ is close to one.

The play for Phases 4 through 6 is specified in a similar way.

• The play in Phase 4 is defined as a “mirror image” of that in Phase 1. Specif-

ically, mix (D,R) and(U,R) with probability 1
9 and8

9, using public random-

izationx2. If y∈Y(ω2) and player1 unilaterally deviates, then go to Phase

5. If y ∈ Y(ω2) and player2 unilaterally deviates, then go to Phase 6. If

y∈Y(ω1) and nobody deviates, then go to Phase 1. Ify∈Y(ω1) and player

1 unilaterally deviates, then go to Phase 2. Ify∈Y(ω1) and player2 unilat-

erally deviates, then go to Phase 3. Otherwise, stay.

• Likewise, the plays in Phases 5 and 6 are defined as those in Phases 2 and

3, respectively. We omit a precise description.

The play in Phases 4 through 6 corresponds to a subgame-perfect equilibrium

yielding the Pareto-efficient payoff(2, 4
9), when the true state isω2. Thus one

can see that all the incentive constraints forω2 are satisfied for sufficiently large

δ . Also, the incentive constraints forω1 are satisfied as before, so that the target

payoff vectors in Phase 4 through 6 are enforceable for each stateω ∈ Ω as long

asδ is close to one. Summing up, we can conclude that the specified strategy

profile is a PPXE. Note that this equilibrium is almost efficient asδ → 1, since

the target payoff vectors in Phase 1 and 4 approximate((2, 4
9),(2, 4

9)), which is on

the Pareto frontier ofV.

Because the stage game does not have a static ex-post equilibrium, the strate-

gies in each period must provide future incentives to prevent current deviations.

And for such forward-looking strategies to be a PPXE, the strategies in each pe-

riod must prescribe continuation play and continuation punishments that would be

optimal in each stateω, even those that past signals have ruled out. This was not

27



the case in Example 1, where we considered a PPXE in which players play a static

ex-post equilibrium in every period. In that construction, there was no need for

intertemporal incentives, so the PPXE we constructed could ignore all the signals

from period2 on.

6 Weaker Sufficient Conditions for Weaker Folk Theorems

6.1 Ex-Post Threat Folk Theorem

Of course our folk theorems give only sufficient conditions for the folk theorem,

and the full folk theorem can hold even if the stated conditions fail.13 In this

section we present a few alternative theorems that use weaker informational con-

ditions to prove “ex-post-threats” folk theorems, meaning that the theorems only

ensure the attainability of payoffs that Pareto-dominate the payoffs of a static ex-

post equilibrium. Consequently, these theorems assume that a static ex-post equi-

librium exists. This is always true when the state only matters for the monitoring

structure but has no impact on the expected payoffs (that isgω(a) = g(a)), and

it is also satisfied for generic payoff functionsg when the state has a sufficiently

small impact on the payoff function. Several of our other assumptions in this sec-

tion seem more likely to be satisfied if the uncertainty is “small,” though that is

not ( j, ω̃), as shown by Example 3, and we have not tried to prove formal results

along those lines.

Definition 10. For eachi ∈ I , j , i, andω ∈Ω, a profileα is pairwise identifiable

for (i,ω) and( j,ω) if rankΠ(i,ω)( j,ω)(α) = rankΠ(i,ω)(α)+ rankΠ( j,ω)(α)−1.

This is exactly the FLM definition of pairwise identifiability. (Recall that pair-

wise full rank is equivalent to the combination of individual full rank and pairwise

identifiability.)

Definition 11. For eachi ∈ I , j ∈ I , ω ∈ Ω, and ω̃ , ω, a profileα is state-

wise identifiable for(i,ω) and ( j, ω̃) if rankΠ(i,ω)( j,ω̃)(α) = rankΠ(i,ω)(α) +
rankΠ( j,ω̃)(α).

13For example, as in FLM the linear independence conditions implicit in the full rank conditions

can be weakened to only consider convex combinations of the pure actions.
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Note that statewise full rank is the combination of individual full rank and

statewise identifiability. Thus when individual full rank is satisfied, statewise

identifiability requires just as many signals as statewise full rank, in contrast to

the statewise distinguishability condition in the next subsection.

We say thatα is ex-post enforceable if it is ex-post enforceable with respect to

RI×|Ω| andδ for someδ ∈ (0,1). This is equivalent toα being enforceable with

respect toRI andδ for each information structureπω in isolation.

Condition 4. If a pure action profilea∈ A gives a Pareto-efficient payoff vector

for someω ∈ Ω, then it is ex-post enforceable and for eachi ∈ I and j , i, a is

pairwise identifiable for(i,ω) and( j,ω).

Condition 5. If a pure action profilea∈ A gives a Pareto-efficient payoff vector

for someω̃ ∈ Ω, then it gives a Pareto-efficient payoff vector for everyω ∈ Ω,

and for eachi ∈ I , j , i, andω ∈Ω, a is pairwise identifiable for(i,ω) and( j,ω).

Condition 5 is typically satisfied ifui(y,ai ,ω) is independent of (or very in-

sensitive to)ω and the various distributionsπω are sufficiently similar.

Lemma 9. If ui(y,ai ,ω) is independent ofω and Condition 5 holds, then Condi-

tion 4 holds.

Proof. Because each player’s payoff depends only on their own action and the

realized signal, Lemma 6.1 of FLM applied to each stateω in isolation implies

that profilea is enforceable for eachω. Q.E.D.

Condition 6. For eachi ∈ I , j ∈ I , ω ∈ Ω, andω̃ , ω, there is a profile that is

ex-post enforceable and statewise identifiable for(i,ω) and( j, ω̃).

Intuitively, it is this condition that will allow the players to “learn the state” in

a PPXE. It can be replaced by the less restrictive but harder to check condition of

statewise distinguishability, as we present in the next subsection.

Proposition 5. Suppose Condition 2 or Condition 4 holds. Suppose also that

Condition 6 holds. Assume that there is a static ex-post equilibriumα0, and let

V0≡ {v∈V|∀i ∈ I ∀ω ∈Ω vi(ω)≥ gω
i (α0)}. Then, for any smooth strict subset

W of V0, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).
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This proposition is established by the following lemmas that determine the

maximal scorek∗ in various directions. The next lemma says that score of a static

ex-post equilibrium can be enforced in any direction; this score will be used to

generate the score in directions that minimize a player’s payoff.

Lemma 10.Suppose that there is a static ex-post equilibriumα0. Then,k∗(α0,λ )≥
λ ·g(α0) for any directionλ .

Proof. Let vi(ω) = wi(y,ω) = gω
i (α0) for all i ∈ I , ω ∈Ω, andy∈Y. Then, this

(v,w) satisfies constraints (i) through (iii) in LP-Average, andλ · v = λ · g(α0).
Hence,k∗(α0,λ )≥ λ ·g(α0). Q.E.D.

Lemma 11.

(a) Suppose that Condition 4 holds, and leta be a profile that gives a Pareto-

efficient payoff for someω ∈ Ω. Then,k∗(a,λ ) = λ ·g(a) for direction λ
such that(λi(ω))i∈I has at least two non-zero components whileλ j(ω̃) = 0

for all j ∈ I andω̃ , ω.

(b) Suppose that Condition 4 holds. Then,k∗(λ ) = maxv∈V λ · v for direction

λ such thatλi(ω) > 0 andλ j(ω̃) = 0 for all ( j, ω̃) , (i,ω).

Proof. Part (a). Lemma 1 (b) shows that the maximum score in directionλ is at

mostλ ·g(a). Becausea is a pure action profile, and it is enforceable for allω
and pairwise identifiable from Condition 4, it is enforceable on hyperplanes cor-

responding toλ from Theorem 5.1 of FLM, so the scoreλ ·g(a) can be attained.

Part (b). Leta be a Pareto-efficient profile that maximizes playeri’s payoff in

stateω. By Condition 4, this is ex-post enforceable, and since the profile has the

best-response property in stateω, lemma 5.2 of FLM implies it is enforceable on

λ . Q.E.D.

Lemma 12. Suppose that Condition 6 holds. Then,k∗(λ ) = ∞ for direction λ
such that there existi ∈ I , j ∈ I , ω ∈ Ω, and ω̃ , ω such thatλi(ω) , 0 and

λ j(ω̃) , 0.

Proof. See Appendix. As in Lemma 5.5 of FLM, the idea is that if profilea

is enforceable, then any actiona′i , ai leading to the same distribution of public

signals asai cannot increase playeri’s payoff and so can be ignored. Statewise
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identifiability condition assures that once we delete these redundant actions, the

matrix Π(i,ω)( j,ω̃) corresponding to the remaining actions satisfies statewise full

rank. Therefore, as in Lemma 6, we can choose continuation payoffs to attain

infinitely large maximal score while maintaining exact indifference among the

remaining actions. These continuation payoffs also deter deviations to the deleted

actions. Q.E.D.

6.2 Relaxing Statewise Identifiability

When individual full rank holds, statewise identifiability implies statewise full

rank, which can require that there be twice as many signals as required by the

FLM folk theorem. The following, more complex, condition can be satisfied with

far fewer signals.

Definition 12. For eachi ∈ I , j ∈ I , ω ∈ Ω, andω̃ , ω, a profileα statewise

distinguishes(i,ω) from ( j, ω̃) if there isA∗i ⊆ Ai such that

(i) suppαi ⊆ A∗i ;

(ii) rankΠ(i,ω ,A∗i )(α)+rankΠ( j,ω̃)(α)= rankΠ(i,ω,A∗i )( j,ω̃)(α)= rankΠ(i,ω)( j,ω̃)(α)
whereΠ(i,ω,A∗i )(α) is the submatrix ofΠ(i,ω)(α) that includes only the rows

corresponding to actionsai ∈A∗i , andΠ(i,ω,A∗i )( j,ω̃)(α) is the matrix with the

rows ofΠ(i,ω,A∗i )(α) andΠ( j,ω̃)(α);

(iii) for eachai ∈ A∗i \suppαi , the vector(πω
y (ai ,α−i))y∈Y is not a linear combi-

nation of(πω
y (a′i ,α−i))y∈Y for a′i ∈ A∗i \{ai}; and

(iv) for eachai < A∗i , there exist(κω(a′i))a′i∈A∗i and(κ ω̃(a j))a j∈A j such that

∑
a′i∈suppαi

κω(a′i)≤ 1

and for ally∈Y,

πω
y (ai ,α−i) = ∑

a′i∈A∗i

κω(a′i)πω
y (a′i ,α−i)+ ∑

a j∈A j

κ ω̃(a j)π ω̃
y (a j ,α− j).
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To understand this definition, note first that it is asymmetric: it can be thatα
statewise distinguishes(i,ω) from ( j, ω̃) but thatα does not statewise distinguish

( j, ω̃) from (i,ω). Next note that whenA∗i = Ai , the third and fourth clauses of the

definition are vacuously satisfied, and the matrixΠ(i,ω ,A∗i )( j,ω̃)(α) is the same as

Π(i,ω)( j,ω̃)(α), so the conditions of the definition are then equivalent to statewise

identifiability. However, allowingA∗i to be a strict subset ofAi allows clause

(i) of the definition to be satisfied when there are too few signals for statewise

identifiability, as in the example below. The third clause of the definition says that

at stateω, actionsai ∈ A∗i \suppαi can be distinguished from actions inA∗i . This

condition is a weaker condition than individual full rank for playeri at stateω,

which requires that all actions can be distinguished; in particular, the third clause

is vacuous whenA∗i = suppαi . Just as individual full rank for playeri implies

that all deviation by playeri can be deterred, clause (iii) implies that there are

continuation payoffs that deter deviations to actions inA∗i \suppαi . Clause (iv)

implies that the continuation payoffs can give playeri an arbitrarily large reward

in stateω without increasing playeri’s incentive to playai < A∗i , and without

affecting playerj ’s payoff in stateω̃.14

In the proof of Lemma 13, we show that if profileα statewise distinguishes

(i,ω) from ( j, ω̃), then theA∗i can be chosen so thatA∗i = suppαi
⋃

(A′i j
⋂

Ai),
whereA′i j ⊆ Ai

⋃
A j provides a basis for the space spanned by

{(πω
y (ai ,α−i))y∈Y|ai ∈ Ai}

⋃
{(π ω̃

y (a j ,α− j))y∈Y|a j ∈ A j}

This says that actions inA′i j can generate all of the distributions that playeri could

cause in stateω or that playerj could cause iñω.

The following partnership-game example illustrates how the folk theorem still

holds when statewise identifiability is replaced by statewsie distinguishability.

Example 3.There are two players, two states, and three outcomesY = {H,M,L}.Each

player i’s action space isAi = {Ci ,Di}, and the monitoring structureπ is as fol-

14To see this, note that if we increase playeri’s expected continuation payoff conditional on

ai ∈ suppαi byK, then playeri’s expected continuation payoff when he deviates toai <A∗i increases

by ∑a′i∈suppαi
κω(a′i) timesK. Since clause (iv) says that the coefficient∑a′i∈suppαi

κω(a′i) cannot

exceed one, this change in continuation payoffs does not tempt playeri to deviate toai < A∗i . Also,

this does not affect playerj ’s payoff in stateω̃, as clause (ii) assures that playerj ’s actions can be

distinguished from actions inαi .
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lows. (We display the probability of the outcomesH andM; their sum is always

less than1, with the remaining probability is assigned toL.)

(πω1
H (C1,C2),πω1

M (C1,C2)) = (oH + pH +qH ,oM + pM +qM)

(πω1
H (D1,C2),πω1

M (D1,C2)) = (oH +qH ,oM +qM)

(πω1
H (C1,D2),πω1

M (C1,D2)) = (oH + pH ,oM + pM)

(πω1
H (D1,D2),πω1

M (D1,D2)) = (oH ,oM)

(πω2
H (C1,C2),πω2

M (C1,C2)) = (oH + pH +qH ,oM + pM +qM)

(πω2
H (D1,C2),πω2

M (D1,C2)) = (oH + pH ,oM + pM)

(πω2
H (C1,D2),πω2

M (C1,D2)) = (oH +qH ,oM +qM)

(πω2
H (D1,D2),πω2

M (D1,D2)) = (oH ,oM)

Note that the baseline probabilities ofH andM if both players chooseD are in-

dependent of the state, and that in each state the monitoring structure is additive:

the change in probabilities induced by playeri′s changing fromCi to Di is the

same regardless of the action of the other player. Moreover, in this example the

uncertainty is symmetric in the state: In stateω1, if player 1 choosesC1 instead

of D1, then the probabilities ofH andM increase bypH andpM, while player2’s

choice ofC2 increases the probabilities byqH andqM; in stateω2, the roles are

reversed.

The payoffs are

ui(Ci ,y) = r i(y)−ei and ui(Di ,y) = r i(y)

for eachi ∈ I andy∈Y. We assume that for eachi ∈ I ,

r i(H) > r i(M) > r i(L),

ei > pH(r i(H)− r i(L))+ pM(r i(M)− r i(L)),

ei > qH(r i(H)− r i(L))+qM(r i(M)− r i(L)).

Here the left-hand side of the second inequality is the cost of player1’s choice of

C1 for stateω1 (or the cost of player2’s choice ofC2 for stateω2), and the right-

hand side is an increase in player1’s benefit from the project when he choosesC1

instead ofD1 for stateω1 (or an increase in player2’s benefit when he chooses

C2 for stateω2). Since the left-hand side is greater than the right-hand side, we
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conclude thatD1 strictly dominatesC1 for stateω1, andD2 strictly dominatesC2

for stateω2. Likewise, the third inequality asserts thatD1 strictly dominatesC1

for stateω2, andD2 strictly dominatesC2 for stateω1. Thus,Di strictly dominates

Ci for each state. Moreover, we assume that for eachi ∈ I ,

ei < pH(u1(H)+u2(H)−u1(L)−u2(L))+ pM(u1(M)+u2(M)−u1(L)−u2(L))

and

ei < qH(u1(H)+u2(H)−u1(L)−u2(L))+qM(u1(M)+u2(M)−u1(L)−u2(L)).

This means that choosingCi instead ofDi always increases the total surplus. Sum-

ming up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma

for each sate; hence,V∗ has a non-empty interior and(D1,D2) is a static ex-post

equilibrium.

Note that individual full rank is satisfied, and that pairwise full rank is satisfied

at every profile and every state if
(

pH pM

qH qM

)

has full rank. For example, the matrixΠ(1,ω1)(2,ω1)(D1,C2) is represented by




oH +qH oM +qM 1− (oH +qH +oM +qM)
oH + pH +qH oM + pM +qM 1− (oH + pH +qH +oM + pM +qM)

oH +qH oM +qM 1− (oH +qH +oM +qM)
oH oM 1− (oH +oM)


 ,

and this matrix has rank three if the above two-by-two matrix has a full rank.

Therefore, the profile(D1,C2) has pairwise full rank for(1,ω1) and(2,ω1). On

the other hand, statewise identifiability is not satisfied at any profile, as there are

only three signals, while four signals would be needed to satisfy statewise identi-

fiability and individual full rank.

Condition 7. For eachi ∈ I , j ∈ I , ω ∈ Ω, andω̃ , ω, there is a profile that is

ex-post enforceable and statewise distinguishes(i,ω) from ( j, ω̃).
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In the example,(D1,C2) statewise distinguishes all eight of the relevant com-

parisons. Consider for example distinguishing(1,ω1) from (2,ω2). Let A∗1 =
{D1}, then

Π(1,ω1,A∗1)(α) = (πω1
y (D1,C2))y∈Y,

Π(2,ω2)(α) =

(
(πω2

y (D1,C2))y∈Y

(πω2
y (D1,D2))y∈Y

)
,

and

Π(1,ω1,A∗1)(2,ω2)(α) =




(πω1
y (D1,C2))y∈Y

(πω2
y (D1,C2))y∈Y

(πω2
y (D1,D2))y∈Y


 ,

and so the equalities in the second clause of the definition are satisfied. The third

clause is vacuous. The fourth clause requires that

πω1
y (C1,C2)= κω1(D1)πω1

y (D1,C2)+κω2(D2)πω2
y (D1,D2)+κω2(C2)πω2

y (D1,C2),

with κω1(D1)≤ 1. Substituting for the distributions, this requires that

(oH + pH +qh,oM + pM +qm)

= κω1(D1)(oH +qH ,oM +qM)+κω2(D2)(oH ,oM)+κω2(C2)(oH + pH ,oM + pM)

so we can takeκω1(D1) = κω2(C2) = 1, κω2(D2) =−1.15

On the other hand, the condition does not hold for any pair(i,ω) versus

( j, ω̃) at (C1,C2). Intuitively, this is because the distribution of signals at(C1,C2)
does not reveal the state. Formally, there aren’t enough signals for the defini-

tion to be satisfied withA∗i = {Ci ,Di}, and if A∗i = Ci , then rankΠ′′ = 2 while

rankΠ(i,ω)( j,ω̃)(C1,C2) = 3.

Now we state the ex-post threat folk theorem with statewise distinguishability.

Proposition 6. Suppose Condition 2 or Condition 4 holds. Suppose also that

Condition 7 holds. Assume that there is a static ex-post equilibriumα0, and let

V0≡ {v∈V|∀i ∈ I , ∀ω ∈Ω vi(ω)≥ gω
i (α0)}. Then, for any smooth strict subset

W of V0, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).
15Likewise, the profileα = (D1,C2) statewise distinguishes(i,ω) from ( j, ω̃) for any i ∈ I ,

j ∈ I , ω ∈ Ω, andω̃ , ω. To see this, wheni , j, let A∗i = suppαi , κω(ai) = 1 for ai ∈ suppαi ,

κ ω̃(a j) = −1 for a j ∈ suppα j , andκ ω̃(a j) = −1 for a j < suppα j . Wheni = j, let A∗i = suppαi ,

κω(ai) = 0 for ai ∈ suppαi , κ ω̃(a j) = 0 for a j ∈ suppα j , andκ ω̃(a j) = 1 for a j < suppα j . Then,

we can confirm that all the clauses in the definition of statewise distinguishability are satisfied.
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The proof is almost the same as that of Proposition 5. The only difference is

to use Lemma 13 instead of Lemma 12 to show thatk∗(λ ) = ∞ for cross-state and

nonnegativeλ .

Lemma 13. Suppose that a profileα is ex-post enforceable and statewise distin-

guishes(i,ω) from( j, ω̃). Then,k∗(α ,λ ) = ∞ for directionλ such thatλi(ω) > 0

andλ j(ω̃) , 0.

Proof. See Appendix. The difference from Lemma 12 is that even after we delete

all the redundant actions, the resulting matrixΠ(i,ω)( j,ω̃) may not satisfy state-

wise full rank.16 To fix this problem, we also delete allai < A∗i . Then the matrix

Π(i,ω)( j,ω̃) corresponding to the remaining actions has full rank, so we can choose

continuation payoffs to make the maximal score infinitely large while maintaining

exact indifference among the remaining actions. The fourth clause of the defini-

tion of statewise distinguishability assures that playeri does not want to deviate

to ai < A∗i under these continuation payoffs. Q.E.D.

Note that all the assumptions in Proposition 6 are satisfied in Example 3. In-

deed, every profileα has pairwise full rank for every state, and the profile(D1,C2)
statewise distinguishes all four of the relevant comparisons. Therefore, any payoff

vector inV0 can be achieved by PPXE for sufficiently largeδ .

Statewise distinguishability is only a sufficient condition for the folk theo-

rem, but the following example suggests that some condition like statewise distin-

guishability may be needed. Here in the absence of incentive problems it would

be possible to learn the state, but nevertheless the folk theorem fails, because of

the lack of statewise distinguishability.

Example 4. This is a slightly modified version of the partnership game of Exam-

ple 3. As before, there are two players, two actionsAi = {Ci ,Di}, two states, and

16To see this, considera′i < A∗i . Under statewise distinguishability, it might be that playing

a′i < A∗i is statistically distinguished fromi′s deviations, but not from playerj ’s. This implies that

a′i survives the deletion process in the proof of Lemma 12, and the resulting matrixΠ(i,ω)( j,ω̃) does

not have full rank
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three outcomesY = {H,M,L}. The monitoring structureπ is different:

(πω1
H (C1,C2),πω1

M (C1,C2)) = (oH + pH +qH ,oM + pM +qM)

(πω1
H (D1,C2),πω1

M (D1,C2)) = (oH +qH ,oM +qM)

(πω1
H (C1,D2),πω1

M (C1,D2)) = (oH + pH ,oM + pM)

(πω1
H (D1,D2),πω1

M (D1,D2)) = (oH ,oM)

(πω2
H (C1,C2),πω2

M (C1,C2)) = (oH + pH +βqH ,oM + pM +βqM)

(πω2
H (D1,C2),πω2

M (D1,C2)) = (oH +βqH ,oM +βqM)

(πω2
H (C1,D2),πω2

M (C1,D2)) = (oH + pH ,oM + pM)

(πω2
H (D1,D2),πω2

M (D1,D2)) = (oH ,oM)

whereβ ∈ (0,1]. Note that if player1 choosesC1 instead ofD1, then the probabili-

ties ofH andM increase bypH andpM, independent of the state. The contribution

of player2’s choice ofC2 is discounted byβ in stateω2: if player 2 choosesC2

instead ofD2, then the probabilities ofH andM increase byqH andqM in state

ω1, but they increase only byβqH andβqM in stateω2.

Note that ifβ = 1 the outcome distributions in the two states are identical,

so as we discussed at the end of section 4, the folk theorem as we have defined

it fails, as does clause (ii) of statewise distinguishability.. Ifβ < 1, the states

have different outcome distributions, so can be identified by repeated observation.

However, as we explain below, statewise distinguishability fails, and the PPXE

payoffs are bounded away from efficiency.

As in Example 3, the payoffs are

ui(Ci,y) = r i(y)−ei and ui(Di ,y) = r i(y)

for eachi ∈ I andy∈Y. We again make assumptions on ther i so that the stage

game payoffs in each state correspond to a prisoner’s dilemma:Di is a dominant

strategy, so(D1,D2) is a static ex-post equilibrium,(C1,C2) is efficient, andV∗

has a non-empty interior.17

17The conditions on the payoffs are:r i(H) > r i(M) > r i(L); e1 > pH(r1(H)− r1(L)) +
pM(r1(M)− r1(L)); e2 > qH(r2(H)− r2(L)) + qM(r2(M)− r2(L)); e1 < pH(u1(H) + u2(H)−
u1(L)−u2(L))+ pM(u1(M)+ u2(M)−u1(L)−u2(L)); ande2 < βqH(u1(H)+ u2(H)−u1(L)−
u2(L))+βqM(u1(M)+u2(M)−u1(L)−u2(L)).
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Individual full rank and the pairwise full rank are satisfied at every profile and

every state, if the matrix (
pH pM

qH qM

)

has full rank, as in Example 3. However, no profile can statewise distinguish

(1,ω1) from (2,ω2). To see this, note first that if suppα1 = {C1,D1}, thenα can-

not statewise distinguish(1,ω1) from (2,ω2). Indeed, if suppα1 = {C1,D1}, the

first clause of the definition requires thatA∗1 = {C1,D1}, but then rankΠ(1,ω1,A∗1)(α)+
rankΠ(2,ω2)(α) = 2+2 > 3 = rankΠ(1,ω1,A∗1)(2,ω2)(α).

Note next thatα such that suppα1 = {a1} cannot distinguish(1,ω1) from

(2,ω2). If it could, then eitherA∗1 = {a1} or A∗1 = {C1,D1}. If A∗1 = {a1} then

since

Π(1,ω1,A∗1)(2,ω2)(α) =




(πω1
y (a1,α2))y∈Y

(πω2
y (a1,C2))y∈Y

(πω2
y (a1,D2))y∈Y




and

(πω1
y (a1,α2))y∈Y =

α2(C2)
β

(πω2
y (a1,C2))y∈Y +

β −α2(C2)
β

(πω2
y (a1,D2))y∈Y,

we have rankΠ(1,ω1,A∗1)(2,ω2)(α) = 2< 3= rankΠ(1,ω1)(2,ω2)(α). Thus, the second

clause of the definition does not hold. If suppα1 = {a1} andA∗1 = {C1,D1}, then,

rankΠ(1,ω1,A∗1)(α)+ rankΠ(2,ω2)(α) = 2+2 > 3 = rankΠ(1,ω1,A∗1)(2,ω2)(α), as be-

fore, so that the second clause is not satisfied. Hence, no profileα can distinguish

(1,ω1) from (2,ω2).
In what follows, we prove that the folk theorem fails in this example due to

the failure of statewise distinguishability. Specifically, we show that the max-

imal scorek∗(λ ) in direction λ ′ = ((1,0),(0,1)) is strictly less than the value

λ ′ · g(C1,C2) < maxv∈V∗ λ ′ · v. To do this, we use the fact that the monitoring

technology has an additive form, so that it suffices to consider only the pure ac-

tion profiles, as in Lemma 4.1 of FL.18

18FL used a more restricitve definition of “additive monitoring structure,” but the proof of their

Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of signals

is independent of the action of the other player.
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Claim 2. For α = (C1,C2),

k∗(α ,λ ′)≤ λ ′ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

Proof. See Appendix. The intuition is that we need to deter player2’s deviation

to D2 for stateω2, and this punishment is somewhat costly forβ < 1. To see

this, note first that whenβ = 1 so that player2’s contribution is not discounted,

then the scorek∗((C1,C2),λ ′) attains the efficient valueλ ′ ·g(C1,C2).19 However,

for β < 1, the distribution of public signals by(C1,C2) for stateω2 is a linear

combination of that for the case ofβ = 1 and the distribution by(C1,D2) for

stateω2. This implies that player2’s continuation payoff after(C1,C2) for state

ω2 is given by an average of that forβ = 1 and the continuation payoff after

(C1,D2) for stateω2. Recall that the continuation payoff after(C1,D2) must be

low, in order to deter the deviation toD2. Hence, player2’s continuation payoff

after (C1,C2) is lower than that forβ = 1, which givesk∗((C1,C2),λ ′) less than

λ ′ ·g(C1,C2). Note that this inefficiency vanishes asβ → 1, since the coefficient

on the continuation payoff after(C1,D2) is (1−β ). Q.E.D.

Claim 3. For α =(D1,C2), k∗(α ,λ ′)≤ λ ′ ·g(D1,C2)− 1−β
β (gω2

2 (D1,D2)−gω2
2 (D1,C2)).

Proof. The same as in the previous claim. Q.E.D.

Claim 4. For α = (C1,D2), k∗(α,λ ′)≤ λ ′ ·g(C1,D2).

Proof. Sinceπω1
y (C1,D2) = πω2

y (C1,D2) andπω1
y (D1,D2) = πω2

y (D1,D2) for all

y∈Y, the set of the constraints in the LP-Average problem forλ ′ is isomorphic

with that forλ ′′ = ((0,0),(1,1)). Then the maximal score forλ ′ equals that for

λ ′′, and the statement follows from Lemma 1 (b). Q.E.D.

Claim 5. For α = (D1,D2), k∗(α,λ ′)≤ λ ′ ·g(D1,D2).

Proof. The same as in the last lemma. Q.E.D.

19The reason is as follows. Forβ = 1, the payoffs and the distribution of public signals do

not depend on stateω. Then the LP-Average problem forλ ′ is identical with the LP prob-

lem for a single stateω, e.g., the LP-Average problem forλ = ((1,1),(0,0)) Since the matrix

Π(1,ω1)(2,ω1)(C1,C2) has pairwise full rank, we obtaink∗ = λ ′ ·g(C1,C2).
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Now we combine these claims to show thatk∗(λ ′) < λ ′ · g(C1,C2). Since

gω1
1 (C1,D2) = gω2

1 (C1,D2), we have

λ ′ ·g(C1,D2) = gω1
1 (C1,D2)+gω2

2 (C1,D2) = gω2
1 (C1,D2)+gω2

2 (C1,D2)

< gω2
1 (C1,C2)+gω2

2 (C1,C2)≤ gω1
1 (C1,C2)+gω2

2 (C1,C2) = λ ′ ·g(C1,C2).

Also,

λ ′ ·g(D1,C2) =gω1
1 (D1,C2)+gω2

2 (D1,C2)

=gω1
1 (C1,C2)+gω2

2 (C1,C2)

+(gω1
1 (D1,C2)+gω1

2 (D1,C2)−gω1
1 (C1,C2)−gω1

2 (C1,C2))

<gω1
1 (C1,C2)+gω2

2 (C1,C2)

=λ ′ ·g(C1,C2).

Here, the second equality comes from the additive structure, which implies that

gω1
2 (D1,C2)−gω1

2 (C1,C2)) = gω2
2 (D1,C2)−gω2

2 (C1,C2). Combined with the pre-

vious claims, it follows from the above claims thatk∗(λ ′) < λ ′ ·g(C1,C2). Thus

PPXE cannot approximate the efficient payoff vectorg(C1,C2).

7 Incomplete Information and Belief-Free Equilibria

7.1 PPXE of Incomplete-Information Games

So far we have assumed that the players have symmetric information about the

state. Now suppose that each playeri observes a private signalθi ∈ Θi at the be-

ginning of the game, whereΘi is a partition ofΩ. Any public strategysi of the

game where playeri has a trivial partition,Θi = {(Ω)} induces a public strategy

for any non-trivial partitionΘi : player i simply ignores the private information

and setss′i(h,θi) = si(h) for all h and allθi . Since by definition play in a PPXE

is optimal regardless of the state, any PPXE for the symmetric-information game

(where all players have the trivial partition) induces a PPXE for any incomplete-

information game (any partitionsΘi) with the same payoff functions and prior.

That is, if strategy profiles is a PPXE of the symmetric-information game, then

the profiles′ wheres′i(h,θi) = si(h) for all playersi, typesθi , and historiesh is
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a PPXE of the incomplete-information game. Moreover, sinceθi is private in-

formation, any strategy that conditions onθi will not be a function of only the

public information. Thus the PPXE of the incomplete-information games are iso-

morphic to the PPXE of the associated symmetric-information game, so the limit

PPXE payoffs can be computed using LP-average, and our sufficient conditions

for the folk theorem still apply.

However, we would expect the folk theorem to hold under weaker conditions

if players are allowed to condition their play on their private information. Player

cancondition on their private information in the “belief-free equilibrium” studied

by Hörner and Lovo (2008) and Ḧorner, Lovo, and Tomala (2008). These papers

define a belief-free equilibrium for games with observable actions and incomplete

information to be a strategy profiles such that for each stateω, profile s is a

subgame-perfect equilibrium of the game where all players know the state isω.20

When the information partitions are trivial (and actions are perfectly observed)

belief-free equilibrium is equivalent to PPXE. In this case the game is one of com-

plete information, and players have no way to learn the state, so one way to study

the game is to replace the payoff functions in each state with their expected value,

and apply subgame-perfect equilibrium to the resulting standard game. It may be

that the folk theorem holds in this game, but the set of PPXE is empty, which

might raise some questions about the strength of the robustness argument for ex-

post equilibria; we are agnostic on the status of PPXE when the folk theorem fails

but efficient payoffs can be supported by other sorts of equilibria.

When the information partitions are non-trivial, belief-free equilibrium allows

a larger set of strategies than does symmetric-information PPXE, so the limit

PPXE payoffs must be a weak or strict subset of the limit payoffs of belief-free

equilibria. In the next subsection we study games with the monitoring structure of

Hörner and Lovo (2008) and Ḧorner, Lovo, and Tomala (2008), and show that the

inclusion is strict: some limit payoffs of belief-free equilibria are not limit pay-

offs of PPXE. In ongoing work Fudenberg and Yamamoto (2009), we define the

20Hörner and Lovo (2008) study two-player games where the information partition has a product

structure; Ḧorner, Lovo, and Tomala (2008) extends the analysis to general partitions andN-player

games. These papers assume that players do not observe their realized payoffs as the game is

played: The players’ only information is their initial private signalθi and the sequence of realized

actions.
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notion of a “Bayesian perfect public ex-post equilibrium,” which allows players

to condition on their initial private information in addition to the public history.

This equilibrium concept reduces to the belief-free equilibrium of Hörner and

Lovo (2008) and Ḧorner, Lovo, and Tomala (2008) when actions are perfectly ob-

served. We then develop the appropriate linear programming characterization of

limit equilibrium payoffs, which we hope to use to extend the results of Hörner,

Lovo, and Tomala (2008) to games where actions are imperfectly observed and

the monitoring structure is unknown.

7.2 Incomplete Information and Perfectly Observed Actions

Consider the following example from Ḧorner and Lovo (2008). There are two

players,I = {1,2}, and two states,Ω = {ω1,ω2}. Player1 knows the state, but

player 2 does not:Θ1 = {(ω1),(ω2)} and Θ2 = {(Ω)}. Player i ∈ I chooses

actionsai ∈ Ai = {T,B}, and observes a public signaly∈A. Assume thatπω
y (a) =

1 for y = a, so that actions are perfectly observable, and players cannot learn the

state from the signals. The payoff matrix conditional onω1 is

T B

T 1,1 −L, 1+G

B 1+G,−L 0, 0

where0 < L−G < 1. This game can be regarded as prisoner’s dilemma whereT

is cooperation andB is defection. On the other hand, the payoff matrix conditional

on anω2 is

L R

U 0,0 −L, 1+G

D −L,1+G 1, 1

Note that this game is also prisoner’s dilemma, but now the role of each action is

reversed;B is cooperation andT is defection.

Hörner and Lovo (2008) show that player1’s best limit payoff in belief-free

equilibrium is1+ G
1+L in each state, which is the highest payoff consistent with

individual rationality for player2 in the games where the state is known. We will

show that PPXE cannot attain this high limit payoff. Intuitively, this is because (a)

the public signals do not directly reveal the state, so with trivial partitions (Θi =
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{(Ω)}) there is no way players can learn the state, and (b) the same conclusion

obtains if player1 does start out knowing the state but we restrict attention to

equilibria in which player1’s play doesn’t depend on his prior information.

Because the PPXE payoff set for games with asymmetric information is iden-

tical with that for the corresponding symmetric-information game, we can com-

pute the limit set of PPXE payoffs for asymmetric-information games by using

LP-Average.

Lemma 14. Suppose thatY = A and πω
y (a) = 1 for y = a. Thenk∗(α,λ ) ≤

λ ·g(α) for all α andλ .

Proof. Let (v,w) be a solution to LP-Average associated with(λ ,α,δ ). By def-

inition, (v,w) satisfies all the constraints in LP-Average, and sinceY = A we can

treat the continuation payoffs as a function of the realized actions. Then,

k∗(α,λ ) = ∑
i∈I

∑
ω∈Ω

λi(ω) ·vi(ω)

= ∑
i∈I

∑
ω∈Ω

λi(ω)

(
(1−δ )gω

i (α)+δ ∑
a∈A

α(a)wi(a,ω)

)

= (1−δ )λ ·g(α)+δ ∑
a∈A

α(a)λ ·w(a)

≤ (1−δ )λ ·g(α)+δ ∑
a∈A

α(a)k∗(α,λ )

= (1−δ )λ ·g(α)+δk∗(α,λ ).

(The inequality follows from constraint (iii) in LP-Average.) Subtractingδk∗(α,λ )
from both sides and dividing by(1− δ ), we obtaink∗(α,λ ) ≤ λ · g(α), as de-

sired. Q.E.D.

Considerλ such thatλ1(ω1) = λ1(ω2) = 1 andλ2(ω1) = λ2(ω2) = 0. It fol-

lows from the above lemma that for anyα ,

k∗(α ,λ )≤ λ ·g(α) = gω1
1 (α)+gω2

1 (α).

Note that the valuegω1
1 (α)+gω2

1 (α) is maximized byα = (T,T) or α = (B,B),
and its value is1. Hence,

k∗(λ ) = sup
α

k∗(α,λ ) = 1.

43



This result shows thatQ is contained in the hyperplaneH(λ ,1)= {v∈RI×|Ω||v1(ω1)+
v1(ω2)≤ 1}, so that

∀v∈ lim
δ→1

E(δ ), v1(ω1)+v1(ω2)≤ 1.

In words, the sum of player1’s equilibrium payoffs for stateω1 and forω2 cannot

exceed1. On the other hand, since the equilibrium payoff must be above the

minimax payoff for each state, we have

∀v∈ lim
δ→1

E(δ ), v1(ω1)≥ 0 and v1(ω2)≥ 0.

Therefore, we obtain

∀v∈ lim
δ→1

E(δ ), 0≤ v1(ω1)≤ 1 and 0≤ v1(ω2)≤ 1

Obviously, this value is less than the best belief-free equilibrium payoff,1+ G
1+L .

8 Concluding Remarks

This paper has restricted attention to the set of PPXE, and analyzed them with

extensions of the techniques used to analyze PPE in games where the monitoring

structure is known. When the statewise full rank conditions hold, along with the

standard individual and pairwise full rank conditions, the set of PPXE satisfies an

ex-post folk theorem, even if the set of static ex-post equilibria is empty. When a

static ex-post equilibrium does exist, there is an ex-post PPXE folk theorem under

even milder informational conditions.

Of course for a given discount factor the full set of sequential equilibria of

these games is larger than the set of PPXE, and can permit a larger set of payoffs.

In particular, because the game has finitely many actions and signals per period

and is continuous at infinity, sequential equilibria exist for any discount factor,

even if the set of PPXE is empty,21 so PPXE is not well-adapted to the study

of games with uncertain monitoring structures and very impatient players. Con-

versely, when players are patient and mostly concerned with their long-run payoff,
21This follows from the facts that sequential equilibria exist in the finite-horizon truncations

(Kreps and Wilson (1982)) and that the set of equilibrium strategies is compact in the product

topology (Fudenberg and Levine (1983)).
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our informational conditions imply that there are PPXE where players eventually

learn what the state is, and obtain the same payoffs as if the state was publicly

observed.

Appendix

A.1 Proof of Proposition 1

Proposition 1. If a subsetW of RI×|Ω| is bounded and ex-post self-generating

with respect toδ , thenW ⊆ E(δ ).

Proof. Let v ∈W. We will construct a PPXE that yieldsv. Sincev ∈ B(δ ,W),
there exist a profileα and a functionw :Y→W such that(α,v) is ex-post enforced

by w. Set the action profile in period one to bes|h0 = α and for eachh1 = y1 ∈Y,

setv|h1 = w(h1)∈W. The play in later periods is determined recursively, usingv|ht

as a state variable. Specifically, for eacht ≥ 2 and for eachht−1 = (yτ)t−1
τ=1∈Ht−1,

given av|ht−1 ∈W, let α|ht−1 andw|ht−1 : Y →W be such that(α|ht−1,v|ht−1) is

ex-post enforced byw|ht−1. Then, set the action profile after historyht−1 to be

s|ht−1 = α |ht−1, and for eachyt ∈Y, setv|ht=(ht−1,yt) = w|ht−1(yt) ∈W.

BecauseW is bounded andδ ∈ (0,1), payoffs are continuous at infinity so

finite approximations show that the specified strategy profiles∈ Sgeneratesv as

an average payoff, and its continuation strategys|ht yields v|ht for eachht ∈ Ht .

Also, by construction, nobody wants to deviate at any moment of time, given any

stateω ∈ Ω. Because payoffs are continuous at infinity, the one-shot deviation

principle applies, and we conclude thats is a PPXE, as desired. Q.E.D.

A.2 Proof of Proposition 2

Proposition 2. If a subsetW of RI×|Ω| is compact, convex, and locally ex-post

generating, then there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

Proof. Suppose thatW is locally ex-post generating. Since{Uv}v∈W is an open

cover of the compact setW, there is a subcover{Uvm}m of W. Let δ = maxmδvm.

Chooseu ∈W arbitrarily, and letUvm be such thatu ∈ Uvm. SinceW∩Uvm ⊆
B(δvm,W), there existαu andwu : Y→W such that(αu,u) is ex-post enforced by
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wu for δvm. Given aδ ∈ (δ ,1), let

w(y) =
δ −δu

δ (1−δu)
u+

δu(1−δ )
δ (1−δu)

wu(y)

for all y∈Y. Then, it is straightforward that(αu,u) is enforced by(w(y))y∈Y for

δ . Also, w(y) ∈W for all y ∈ Y, sinceu andw(y) are inW andW is convex.

Therefore,u ∈ B(δ ,W), meaning thatW ⊆ B(δ ,W) for all δ ∈ (δ ,1). (Recall

thatu andδ are arbitrarily chosen fromW and(δ ,1).) Then, from Proposition 1,

W ⊆ E(δ ) for δ ∈ (δ ,1), as desired. Q.E.D.

A.3 Proof of Lemma 12

Lemma 12. Suppose that Condition 6 holds. Then,k∗(λ ) = ∞ for direction λ
such that there existi ∈ I , j ∈ I , ω ∈ Ω, and ω̃ , ω such thatλi(ω) , 0 and

λ j(ω̃) , 0.

Proof. Let (i,ω) and( j, ω̃) be such thatλi(ω) , 0, λ j(ω̃) , 0, andω̃ , ω. Let

α be a profile that is ex-post enforceable and statewise identifiable for(i,ω) and

( j, ω̃). In what follows, we show thatk∗(α,λ ) = ∞.

First, we claim that for everyK > 0, there exist(zi(y,ω),zj(y, ω̃))y∈Y such

that (1) holds for allai ∈ Ai , (2) holds for alla j ∈ A j , and (3) holds for all

y ∈ Y. To prove that this system of equations indeed has a solution, letA′i ⊆ Ai

provide a basis for the space spanned by(πω
y (a′i ,α−i))y∈Y, meaning that the set

{(πω
y (a′i ,α−i))y∈Y}a′i∈A

′
i
is a basis for the space, so that rankΠ′

(i,ω)(α)= rankΠ(i,ω)(α)=
|A′i |. Then if (1) holds for alla′i ∈ A′i , then (1) fora′′i < A′i is satisfied as well.

Likewise, letA′j ⊆ A j provide a basis for the space spanned by(π ω̃
y (a′j ,α− j))y∈Y

for all a′j ∈ A′j ; if (2) holds for all a′j ∈ A′j , then (2) fora′′j < A′j is satisfied.

Thus, for the above system to have a solution, it suffices to show that there exist

(zi(y,ω),zj(y, ω̃))y∈Y such that (1) holds for allai ∈ A′i , (2) holds for alla j ∈ A′j ,
and (3) holds for ally∈Y. Eliminate (3) by solving forzj(y, ω̃). Then, there re-

main|A′i |+ |A′j | linear equations, and its coefficient matrix isΠ′
(i,ω)( j,ω̃)(α), which

is constructed by stacking two matricesΠ′
(i,ω)(α) andΠ′

( j,ω̃)(α). It follows from

statewise identifiability that

rankΠ′
(i,ω)( j,ω̃)(α) = rankΠ′

(i,ω)(α)+ rankΠ′
( j,ω̃)(α) = |A′i |+ |A′j |.
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Therefore, we can indeed solve the system.

Let (ṽ, w̃) be a pair of a payoff vector and a function such thatw̃ enforces

(ṽ,α). LetK > maxy∈Y λ ·w̃(y)−λ · ṽ, and choose(zi(y,ω),zj(y, ω̃))y∈Y to satisfy

(1) through (3). Then, let

wl (y,ω) =





w̃i(y,ω)+zi(y,ω) if (l ,ω) = (i,ω)
w̃ j(y, ω̃)+zj(y, ω̃) if (l ,ω) = ( j, ω̃)
w̃l (y,ω) otherwise

for eachy∈Y. Also, let

vl (ω) =





ṽi(ω)+ K
λi(ω) if (l ,ω) = (i,ω)

ṽ j(ω̃) if (l ,ω) = ( j, ω̃)
ṽl (ω) otherwise

.

Then, as in the proof of Lemma 6, this(v,w) satisfies constraints (i) through (iii)

in LP-Average. Therefore,k∗(α,λ )≥ λ ·v = λ · ṽ+K. SinceK can be arbitrarily

large, we concludek∗(α ,λ ) = ∞. Q.E.D.

A.4 Proof of Lemma 13

Lemma 13. Suppose that a profileα is ex-post enforceable and statewise distin-

guishes(i,ω) from( j, ω̃). Then,k∗(α ,λ ) = ∞ for directionλ such thatλi(ω) > 0

andλ j(ω̃) , 0.

Proof. Fix an A∗i consistent with the statewise distinguishability condition. Let

A′i ⊆ suppαi provide a basis for the space spanned by

{(πω
y (a′i ,α−i))y∈Y|a′i ∈ suppαi},

andA′j ⊆ A j provide a basis for the space spanned by

{(π ω̃
y (a′j ,α− j))y∈Y|a′j ∈ A j}.

Then, letA′i j ⊆ A∗i
⋃

A j provide a basis for the space spanned by

{(πω
y (a′i ,α−i))y∈Y|a′i ∈ Ai}

⋃
{(π ω̃

y (a′j ,α− j))y∈Y|a′j ∈ A j}
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such that(A′i
⋃

A′j)⊆ A′i j . Note that the second equality of clause (ii) of statewise

distinguishability guarantees the existence of a basis with elements inA∗i
⋃

A, and

thatai ∈ A′i j
⋂

(Ai \suppαi) if and only if ai ∈ A∗i \suppαi .

First, we claim that for everyK > 0, there exist(zi(y,ω),zj(y, ω̃))y∈Y such that

∑
y∈Y

πω
y (ai ,α−i)zi(y,ω) =

K
δλi(ω)

(5)

for all ai ∈ suppαi ,

∑
y∈Y

πω
y (ai ,α−i)zi(y,ω)≤ K

δλi(ω)
(6)

for all ai < suppαi ,

∑
y∈Y

π ω̃
y (a j ,α− j)zj(y, ω̃) = 0 (7)

for all a j ∈ A j , and

λi(ω)zi(ω)+λ j(ω̃)zj(y, ω̃) = 0 (8)

for all y ∈ Y. To prove this claim, eliminate (8) by solving forzj(y, ω̃). Then,

instead of (7), we have

∑
y∈Y

π ω̃
y (a j ,α− j)zi(y,ω) = 0 (9)

for all a j ∈A j . By construction, for eachai ∈ suppαi \A′i j , a vector(πω
y (ai ,α−i))y∈Y

is represented by a linear combination of(πω
y (a′i ,α−i))y∈Y for a′i ∈ A′i j

⋂
suppαi .

Hence, if (5) holds for alla′i ∈A′i j
⋂

suppαi then (5) forai ∈ suppαi \A′i j is satisfied

as well. Likewise, if (9) holds for alla′j ∈A′i j
⋂

A j , then (9) fora j ∈A j \A′i j is satis-

fied. Moreover, if (5) holds for alla′i ∈A′i j
⋂

suppαi , (9) holds for alla′j ∈A′i j
⋂

A j ,

and

∑
y∈Y

πω
y (a′′i ,α−i)zi(y,ω) = 0 (10)

for all a′′i ∈A′i j
⋂

(Ai \suppαi), then (6) forai ∈Ai \(suppαi
⋃

A′i j ) is satisfied, as a

vector(πω
y (ai ,α−i))y∈Y is represented by a linear combination of(πω

y (a′i ,α−i))y∈Y

for a′i ∈ A′i j
⋂

Ai and (πω
y (a′j ,α− j))y∈Y for a′j ∈ A′i j

⋂
A j with weights such that

∑a′i∈suppαi
κω(a′i)≤ 1. Therefore, to establish the above claim, it suffices to show

that there exist(zi(y,ω))y∈Y such that (5) holds for allai ∈A′i j
⋂

suppαi , (10) holds

for all ai ∈ A′i j
⋂

(Ai \ suppαi), and (9) holds for alla j ∈ A′i j
⋂

A j . Note that this

system consists of|A′i j | linear equations, and its coefficient matrix consists of rows
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(πω
y (a′i ,α−i))y∈Y for a′i ∈ A′i j

⋂
Ai and(πω

y (a′j ,α− j))y∈Y for a′j ∈ A′i j
⋂

A j . Since

this matrix has rank|A′i j |, we can indeed solve the system.

Let (ṽ, w̃) be a pair of a payoff vector and a function such thatw̃ enforces

(ṽ,α). LetK > maxy∈Y λ ·w̃(y)−λ · ṽ, and choose(zi(y,ω),zj(y, ω̃))y∈Y to satisfy

(5) through (8). Then, let

wl (y,ω) =





w̃i(y,ω)+zi(y,ω) if (l ,ω) = (i,ω)
w̃ j(y, ω̃)+zj(y, ω̃) if (l ,ω) = ( j, ω̃)
w̃l (y,ω) otherwise

for eachy∈Y. Also, let

vl (ω) =





ṽi(ω)+ K
λi(ω) if (l ,ω) = (i,ω)

ṽ j(ω̃) if (l ,ω) = ( j, ω̃)
ṽl (ω) otherwise

.

We claim that this(v,w) satisfies all the constraints in LP-Average. Obviously,

constraints (i) and (ii) are satisfied for all(l ,ω) ∈ (I ×Ω) \ {(i,ω),( j, ω̃)}, as

vl (ω) = ṽi(ω) andwl (y,ω) = w̃l (y,ω). Also, since (5) and (6) hold and̃w enforces

(α , ṽ), we obtain

(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

=(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)(w̃i(y,ω)+zi(y,ω))

=

(
(1−δ )gω

i (ai ,α−i)+δ ∑
y∈Y

πω
y (ai ,α−i)w̃i(y,ω)

)
+

K
λi(ω)

=ṽi(ω)+
K

λi(ω)

for all ai ∈ suppαi , and

(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)wi(y,ω)

=(1−δ )gω
i (ai ,α−i)+δ ∑

y∈Y
πω

y (ai ,α−i)(w̃i(y,ω)+zi(y,ω))

≤ṽi(ω)+
K

λi(ω)

=vi(ω)
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for all ai < suppαi . Hence,(v,w) satisfies constraints (i) and (ii) for(i,ω). Like-

wise, it follows from (7) that(v,w) satisfies constraints (i) and (ii) for( j, ω̃).
Furthermore, using (8) andK > maxy∈Y λ · w̃(y)−λ · ṽ,

λ ·w(y) = λ · w̃(y)+λi(ω)zi(y,ω)+λ j(ω̃)zj(y, ω̃)

= λ · w̃(y)

< λ · ṽ+K

= λ ·v

for all y∈Y, and hence constraint (iii) holds.

Therefore,k∗(α ,λ ) ≥ λ · v = λ · ṽ+ K. SinceK can be arbitrarily large, we

concludek∗(α,λ ) = ∞. Q.E.D.

A.5 Proof of Claim 2

Claim 2. For α = (C1,C2) andλ = ((1,0),(0,1)),

k∗(α,λ )≤ λ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

Proof. Consider the associated LP-Average problem, and choose(v,w) to satisfy

constraints (i) through (iii) of this problem. From player2’s IC constraint for state

ω2, we have

β (qH(w2(H,ω2)−w2(L,ω2))+qM(w2(M,ω2)−w2(L,ω2)))

≥ 1−δ
δ

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).
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Then,

v1(ω1)+v2(ω2) =(1−δ )gω1
1 (C1,C2)+δ ∑

y∈Y
πω1

y (C1,C2)w1(y,ω1)

+(1−δ )gω2
2 (C1,C2)+δ ∑

y∈Y
πω2

y (C1,C2)w2(y,ω2)

=(1−δ )(gω1
1 (C1,C2)+gω2

2 (C1,C2))

+δ ∑
y∈Y

πω1
y (C1,C2)(w1(y,ω1)+w2(y,ω2))

−δ (1−β )(qH(w2(H,ω2)−w2(L,ω2))+qM(w2(M,ω2)−w2(L,ω2)))

≤(1−δ )(gω1
1 (C1,C2)+gω2

2 (C1,C2))+δ (v1(ω1)+v2(ω2))

− (1−δ )(1−β )
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2))

Arranging,

v1(ω1)+v2(ω2)≤ gω1
1 (C1,C2)+gω2

2 (C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

So we have

λ ·v≤ λ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

This proves the desired result. Q.E.D.
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