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Abstract

This paper characterize preference relations over Anscombe and Au-
mann acts and give necessary and su¢ cient conditions that guarantee the
existence of a utility function u on consequences and an ambiguity index
� on the set of probabilities on the states of the nature such that, for all
acts f and g,

f % g ,
Z
u(f)dp+ �(p) �

Z
u(g)dp; 8p 2 �:

The function u represents the decision maker´s risk attitudes, while
the ambiguity index � (p) about the prior p captures its relative degree
of plausibility. The axiomatic basis for this class of preference waiver
completeness and transitivity, and an interesting property is that cycles
are avoided.

The Bewley´s model of choice under uncertainty with transitive and
incomplete preferences is included in this class of preferences as well the
subjective expected utility model. As new examples, we can describe some
special class of preferences, e.g., the intransitive and incomplete entropic
Bewley preferences obtained through the relative entropic ambiguity in-
dex.

1 Introduction

In the 80s two alternatives axiomatic approaches appeared as foundations for
the distinction proposed by Frank Knight (1921) between risk and uncertainty.
Bearing in mind that risk is characterized by randomness with well de�ned prob-
abilities and uncertainty captures randomness with vague probabilities, both
Gilboa and Schmeidler (1989) and Bewley (2002) proposed a set of axioms for
preference relations on uncertainty acts endogenously getting a set of probabil-
ities compatible with the decision maker�s beliefs, which led to multiple priors
models. On the other hand, previous theoretical developments as the famous
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axiomatizations of subjective expected utility theory (SEU), as proposed by Sav-
age (1954) and Anscombe and Aumann (1963), had suggest that the Knight´s
distinction is irrelevant because any uncertainty can be modeled through prob-
abilities.
Multiple priors models were inspired also by the well known objection to the

theory of subjective probability formulated by Ellsberg (1961), which formed the
basis for the notion for ambiguity : an event is ambiguous if it has a unknown
probability. In fact, Ellsberg showed that individuals may prefer gambles with
precise probability to gambles with unknown odds, that is, ambiguity matters
for choice1 .
As regards the axiomatic foundation, while the maxmin expected utility

model (MEU) of Gilboa and Schmeidler (1989) remove the independence axiom
from the Anscombe and Aumann list of axiom, the theory proposed by Bewley
(2002) for Knightian uncertainty or ambiguity presents as main behavioral fea-
ture the lack of completeness in the decision maker´s preference relation2 . In
this model a set of priors C determines a preference relation via an unanimity
rule: an act f is strictly better than an act g if and only if the expected utility
of f is strictly higher than the expected utility of g for every prior p in the set
C.
Ghirardato, Maccheroni, Marinacci and Siniscalchi (GMMS, 2003) provide

a derivation of Bewley´s model in the purely subjective probability framework
a la Savage, but such derivation di¤ers from Bewley´s on some aspects, most
important is that Bewley considers as primitive a strict preference relation while
GMMS propose a representation using a re�exive relation as primitive which
delivers an unanimity rule where f is at least as desirable as g if and only if
the expected utility of f is at least as high as the expected utility of g for every
prior p in the set C3 .
The main idea of Bewley´s model is that the presence of uncertainty might

make the agent confused, which induces he stay with her status quo. In fact,
the ambiguity aversion may reduces her con�dence in her ability to compare
some alternatives, as consequence, we observe the incompleteness of the prefer-
ence relation as explained above. An important point is the inertia assumption
proposed by Bewley: we view the agent in question as considering a set of priors
beliefs in her decision on whether to abandon the status quo, and some degree
of dominance using this set of priors is requiring before moving away from her
status quo.
However, a natural point is that decision makers could presents a non uni-

1Although many arguments showed the that people often fail to behave in accordance
with the subjective expected utility, Savage and Anscombe-Aumann provided as a legacy an
important framework that serves as the basis for much of the recent developments in the
theory of decision under ambiguity.

2Recently, Nascimento and Riella (2008) uni�ed both approaches through an axiomatic
foundation for a class of incomplete and ambiguity averse preferences in the sense of Ghirardato
and Marinacci (2002).

3Ghirardato, Maccheroni and Marrinaci (GMM, 2004) obtained the same result in the
Anscombe and Aumann´s set up for general state space. See also Giroto and Holzer (2005).
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form opinion among the class of plausible models4 , and such factor should rule
out the original Bewley´s unanimity principle that implicitly requires an uni-
form importance among plausible priors. Intuitively, assuming that the decision
maker has a non uniform degree of con�dence among such priors, then the full
dominance as in the unanimity rule might be more coherent with a relative dom-
inance rule, where less plausibility implies in some amount of acceptable loss in
terms of expected utility. Bewley´s model is too extreme in the sense that a
plausible priors is given by only probabilities in the set C and every plausible
prior has an identical degree of con�dence.
Aiming to get a model that captures the previous considerations, we charac-

terized preference relations on the set of Anscombe and Aumann´s acts where
a relative dominance rule is obtained. Our axiomatization generates a decision
rule that generalizes the model proposed by Bewley (2002) via the notion of
ambiguity index as proposed in Maccheroni, Marinacci and Rustichini (2006)´s
foundation of variational preferences: the decision maker´s subjective ambigu-
ity index is a special mapping � over the set of all probability measures � with
values in R+ [ f+1g and the preference relation % satis�es,

f % g ,
Z
u(f)dp+ � (p) �

Z
u(g)dp, 8p 2 �:

Where, u is the von Neumann-Morgenstern utility function over the set of lotter-
ies X. Note that if � (�) = �C (�) for some (convex and closed) set of probability
measures then we obtain the Bewley´s decision rule. We axiomatize preferences,
called variational Bewley preferences, consistent with the decision rule above by
showing how it rests on a simple set of axioms that generalizes the Bewley´s
model as studied by Ghirardato, Maccheroni and Marinacci (2004), being more
precisely, we do not impose transitivity.
In fact, in this paper both completeness as transitivity are not imposed for

a preference relation. It is consistent with Aumann (1962) complains about
the inaccurate description of actual behavior implied by completeness axiom
and the normative viewpoint demanding that decision makers should make well
comparison of every pair of alternatives. Mandler (2005) extended this criticism
to incomplete and intransitive preferences by showing that even decision mak-
ers with such kind of preferences are not necessarily subject to money-pumps.
Interestingly, we show that even intransitive any variational Bewley preference
is acyclic.
The paper is organized as follows. After introducing the setup in Section 2

and the set of axioms in Section 3, we present the main representation result
in Section 4. In Section 5, we derive conditions in order to obtain the count-
able additive case. In Section 6, we discuss the ambiguity revealing properties,
in the sense of Ghirardato, Maccheroni and Marinacci (2004), featured by the
class of preferences characterized in the main result. In Section 7, we study
some special cases, namely the incomplete preferences of Bewley (1989) as well

4Following the MEU tradition, some work captures a similar idea, e.g., Maccheroni, Mari-
nacci and Rustichini (2006) and Chateauenuf and Faro (2006).
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its special case given by the SEU model of Anscombe and Aumann (1963). Also,
we derive some special class of variational Bewley preferences, e.g., the intransi-
tive and incomplete entropic preferences obtained through the relative entropic
ambiguity index. Proofs and related material are collected in the Appendix.

2 Framework

Consider a set S of states of nature (world), endowed with an �-algebra � of
subsets called events, and a non-empty set X of consequences. We denote by
F the set of all the (simple) acts: �nite-valued functions f : S ! X which
are �-measurable5 . Moreover, we denote by B0(�) the set of all simple real-
valued �-measurable functions a : S ! R. The norm in B0(�) is given by
kak1 = sups2S ja(s)j (called sup norm) and will denote by B (�) the supnorm
closure of B0 (�).
Given a mapping u : X ! R, the function u(f) : S ! R is de�ned by

u(f)(s) = u(f(s)); for all s 2 S. We note that u(f) 2 B0(S;�) whenever f
belongs to F .
Let x belong to X, de�ne x 2 F to be the constant act such that x(s) = x

for all s 2 S: Hence, we can identify X with the set Fc of the constant acts in
F .
Additionally, we assume that the set of consequences X is a convex subset

of a vector space. For instance, this is the case if X is the set of all simple
lotteries on a set of outcomes Z. In fact, it is the classic setting of Anscombe
and Aumann (1963) as re-started by Fisburn (1970).
Using the linear structure of X we can de�ne as usual for every f; g 2 F and

� 2 [0; 1] the act:

�f + (1� �)g : S ! X

(�f + (1� �)g)(s) = �f(s) + (1� �)g(s):

Also, given two acts f; g 2 F and an event A 2 � we denote by fAg the act h
such that h jA= f and h jAc= g.
The decision maker�s preferences are given by a binary relation % on F ,

whose the usual symmetric and asymmetric components are denoted by s and
�.
We denote by � := �(�) the set of all (�nitely additive) probability mea-

sures p : � ! [0; 1] endowed with the natural restriction of the well known
weak* topology � (ba;B). We say that a mapping � : � ! [0;1] is grounded
if f� = 0g := fp 2 � : � (p) = 0g 6= ; and its e¤ective domain is de�ned by
dom (�) := f� <1g. Also, � is weak� lower semicontinuous if f� � rg is
weak� closed for each r � 0. Moreover, we denote by �� the set of all
countably additive probabilities in �. In particular, given q 2 ��, we de-
note by �� (q) the set of all probabilities in �� that are absolutely contin-

5Let %0 be a binary relation on X, we say that a function f : S ! X is �-measurable if,
for all x 2 X, the sets fs 2 S : f(s) %0 xg and fs 2 S : f(s) �0 xg belong to � .
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uous w.r.t. q, i.e., �� (q) = fp 2 �� : p� qg, where p � q means that
8A 2 �; q (A) = 0) p (A) = 0.
Functions of the form � : �! [0;1] will play a key role in the paper because

it will capture the subjective degree of plausibility of the decision makers. We
denote by N (�) the class of these functions such that � is grounded, convex
and weak� lower semicontinuous.

3 Axioms

Next we describe the axioms imposed in this paper on a preference relation %
on the set of Anscombe and Aumann acts F :
(Axiom 1) % is re�exive: For any f 2 F , f % f .
(Axiom 2) The restriction on lotteries %jX�X is nontrivial, complete and

transitive.
(Axiom 3) Archimedean Continuity. For all f; g; h 2 F the sets:

f� 2 [0; 1] : �f + (1� �)g % hg and f� 2 [0; 1] : h % �f + (1� �)gg are closed
in [0; 1].

(Axiom 4) Monotonicity. For every f; g 2 F :

if f(s) % (�) g(s) for any s 2 S then f % (�) g:

(Axiom 5) S-Independence: For every f; g; h1; h2 2 F , and every � 2 (0; 1);

f % g and h1 % h2 i¤ �f + (1� �)h1 % �g + (1� �)h2:

( Axiom 6 ) Unboundedness. There are x; y 2 X such that, for each
� 2 (0; 1), there exist z; bz 2 X such that

�z + (1� �) y � x � y � �bz + (1� �)x.
Since we are following the standard notion of weak preference, i.e., given

two acts f and g the relation f % g means that "f is at least as good as g",
Axiom 1 seems very natural because it says that any act is at least as good as
the same. On the other hand, we relax the usual completeness and transitivity
conditions about preferences over uncertainty acts.
Axiom 2 means that preferences over consequences satis�es standard as-

sumptions concerning the classical notion of rationality, and also there is at
least one par of consequences for which the decision maker is not indi¤erent
between then. Axiom 3 and Axiom 6 are technical assumptions.
Axiom 4 is a state-independence condition for both weak and strict sense of

preference, saying that decision makers always prefer acts delivering state-wise
better payo¤s, regardless of the state where the better payo¤s occur.
Axiom 5 says that if a decision maker has two well de�ned preference between

two pars of acts then for any two acts obtained through mixtures from the two
best and worst acts of originals comparisons, respectively, then the preference
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between new acts obtained should respect the original ordering. We note that
Axiom 6 is stronger than the usual Independence axiom, in fact, for the latter
it is enough to consider h1 = h2. Also, recall that under transitivity assumption
both Axiom 5 and the Independence axiom are equivalent conditions6 .

4 Main Theorem

We now derive our general representation that relies on Axioms A1-A6.

Theorem 1 Let % be a preference relation on the set of Anscombe-Aumann acts
F . Then the following conditions are equivalent:
(1) % satis�es assumptions A.1-A.6.
(2) There exists an a¢ ne utility index u : X ! R, with u (X) = R, and a

function � : �! [0;1] that belongs to N (�) such that, for all f and g in F ,

f % g ,
Z
u(f)dp+ �(p) �

Z
u(g)dp; 8p 2 �.

Moreover, u in (2) is unique up to positive linear transformation and for
each u there is a (unique) minimal �� : �! [0;1] consistent with the decision
rule above and is given by

��(p) = sup
(f;g)2%

�Z
(u(g)� u(f)) dp

�
; 8p 2 �.

The representation above involves a mapping � de�ned on � � B (�)� which
is a grounded, convex and weak� lower semicontinuous function, hence it can
be viewed as a Fenchel conjugate of some functional on B (�), which is one
of the most classic tool in variational analysis7 . This motivates the following
de�nition:

De�nition 2 A preference % on F is called variational Bewley preference if it
satis�es Axioms A.1�A.6.

Following the Bewley inertia idea, an interesting interpretation for � says
that � (p) measure the maximal expected loss accepted by the decision maker
if p is true model. Note that � (p) < � (q) says that p is subjectively more
plausible than q. So, the dominance re�ects such di¤erence on the decision
maker´s con�dence among priors:

f % g ,
Z
(u(f)� u (g))dp � �� (p) ; 8p 2 �;

i.e., for priors the most plausible priors (i.e., for priors p 2 f� = 0g) we have
the dominance a la BewleyZ

u(f)dp �
Z
u(g)dp; 8p 2 f� = 0g ;

6Technically, Axiom 5 says that the preference % is a convex subset of F � F .
7See, for instance, Brézis (1984), page 8.
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otherwise, the decision maker is willing to accept at most a loss (in terms of
expected value) equal to �� (p) for abandon the status quo.
An interesting aspect of our representation rule is concerns about the indif-

ference relation �, in fact, since f � g i¤ f % g and g % f , the main theorem
entails that

f � g i¤ � (p) �
����Z u (f) dp�

Z
u (g) dp

���� ;8 p 2 �.
Hence, indi¤erence is equivalent to the fact that, for any prior, the module of the
di¤erence between the corresponding expected utilities is limited by the prior�s
plausibility. So, for priors with full plausibility the di¤erence should be null; on
the other hand, by considering priors with small plausibility degree, indi¤erence
in preference is consistent with the possibility of a signi�cant di¤erence between
the corresponding expected values.
By Theorem 1, variational Bewley preferences can be represented by a pair

(u; ��). Hence, we will write u and �� to denote our class of preferences. From
now on, when we consider a variational Bewley preference, we will write u and
� to denote the elements of such a pair. Next we give the uniqueness properties
of this representation.

Corollary 3 Two pairs (u; ��) and (u1; ��1) represent the same variational Bew-
ley preference % if and only if there exists � > 0 and � 2 R such that u1 = �u+�
and ��1 = ��

�.

An interesting consequence of this uniqueness result together with the Bew-
ley´s unanimity rule, as characterized by Ghirardato Maccheroni and Marinacci
(2004), is that our preference relation, in general, is not transitive. For instance,
if we assume that "ambiguity index" �� is given by the well known relative en-
tropic index then the induced preference is not transitive because ���; with
� > 0;is never an indicator function8 .
Fortunately, variational Bewley preferences are not subject to money-pumps

and it is a consequence of next proposition saying that variational Bewley pref-
erences are acyclic.

Proposition 4 If a preference % on the set of Anscombe and Aumann act is
a variational Bewley preference then the induced asymmetric component � is
acyclic. In fact,

f � g ) V (f) > V (g) ,

where V is a variational representation of a variational preference (MMR 2006)
given by

V (f) = min
p2�

�Z
u (f) dp+ �� (p)

�
.

8For more details see Section 7.
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5 Countable Additive Priors

In our previous analysis we considered the set � of all �nitely additive prob-
abilities. By its very convenient analytical properties in applications it is very
useful to consider the case of countably additive probabilities. As we will see
momentarily that this is the case for the construction of some interesting exam-
ples.
If we add the transitivity condition in order to recover the Bewley model as

in Ghirardato, Maccheroni and Marinacci (2004), we have that the well know
Monotone Continuity axiom due to Arrow (1970) is equivalent to the conditions
saying that probabilities in the set of multiple priors C are all countably additive,
provided is a �-algebra9 .
Fortunately, the monotone continuity axiom also ensure in our main result

that only countably additive probabilities matter. Formally, the monotone con-
tinuity axiom follows as:
(Axiom 7) Monotone Continuity: We say that a preference relation % on

F is monotone continuous if for all consequences x; y; z 2 X such that y � z,
and for all sequences of events fAngn�1 with An # ;, there exists k � 1 such
that y % xAkz.

Proposition 5 Let % be a preference relation as in Theorem 1. The following
statements are equivalents:
(i) The preference relation also satis�es the monotone continuity axiom,
(ii) The set dom (��) consists of countably additive probabilities.

6 A Characterization of Ambiguity Levels

For the precise result concerning the characterization of � on the main result as
a ambiguity level we need the following de�nition:

De�nition 6 (Ghirardato, Maccheroni and Marinacci, 2004) We say that the
preference relation %1 reveals more ambiguity than %2 if for any acts f and g

f %1 g ) f %2 g

The decision maker 2 (with utility index u2 and ambiguity index ��2) has a
richer unambiguous preference than the decision maker 1 (with utility index u1
and ambiguity index ��1) because the decision maker 2 behaves as if he is better
informed about the decision problem.

Proposition 7 The following statements are equivalents:
a) The preference relation %1 reveals more ambiguity than %2
b) Both decision makers has the same attitudes towards risk (w.l.g, u1 = u2)

and ��1 � ��2.
9See, for instance, Proposition B.1 of Ghirardato, Maccheroni and Marinacci (2004).
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Now, consider that the subjective expected utility is the benchmark for ab-
sence of ambiguity. We say that preference relation % reveals ambiguity when
such preference reveals more ambiguity than some subjective expected utility
preference %SEU . As consequence of the Proposition 7 and by f� = 0g 6= ;, the
class of preferences characterized in Theorem 1 reveals ambiguity.

7 Special Cases

In this section we study in some more detail special classes of variational Be-
wley preferences: the Knightian uncertainty model of Bewley (2002) and some
preferences we just introduced, e.g., the incomplete and intransitive entropic
preferences.

7.1 Bewley Incomplete Preferences

Begin with the Knightian uncertainty model choice model axiomatized by Bew-
ley (2002). As we mentioned in Introduction, the Bewley model is characterized
by transitivity, an axiom that we dropped in our main result. Next we show in
detail the relationship between transitivity and our main decision rule obtained
in Theorem 1. In particular, when we add transitivity, the only probabilities
in � that matter are those to which the decision maker attributes maximum
plausibility that is, those in f�� = 0g , otherwise probabilities presents null plau-
sibility, i.e., � = f�� = 0g[f�� =1g. Also, note that transitivity implies that
every probability that matter has the same degree of plausibility.

Proposition 8 Let % be a variational Bewley preference. The following con-
ditions are equivalent:
(i) The preference % satis�es transitivity;
(ii) For all f; g 2 F

f % g i¤
Z
u(f)dp �

Z
u(g)dp, for any p 2 f�� = 0g ;

(iii) The function �� takes on only values 0 and 1.

7.2 Divergence Bewley preferences

We now introduce a new class of variational Bewley preferences that play an
important role in the rest of this section. Assume there is an underlying proba-
bility measure q 2 �� . Given a convex continuous function � : R+ ! R+ such
that �(1) = 0 and limt!1 �(t)=t = 1, the �-divergence of p 2 � with respect
to q is given by

D� (p k q) =
�R

�
�
dp
dq

�
dq; if p 2 �� (q)

1; otherwise.
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The mappings D�(� k �) are well known as standard divergences, which
are a widely used notion of distance between distributions in statistics and
information theory10 . The two most important divergences are the relative
entropy given by � (t) = t ln t� t+ 1, and the relative Gini concentration index
given by � (t) = (t� 1)2 =2.
The next lemma due to Maccheroni et. al. (2006) presents some important

properties of divergences.

Lemma 9 A divergence D� (� k q) : � ! [0;1] is a grounded, convex, and
lower semicontinuous function, and the sets fp 2 � : D� (p k q) � tg are weakly
compact subsets of �� (q) for all t 2 R.

Thanks to the above properties, preferences % on F that satis�es the fol-
lowing rule

f % g ,
Z
fu(f)� u (g)g dp � ��D� (p k q) ; 8p 2 �;

where � > 0 and u : X ! R is an a¢ ne function, belong to the class of
variational Bewley preferences. In view of their interesting properties, we call
them divergence Bewley preferences.

Theorem 10 Divergence Bewley preferences are monotone continuous varia-
tional Bewley preferences with index of ambiguity aversion given by

�� : p 2 �! �D� (p k q) .

Concerning the analysis of comparative attitudes, the next simple conse-
quence of Proposition 7 shows that they depend only on the parameter �, which
can therefore be interpreted as a coe¢ cient of ambiguity level. In order to be
more speci�c about �, we speak of �-divergence Bewley preferences.

Corollary 11 Given two �-divergence Bewley preferences %1 and %, the fol-
lowing statements are equivalents:

Proposition 12 a) The preference relation %1 reveals more ambiguity than %2
b) Both decision makers has the same attitudes towards risk (w.l.g, u1 = u2)

and �1 � �2.

This result says that divergence Bewley preferences become revealing more
and more (less and less, resp.) ambiguity as the parameter becomes closer and
closer to 0 (closer and closer to 1, resp.). In fact, since for any p 2 �� (q)

lim
�!1

�D� (p k q) =
�
1, if p 6= q
0, if p = q

;

10Csiszár (1963) introduced the notion of �-divergences D� (� k �) for probability measures
and Liese and Vajda (1987) extended �-divergences D� (� k �) to �nite or in�nite measures:
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we obtain that divergence Bewley preferences tend, more and more, as � !1
, to rank acts according to the SEU criterion with subjective probability q. On
the other hand, since for any p 2 �� (q)

lim
�!0

�D� (p k q) = 0;

we obtain that divergence Bewley preferences tend more and more, � ! 0, to
rank acts according to the very cautious criteria. For example, when q has a
�nite support supp(q) such cautious criteria says that11

f % g i¤ u (f (s)) � u (g (s)) ; 8s 2 supp (q) .

We commented that the two most important divergences are the relative
entropy and the relative Gini concentration index given, which motivates the
following examples:

Example 13 If � = �R (� k q) : � ! [0;1], where q 2 �� (�-additive proba-
bility) and

R (p k q)=
�R

log
�
dp
dq

�
dp if p� q

1; otherwise
is the relative entropy index (w.r.t q), we obtain a preference relation in a similar
spirit of Hansen and Sargent (2001)´ s robustness model, but with a decision rule
a la Bewley, which we dub as entropic Bewley preferences.

Example 14 if � = �G (� k q) : �! [0;1], where q 2 �� and

G (p k q)=
� 1
2

R �
dp
dq � 1

�2
dq if p� q

1; otherwise

is the classic concentration Gine index, which is related to the well known model
proposed by Tobin (1958) and Markowitz (1952). In fact, Macherroni, Mari-
nacci and Rustichini (2006) showed that such ambiguity index for variational
preferences entails the Tobin and Markowitz preference. We say that % is a Gine
Bewley preference if % is a divergence Bewley preference for which �G (� k q) is
the ambiguity index.

7.3 More examples

Completing the list of examples we proposed two cases not included as Bewley
multiple prior preferences or divergence Bewley preferences:

11For the general case we need to assume some topological struture on the state spade
because

supp (q) := \fE � S : E is closed and q (Ec) = 0g
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Example 15 If � = �R (� k C) : �! [0;1], where q 2 �� and

R (p k C)= inf
q2C

R (p k q)

is the relative entropy index w.r.t. C12 , we obtain an interesting generalization
of entropic Bewley preferences. In fact, note that if C is not a singleton it means
that the decision maker has a multiple set of full plausible priors and such
decision maker reveals more ambiguity that any decision maker a la entropic
Bewley preferences with same parameter � and reference prior q belonging to C.

Example 16 Now we consider a example without any requirement of countable
additivity. Consider the mapping � = �zo�v (�) : � ! [0;1], where � > 0,
z : [0; 1] ! R+ [ f+1g is an increasing convex functions with z (0) = 0,
v : �! [0; 1] is a convex capacity13 , and

�v (p)= sup
E2�

fv (E)� p (E)g , 8p 2 �

is the plausibility index w.r.t. the capacity v. In this case, the set of full
plausible priors is the core of the capacity v, in fact

�v (p) = 0, p 2 core (v) .

8 Final Remark

We saw that variational Bewley preferences, in general, is not transitive. For a
concrete example, consider the case of two states of nature and a decision rule
given by:

a 3 b i¤ �a1 + (1� �) a2 + (� ln�) � �a1 + (1� �) a2;8� 2 [0; 1]

i.e.,
a 3 b i¤ ga;b (�) � ln�; 8� 2 [0; 1] ;

where ga;b (�) = � (a1 � a2 + b2 � b1) + (a2 � b2). Note that ga;b (0) = a2 � b2
and ga;b (1) = a1 � b1, so a 3 b implies that a1 � b1. In this case, the decision
maker views the state 2 as a miracle but he is prudent and does not accept large
losses in the case of a future miracle. It is possible to �nd a; b; c 2 R2+ where
ga;b (�) � ln (�) ; gb;c (�) � ln (�) but not ga;c (�) � ln (�) (suitable parameters
where b1 � c1 < a1 � b1 < a1 � c1 and b2 � c2 > a2 � b2 > a2 � c2).
12See Lemma 4 (page 41) of Strzalecki (2007).
13A capacity satis�es
a) v (;) = 0; v (S) = 1;
b) A � B ) v (A) � v (B) ;
Convexity means (note that c implies b)
c) For any A;B 2 �,

v (A [B) + v (A \B) � v (A) + v (B) :
Also, the core of v is given by

core (v) := fp 2 � : p (E) � v (E) ; 8E 2 �g :

12



9 Appendix

We recall that B0 (�) is the vector space generated by the indicator functions
of the elements of �, endowed with the supnorm. We denote by ba (�) the
Banach space of all �nitely additive set functions on � endowed with the total
variation norm, which is isometrically isomorphic to the norm dual of B0 (�), so,
in this case the weak* topology � (ba:B0) of ba (�) coincides with the event-wise
convergence topology.
Given a binary relation D on B0 (�), some properties follows as:

� D is re�exive if a D a for every a 2 B0 (�) ;

� D is transitive whenever a; b; c 2 B0 (�), if a D b and b D c then a D c;

� D is non-trivial if the exists a; b 2 B0 (�) such that a D b but not b D a
(in this case we wrote a B b);

� D is continuous if given fangn , fbngn sequences in B0 (�) such that an D
bn for all n 2 N , an ! a and bn ! b then a D b;

� D isArchimedean if for all a; b; c 2 B0 (�) the sets f� 2 [0; 1] : �a+ (1� �) b D cg
and f� 2 [0; 1] : c D �a+ (1� �) bg are closed in [0; 1] ;

� D is s-a¢ ne if for all a; b; c1; c2 2 B0 (�) and � 2 (0; 1) such that c1 D c2;

a D b i¤ �a+ (1� �) c1 D �b+ (1� �) c2;

� D is a¢ ne if for all a; b; c 2 B0 (�) and � 2 (0; 1) ;

a D b i¤ �a+ (1� �) c D �b+ (1� �) c;

� D is monotonic if a � b then a D b;

� D is monotonic continuous if for any r1; r2; t 2 R such that r11S B r21S
and for all sequences of events fAngn�1 with An # ;, there exists n0 � 1
such that r11S D xAn0z.

Lemma 17 A re�exive, a¢ ne and monotonic binary relation 3 on B0 (�) is
continuous if and only if it is Archimedian.

Proof. The proof follows from Gilboa, Maccheroni, Marinacci and Schmeidler
(2008): In fact, they showed that an a¢ ne and monotonic preorder is continuos
if and only if it is Archimedean. First, we note that it is obvious that if D is
convex then D a¢ ne because D is re�exive. So, we can mimic Lemma 1 (page
32), Lemma 2 (page 33)14 , and Lemma 3 (page 35) without transitivity.
Theorem 1:

Proof. (1)) (2) :

14Concerning Lemma 2, note that in our case K is the whole set of real numbers, which is
not an important assumption for this result.
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By Axiom 2, Axiom 3 and Axiom 5 the restriction of % on X �X satis�es
the set of the von Neumann-Morgenstern (1944)´s axioms and then there exist
a non constant function u : X ! R such that x % y if and only if u(x) � u(y)
such that for any x; y 2 X and � 2 (0; 1) ;

u(�x+ (1� �) y) = �u (x) + (1� �)u (y) ;

i.e., u is an a¢ ne function. Moreover, u is unique up to positive linear trans-
formation15 . Also, an important fact comes from the Axiom 6 about Unbound-
edness, in fact, we obtain that u (X) = R (see, for instance, MMR 2006).
Now we de�ne the binary relation D over the set B0 (�) = fu(f) : f 2 Fg

by:
a D b, f % g, for some f; g 2 F such a = u(f) and b = u(g).

We note that D is well de�ned on B0 (�) and

a D b, f % g, for any f; g 2 F such a = u(f) and b = u(g).

We note that D is:
Re�exive: Given a 2 B0 (�) we have that a = u(f) for some f 2 F , and

since % is re�exive f % f which implies that a D a;
Non-trivial : We know that% is non-trivial because there exists x; y 2 X such

that x % y but not y % x, so by considering the constant functions a := u(x)1S
and b := u(y)1S on B0 (�) we have that a D b but not b D a, i.e., a B b;
S-a¢ ne: Consider a; b; c1; c2 2 B0 (�) and � 2 (0; 1) such that c1 D c2.

Hence there exist f; g; h1; h2 such that a = u(f), b = u(g), c1 = u(h1), and
c2 = u(h2), in particular h1 % h2. Since % satis�es the s-independence,

a D b, f % g , �f + (1� �)h1 % �g + (1� �)h2
, u (�f + (1� �)h1) D u (�g + (1� �)h2)
, �a+ (1� �) c1 D �b+ (1� �) c2:

Archimedean: Consider a = u(f); b = u(g); and c = u(h) 2 B0 (�), then

f� 2 [0; 1] : �a+ (1� �) b D cg = f� 2 [0; 1] : �u(f) + (1� �)u(g) D u(h)g
= f� 2 [0; 1] : u(�f + (1� �) g) D u(h)g
= f� 2 [0; 1] : �f + (1� �) g % hg ;

is closed in [0; 1] because the Archimedean Continuity of %, and a similar argu-
ment shows that f� 2 [0; 1] : c D �a+ (1� �) bg is closed too.
Monotonic: If a = u(f) � b = u(g) then f (s) % g (s) for any s 2 S and the

monotonicity of % implies that f % g, hence a D b.
Now we de�ne a very useful mapping �� : �! R [ f+1g for our represen-

tation and it is given by the following rule: for any probability p 2 �;

��(p) = sup
(f;g)2%

�Z
(u(g)� u(f)) dp

�
= sup

(a;b)2D

�Z
(b� a) dp

�
:

15See, for instance, section 2.2 of Föllmer and Schied (2004).
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Since (a; a) 2D for each a 2 B0 (�), it is true that ��(p) �
�R
(a� a) dp

�
= 0,

i.e., �� is a non-negative function.
Now, we de�ne the mapping:

(�� D) 3 (p; (a; b)) 7! �(a;b) (p) =

Z
(b� a) dp:

Clearly, for each (a; b) 2D the function �(a;b) (�) : � ! R is linear and weak�
continuous. Also, since the supremum of continuous (lower semicontinuous func-
tion) is lower semicontinuous16 we have that

�� (�) = sup
(a;b)2D

�(a;b) (�)

is weak� lower semicontinuous. Moreover, �� is convex because the supremum
of linear functions is a convex function17 .
Now we intent to show that f� = 0g 6= ;. First we will show that infp2� �� (p) =

0 and for this part of the proof we need the following result:
von Neumann´ s minimax theorem18 : Let M and N be convex subsets of

vector spaces supplied with topologies If M is compact and � :M �N satisfy:
i) for any y 2 N , M � x 7! � (x; y) is convex and lower semicontinuous;
ii) for any x 2M , N � y 7! � (x; y) is concave.
Then

inf
x2M

sup
y2N

� (x; y) = sup
y2N

inf
x2M

� (x; y) .

In our case M = � and N =D. We note since D is s-a¢ ne, if (a; b) 2D and
(c1; c2) 2D then for any � 2 [0; 1] , we have that

(�a+ (1� �) c1; �b+ (1� �) c2) 23 ,

i.e., D is a convex subset of B0 (�)
2 and, clearly, � is a convex subset of

ba (�). Also, by the Banach-Alaoglu-Bourbaki theorem19 , � is a weak� compact
subset of ba (�). By what we have observed �� is convex and weak� lower
semicontinuous. Moreover, it is easy to see that the function

(a; b) 7! �(a;b) (p) =

Z
(b� a) dp

is a¢ ne (hence concave) for each p 2 �. Hence, by the minimax theorem and
the fact that (by monotonicity) (a; b) 2D implies that a (s0) � b (s0) for some
16See, for instance, Brézis (1984), page 8.
17See, for instance, Brézis (1984), page 9.
18The proof of this classical result can be found in Aubin and Ekeland (1984), chapter 6.
19See, for instance, Brézis (1984) page 42.

15



s0 :

inf
p2�

sup
(a;b)2D

�Z
(b� a) dp

�
=

sup
(a;b)2D

inf
p2�

�Z
(b� a) dp

�
=

sup
(a;b)2D

inf
s2S

(b (s)� a (s))| {z }
�0

(3 is re�exive)
= 0:

Now we will show that there exists some q 2 � such that �� (q) = 0. Since
�� (q) � 0, it is enough to show that there exists q 2 � such that �� (q) � 0,
i.e., it is possible to �nd q 2 � such thatZ

(a� b) dp � 0 for any (a; b) 2D .

Denoting E = B0 (�) and E� its dual, then our problem is to �nd some
x� 2 E� such that

hx�; 1Si � 1

hx�;�1Si � �1
hx�; a� bi � 0, for any (a; b) 2D .

The mathematical tool for this kind of problem was given by Fan (1956), page
126:
Ky Fan´ s theorem: Given an arbitrary set �, let the system

hx�; xii � �i; i 2 � (�)

of linear inequalities; where fxigi2� be a family of elements, not all 0, in real
normed linear space E; and f�igi2� be a corresponding family of real numbers.
Let � := sup

nP
j=1

�j�ij when n 2 N , and �j vary under conditions: �j � 0,

8j 2 f1; :::; ng and





 nP
j=1

�jxij







E

= 1. Then the system (�) has a solution

x� 2 E� if and only if � is �nite.
Let us consider �1; �2; :::; �n � 0 and 1S ; �1S ; (aj ; bj) 2D; 3 � j � n such

that: 





�11S + �2(�1S) +
nX
j=3

�j (aj � bj)








1

= 1;

it follows that

�11S � �21S +
nX
j=3

�j (aj � bj) � 1S ;
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hence,

�1 � �2 +
nX
j=3

�j

Z
(aj � bj) dp � 1 for any p 2 �;

since

��� (p) = inf
(a;b)2D

�Z
(a� b) dp

�
,

we obtain that

�1 � �2 � �� (p)
nX
j=3

�j � 1 for any p 2 �;

we saw that infp2� �� (p) = 0, hence supp2� f��� (p)g = 0 and,

�1 � �2 = �1 � �2 + sup
p2�

(��� (p))
nX
j=3

�j � 1,

i.e.,
nP
j=1

�j�j � 1; where �1 = 1, �2 = �1, and �j = 0, 3 � j � n. Hence � is

�nite and by Ky Fan�s theorem there exists q 2 � such that �� (q) = 0.
For the last statement in the theorem note that if f0 % g0 then �� (p) �R
(u(g0)� u(f0)) dp for any p 2 �, henceZ

u(f0)dp+ �
� (p) �

Z
u(g0)dp for any p 2 �.

Conversely, if (f0; g0) =2% then (a0; b0) =2D, where a0 = u(f0) and b0 = u (g0).
Since D is a nonempty, convex (by s-independence) and closed (by Lemma 17)
subset of B0 (�) � B0 (�). Using the separation theorem20 there exists q 2 �
that de�nes the linear functional 	((a; b)) =

Z
(b� a) dq over B0 (�)�B0 (�) ;

and21 Z
(b0 � a0) dq > sup

(a;b)2D

Z
(b� a) dq = �� (q) ;

20See, for instance, the theorem I.7 at page 7 in Brézis (1984).
21 In fact, since by Schatten (1950), (B0 (�)�B0 (�))� = B0 (�)��B0 (�)� we obtain that

	((a; b)) =

Z
bdq1 �

R
adq2 with q1; q2 2 ba (�). Since (a; a) 2D for all a 2 B0 (�) we obtain

that 	((a; a)) = 0; in fact, if 	((a; a)) 6= 0 we obtain that
sup
k2Z

	((ka; ka)) =1;

but
	((a0; b0)) > sup

k2Z
	((ka; ka)) ;

a contradiction. In particular, q1 = �q2. Also, we note that q1 � 0; if q1 (E) < 0 for some
E 2 � by monotonicity we obtain that (nq1 (E) 1S ; 0) 2D for any n � 1 and

	((a0; b0)) > sup
n
f�nq1 (E)g =1;

a contradiction. Finally, w.l.g. we may suppose that q1 (S) = 1.
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i.e., there exists q 2 � such that,Z
u(f0)dq + �

� (q) <

Z
u(g0)dq:

(2)) (1) :
It is straightforward.
That �� is minimal is easy: in fact, if there exists a grounded, convex and

lower semicontinuous function 
 : �! [0;1] such that for any f; g 2 F ;

f % g ,
Z
u(f)dp+ 
(p) �

Z
u(g)dp; 8p 2 �;

then


(p) �
Z
u(g)dp�

Z
u(f)dp; 8p 2 � and 8 (f; g) 2%

so, for any p 2 �


(p) � sup
(f;g)2%

�Z
u(g)dp�

Z
u(f)dp

�
= �� (p) :

Proof of Corollary 3:
Proof. Let (u; ��) represent % as in Theorem 1. Taking another representation
(u1; �

�
1) of % as in Theorem 1, by its key equivalence u and u1 are a¢ ne repre-

sentations of the restriction of % to the set of consequence X. Hence, by a well
known uniqueness results, there exists � > 0 and � 2 R such that u1 = �u+ �.
By the characterization of �� obtained in Theorem 1 for any probability p;

��1(p) = sup
(f;g)2%

�Z
(u1(g)� u1(f)) dp

�
= sup

(f;g)2%

�Z
�u (g) + � � (�u (g) + �) dp

�
= sup

(f;g)2%

�Z
�u (g)� �u (g) dp

�
= ��� (p) .

Proof of Proposition4:
Proof. Consider the asymmetric component �� F � F induced from a varia-
tional Bewley preference %. Since it is well know a su¢ cient condition for � to
be acyclic is the existence of a real-valued function V on F such that

f � g ) V (f) > V (g) .

Now, consider

V (f) = min
p2�

�Z
u (f) dp+ �� (p)

�
;
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if there exist acts f; g such that f � g and V (f) � V (g) thenZ
u (f) dp+ �� (p) �

Z
u (g) dp, 8p 2 �;

9p0 2 � s.t.
Z
u (g) dp0 + �

� (p0) <

Z
u (f) dp0,

and 9q1; q2 2 � s.t.
Z
u (f) dq1 + �

� (q1) �
Z
u (g) dq2 + �

� (q2) .

Hence, since � is convex, for any n 2 N;

Z
u (f) d

0@ :=q1np0z }| {
n�1q1 +

�
1� n�1

�
p0

1A+ �� (q1np0)
�

Z
u (f) d (q1np0) + n

�1�� (q1) +
�
1� n�1

�
�� (p0)

�
Z
u (g) d (q2np0) + n

�1�� (q2) +
�
1� n�1

�
�� (p0)

which entails,Z
u (g) dp0 + �

� (p0)

= lim inf
n!1

�Z
u (g) d (q2np0) + n

�1�� (q2) +
�
1� n�1

�
�� (p0)

�
� lim inf

n!1

�Z
u (f) d (q1np0) + �

� (q1np0)

�
� lim inf

n!1

Z
u (f) d (q1np0) + lim inf

n!1
�� (q1np0)];

Since �� is weak� lower semi-continuous and (q1np0) (E)! p0 (E) for any E 2
�, we obtainZ

u (g) dp0 + �
� (p0) �

Z
u (f) dp0 + �

� (p0) >

Z
u (f) dp0;

a contradiction. Hence, f � g ) V (f) > V (g) and � is acyclic.

Lemma 18 Consider a preference relation % as in Theorem 1 and some par-
ticular utility index u : X ! R consistent with %jX�X . For any f; g 2 F there
exists a minimal c(f;g) � 0 such that for any c � c(f;g)

f % g i¤
Z
u(f)dp+ �� (p) �

Z
u(g)dp, for any p 2 f�� � cg .

In fact, c(f;g) = supuog � inf uof .
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Proof. The implication ()) is obvious. Now, suppose that

c � c(f;g) = supuog � inf uof:

Now consider p 2 � such that �� (p) � c(f;g). Since uoh 2 [inf uoh; supuoh] for
h 2 ff; gg we have that

uog � uof 2 [inf uog; supuog] ;

also, Z
(u(g)� u(f)) dp � ku(g)� u(f)k1 � supuog � inf uof � �� (p) :

Hence, if for some c � c(f;g)Z
u(f)dp+ �� (p) �

Z
u(g)dp, for any p 2 f�� � cg

then f % g.
Proof of Proposition 5:

Proof. (i) implies (ii):
Let p 2 ba (�) nca (�) be a non-countably additive probability. Hence there

exists a sequence of events fAngn�1 such that An # ; and p (An) # � > 0. So,
since u (X) = R for each n � 1 there exists some xn such that u (xn) = n�1.
Consider z 2 X such that u (z) = 0. Hence, monotonicity implies that xn � z.
Now, by considering xm 2

n
u�1

�
(�n)

�1
+m

�o
, m � 1, we obtain by the

monotonic continuity axiom that there exist k = k (n) such that

xn % xmAkz:

Hence,

�� (p) �
Z
(u (xmAkz)� u (xn)) dp

=
�
(�n)

�1
+m

�
p (Ak)� n�1

= mp (Ak) +
1

n

�
p (Ak)

�
� 1
�
;

so, for any m � 1

�� (p) � lim
n!1

�
mp (Ak) +

1

n

�
p (Ak)

�
� 1
��

= lim
n!1

mp
�
Ak(n)

�
+ lim
n!1

1

n

�
p (Ak)

�
� 1
�

� m�;

which implies that �� (p) =1. Hence, if �� (p) <1 then p 2 ca (�).
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(ii) implies (i):
Let x; y; z 2 X such that y � z and a sequences of events fAngn�1 with

An # ;. If y % x we have by monotonicity (y statewise dominates xAnz) that
y % xAnz 8n � 1. On the other hand, consider the case where x � y. We need
to show that there exists some n0 � 1 such that

y % xAn0z.

By the previous Lemma, choosing c = u (x)�u (y)+1 it is enough to show that
for any p 2 f�� � cg,

u (y) + �� (p) �
Z
u (xAnz) dp.

Recalling that �� is weak� lower semicontinous we have that f�� � cg is a
weak� compact set of countably additive probabilities, so it is a weak com-
pact subset of countably additive probabilities. By Theorem IV.9.1 of Dun-
ford and Schwartz (1958) it follows that if " > 0 and An # ; there exists no
such that p (An) < " for any n � n0 and all p 2 f�� � cg. Hence, putting
" = [u (y)� u (z) + �� (p)] = [u (x)� u (z)] we know that there exists n0 such
that

p (An) < [u (y)� u (z) + �� (p)] = [u (x)� u (z)] ;

for any n � n0 and for any p 2 f�� � u (x)� u (y)g. Hence, for any p such that
�� (p) � c

u (y) + �� (p) > p (An)u (x) + u (z) (1� p (An)) =
Z
u (xAnz) dp;

and we conclude that y % xAnz for any n � n0.
Proposition 7

Proof. a)) b) Concerning the same risk attitudes, it follows from Ghirardato
et. al. (2004), Corollary B.3, i.e., we can take u1 = u2 = u.
By assumption f %1 g ) f %2 g, i.e., %1 � %2. So, for any p 2 � :

��1 (p) = sup
(f;g)2%1

�Z
(u(g)� u(f)) dp

�
� sup

(f;g)2%2

�Z
(u(g)� u(f)) dp

�
= ��2 (p) :

b) ) a) Consider (f; g) 2%1, i.e.,
R
u(f)dp + ��1(p) �

R
u(g)dp; 8p 2 �.

Since ��2 � ��1, we obtain that for any p 2 �;Z
u(f)dp+ ��2(p) �

Z
u(f)dp+ ��1(p) �

Z
u(g)dp;

i.e., f %2 g.
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