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Abstract. This paper analyzes a normal form game in which actions as well as contracts are

contractible. The contracts are required to be representable in a formal language. We prove a

folk-theorem for games with and without privately informed agents. This is accomplished by

constructing contracts which are definable functions of the Godel code of every other player’s

contract. We use this to illustrate the ’meet the competition’ argument from Industrial Organ-

ization and the ’principle of reciprocity’ from Trade and Public Finance.

1. Self Referential Strategies and Reciprocity in Static Games

The idea that players in a game might simultaneously commit themselves to react to their

competitors actions is heuristically compelling. The best known expression of this idea is well

known in the industrial organization literature (e.g. [8]) as the ’meet the competition’ clause. A

similar idea appears in trade theory as the principle of reciprocity ( [1]). This takes the form

of trade agreements like GATT that require countries to match tariff cuts by other countries.

Finally, tax treaties sometimes have this flavor - for example, out of state residents who work in

Pennsylvania are exempt from Pennsylvania tax as long as they live in a state that has a reciprocal

agreement that exempts out of state residents (presumably from Pennsylvania) from state taxes.1

One way to model reciprocity is to embed it in a dynamic game. For example the tit for tat

strategy in the repeated prisoners’ dilemma makes each player’s action depend on the action of the

other. The ’meet the competition’ argument could be supported formally by having one firm acts

as a Stackleberg leader, offering a contract that commits it to an action that depends explicitly

on the action of the second mover. Tax reciprocity could again be accomplished by embedding

the problem in a repeated game in which states keep lists of other states whom they consider to

have an appropriate tax treaty, deleting a state from the list if they observe some kind of bad

behavior. Our interest here is whether this same kind of reciprocal behavior could be modelled in

a completely static game.

To illustrate the problem, and our solution, focus first on the meet the competition argument.

The Stackleberg leader, call it firm A, offers to sell at a very high price provided its competitor,

firm B, also offers that high price in the second round. If B in the second round offers any price

below the highest price, A commits itself to sell at marginal cost. If B believes this commitment,

then his best reply is to set the highest price. If the firms move simultaneously, then the logic of

the argument becomes clouded. A could certainly write a contract that commits it to a high price

1http://www.revenue.state.pa.us/revenue/cwp/view.asp?A=238&Q=244681
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if B sets the same high price. However suppose that B’s strategy is simply to set this high price

and that for some reason this is a best reply to A’s contract. Then A should deviate and simply

undercut firm B. To support the high price outcome, firm B would have to offer a contract similar

to A’s in order to prevent A’s deviation. A naive argument would suggest that B should simply

offer the same contract as A, a high price if A sets a high price, and marginal cost otherwise.

Casually, two outcomes seem consistent with these contracts - both firms price at marginal cost

or both firms set the high price. This seems to violate a fairly fundamental property of game

theory which is that for each pair of actions (contracts in this case), there is a unique payoff to

every player.2 More to the point, A’s contract doesn’t actually say what A would do if B offers a

contract that promises to set a high price unless A sets a lower price, etc. The specification of the

problem itself seems to be ambiguous about payoffs.

The reciprocal tax agreement also nicely illustrates the difficulty in a static game. State A

wants to exempt residents of state B from state taxes provided B exempts residents of state A

from taxes. To write the law A exempts residents from any state that has a ’reciprocal’ agreement

with state A. The question is what exactly is a ’reciprocal’ agreement. It is clear enough what

the intention is - create a situation in which both states take the mutually beneficial action of

exempting one another in a way that eliminates any incentive for either of them to deviate. As

mentioned above, it isn’t enough to assume that state B unconditionally exempts residents of state

A from tax because A would not longer have any incentive to exempt state B. State B has to have

a law like the law in state A, in other words, a reciprocal agreement.

It seems that to resolve this kind of problem one needs to define the term ’reciprocal contract’

as follows:

reciprocal contract ≡
exempt if the other state offers a reciprocal contract,don’t otherwise

This kind of definition is familiar from the Bellman equation in dynamic programming where the

value function is defined in a self referential way. It is tempting to model this in the following naive

way: start by defining a collection of contracts that seem economically sensible. For example, it is

reasonable that a state could write a contract that simply fixes any tax rate independent of what

the other states do. Let C be the set of contracts that simply fix some unconditional tax rate.

Append to this set of feasible contracts the reciprocal contract, call it r, defined above. Now model

the set of feasible contracts as C ∪ {r}. The reciprocal contract above is just r, while ’otherwise’
means any contract with a fixed tax rate. Define a normal form game in which the strategies are

C ∪ {r} and declare the outcome if both states offer r to be (exempt, exempt). Voila, there is an
equilibrium in which the states mutually exempt (assuming they jointly want to).

2One paper that allows multiple payoffs to be associated with each array of actions is [9] who use this approach

to support equilibrium when it might not otherwise exist.
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We would argue that this is unsatisfactory for a number of reasons. First, it is undesirable

to restrict the set of feasible conracts in order to support the outcome you are looking for. The

approach described above amount to little more than saying that r is the only feasible contract,

then claiming it is an equilibrium for both states to offer r. A more satisfactory approach is

to define a set of actions that seem economically meaningful, then to allow the broadest set of

contracts possible. In the same manner that the value function emerges endogenously from the

economic environment, the reciprocal contract should be derived from economic fundamentals.

One complication that makes this problem conceptually more difficult than the Bellman problem

is that it isn’t clear what the appropriate set of feasible contracts should be. Clearly states can

go further than simple unconditional tax rates. Existing laws do allow them to make things

contingent on laws in other states, as the reciprocal tax agreement illustrates. One contribution of

our approach is to provide a potential framework for thinking about this set of feasible contracts.

As we describe in more detail below, definable functions can all be written as finite sentences in a

formal language. In a heuristic sense, this seems exactly what the set of contracts should look like.

Of course, in the way it is used here, definability is very abstract. Yet it is abstract in the way that

direct mechanisms are abstract - it captures in a formal way ’indirect’ contracts that look much

more familiar.

Second, the approach described above misses the essence of reciprocity which is the infinite

regress involved in self referential objects. A contract that makes formal sense is the following:

C =

exempt if other State exempts any State who exempts any State who exempts. . .don’t otherwise

where the statement in the top line is repeated ad infinitum. Arguably, the contract C is a

reciprocal contract since it would exempt any State offering a reciprocal contract. Yet it simply

isn’t feasible under the naive description given above.

Of course, in the spirit of the ad hoc approach above, we could try to add the contract C to r

and C. This approach breaks down once the game becomes asymmetric. For example, if State A

is supposed to exempt, while state B is supposed to take some other action, say ’partly exempt’,

then to support the right outcome, the contracts should look something like the following:

reciprocal contractA ≡
exempt if other State offers reciprocal contractBdon’t exempt otherwise

and

reciprocal contractB ≡
partially exempt if other State offers reciprocal contractAdon’t exempt otherwise

Now the contracts are not directly self referential, as is the Bellman equation, instead they are

cross referential. A single self referential or reciprocal contract simply doesn’t go far enough.

Furthermore, the contracts above use a blanket punishment for deviations. Desirable or interesting
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equilibrium allocations may not look like this. For example, in a Bayesian game between the states,

State A might want to do something different for each different thing that state B might do. This

might arise if the action and contract chosen by B convey some information to A that affects A’s

most desirable action.

In this paper, we offer a formalism that provides a way to think about self-referentiality and

reciprocity. Suppose there are N players in a normal form game in which each player has a

countable number of actions. Endow players with a formal language that they can use to write

contracts and think of the set of feasible contracts as the set of finite sequences of words in this

formal language. It is well known that there are bijections from the set of finite texts into N. One
such a mapping is called the Godel Coding. Provided the language includes all the natural numbers

and the usual arithmetic operations, it is possible for players to write contracts that are definable

functions from NN−1 into that player’s action space. Since definable functions can be written as
finite sequences of words in the language, they have Godel codes associated with them. Hence we

could interpret the definable functions as contracts that make the players action depend on the

Godel code of the other player’s contract.

To make the argument easier to relate to conventional contract theory, we assume below that

the strategy space for each player is the set of definable functions from NN−1 into the player’s
action space. Implicitly, this approach makes it possible for players to offer any finite text as a

contract. We defer discussion of this point to later in the paper. Every definable function can

be associated with a unique integer, and conversely if the integer n is associated with a definable

function, then it is associated with a unique definable function. Now for each array of functions

chosen by the players, compute the Godel Code of each such function. Fit the codes of the other

players’ strategies into each player’s strategy to determine a unique action for every player. Then

use the payoffs associated with those actions to define unique payoffs associated with every array

of strategies chosen by the players.

Our objective is to try to characterize the set of equilibria of this game. To see how it works, we

might as well restrict attention to a two player prisoner’s dilemma. Call the players 1 and 2, and

the actions C and D with the usual payoff structure in which D is a dominant strategy and both

players are strictly better off if they both play C than they are if they both play D. A strategy c

for a player is a definable function from N to {C,D}. One obvious equilibrium of this game occurs

when both players use a strategy that chooses action D no matter what the Godel code of the

other player’s strategy.

Every definable strategy has a Godel code. Let [c] denote the Godel code of the strategy c and

refer to [c] as the ’encoding’ of c. Since the Godel coding is an injection from the set of definable

strategies to the set of integers. For any pair of strategies c1 and c2, the action (C or D) taken by

player 1 is c1 ([c2]) and similarly for player 2. Since every pair of actions determines a payoff, this

procedure associates a unique payoff with every pair of strategies.
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There are many things that aren’t definable strategies that also have Godel codes. We want to

make use of some of these other things. In particular, we want to use definable strategies with free

variables. For example, there is a subclass of definable strategies for player 1 defined parametrically

by

γx (n) =

C n = x,

D otherwise.

This is simply a definable strategy with a free variable x, where x is the target code of the other

player’s strategy that will trigger the cooperative action. Definable strategies with free variables

are also definable, and so they too have Godel codes. The strategy with free variable that we want

is a slight modification of the one above, in particular

(1) cx (n) =

C n =
h
hxi(x)

i
,

D otherwise.

The mapping < x >(x)is the composition of two functions. First, the function hxi is the inverse
operation to the Godel coding. That is, < n > is the text whose Godel code is n. Second, if φ is

a text with one free variable, then φ(n) is the same text where the value of the free variable is set

to be n. Hence, if n is a Godel code of a definable strategy with one free variable, then < n >(n)

is itself a definable strategy (without a free variable).
h
hni(n)

i
is just the Godel code of whatever

this definable strategy happens to be. Notice that in this case, [hxi (x)] won’t be equal to x since a
definable strategy must have a different Godel code from a definable strategy with one free variable

because of the fact that the Godel coding is injective.

We want to define a strategy by fixing a value for x in (1). In particular, the value of x we are

interested in is [cx]. Since [cx] is the Godel code of a strategy with a free variable, the right hand

side of (1) requires that we decode [cx] to get cx, then fix x at [cx] to get the contract c[cx]. Putting

all this together gives

c[cx] (n) =

C n =
£
c[cx]

¤
D otherwise

So

c[cx] ([c2]) =

C [c2] =
£
c[cx]

¤
D otherwise

is a the ’reciprocal’ or self-referential contract mentioned above. Now we simply need to verify

what happens when both players use strategy c[cx].

If player 2 uses strategy c[cx], then [c2] =
£
c[cx]

¤
, which evidently triggers the cooperative action

by player 1. The same argument applies for player 2. Player 2 can deviate to any alternative

definable strategy c0 that she likes. Since every definable strategy has a Godel code, the reaction of

player 1, and consequently both players payoffs are well defined. As the Godel coding is injective,

c0 6= c[cx] implies the Godel code of c
0 is not equal to

£
c[cx]

¤
, and the deviation by 2 induces 1 to

respond by switching from C to D.
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Notice that this argument makes use of an encoding of the strategy with free variable cx, which

isn’t a definable strategy. One might have expected the target code number to be associated

with a strategy instead of a strategy with a free variable. For example, it seems that to enforce

cooperation there needs to be a definable strategy c∗ with encoding [c∗] = n∗ such that

c∗ =

C [c2] = n∗

D otherwise

Of course, for arbitrary n∗ it will be false that [cn∗ ] = n∗. This leads to a fixed point problem

that, in fact, does not have a solution in general. More generally, one could try to construct a

self-referential contract by finding a fixed point of the the following problem. For each n, consider

cn ([c2]) =

C if [c2] = g (n) ,

D otherwise,

where g is a definable function. If there exists an n∗ such that [cn∗ ] = g (n∗), then cn∗ is obviously

a self-referential contract. Indeed, what we did above is that we chose g (n) to be [< n >(n)] and

showed that n∗ = [cx] is a corresponding fixed point.

To see how the strategy with free variable cx works, recall the reciprocal tax agreement

reciprocal contract ≡
exempt other State offers reciprocal contract

don’t exempt otherwise

and its recursive counterpart

C =

exempt if other State exempts any State who exempts any State who exempts. . .don’t otherwise

The ’reciprocal contract’ is c[cx] and the statement “other state offers reciprocal contract” is [c2] =£
c[cx]

¤
.

State A wants to exempt any state whose law fullfills a condition. For example, if the condition

it is looking for is that the other state simply exempts State S, then it would compute the Godel

code n0 = [∀n; c (n) = C] then use the strategy

cn0 =

C [c2] = n0

D otherwise

If it does that, then it can’t be an equilibrium as explained above. So what it needs to do is

to exempt any State whose law fullfills a condition that exempts any state whose law fullfills a

condition. For example, if it wanted to exempt State B if and only if State B’s law exempts state

A if and only if State A unconditionally exempts state B, then it would adopt the strategy c[cn0 ]
,

and so on.
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This is where the particular structure of the contract cx comes into play. Recall that

cx (n) =

C n =
h
hxi(x)

i
,

D otherwise.

It specifies exemption if and only if a condition is fullfilled, but it doesn’t seem to specify what

the condition is. However, it does require that whatever the condition x is, if x in turn depends

on a condition, then the condition that it depends on must be the same as the condition itself. To

see if x depends on a condition, we first decode it and find the statement hxi that the integer x
corresponds to. Then if it depends on some condition, we require that that condition be x itself,

which is the meaning of hxi(x). So now we can do the infinite regress. State A adopts a law that

exempts state B if and only if the Godel code of State B’s law is
£
c[cx]

¤
. This means that state

B’s law must be c[cx], or that B exempt A if and only if the Godel code of State A’s law is
£
c[cx]

¤
,

i.e., the same condition that A requires.

2. Literature

The approach we develop here is not the only way to sustain cooperation without repetition.

An alternative logic has been developed in the theory of common agency ([6] or [7]) in which

punishments are carried out through an agent. In problems in which principals interact through

many agents, this logic can be used to prove ’folk theorems’. The argument appears in a recent

paper by [5] and more generally in the working paper by [10]. The basic logic in the latter paper

works as follows - each principle offers a contract with a message space consisting of all the actions

that he could take. He then asks the agents to tell him what to do. If all but one of the agents

who interact with him names the same action, the principle takes that action, otherwise he takes

some default action. It pays the agents to agree with everyone else, because they expect everyone

to agree and accomplish nothing by deviating. If all principals offer this contract, then every agent

makes the same report to any given principle telling the principal to take some action that, along

with the instructions given to the other principals, provides the principle a payoff at least as large

as his minmax payoff. If any principle deviates and offers any alternative mapping from messages

to outcomes, the agents instruct the other principals to minmax the deviator.

In a very specialized environment, [5] makes an even simpler argument. Working in an envir-

onment in which agents take actions on behalf of principles (as in, for example, [3]), Katz imposes

enough quasi-linearity and separability such that for any fixed action, the principals can offer the

agent a contract such that the optimal effort for the agent under that contract implements the

desired action and provides the agent exactly his reservation payoff. Now take any collection of

actions for the principles that provides each principal at least his or her minmax payoff. Each prin-

cipal then offers the agent a contract with a binary message. If the agent sends the message 1, the

principle offers the agent a contract that implements his part of the collusive outcome. If the agent

sends the message zero, the principle offers a contract that implements the action that minmaxes
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the other principal. Each agent sends his or her principal the message 1 as long as his principle

offers this contract - deviations cause agents to send message zero, and lead to punishment.

One objection to contracts like this, and the folk theorems that they generate, is that they rely

heavily on agents coordinating their messages. Yamashita’s paper shows this in the most striking

way. Not only must agents coordinate on the same message, but the must also coordinate on the

message that the principals believe is driving the game before they offer their contracts. Not only

is such a strong reliance on equilibrium selection sensitive to common knowledge assumptions, it

is also very sensitive to possible collusion or unmodelled communication between agents. All the

arguments in this literature basically allow agents to tell principals what they should do. Katz’s

argument deals with a somewhat simpler environment in which a single agent is hired to carry out

an action on the part of the principal. The environment satisfies the assumptions in [4], so that

coordinated actions by the principals can be carried out by having each principal offer the agent

a menu of options, as they would in common agency. Agents punish deviations by changing the

choice they make from this menu. Since agents must be indifferent between the choices in the menu

to make this work, the environment is very restricted. Indifference again means that principals

must rely on agents choosing appropriately among actions to which they are indifferent.

In this paper we show how to support a folk theorem without the help of agents. This is done

by making contracts explicitly refer to one another. This cross referencing feature exploits the

concept of definability. Definable contracts can be encoded as integers, so contracts can refer to

contracts by referring to the integers associated with them. After all is said and done, the actions

the principals take are a joint consequence of the contracts that are offered by all the principals.

The implication of this is that contracts themselves can be written in such a way that deviations

by one principal trigger responses by other principals without any ambiguity about outcomes. This

method can be used to support a folk theorem.

We show how to support a folk theorem in a static normal form game in which there are no

agents. The following section adds the agents back and shows how to use the concept of definability

to provide a kind of revelation principle for competing mechanism problems, similar to that offered

by [2]. In our formulation, the agents are not responsible for instructing the principals to punish.

There is no need for them to do that since the contracts principals offer already condition on one

another.

These theorems come at a cost - contracts must be definable. In the final section of the paper,

we illustrate how definability restricts the physical environment.

3. The Language and the Gödel Coding

We consider a formal language, which is sufficiently rich to allow its user to state propositions

in arithmetic. Furthermore, the set of statements in this language is closed under the finite ap-

plications of the Boolean operations: q, ∨, and ∧. This implies that one can express, for example,
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the following statement:

∀n, x, y, z {[(n ≥ 3) ∨ (x 6= 0) ∨ (y 6= 0) ∨ (z 6= 0)]→ (xn + yn 6= zn)]} .
In addition, one can also express statements in the language that involve any finite number of free

variables. For example, “x is a prime number” is a statement in the language. The symbol x is

a free variable in the statement. Another example for a predicate that has one free variable is

“x < 4.” One can substitute any integer into x and then the predicate is either true or false. This

particular one is true if x = 0, 1, 2, 3 and false otherwise.

Let L be the set of all formulas of the formal language. Each of its element is a finite string

of symbols. It is well known that one can construct a one-to-one function L → N. Let [ϕ] be the
value of this function at ϕ ∈ L, and call it the Gödel Code of the text ϕ.
Definition 3.1. The function f : Nk → 2N is said to be definable if there exists a first-order

predicate φ in k + 1 free variables such that b ∈ f (a1, ..., ak) if and only if φ (a1, ..., ak, b) is true.

In the definition, the mapping f is a correspondence from Nk to N. Of course, if f (n) is a
singleton for all n ∈ Nk, then f is a function. We illustrate this definition with an example.

Example. Consider the following function defined on N:

f (a) =

(
0 if a is an even number,

1 if a is an odd number.

We show that this function is definable by constructing the corresponding predicate φ.

φ (x, y) ≡ {{y = 1} ∧ {y = 0}} ∨ {∃z : 2z = y + x} .
Notice that φ indeed has two free variables. (The variable z is not free because there is a quantifier

front of it.) The first part of φ states that y is either one or zero. The second part says that x+ y

is divisible by two. Notice that f (a) = 0 if and only if φ (a, 0) is true. To see this, first notice

that φ (a, b) is false whenever b /∈ {0, 1}. (This is because the first part of φ requires b to be zero
or one.) If b = 0 then φ (a, 0) is indeed true. If b = 1, then the second part of φ becomes false

because a+ b is an odd number.

4. A Normal Form Contracting Game

Suppose there are m players. Each player has a countable action space Ai =
©
ai1, a

i
2, ...

ª
.3 The

payoff of Player i is ui (a1, . . . , am) if the action taken by player j is aj . We use the conventional

notation that ui (ai, a−i) is the payoff to player i if he takes action ai while the other players take

action a−i. The game played we consider has two stages. At stage one, player submit contracts

simultaneously which are definable correspondences from Nm to 2N, where ‘definable’ is to be

understood in the sense of Definition 3.1. At stage two, players take actions simultaneously from

a subset of their actions spaces. If at stage one player j submitted contract cj (j = 1, ...,m),

3One notable example is to imagine a underlying finite game in which pure actions are Yi and Ai represents a

finite approximation of the set of mixtures on Yi.
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then player i can only take action aik at stage two if k ∈ ci ([c1] , ..., [cm]). We restrict attention to

pure-strategy subgame perfect equilibra of this game.

Our objective is to prove a folk theorem for this contracting game. The lowest payoff for any

player in any pure strategy equilibrium of the game in which players choose actions from A is

u∗i = min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) ,

Let a∗j be any one of the actions that j uses to attain his minmax payoff. Let us fix an action aiji
for player i, such that, ¡

a1j1 , ..., a
m
jm

¢ ∈ argmin
a−i

uj
¡
a∗j , a−j

¢
.

That is, aiji is the action that player i uses to punish player j. In addition, define ii = 1 for all

i ∈ {1, ...,m}.
Theorem 4.1. Let

©
a1k1 , . . . , a

m
km

ª
be any array of actions. These actions are supportable as an

equilibrium outcome in the contracting game with pure strategy SPNE if and only if ui (a) ≥ u∗i
for each i.

Before we proceed with the proof of the theorem, we recall two notations from the introduction.

First, if n ∈ N then < n > denotes the text whose Gödel code is n. That is, [< n >] = n. Second,

for any text ϕ, let ϕ(n1,...,nk) denote the statement where if the letter xi stands for a free variable

in ϕ then xi is evaluated at ni in ϕ for i = 1, ..., n. For example, if ϕ is x > y and n = 2, then ϕ(n)

is 2 > y. Consider now the following text in one free variable: < x >(x). One can evaluate this

statement at any integer. Since the Godel coding was a bijection < n > is a text for each n ∈ N.
In addition, ϕ(n) is defined for all ϕ and n. In addition, it is a well-known result in Mathematical

Logic, that if f (n) =
£
< n >(n)

¤
, then f is a definable function.

Proof. First, we prove the only if part. Fix an equilibrium in the contracting game. Let cj denote

the equilibrium contract submitted by player j (j = 1, ...,m) and let ui denote player i’s equilibrium

payoff. Notice, that player i can always offer a contract that does not restrict his action space.

That is, he can offer c : Nm → N, such that c (n1, ..., nm) = N for all (n1, ..., nm) ∈ Nm. The
contract c is obviously definable.4 We show that if ui < u∗i , player i is strictly better off by offering

c instead of ci. Let ecj = cj if j 6= i and eci = c. Let eAj =
n
ajk : k ∈ ecj ([ecj ] , ..., [ecj ])o. That is, eAj

is the action space of player j in the subgame generated by the contract profile (ec1, ...,ecm). Also
notice that fAi = Ai. The payoff of player i in this subgame is weakly larger than

min
a−i∈ eA−i maxai∈Ai

ui (ai, a−i) ≥ min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) .

The weak inequality follows from eAj ⊆ Aj for all j. Therefore, player i can always achieve his pure

minmax value by offering the contract c at stage one.

4For example, the predicate

{x1 = x1} ∧ ... ∧ {xm = xm} ∧ {y = y}
defines c. That is, for all y ∈ N the predicate is true no matter how the free variables are evaluated.
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For the if part, consider the following contract of Player i, cixi,x−i , in m free variables:

cix1,...,xm

³n£
cj
¤
j 6=i
o´

=

(2)

(
ki if |©k : £< xk >

(x1,...,xm)
¤ 6= £ck¤ ª | 6= 1,

ji if
©
k :
£
< xk >

(x1,...,xn)
¤ 6= [ck] ª = {j}

This contract with free variables is a definable function with free variables from Nm−1 to N as long
as the actions are replaced with their indices.

The expression (2) is not a contract, but rather a contract with free variables. Each such

expression has a Godel code, so let γi =
£
cix1,...,xm

¤
. The functions

n
ciγ1,...,γm

o
i
have no free

variables, so they constitute a set of contracts. We will now show that
n
ciγ1,...,γm

om
i=1

constitutes

an equilibrium profile of contracts which support the outcome
©
a1k1 , . . . , a

m
km

ª
. First observe what

happens when all players use contract ciγ1,...,γm . Notice that

ciγ1,...,γm

³n£
cj
¤
j 6=i
o´

=

(
ki if |©k : £< γk >

(γ1,...,γm)
¤ 6= [ck] ª | 6= 1,

ji if
©
k :
£
< γk >

(γ1,...,γm)
¤ 6= [ck] ª = {j} .

Player i needs to check whether the Godel code of< γk >(γ1,...,γm) is equal to the Godel code of

ckγ1,...,γm . The integer γk is the Godel code of the contract with free variable c
i
x1,...,xm . Player

i’s contract says to take this contract with free variable, fix the free variables at γ1, ..., γm (which

gives the contract ckγ1,...,γm), then evaluate its Godel code. This is what is to be compared with

the Godel code of the contract offered by k. Of course, these are the same. Since this is the case

for all m− 1 of the other players, player i ends up taking action ai. So these contracts support the
outcome we want if everyone uses them.

Player j can deviate to any definable contract mapping N into N. However, any such contract
will have a different Godel code, and so will induce the punishment

©
aiji
ª
i6=j from the other players.

Since uj (a) ≥ u∗j this deviation will be unprofitable. ¤

Everything about this theorem involves pure strategies. This imposes limits on its application.

For example, the game of matching pennies (with payoffs 1 and −1) has pure strategy minmax
values equal to 1 for both players, and there is no array of pure strategies that supports payoffs at

least as high as the pure strategy minmax value for both players. There is no contract equilibrium

with a pure selection in this game, indeed there is no pure selection at all. Dropping the restriction

to a pure selection allows us to support a (unique in the allocational sense) contract equilibrium

in which both players reserve the right to choose their actions non-cooperatively no matter what

the other’s contract.

The contract equilibrium as we have defined it requires pure strategies in the space of contracts.

There is also something that looks at first glance like a ’mixed’ equilibrium in contract space in

which each player offers each of the degenerate contracts with probability 1/2. There are two

complications with showing that this is an equilibrium. The first is that, in general, we have not
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been able to rule out the possibility that contracts can be written in such a way that one player can

contract directly on the actions of the other. For example, when mixing over degenerate contracts

in matching pennies, it is conceivable that one player might be able to deviate to a contract that

conditions on the outcome of the other players randomization. It is this fact that prevents us

from providing a folk theorem for contract games in which the contracts have to specify actions

instead of sets of action. In such contract games, we cannot rule out the possibility that contract

equilibrium support payoffs below minmax.

The second problem is that the set of definable contracts doesn’t necessarily have any nice

structure. For example, it isn’t obvious how to specify the set of possible mixtures on this set of

functions. Absent this, it is hard to know what all the possible deviations are. As a result it isn’t

obvious how to prove that mixtures over degenerate contracts consitute an equilibrium.

One might argue that restricting the space of contracts to be definable functions of Godel codes

is both arbitrary and unnatural. Indeed, there is no reason for a judge to interpret a contract as

a description of a mapping from the Godel codes of the contracts offered by the other players to

the actions space of the player. For that matter, the judge might not even know about the Godel

coding. It is important to note that the salient feature of definable contracts is that they can be

written as texts that use a finite number of words in a formal language. The set of finite texts

seems a very natural description of the set of feasible contracts. In fact, from this perspective is

seems that any reasonable description of the set of feasible contracts should allow any such text.

The complication with such a broad description of the set of contracts is that to properly define

a game, one must fully describe the mappings from profiles of texts into payoffs. Many texts

will be complete nonsense and some modelling decision has to be taken about how these would

translate into actions and payoffs. The contracts that we specify above are definable texts that have

two advantages in this regard. First, since every finite text has a Godel code, they tie down the

action of the player who offers such a contract even if the other players in the game offer contracts

involving texts that make no economic sense. Furthermore, if all players offer contracts from the

set we specify, an outcome for every player is uniquely determined. So no matter how ambiguous

outcomes are set when players offer non-sense texts as contracts, the equilibrium outcome we

describe above will persist.

From the perspective of the judge who has never heard of a Godel code, Theorem 4.1 and

the theorems that follow have a kind of normative implication. This is simply that self or cross

referential contracts that to involve an infinite regress can nonetheless be unambiguously written

using finite texts.

5. Contracting in a Bayesian Environment

This section shows how to extent the result of the previous section to games with incomplete

information. To that end, consider the following model. There are n players. Player i’s actions

space is a finite set denoted by Ai =
©
ai1, a

2
2, ...

ª
. The state of the word is randomly drawn from
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the set Ω. After the state of the world, ω, is realized, each player receives a signal about ω. The

signal space of player i is denoted by T i, which is a finite set. The joint distribution of the state

of the world and the signals are common knowledge. The payoff of player i is ui (ai, a−i, ω) .

Our goal is to characterize the set of equilibria of the contracting game (to be defined formally

later) in this physical environment. Our strategy is to define a mechanism design problem, and

then to show that the set of allocations that can be implemented by these mechanisms are identical

to the set of equilibrium outcomes in the contracting game. To this end, we first describe a class

of mechanisms.

The Mechanisms.– Consider the following set of four-stage mechanisms. First, players sim-

ultaneously decide whether or not to participate. These decisions are only observable by the

mechanism designer (MD). Second, those players who decide to participate, send public messages

to the MD. Player i’s message space, Mi, is a countable set. Third, the MD can arbitrarily restrict

the action space of those players who have decided to participate at the first stage, as a function

of the messages. Finally, players take actions simultaneously. Those players who did not particip-

ate can take any action. If a player participated at stage one, she can only take action from the

restricted set. (Of course, these actions can depend on the messages sent at stage two.)

We restrict attention to deterministic mechanisms and pure-strategy Bayesian Nash Equilibriua.

By standard arguments in mechanism design, without loss of generality, one can assume that each

player participates in the mechanism. In addition, one can aslo assume that each player’s type

space is partitioned, and the messages reported at the second stage by player i are elements of his

partition. This is because of the restriction to pure strategies. Finally, one can restrict attention to

those mechanism-equilibrium pairs in which players report their type truthfully. That is, at stage

two, a player reports the element of his partition which contains his true type.

Before we proceed with the analysis of this problem, we introduce some notations. Let ςi denote

a partition of the type space of player i. Let Ri
¡
τ j1 , ..., τ jk

¢ ⊂ Ai denote the restricted action space

of player i if players j1, ..., jk participate, and the message sent by player iq is τ iq ∈ ςiq (q = 1, ..., k).

(If player i does not participate at stage one, i /∈ {j1, ..., jk}, then Ri
¡
τ j1 , ..., τ jk

¢
= Ai.) Let

sij1,...,jk : T
i × ¡×k

q=1ς
jq
¢ → Ai, such that sij1,...,jk

¡
ti, τ j1 , ..., τ jk

¢ ∈ Ri
¡
τ j1 , ..., τ jk

¢
, the strategy

of player i at stage four. Let s−ij1,...,jk
¡
t−i,×k

q=1τ
jq
¢
denote the n − 1 dimensional vector whose

coordinates are
©
sqj1,...,jk

¡
tq, τ j1 , ..., τ jk

¢
: q 6= i

ª
.

An equilibrium is characterized by the following three constraints. In the last stage, players

optimally choose their action given the others’ strategies, and truthful reports at stage two. That

is, for all i, ti ∈ T i, and ×k
q=1τ

jq ∈ ×k
q=1ς

jq :

sij1,...,jk
¡
ti,×k

q=1τ
jq
¢

(3)

= arg max
a∈Ri(τj1 ,...,τjk)

Et−i,'
¡
ui
¡
a, s−ij1,...,jk

¡
t−i,×k

q=1τ
jq
¢
,'
¢
: ti,×k

q=1τ
jq
¢
.
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In the expectations, tjq ∈ τ jq is taken into account. Observe that these constraints have to be

satisfied only for k = n and n−1. (That is, it has to be satisfied if either one or no player deviated
in the first stage.)

Second, at stage 2, players truthfully report the element of the partition given the strategies in

the last stage, and that everybody else reports truthfully. That is, for all i ∈ {1, ..., n}, and ti ∈ T i,

if ti ∈ τ i, then for all τ 0i ∈ ςi:

Et−i,'
¡
ui
¡
si1,...,n

¡
ti,×n

q=1τ
q
¢
, s−i1,...,n

¡
t−i,×n

q=1τ
q
¢
,'
¢
: ti,×n

q=1τ
q
¢

(4)

≥ Eτ−i

µ
max

a∈Ri(τ1,...,τ 0i,...,τn)
Et−i,'ui

¡
a, s−i1,...,n

¡
t−i,×i−1

q=1τ
q × τ i ×n

q=i+1 τ
q
¢
,'
¢
: ti,×n

q=1
q 6=i

τq
¶
.

Finally, at stage one, players prefer to participate to opting out, given that everybody else par-

ticipates, truthful reports at the second stage, and the strategies at the final stage. To characterize

this constraint, we first compute the payoff of player i if she does not participate. For all ti and

×q 6=iτq, player i’s action at stage four solves

max
a∈Ai

Et−i,'
¡
ui
¡
a,
¡
s−i−i

¡
t−i,×q 6=iτ q

¢¢
,'
¢
: ti,×q 6=iτq

¢
,

where tj ∈ τ j for all j 6= i. Let us denote the solution to this problem by ai
¡
ti, τ−i

¢
. Then, player

i prefers to participate if and only if

E',t−i
³
ui

³
ai
¡
ti, τ−i

¢
, s−i−i

³
t−i,×q 6=iτ

q
jq

´
,'
´
: ti
´

(5)

≤ E',t−i
³
ui

³
si1,...,n

³
ti,×n

q=1τ
q
jq

´
, s−i1,...,n

³
t−i,×n

q=1τ
q
jq

´
,'
´
: ti
´
.

Therefore an allocation that can be implemented by the mechanism is characterzied by the

partitions of the type spaces,
©
ςi
ªn
i=1
, the restrictions of the MD,

©
Ri
j1,...,jk

: i, k, jq = 1, ..., n
ª
,

and the strategies
©
sij1,...,jk : i, k, jq = 1, ..., n

ª
and the three constraints (3), (4), and (5).

The Contracting Game.– Let us now formally defined the contracting game. The game has

two stages. In the first stage, players offer contracts simultaneously. A contract is a pair of a

definable function and a subset of the type sapce of the player who is offering the contract. That

is, a contract can include a statement about the type of the players. The definable function is a

mapping from N2n to subsets of Ai. The first n coordinates of the domain are the Godel codes of

the definable functions offered by the players. The other coordinates are the codings of the subsets

of the type spaces of the players. For notational convinience, we shall write these functions as if the

last n coordinates were the subsets of types instead of their encodings. If player q offeres a definable

function cq, and she τq as the subset of his type space, then ci
¡£
c1
¤
, ..., [cn] , τ1, ..., τn

¢ ⊂ Ai is the

subset of the action space of player i pinned down by the contracts. At stage two, players take

actions simultaneously from the subsets of their actions spaces which specified by the contracts.

Theorem 1. A deterministic allocation can be implemented by pure strategies in the mechanism

described above if and only if it can be implemented by pure strategies in the contracting game.
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Proof. First, let us fix a mechanism and an equilibrium of it. Recall, that every equilibrium

pinns down a partition of the type space for all i. Let us denote the partitions of the type

spaces by
©
ςi
ªn
i=1
. The restrictions in the mechanism are

©
Ri
j1,...,jk

: i, k = 1, ..., n, ji ∈ N
ª
and the

equilibrium strategies are
©
sij1,...,jk : i, k = 1, ..., n, ji ∈ N

ª
. Consider the following contract in n

free variables.

cix1,...,xn
¡
c1, ..., cn, τ1, ..., τn

¢
=

 Ri
1,...,n

¡×n
q=1τ

q
¢
if |©k :< xk >

(x) 6= ck or τk /∈ ςk
ª | 6= 1,

R−j
³
×q 6=jτ

q
jq

´
if
©
k :< xk >

(x) 6= ck or τk /∈ ςk
ª
= j.

Let γi denote the Godel Code of it. The equilibrium contract offered by player i will be: ciγ1,...,γn .

Then

ciγ1,...,γn
¡
c1, ..., cn, ..., τ1, ..., τn

¢
=

 Ri
1,...,n

¡×n
q=1τ

q
¢
if |{k :< γk >

(γ1,...,γn) 6= ck or τk /∈ ςk}| 6= 1,
R−j

³
×n
q 6=jτ

q
´

if
©
k :< γk >

(γ1,...,γn) 6= ck or τk /∈ ςk
ª
= j.

Notice that < γq >
(γ1,...,γn)= cqγ1,...,γn . Therefore, the previous contract can be rewritten as

ciγ1,...,γn
¡
c1, ..., cn, ..., τ1, ..., τn

¢
(6)

=

 Ri
1,...,n

¡×n
q=1τ

q
¢
if |
n
k : ckγ1,...,γn 6= ck or τk /∈ ςk

o
| 6= 1,

R−j
³
×n
q 6=jτ

q
´

if
n
k : ckγ1,...,γn 6= ck or τk /∈ ςk

o
= j.

We shall argue that for player i (i = 1, ..., n) with type ti offering
³
ciγ1,...,γn , τ

i
´
, where ti ∈ τ i ∈

ςi, at the contracting stage and taking action according to sij1,...,jk in the second stage constitue an

equilibrium. Obviously, the strategies sij1,...,jk are optimal in the second stage by (3). We only have

to show that players do not have incentive to deviate at the first stage when offering contracts.

Notice that, by the first line of (6), if a player does not deviate, her payoff is the same as in the

mechanism. Suppose now that player i with type ti offers a contract
³
ci, τ i

0
´
which is different

from
³
ciγ1,...,γn , τ

i
´
, where ti ∈ τ i ∈ ςi. We shall consider two cases. Case 1: ci 6= ciγ1,...,γn or

τ i
0
/∈ P i. (That is, player i offers an off-equilibrium contract.) Then, by the second line of (6),

the payoff of the deviator cannot exceed the payoff of player i with type ti in the mechanism if

she decided not to participate in the first stage. Since (5) holds, such a deviation is not profitable.

Case 2: ci = ciγ1,...,γn and τ i
0 ∈ ςi but τ i 6= τ i

0
. Then, again by the first line of (6), the deviator’s

payoff cannot exceed the payoff of playar i with type ti in the original mechanism if she decided to

report τ i
0
instead of τ i in the second stage. Since (4) holds, such a deviation cannot be profitable.

Let us now prove the converse. Fix an equilibrium in the contracting. We shall argue that

the same outcome can be implemented by a mechanism. Notice that by offering a contract, a

player reveals some information about his type. Since we restricted attention to pure strategies,

the equilibrium contracts generate a partition on the type space of each players. That is, an
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element of a partition of the type space of player i is the largest set of those types who offer

the same contract. In the mechanism, players can report elements of these partitions. If each

player participates, the restrictions the MD imposes on the action spaces are the same as the ones

imposed by the equilibrium contracts. If a single player does not participate, the restrictions are

the same as the ones imposed by the equilibrium contracts in case the deviator offered a contract

which did not restrict his action space. Since we have to check only the profitability of a unilateral

deviation, the rest of the restrictions can be arbitrary. Finally, the second stage strategies of the

players in the contracting games are identical to the strategies in the last stage of the mechanism.

It is obvious that the equilibrium payoff of a player as well as a payoff of a deviator are identical

in the mechanism and the contracting game. ¤

The next example illustrates that (i) reporting types (instead of a partition elements) and (ii)

restricting players to single actions (instead of subsets of their action spaces) cannot be assumed.

This example also shows that there are allocations that can be implemented by the standard

revelation principle but not with contractible contracts.

Example. Suppos that there are two players 1 and 2. Player 1 has four possible types, T 1 =

{α1, α2, β1, β2} . The probability of each type is one fourth. Player 2’s type space is degenerate.
Actions of player 1 are {1, 2}. Actions of player 2 are ©a1, a2, b1, b1, gα1 , gα2 , gβ1 , gβ2ª. Payoffs are
defined as follows.

uj (αi, k, x) = uj (βi, k, x) = −1, if k 6= i, x 6= Gt, (i, j = 1, 2) ,

uj (αi, i, Ai) = uj (βi, i, Bi) = 10, (i, j = 1, 2) ,

uj (αi, i, Al) = uj (βi, i, Bl) = 9 if l 6= i, (i, j = 1, 2) ,

u1 (t, i, Gt) = 0, u2 (t, i, Gt) = 15, i = 1, 2, t ∈ T 1,

uj (t, i, Gt0) = 0 if t0 6= t, (i, j = 1, 2) .

The idea of this game is the following. Player one wants match the index of his type with his

action. That is, he wants to take i if his type is αi or βi (i = 1, 2). The payoffs of the players

are high, ten, if player 2 can match player 1’s type with his action perfectly. (That is, if he takes

action ai (bi) if t = αi (βi).) Their payoffs are nine if player 2 matches the type of player one

imperfectly, that is, he takes action Al (Bl) if the type is αk (βk) (l 6= k). The twist of the game is

the following. If player 2 knows the type of player 1, he can guess it, that is, he can take an action

from
©
Gt : t ∈ T 1

ª
. If he guesses right, he gets a payoff of 15 and player 1 gets zero. If he guesses

wrong both players receive a payoff of zero.

Consider the following allocation: f (αi) = (ci, A1) and f (βi) = (ci, B1) (i = 1, 2). The expected

payoff of both players is 9.5. This is because with probability one half, i = 1 and player 2 matches

the type perfectly. However, with probablity one half i 6= 1, and player 2 matches the type

imperfectly. The mechanism-equilibrium pair that implements this allocation can be described as
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follows. The partition elements of the type space are {α1, α2} and {β1, β2}. The restriction on
the action space of player 2 of the MD is A1 (B1) if player 1 reported {α1, α2} ({β1, β2}), and Gα1

if player 1 did not participate. The restriction on player 1’s action space is {1, 2} always. The
strategy of player 1 is to take action 1 if t ∈ {α1, β1} and action 2 otherwise. It is easy to show that
players prefer to participate, and player 1 truthfully reports the element of the partition. Hence,

the allocation f can indeed be implemened by a mechanism.

Notice that the allocation f cannot be implemented by requiring player 1 to report his type.

This is because, in that case, player 2 would guess his type. Also notice that the MD cannot

restrict player 1 to take a single action in the last stage, because then he would not be able to

match the index of his type.

Consider now the following allocation, F . F (αi) = (i, ai) and F (βi) = (i, bi) for i = 1, 2. This

allocation can obviously be implemented by the Revelation Principle, but not with contractible

contracts.
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