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Abstract

This paper axiomatizes a utility representation for reference-dependent preferences over

menus of lotteries. Most papers in the relevant literature use as the reference point some status

quo element and characterize the complete set of preferences by using various assumptions on

how the conditional preferences depend on this reference point. In our paper, we will analyze

instead the case in which the perceived value of a menu depends on some subjectively selected

reference point contained in that set. More speci�cally, we will axiomatize preferences over

menus of lotteries exhibiting the following context-e¤ects bias. An inferior option in a menu,

even though never chosen, may make the better bundles of that menu appear to the decision

maker to be more attractive by comparison and thus it may distort the objecive ranking of

the various available options. An informal way of referring to this behavioral bias is that of

�making a good deal�. In addition, since menus are the standard objects of choice that reveal

an individual�s preference for �exibility, we will also study the case in which we allow for the

presence of some underlying uncertainty between the moment of the choice of the menu and the

moment of the choice of the most preferred option within the menu.
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1 Introduction

For considerations of simplicity and analytical tractability, the standard economic model of decision-

making posits that the individual is able to rank alternatives independently of the context and

in particular without taking any speci�c alternative as a reference point. This works in certain

contexts, at least as an approximation, however, we now know from psychology that there are

interesting settings in which systematic deviations occur. Simonson and Tversky (1992) present

the following seemingly anomalous choice pattern. Participants in an experiment were asked to

choose between a roll of towels and a box of tissues. Two separate versions of the experiment were

designed. In one version, the participants were presented with two brands of towels and one brand

of tissues, whereas in the second version, they were presented with one brand of towels and two

brands of tissues. In the category with two brands, the quality of one of the options was clearly

inferior to the other option from that category. The two superior brands of towels and tissues were

included in both versions of the experiment. The results of the experiment showed that the market

shares of both high quality brands were signi�cantly greater when the inferior brand introduced

belonged to the same category. A second similar example cited in Simonson and Tversky (1992)

is that of a tactic frequently used by sales people. Thus, a common approach used to convince

potential buyers to purchase a certain product is to present it along with another product and then

argue that the former product is a much better deal in comparison with the later. Both examples

show how the introduction of inferior options in a menu can potentially increase the attractiveness

of the options in that menu relative to the elements in the other menus.

To illustrate these ideas formally, let x and y denote the high quality brands from the experiment

of Simonson and Tversky (1992) and let x0 and y0 denote the corresponding lower quality brands.

In order to capture the fact that some options belong to the same category, we will describe

the choice made by the participants when presented for instance with the options x, x0 and y as

c(fx; x0g; fyg). Then, the results of the experiment suggest that a signi�cant share of the consumers
exhibited the following pattern of choice: c(fx; x0g; fyg) = fxg and c(fxg; fy; y0g) = fyg. But note
that according to the standard model of rationality, the distribution of products into categories

and the presence of the inferior products x0 or y0 should not a¤ect the consumers�preferences in

any way and thus, we should have c(fx; x0g; fyg) = c(fxg; fy; y0g).1 This is the departure from the
pattern of choice of a standard decision maker that we will study in this paper.

As suggested in the previous paragraph, the primitive object considered in our model without

uncertainty is a choice correspondence that maps a set of options grouped into some possibly

nondisjoint categories into a nonempty subset. More formally, for any sets A1; :::; An, denote by

1For future research we intend to study in more detail a model of rational choice from sets grouped into categories.
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c(A1; :::; An) to be the nonempty subset of A = A1 [ ::: [ An that are the chosen options from A

when these options are presented grouped into the categories A1; :::; An. In general, by a category

we will understand a menu or a context, that is a subset of the set of available options that are

perceived by the decision maker as being tied together.2 As a real world example, consider an

individual who contemplates buying a car and note that while two types of cars of the same brand

can be compared based on some objective characteristics such as price, featured options, warranty

etc., this comparison becomes more di¢ cult when it is made across brands. Thus, while we may

consider that the individual sees the available options as the set of objects of choice as is standard

in the literature, it does make sense to consider that in fact he perceives these options as being

grouped into menus, where a menu is for instance a brand or a county of origin.3

By identifying the choice of an option from a category with a preference for the corresponding

category we will employ throughout our analysis an induced preference relation over categories. In

other words, we will de�ne the induced preference relation � over sets by saying that A � B if and

only if an individual selects some option from menu A when he has both A and B available. Slightly

more formally, if A and B are disjoint, then we say that A � B if and only if c(A;B) \ A 6= ?.
For nondisjoint categories, we will extend the preference by continuity by considering sequences

of mutually disjoint sets converging to the relevant sets. The corresponding details are presented

formally in Section 3.1.1. Now, note that the standard rationality axioms on the preferences over

singletons, that is, transitivity, independence and continuity, have intuitive counterparts for the

induced preference over the categories when the corresponding sets are disjoint.4 In addition,

whenever it is the case that sets which are close enough in the relevant metric are also close enough

in preference, the above axioms can be extended by standard continuity arguments to nondisjoint

sets.
2We will use the terms category and menu interchangeably throughout the rest of the paper when refering to the

model without uncertainty. In the case of the model with uncertainty that we will present below, since the primitive

object will be a revealed, rather than induced, preference relation over these sets, we will employ the term menu to

conform to the standard practice in the related literature.
3We mention that we will not attempt here to derive a subjective construction of the menus of choice based for

instance on considerations of similarity. Instead, we will restrict attention to those applications in which products are

objectively grouped into categories that the outside observer can infer based either on some objective information or

on some prior analysis of the decision maker�s behavior. However, we mention that the model we study here has clear

behavioral implications that would allow identi�cation of the relevant categories as long as the application at hand

satis�es the main modelling assumptions we use in our paper, that is, the existence of well de�ned objective categories

and the presence of the context e¤ects bias. For instance, in the car buying example, while it is not immediately clear

whether a menu is for instance a brand or a country of origin, this can be infered, at least in theory, in an obvious

way when the behavioral bias studied here is present.
4As an example, transitivity of the preferences over categories would suggest patterns of choice of the following

�avor. Assume x is preferred over y, when x is presented alongside x0 and y is presented alongside y0. Also, assume

that the decision maker chooses y when he has available the two categories fy; y0g and fz; z0g. Then, transitivity of
the preferences over menus would require that x be chosen, when the available categories are fx; x0g and fz; z0g.
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As an example for the way in which we will employ this induced preference relation, consider

again the experiment from Simonson and Tversky (1992). Note �rstly that from c(fx; x0g; fyg) =
fxg and c(fxg; fy; y0g) = fyg we can infer the following rankings: fx; x0g � fyg and fy; y0g �
fxg. Using transitivity of the preferences over categories, it follows that fxg � fyg would imply
fy; y0g � fyg, while fyg � fxg would imply fx; x0g � fxg. In addition, although not explicitly
tested in the experiment, the fact that x is a superior brand to x0 suggests that fxg � fx0g.
Therefore, we basically obtained the following pattern of choice fx; x0g � fxg � fx0g. Note

now again that the presence of x0 should not a¤ect the preferences in any way so with the above

mentioned interpretation of the preference over categories, standard rationality would imply that

fx; x0g � fxg � fx0g.

The speci�c assumption used in this paper is that in the process of contemplating each of the

available options, the decision maker exhibits a reference-point bias or context-e¤ects bias. More

exactly, the presence of a relatively inferior option in the menu makes the rest of the elements of

that menu appear more attractive by comparison with that inferior element.5 Bhargava, Kim and

Srivastava(2000) designed and tested a model of comparative judgement in which they analyzed

how the market shares of two superior products varied with the change in the relative values of

the two superior products when a third inferior product was introduced with characteristics that

were meant to make it highlight only one of the two superior products. The results suggested

a statistically signi�cant negative correlation between the valuation of the reference point and

the market share of the targeted superior product. While the design of their experiment did not

include an objective grouping of options into categories and the valuations of the products were

computed based on their objective characteristics rather than subjectively, the relevant conclusion

in our setting is that the main determinant of the context e¤ects bias is the relative valuation of

the products with respect to the reference point. Thus, a decrease in the quality of the reference

point of a menu would increase the overall attractiveness of the rest of the options from that menu.

Clearly, we will not consider those cases in which the presence of the inferior element may a¤ect the

perceived value of the menu as a whole because of issues such as brand image. For instance, it is

clear that a car manufacturer o¤ering a very low quality model might a¤ect the image of the brand

as a whole and thus we are not analyzing this type of applications. Instead, for this particular case

we may consider for instance an average quality model coming with full options but at an extremely

high price as being the reference point. Thus, by an inferior product we may understand either a

highly priced product, a low quality one or a combination of the two.

Before moving on to presenting the theoretical model, we mention a couple of important facts.

5We note here that we restrict attention to the simple case in which the decision maker uses a unique reference

point in assessing the perceived value of a given menu. Naturally, the identifying assumption for this unique point is

that it is the least valuable option from each menu when the choice of the menu is made.
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Firstly, in this paper we are analyzing the impact of the context-e¤ects bias as observed in the

Simonson and Tversky (1992) example and we abstract away from the potential presence of any

other behavioral biases by practically imposing the standard rationality axioms on the preferences

over singleton sets.6 By assuming away any other deviations from the standard model, the departure

from the choices implied by the standard de�nition of rationality can be attributed solely to the

presence of the behavioral bias that we study here. Secondly, we emphasize that the model we

study here applies mainly to preferences over objects whose assessment of the characteristics and

trade-o¤s between these characteristics are mostly subjective. When the available options can be

ranked objectively across menus, it is less likely that decision makers would exhibit the behavioral

bias.7 Many applications do satisfy this requirement. For instance, in the car buying example, it

is clear that two cars of di¤erent brands are di¢ cult to rank objectively even when there is a clear

ranking based purely on the objective characteristics.

We de�ne a reference-dependent representation of the induced preference relation over categories

as follows. The utility of any compact set of lotteries A is:

V (A) = max
x2A

u(x)� �min
y2A

u(y) (1)

where � 2 (0; 1) is a parameter measuring the strength of the reference point bias, u(�) is the
utility function that represents the individual�s preferences over singletons and argmin

y2A
u(y) is the

endogenous reference point. We consider here the case of a constant value of the parameter �. As

an extension of this model in another direction, we may also study in future research the case in

which � decreases as the gap between the most preferred choice and the reference point increases.

This would allow for the marginal e¤ect of the bias to vanish as additional inferior products are

introduced in the menu.

To see how the above representation captures the type of behavior presented in Simonson

and Tversky (1992) consider the following numerical example. Assume � = 0:5 and u(x) = 10,

u(x0) = 5 so that as required we have fxg � fx0g. Then V (fxg) = u(x)(1 � �) = 5 while

V (fx; x0g) = u(x) � �u(x0) = 7:5 so indeed fx; x0g � fxg. Then, since V (fyg) = u(y)(1 � �) it

6Thus, the choices within menus are in line with the standard model of rationality. A formal way of expressing

this assumption that is that x 2 C(A) if and only if x 2 c(fxg; fyg) for all y 2 A. See Section 3.1.2 for more details.
7 In fact, many other behavioral biases are unlikely to be present when the decisions are made under complete

objective information. For instance, consider the �hot hand fallacy bias�, which is the tendency for people to overes-

timate the likelihood of a certain event when a sequence of observations consistent with that event is observed. Now,

consider a person who exhibits this bias in a strong manner when the probabilities are subjective. If the same person

is given an urn with a known number of balls of di¤erent colors and then asked to extract a certain number of balls

which all come out of the same color, it is unlikely that he would change his beliefs about the composition of the

balls in the urn in any other way than the one consistent with the Bayesian updating.
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follows that for all values of u(y) 2 (10; 15) we will have fx; x0g � fyg � fxg so the preferences
over menus given by our representation will be consistent with the preferences identi�ed in the

Simonson and Tversky (1992) example. Finally, to see that the parameter � measures the strength

of the reference point bias take u(y) = 12 and consider a di¤erent �1 = 0:2. Then, V1(fyg) = 9:6
while V1(fx; x0g) = 9 so fyg �1 fx; x0g �1 fxg. Therefore, in this case the parameter � is too
small and the strength of the reference point bias is insu¢ cient to overcome the fact that option y

is better than x.

Then, the primitive choice correspondence has the following representation:

c(A1; :::; An) =
S

Ai2A
argmax
x2Ai

u(x) where (2)

A = argmax
Ai2fA1;:::;Ang

V (Ai) (3)

We will present the necessary and su¢ cient conditions on the choice correspondence that guarantee

that it has a representation as suggested by (2), (3) and (1). Throughout the rest of the paper,

we will refer to the preceeding model as the basic model, in order to distinguish it from the model

with uncertainty that we will introduce immediately.

Since menus are the objects of choice that reveal a decision maker�s preference for �exibility,

we will also extend the analysis to allow for the presence of uncertainty between the moment of the

choice of the menu and that of the choice within the menu. In other words, following Kreps(1979),

we will identify a menu with an ex ante observable action that after some uncertainty is resolved will

make a certain set of outcomes available ex post. Thus, unlike the case considered in the basic model,

the observability of the ex ante actions renders the preference over menus a revealed preference. We

allow for this uncertainty to be completely subjective meaning that besides assuming a subjective

distribution over the ex post contingencies as in standard Savage type models, we also assume that

the actual space of ex post contingencies is subjective. Allowing for uncertainty between the two

stages makes sense especially in those cases in which there is some cost of switching between menus

and the choice of the speci�c element from the menu is made either signi�cantly later or repeatedly

over a long period of time. In these cases, when choosing the menu the decision maker has to

contemplate various potential realizations of his future tastes and thus introducing uncertainty is

necessary.8

8As an example, consider an individual choosing between various online movie rental services such as Net�ix and

Blockbuster. Each of these services comes in a variety of options combining bene�ts and prices, thus basically making

the initial choice of the type of program a choice over menus. Assume now that after some careful consideration, a

consumer decides to subscribe to Net�ix and then selects one of the available options regarding the number of DVDs

he can rent at a time. Now, while it may happen that he is sure of the number of movies that he would desire to

watch in a given period, it may as well happen that he needs to test the various options to see which �ts him best.
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For the model in which we allow for the presence of uncertainty, the reference-dependent rep-

resentation under uncertainty that we will axiomatize is the following. The utility of any compact

set of lotteries A is:

V (A) =

Z
S

�
max
z2A

U(z; s)

�
�(ds)� �min

x2A

�Z
S
U(x; s)�(ds)

�
(4)

where S is a state space capturing the subjective uncertainty with � a positive measure over S,

U(z; s) is the ex post state utility of lottery z in state s. Note that this time the reference point is

the ex ante least preferred option within the menu, that is argmin
x2A

�Z
S
U(x; s)�(ds)

�
. The set of ex

post utilities will satisfy an additional condition presented formally in Section 2, that will allow us

to identify the behavioral bias modeled by our representation as being a reference point bias. More

speci�cally, we will assume that in the second period after the uncertainty is resolved the decision

maker cannot reverse or almost reverse his ex ante tastes. Thus, while we allow for the presence

of some uncertainty in the model, we do assume the existence of some underlying phenomenon

that makes the ex ante preferences relevant for the ex post stage. We will study the behavioral

implications of both a �nite and an in�nite state space S.9 Finally, note that the representation in

(1) is a particular case of the representation in (4) with S being any singleton set.

Most papers in the reference-dependent preferences literature use as the reference point the

actual or expected value of the endowment or of the status quo.10 Then they usually assume a

standard set of preferences conditional on each possible value of the reference point and characterize

the complete set of preferences by using various assumptions on how the conditional preferences

depend on the reference point. The paper which is the closest to our model is Neilson (2006) which

axiomatizes an additive representation over bundles whose �rst component acts as a reference point

against which all the rest of the components of the bundle are evaluated. In contrast, in our model

the reference point is endogenous and the value of the bundle is determined only by those options

that are the most preferred. A recent paper by Ok, Ortoleva and Riella (2007) identi�es the

departures from standard rationality that we study with the existence of a subset of highlighted

alternatives out of which the decision maker chooses his most preferred one. This set of highlighted

alternatives is basically the counterpart of the most preferred menu in our paper so the two papers

are in some sense complementary. More exactly, they analyze conditions on a standard choice

correspondence from sets that guarantee that the departure from rationality as suggested by the

weak axiom of revealed preference is due to the existence of a most preferred category, when it is

In this second case it is clear that at the moment when he makes the initial decision to choose Net�ix, he would

consider all of his possible ex post preferences and thus introducing uncertainty in a model that attempts to capture

his behavior is necessary. Moreover, it is only natural to assume that the uncertainty is subjective in this example.
9An in�nite state space appears for instance in models in which the individual has a continuous distribuition of

the ex post tastes over the characteristics of the available options.
10See for instance Koszegi and Rabin (2004), Masatlioglu and Ok (2005) or Sagi (2006).
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a priori known that this most preferred category and in particular the relevant reference point is

always unique. Our paper considers the case of objectively given categories by using a non standard

primitive choice correspondence and presents a theory of how those possibly multiple most preferred

categories are selected.

Preferences over menus were considered for the �rst time by Kreps(1979). He identi�ed an

act with the choice of a set of future options out of which at a later stage the decision maker

chooses his most preferred element. He interpreted the agent�s preference for the �exibility o¤ered

by the menu as being generated by some underlying subjective uncertainty that will be resolved

between the moment when the choice of the menu is made and the moment when the choice from

the menu is made. This allowed him to show that under su¢ ciently weak conditions, the decision

maker behaves as if the uncertainty were described by a subjective state space, where each state is

identi�ed with an ex post subjective utility. The preferences that we model in this paper belong to

the class of preferences modeled by Dekel, Lipman and Rustichini (2001), henceforth DLR(2001), in

which they considered menus of lotteries instead of deterministic bundles so that they could restrict

the ex post state utilities to be of the expected utility form. This allowed them to address the main

problem that the Kreps representation had, that is the nonuniqueness of the subjective state space.

Also, unlike Kreps(1979) they allowed for subjective states of negative measure to capture not only

a preference for �exibility but also a preference for commitment. In addition, following Kreps(1992)

they interpreted the resulting model as being also a model of unforeseen objective contingencies.

There is a large body of literature that built on the class of preferences introduced by DLR(2001).

Gul and Pesendorfer(2001) were the �rst to give meaning to the abstract subjective states derived

in earlier papers. Thus, they imposed conditions on preferences such that the resulting state space

consists of one state of negative measure representing a temptation preference and one state of

positive measure representing the second period preferences which combine a normative preference

and the temptation preference. This combination of normative and temptation preferences has

been implemented in the meantime in other papers to model various behavioral biases, such as

non-bayesian updating, cognitive dissonance, etc. For an example, see for instance Epstein and

Kopylov (2006). In another direction, the preference for commitment has been interpreted in

Sarver(2005) not as being driven by the presence of temptation but by the anticipation of regret.

The rest of the paper is organized as follows. In section 2 we present the assumptions that are

common to most of the papers using a Dekel, Lipman and Rustichini (2001) framework for the

representation over menus. This includes the standard axioms that deliver their representation.

Also, in Section 2 we compare our representation with other representations that built on that

framework to underline the di¤erences they impose on the subjective state delivered by Dekel,

Lipman and Rustichini (2001). In section 3 we present our additional axioms and the two main

results which state the equivalence between the axioms and the two representations. We break this
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section into two parts, corresponding to the cases in which we do not assume or we do assume

the presence of uncertainty. For the basic model, we will also present the de�nition of the induced

preference relation in terms of the choice correspondence and the axiomatic foundations of the

representation of the choice correspondence. In addition, we will also study here the uniqueness of

the representations and analyze comparative strengths of the context e¤ects bias. In section 4 we

present some applications of the preferences studied in this paper to principal-agent models and

auctions, while section 5 concludes the paper. Most proofs are relegated to the Appendix.

2 The Framework and the Representations

Let Z be a possibly in�nite compact metric space of outcomes or prizes and let �(Z) denote the

set of probability measures on Z endowed with the topology of convergence in distribution. Let

K(�(Z)) denote the collection of all nonempty closed subsets of�(Z). EndowingK(�(Z)) with the

Hausdor¤ topology11 we make it a compact metric space. Elements of �(Z) will be called lotteries

and will be denoted by x; y; z; etc., while the typical elements K(�(Z)) will be called menus and

will be denoted by A;B;C; etc. Also, when convenient we will refer to a certain menu by explicitly

mentioning the elements of that menu, such as fxg or fx; y; zg. The decision maker is assumed
to have a induced or revealed preference relation � over the elements in K(�(Z)).12 For any two

menus A;B 2 K(�(Z)) and any � 2 [0; 1], de�ne their convex combination as �A+(1��)B � fz 2
�(Z) : z = �x + (1 � �)y, for some x 2 A and y 2 Bg. Finally, denote by B(�(Z)), the set of
binary menus of elements from �(Z).

We will impose throughout the paper a subset of the following standard axioms on the prefer-

ence. The weaker version of the Independence axiom called Binary Independence is su¢ cient for

the reference-dependent representation without uncertainty. This was noted for the �rst time by

Kopylov(2005) for a representation of temptation-driven preferences over menus.

Axiom 1 (Weak Order). � is a complete and transitive binary relation.

Axiom 2 (Continuity). For any A 2 K(�(Z)), the upper and lower contour sets, fB 2
11 In this case, this is the topology generated by the Hausdor¤ metric. For a given compact metric space (Z; d),

the Haussdor¤ metric is de�ned by the distance dh(A;B) = inf f" > 0 : B � O"(A) and A � O"(B)g for all A;B 2
K(�(Z)), where O"(A) = fz 2 Z : d(z;A) < "g denotes the "�neighbourhood of the set A in the metric d.

When Z is �nite the metric d used on �(Z) is the usual Euclidean metric and the Hausdor¤ metric becomes:

dh(A;B) = max

�
max
x2A

min
y2B

d(x; y);max
x2B

min
y2A

d(x; y)

�
.

12For the sake of maintaining a coherent exposition for the two models we study, we will defer the presentation of

the de�nition of the induced preference relation in terms of the primitive choice correspondence to Section 3.1.1.
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K(�(Z)) : B � Ag and fB 2 K(�(Z)) : B � Ag, are closed in the Hausdor¤ metric topology.

Axiom 3 (Independence). For all A;B;C 2 K(�(Z)) and any � 2 (0; 1), A � B implies

�A+ (1� �)C � �B + (1� �)C.

Axiom 4 (Binary Independence). For all A;B;C 2 B(�(Z)) and any � 2 (0; 1), A � B

implies �A+ (1� �)C � �B + (1� �)C.

For a detailed interpretation and motivation of the �rst three axioms for the case of a revealed

preference relation over menus, see DLR(2001). For the basic model, the interpretation of the Weak

Order and Continuity axioms is clear. The motivation for Binary Independence that we will provide

here is just a very slight adaptation of the argument o¤ered by Gul and Pesendorfer (2001). If we

denote by � � A + (1 � �)C the lottery that would yield the menu A with probability � and the

menu C with probability 1��, then the standard motivation for the independence axiom suggests

that A � B should imply � � A+ (1� �)C � � �B + (1� �)C. Note now that if the uncertainty

regarding A and C is resolved before the choice is made, then the reference point bias a¤ects the

choice within the menus A and C. On the other hand, if this uncertainty is resolved after, then

the bias a¤ects the choice within the abstract menu �A + (1 � �)C. 13 If the decision maker is

indi¤erent as to the timing of the resolution of this uncertainty, ��A+(1��)C � ��B+(1��)C
should imply that �A + (1 � �)C � �B + (1 � �)C as stated by the axiom. Thus, the Binary

Independence is a combination of the usual independence axiom applied to binary menus and the

indi¤erence with respect to the timing of the resolution of uncertainty.14

The representations in (1) and (4) that we will axiomatize in this paper are particular cases

of the additive expected utility representation as de�ned and axiomatized for the �rst time by

DLR(2001). We will also frequently refer to it throughout as the DLR representation.

De�nition 5 An additive expected utility representation of � is a nonempty possibly in�nite
set S, a state dependent utility function U : �(Z) � S ! R and a �nitely additive signed Borel

measure � on S, such that V : K(�(Z))! R, de�ned for all A 2 K(�(Z)) by

V (A) =

Z
S

�
max
z2A

U(z; s)

�
�(ds) (5)

13Note that if A = fx; x0g, C = fz; z0g with fxg � fx0g and fzg � fz0g, then the best element in the menu
�A+ (1� �)C is �x+ (1� �)z whereas the reference point of that menu is �x0 + (1� �)z0. This follows from the

restriction of our independence axiom to singleton sets, which is the standard independence axiom.
14Note that this axiom is one of the behavioral implications of a constant strength of the reference point bias so

relaxing this axiom appropriately would be the approach that would result in a reference dependent representation

with a variable value of the parameter �.
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is continuous and represents � and each U(�; s) is an expected utility function in that for each s 2 S
there exists us : Z ! R such that U(z; s) = z � us.

The state in the above representation can be uniquely identi�ed by the corresponding ex post

state utility so we will occasionally refer to a state s by naming the corresponding expected utility

function U(�; s).

For the case when the state space S is �nite the representation can be equivalently written as:

V (A) =
X

s2S

�
max
z2A

U(z; s)

�
�(s) =

X
s2S+

�
max
z2A

us(z)

�
�
X

s2S�

�
max
z2A

us(z)

�
(6)

where S+ � fs 2 S : �(s) > 0g and S� � fs 2 S : �(s) < 0g and us(�) � j�(s)jU(�; s). In writing
the above we used the fact that the measure over states and the state utility are not separately

identi�ed in models of state-dependent utility, so they can be combined together.

Note that the above de�nition allows the measure � over the states to be signed. DLR(2001)

call positive states and negative states, the states in the support of the positively signed and respec-

tively negatively signed components of �. Intuitively, as stated in DLR(2001), the positive states

would reveal the agent�s desire for �exibility, while the negative states would reveal his desire for

commitment.

In our paper, unlike the other papers using a DLR(2001) framework, the agent will be assumed

to not have any kind of commitment issues. Therefore we impose throughout an additional axiom

on preferences called Monotonicity, which will basically impose that weakly larger sets in the partial

order given by inclusion be weakly preferred by the decision maker.15 This is a condition consistent

with the assumption of the agent not experiencing commitment problems.

Axiom 6 (Monotonicity). For all A;B 2 K(�(Z)) with A � B, we have B � A.

DLR(2001) and Dekel, Lipman, Rustichini and Sarver (2005) prove the following result.

Theorem 7 When the set Z is �nite, the preference � has an additive expected utility representa-
tion with a measure � which is always positive if and only if it satis�es Weak Order, Independence,

Continuity, and Monotonicity.

The e¤ects of imposing Monotonicity on preferences are the following. Firstly, as mentioned

above the axiom insures that the measure over the states from the representation is everywhere

15The Monotonicity axiom is part of the axiomatization of the preference for �exibility in Kreps(1979).
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positive. Secondly, it will allow us to obtain a stronger property of the measure, that is �-additivity

instead of �nite additivity as in DLR(2001). Finally, Dekel, Lipman, Rustichini and Sarver (2005)

also show that if Monotonicity is not imposed, the Continuity axiom as presented above needs

to be strenghtened to an axiom which they call Strong Continuity in order to get the additive

expected utility representation with a signed measure. The additional condition on preferences

that is needed, called L-Continuity in their paper, basically delivers the Lipschitz continuity of

the representation. Here, since we do assume Monotonicity, we may impose the weaker continuity

condition given by the Continuity axiom presented above.

We will also consider the case when the state space from the DLR representation is �nite. A

necessary and su¢ cient condition to obtain a �nite state space with an everywhere positive measure

under the axioms from Theorem 2 was found in Dekel, Lipman and Rustichini (2005). The authors

call this additional axiom Finiteness.

Axiom 8 (Finiteness) Every menu A 2 K(�(Z)) has a �nite critical set, where a critical set
of a menu A is a any set A0 such that for all B with A0 � hull(B) � hull(A) we have B � A.16

Dekel, Lipman and Rustichini (2005) prove the following result.

Theorem 9 When the set Z is �nite, the preference � has an additive expected utility represen-

tation with a measure � which is always positive and with a �nite state space S if and only if it

satis�es Weak Order, Independence, Continuity, Monotonicity and Finiteness.

For the basic model without uncertainty we will use the following de�nition:

De�nition 10 Let Z be a compact metric space.17 A reference-dependent representation of
the induced preference relation � consists of a constant � 2 (0; 1) and a utility function u(�) of the
expected utility form representing the preferences over lotteries in �(Z), such that V : K(�(Z))!
R, de�ned for all A 2 K(�(Z)) by

V (A) = max
x2A

u(x)� �min
y2A

u(y) (7)

represents the preference �.
16hull(A) = fz 2 Z : z =

Pk
i=1 �izi with �i � 0,

Pk
i=1 �i = 1 and zi 2 Ag denotes the convex hull of a set A.

17The proof of the representation result for the model without uncertaity employs the strategy developed by

Kopylov(2005) for his model of temptation. Therefore, as he suggests, the representation result can be extended from

�(Z) to any compact metric space X endowed with a continuous mixture operation. Thus, for some compact metric

space �(Z), the space X can be the product space (�(Z))N with N �nite, or the space of all convex and compacts

subsets of �(Z). Also, X can be any convex and compact subset of a metric linear space.
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For the representation under uncertainty, the speci�cs of the representation from DLR(2001)

require a number of normalizations. Firstly, as explained in DLR(2001) the state space is just an

index set that allows reference to di¤erent ex post preferences over the elements of �(Z). Moreover,

the ex post state utilities which are assumed to be of the expected utility form are identi�ed only

up to a¢ ne transformations, so we follow the approach in DLR(2001) and restrict the state space

S to the set of normalized utilities

SN �
�
s 2 RN :

XN

k=1
sk = 0 and

XN

k=1
(sk)2 = 1

�
: (8)

Throughout the rest of the paper we will use s 2 SN to refer both to a second period contingency
as well as to the normalized expected utility function representing the preferences in that state.

Thus, the utility of a lottery x 2 �(Z) in state s will be U(x; s) = x � s =
XN

k=1
xksk where s =

(s1; :::; sN ) 2 SN is the normalized expected utility function that represents the state s preferences.
Note now that the restrictions of the Weak Order, Continuity and Independence axioms to �(Z)

imply by standard results the existence of an expected utility function v(�) that represents the
restriction of � to �(Z). Sarver(2005) shows that since SN contains the normalization of any

a¢ ne function on �(Z), there exists s� 2 SN and � � 0 such that v(x) = �
XN

k=1
xksk� for all

x 2 �(Z).

We will de�ne now formally a normalized representation of the preferences exhibiting the refer-

ence point bias. To that end, we �rstly denote the ball of radius " around s where " > 0 and s 2 S
by N"(s) � fs0 2 S : d(s0; s) < "g where d(�; �) is the usual Euclidean metric in RN .

De�nition 11 Let Z be any �nite set. A normalized reference-dependent representation
under uncertainty of � consists of a nonempty possibly in�nite measurable set S � SN , a Borel

measure � on SN , with S being the unique support18 of � and a constant � 2 (0; 1), such that

(i) V : K(�(Z))! R, de�ned for all A 2 K(�(Z)) by

V (A) =

Z
S

�
max
z2A

(z � s)
�
�(ds)� �min

x2A

�Z
S
(x � s)�(ds)

�
(9)

represents the preference � ;

(ii) the utility of a lottery x 2 �(Z) in state s 2 S is x � s;
18The support of a Borel �-additive measure �, if it exists, is a closed set, denoted S, satisfying: (1) �(Sc) = 0;

and (2) If G is open and G \ S 6= ?, then �(G \ S) > 0. Theorem 10.13 in Aliprantis and Border (1999) shows that

if the underlying topological space on which � is de�ned is second countable or if � is tight, then � has a (unique)

support. In our case, SN is clearly second countable, so the de�nition is correct.
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(iii) if s� 2 SN is the normalized utility that represents the restriction of � to �(Z) then there

exists " > 0 such that S � SNnN"(�s�).19

We emphasize here that besides S and � which are usual elements in a normalized DLR repre-

sentation, the parameter � and the restriction (iii) on the set of ex post utility functions will also

will be deduced from preference as a part of the representation.

Note that the functional form in (9) for V (�) can be rewritten as:

V (A) =

Z
S

�
max
z2A

(z � s)
�
�(ds) + max

x2A
�

�
�
Z
S
(x � s)�(ds)

�
; (10)

and thus our representation is indeed a particular form of an additive expected utility representation

with all states having associated a positive measure.

As mentioned in the Introduction, the condition (iii) on the set of ex post utilities will allow us

to identify the behavioral bias modeled by our representation as being a reference point bias. Note

that (9) implies that the ex ante preferences over singletons are represented by the utility function

v(x) � (1 � �)

Z
S
(x � s)�(ds). Thus, by inspecting (10) it is clear that the preferences represented

by v�(x) � �
Z
S
(x � s)�(ds) could constitute just another ex post state in a DLR(2001) framework

with the property that these ex post preferences are exactly the reverse of the ex ante preferences

over singletons. We rule out this possibility by making the arguably reasonable assumption that

in the second period after the uncertainty is resolved the decision maker cannot reverse or almost

reverse his ex ante tastes. Thus, as already mentioned in the Introduction, while we allow for

the existence of some uncertainty in the model, we still assume some consistency between the ex

ante and the ex post preferences over the singletons in �(Z). This consistency is imposed by the

identi�cation of the term max
x2A

�

�
�
Z
S
(x � s)�(ds)

�
from the equivalent representation in (10) with

the impact of a reference-point bias and by the condition (iii) from De�nition 11 which excludes

ex post preferences exactly or almost opposite to the ex ante tastes.

In the remaining of this Section we will present what di¤erentiates this representation from

other DLR type representations, more speci�cally the representations from Gul and Pesendorfer

(2001), Sarver (2005) or Dekel, Lipman and Rustichini (2005). This part can be skipped without

any loss of understanding of the model.

The thing that di¤erentiates various models constructed in a DLR(2001) framework is the

particular structure imposed on the ex post states. For instance, in our model there exist no

negative states and one positive state of strictly positive measure having the corresponding utility

a negative a¢ ne transformation of the utilities of the rest of the states.
19When the state space is �nite, condition (iii) can be written as �s� =2 S. Also, note that �s� 2 SN .
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In Gul and Pesendorfer (2001) the equivalent DLR representation is the following:

V (A) = max
x2A

u1(x)�max
y2A

u2(y) (11)

where u1 is the utility that represents the second period preference relation and u2 is the temptation

component of these second period preferences. Therefore, in this representation there is one positive

state and one negative state with no particular mathematical relation between them.

In Sarver (2005) the equivalent DLR representation of his regret representation is:

V (A) = max
z2A

�
(1 +K)

Z
S
U(z; s)�(ds)

�
�
Z
S

�
max
x2A

KU(x; s)

�
�(ds) (12)

where K � 0. Thus, in this case there is a number, possibly in�nite of negative states and one

positive state whose corresponding state utility is a positive a¢ ne transformation of the utilities

corresponding to the negative states.20

The equivalent representation from Dekel, Lipman and Rustichini (2005) of what they call the

temptation representation is:

V (A) =
X

s2S

�
max
z2A

U(z; s)

�
�(s)�

X
s2S

�X
j2Js

�
max
y2A

U(y; j)

��
�(s) (13)

which is a generalization of the one from Gul and Pesendorfer(2001) in the sense that it assumes

multiple ex post states and for each ex post state multiple ex post temptations. This representation

has a number of positive states and for each positive state a number of corresponding negative states

with some underlying structure among them. Unlike the other representations, in Dekel, Lipman

and Rustichini (2005) the state space is assumed to be �nite.

As a last remark for this section, we emphasize that the actual representation from each of

the papers mentioned above is di¤erent from that presented here as being its equivalent DLR

representation in order to capture the corresponding behavioral trait that is analyzed in each

paper.

3 The Axioms and the Main Results

As noted before, the representations in (7) and (9) are special types of an additive expected utility

representation with an everywhere positive measure. Thus, it will be necessary that the preference

20The regret representation as de�ned in Sarver (2005) has the Borel measure � positive. However, as mentioned

in that paper as well, the equivalent DLR representation is signed and has a negative component.
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satisfy Weak Order, Continuity, (Binary) Independence21 and Monotonicity. Two additional axioms

will be su¢ cient for the preference � to have a reference-dependent representation when combined
with the above four axioms. The �rst additional axiom is common to both the case without and

with uncertainty. This is basically the axiom that captures the departure from the standard model

of rationality that we study in this paper.

Axiom 12 (CEB: Context-E¤ects Bias) : For any pair (A; x) 2 K(�(Z))��(Z), such that
fyg � fxg for all y 2 A, we have A [ fxg � A.22

What Axiom CEB says is that if the decision maker has the set of possible choices A expanded

by adding an option, say a singleton fxg, which from an ex ante point of view is strictly worse

that the rest of the elements in the menu, then the agent will strictly prefer the new expanded set

A[fxg to the initial one A. The reason for which the agent will strictly prefer the menu containing
the additional option is because the inferior lottery x will be chosen as the reference point and

thus the overall attractiveness of the menu will increase. Note that because the preferences in the

text of the axiom are strict, Axiom CEB imposes that the agent has a strict preference for having

additional strictly inferior outcomes in the menu of choice. This corresponds to the restriction that

� > 0 in the representation in (7) and (9).

3.1 The basic model

Since as mentioned earlier, menus are the natural objects of choice that reveal the decision maker�s

preference for �exibility, in order to ensure that preferences over menus do not in fact capture also

some preference for �exibility we will impose the following axiom:

Axiom 13 (NDF: No Desire for Ex Post Flexibility) : For any �nite set A 2 K(�(Z))

and any x 2 �(Z) such that fxg � fyg for some y 2 A, we have that A [ fxg � A if and only if

fxg � fyg for all y 2 A.

Thus, when an additional option x improves the menu A, since fxg � fyg for some y 2 A

implies that x does not act as the reference point for the menu A [ fxg, it must be that x will
be the new option selected from this set. Therefore it must be that fxg � fyg for all y 2 A.

21As mentioned above, for the representation without uncertainty the Binary Independence axiom is su¢ cient.
22For the model without uncertainty a su¢ cient version of Axiom CEB is the folowing. For any x; y; z 2 �(Z)

with fxg � fyg � fzg we have fx; y; zg � fx; yg. Also, under Monotonicity a su�cient version of Axiom CEB is:

fxg � fyg � fzg implies fx; zg � fx; yg.
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Conversely, when an option that is strictly preferred to all options in the menu is added, then the

new menu will be strictly preferred. Note that when the individual exhibits some preference for

�exibility, this restriction on preferences does not necessarily hold. This is because option x, even

though ex ante inferior to some option in A, might turn out to be strictly preferred to all options

in A in some ex post contingency so that the preference A [ fxg � A would follow.

The following is the main representation result for the basic model without uncertainty:

Theorem 14 The induced preference � has a representation as in (7) if and only if it satis�es

Weak Order, Continuity, Binary Independence, Monotonicity, Axiom CEB and Axiom NDF.

Proof. See Appendix A1.

Corollary 15 Suppose that (u1; �1) and is a representation of some preferences � satisfying Weak
Order, Continuity, Binary Independence, Monotonicity, Axiom CEB and Axiom NDF. Then, if

(u2; �2) is also a representation of � and there exists x0; y0 2 �(Z) such that x0 � y0, we must

have �1 = �2 and u2 = �u1 + � for some � > 0 and � 2 R.

Proof. See Appendix A2.

In order to analyze the comparative strength of the bias we will restrict attention to preferences

that have the same ranking over the lotteries.

De�nition 16 We say that the preference �1 exhibits a stronger context e¤ects bias than �2 if
whenever A �2 B for some A;B 2 K(�(Z)) it follows that A �1 B.

To motivate the above de�nition, note that A �2 B implies one of the following two cases.

Firstly, it may be that the most preferred option in A is better than all elements in B, or that the

reference point of A is superior to the reference point of B or a combination of the two. Secondly, it

may happen that the most preferred option in A is worse than some option in B from a normative

point of view, but that B has a reference point su¢ ciently better than that of A that the context

e¤ects bias reverses this normative ranking and makes the some option in A appear more attractive

than all elements in B. Now, note that in the �rst case since �1 has the same ranking over lotteries
as �2 it should follow that A �1 B. In the second case, since �1 is supposed to have a stronger
context e¤ects bias than �2, the compensation should occur in this case as well and thus it should
again be that A �1 B.
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Theorem 17 Suppose that (u1; �1) and (u2; �2) are the reference-dependent representations of two
preferences �1 and �2 such that there exist x0; y0 2 �(Z) with x0 �2 y0. Then, �1 exhibits a
stronger context e¤ects bias than �2 if and only if �1 � �2 and u2 = �u1 + � for some � > 0

and � 2 R.23 Moreover, if there exist some sets A;B 2 K(�(Z)) with A �1 B and A �2 B, then
�1 > �2.

Proof. See Appendix A3.

3.1.1 Formal de�nition of the induced preference relation for the basic model

As stated in the Introduction, in the case without uncertainty the observed behavior does not

consist of choices of menus but of options from the various menus available. Therefore, we will

de�ne here formally the preference relation over categories using as a primitive only the following

choice correspondence. As a reminder, for any compact sets A1; :::; An, we denoted the choice

correspondence c(A1; :::; An) as being the nonempty subset of A = A1 [ ::: [ An, which are the
chosen elements when the decision maker has available the options in A, grouped into menus

A1; :::; An.

Lemma 18 For any sets A;B 2 K(�(Z)), there exist two sequences An; Bn in K(�(Z)) with

An \Bn = ? for each n, such that An ! A and Bn ! B in the Hausdor¤ metric.

Proof. See Appendix A4.

For any A;B 2 K(�(Z)), de�ne MA;B � f(An; Bn) 2 K(�(Z)) � K(�(Z)) : An ! A and

Bn ! B in the Hausdor¤ metric and An \Bn = ? for all ng and note that by Lemma 18,MA;B is

nonempty. We will de�ne now the preference relation over categories for the basic model without

uncertainty. Part (i) is the natural de�nition for disjoint sets, while part (ii) extends the binary

relation to the rest of K(�(Z))�K(�(Z)) by continuity.

De�nition 19 (i) When A \B = ?, we say that A � B if and only if c(A;B) \A 6= ?.

(ii) When A \ B 6= ?, we say that A � B if and only if for all sequences An; Bn 2 MA;B, we

have An � Bn for all su¢ ciently high n. When A \B 6= ? and the previous does not imply either

A � B or B � A, we say that A � B.

23As it is the case with all the other results for the model without uncertainty, it is su¢ cient to restrict the

requirement in De�nition 16 to hold only for binary menus for the result of this Theorem to hold.
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The de�nition above ensures that the induced preference relation is complete. Secondly, the

speci�cation of � in De�nition 19 has the following important merit. Thus, note �rstly that, as

presented in (2), the story underlying our representation suggests that the choice correspondence

c(A1; :::; An) is the union of the sets of maximizers of the utility function u over those sets Ai 2
fA1; :::; Ang that maximize the function V . On the other hand, the preference � over sets in

K(�(Z)) is represented by the function V as de�ned in (7). Now, with the help of the Lemma 18

presented above, it is straightforward to show that the choice correspondence and the preference

relation as suggested by our representation satisfy the consistency conditions required by De�nition

19.24 Finally, we mention that while all of our axioms could also be de�ned in terms of the primitive

choice correspondence, the de�nition of the axioms that we employed throughout, that is the one

that uses the induced preference relation over menus, has the advantage of being more transparent

by avoiding the various technicalities brought about especially by comparisons of nondisjoint sets.

3.1.2 Axiomatic Foundation for the Representation of the Choice Correspondence

We close the presentation of the basic model with two conditions on the primitive choice correspon-

dence that together with some relatively straightforward arguments, would justify the interpretation

of the choices within menus and across menus as suggested by the representation of the choice corre-

spondence in (2) and (3). The �rst of these two conditions is the formal de�nition of our underlying

assumption that the choices within menus are in line with the standard models of rationality.

Axiom 20 (SRWM: Standard Rationality Within Menus) For any A 2 K(�(Z)), x 2 c(A)
if and only if x 2 c(fxg; fyg) for all y 2 A.

To interpret the axiom, note that since all options in A are evaluated with respect to the same

reference point and we assume away any other behavioral bias a¤ecting choices within menus,

x 2 c(A) if and only if x is weakly preferred to all the other options in A. But whenever x is weakly
preferred to y, we should have x 2 c(fxg; fyg) because comparison between singleton menus is not
a¤ected by the reference point bias. Therefore, we require the equivalence from the text of Axiom

SRWM. Next, we will de�ne the set c�(A; u) as the subset of A consisting of the most preferred

options according to utility function u and then we will show that under Axiom SRWM, this set

coincides with c(A), when u is chosen to be the utility function from our reference dependent

representation of preference relation induced by the choice correspondence c.

De�nition 21 For any utility function u, de�ne c�(A; u) � fx 2 A : u(x) � u(y) for all y 2 Ag.
24 It is clear that there exist other speci�cations that would formally de�ne the preference relation over categories

starting from the choice correspondenc in a manner that is consistent with our representation.
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Remark 22 Suppose that the choice correspondence c(�) satis�es Axiom SRWM and that the in-

duced preference relation according to De�nition 19 has a representation as in (7) with utility

function u(�). Then, for any A 2 K(�(Z)), we have c(A) = c�(A; u).

Proof. By Axiom SRWM, x 2 c(A) if and only if x 2 c(fxg; fyg) for all y 2 A. Employing the

De�nition 19, x 2 c(fxg; fyg) is written in terms of the induced preference relation as fxg � fyg.
In turn, by the representation in (7), we have fxg � fyg if and only if u(x) � u(y). Thus, given

the de�nition of c�(A; u), we conclude as desired that x 2 c(A) if and only if x 2 c�(A; u). �

The second condition relates the choices across menus with the choices within menus:

Axiom 23 (CAM: Choices Across Menus) For any sets A1; :::; An in K(�(Z)), we have:

c(A1; :::; An) =
S

fAi:Ai�Aj for all j2f1;:::;ngg
c(Ai)

To see the motivation for this axiom, assume for simplicity that A1; :::; An are disjoint. Note

then that if x 2 c(A1; :::; An), there must exist some i 2 f1; :::; ng with x 2 Ai, such that x appears
when presented in the context given by the menu Ai, at least as attractive as any other element in

A1 [ ::: [An, presented in their respective contexts. But then, this comparison between x and the
rest of the elements in A1[ :::[An should also work when considering pairwise menus, so given the
de�nition of the preference relation, it must be that Ai � Aj for all j 2 f1; :::; ng. In addition, since
the preferences within menus are not a¤ected by any behavioral bias, x should belong to c(Ai). The

converse argument is very similar. We mention that while we use the induced preference relation �
in the de�nition of the axiom, this is ultimately a condition on the choice correspondence. Now, by

combining the results of Theorem 14 and Remark 22, a straightforward argument would show that

Axiom CAM and Axiom SRWM together with the other axioms that guarantee the representation

in (7), constitute the axiomatic foundation of the representation of the choice correspondence as

presented in (1), (2) and (3). This result is presented without proof in the Theorem 24 below.

Theorem 24 The choice correspondence c(�) has a representation as suggested by (1), (2) and (3)
if and only if it satis�es Axiom CAM, Axiom SRWM, Weak Order, Continuity, Binary Indepen-

dence, Monotonicity, Axiom CEB and Axiom NDF.

3.2 The model with uncertainty

Axiom CEB presented above, will provide the departure from the standard rational preferences as

suggested by the presence of a behavioral bias. However, when allowing for an in�nite state space
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this departure is provided by Axiom CEB only when combined with the Axiom CEB-2 presented

below. This is because, as suggested earlier, when allowing for the presence of uncertainty, it may

happen that an ex ante inferior option, may still provide some ex post �exibility to the elements of a

set and thus the pattern of choice suggested by Axiom CEB would be valid even without assuming

any reference point bias. In order to have a departure from the standard rational preferences,

we need to assume the existence of at least one set A and at least one lottery y strictly worse

from an ex ante point of view to all elements of A such that in any ex post state there exists an

element in A that is at least as preferred as y. Then, imposing Axiom CEB to the sets A and

A [ fyg would provide the departure. Now, in the case of a �nite state space, the pair (A; y)
with the desired properties clearly exists when we maintain the assumption that the second period

preferences cannot be exactly the reversed ex ante preferences.25 In the case of an in�nite state

space, the existence of such a pair (A; y) will be imposed by Axiom CEB-2 below. But before

presenting Axiom CEB-2 we will make a remark that suggests that imposing axiomatically the

existence of such a pair is correct when the preferences that we are studying are represented by a

utility function as in (9).

Remark 25 When the preferences � admit a normalized reference-dependent representation as in
(9), there exist a set A 2 K(�(Z)) with A � int(�(Z)) and a lottery y 2 �(Z) such that: (i) for
any x 2 A we have x � s� > y � s� and (ii) for any s 2 S there exists x 2 A such that x � s > y � s.

Proof. See Appendix B1 for some notation on support functionals and then Lemma 48.

The second non standard axiom for the case under uncertainty with an in�nite subjective state

space is the following.

Axiom 26 (CEB-2): There exists a set A 2 K(�(Z)) with A � int(�(Z)) and a set B 2
K(�(Z)) with A � B and fxg � fyg for all x 2 A and some y 2 B, such that for all lotteries

z 2 �(Z) with fyg � fzg for all y 2 B, we have B [ fzg � A [ fzg.

The condition on preferences that is imposed by Axiom CEB-2 is motivated by the fact that

each set has a unique reference point whose choice is restricted to be made ex ante. To see this,

note that if A and B are such that B = A [ fyg and y does not provide any ex post �exibility to
A, then the indi¤erence B [ fzg � A [ fzg is required to hold for all z 2 �(Z) with fyg � fzg.
The motivation for this requirement is the following. On the one hand, by choice of y, it provides

no ex post �exibility to the set A [ fzg. On the other, since y is weakly preferred to z from an

ex ante point of view, y will not be the reference point chosen from A [ fy; zg. Since under no
25See the necessity part of the proof of Theorem 28 below for a formal argument.
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circumstances the agent would choose y over the elements in A[fzg, he is as well o¤ having at hand
the menu A [ fzg as he is having the larger menu A [ fy; zg. Therefore, we impose on preferences
the required indi¤erence.

We mention here that while the condition from the text of the axiom is valid for an in�nite

number of sets inK(�(Z)), we do not impose this condition to hold for all these sets simply because

there may exist A 2 K(�(Z)) such that there exists no lottery y =2 A that does not provide any ex
post �exibility to A. Also, we do not impose the indi¤erence of the sets constructed as in the text

of Axiom CEB-2, but for all B that contain a lottery y such that y is strictly less preferred to all

elements of A from the ex ante point of view. This is because a lottery which is ex ante inferior

to all x 2 A could turn out ex post to be better to all elements of A and then we should have

B [ fzg � A [ fzg. The weak restriction imposed in the text of the Axiom that the condition is

valid for at least one pair (A;B) is su¢ cient to obtain the desired representation for all sets due

to the additional structure provided by the EU form of the ex post utilities.26

Now we are ready to state our main result for the model with uncertainty, which gives us the

axiomatization of the representation in (9) for the set of preferences characterized by the above

axioms:

Theorem 27 The preference � has a representation as in (9) if and only if it satis�es Weak Order,
Continuity, Independence, Monotonicity, Axiom CEB and Axiom CEB-2.

Proof. See Appendix B1 and Appendix B2.

While the complete proof of Theorem 27 can be found in the Appendix, we will present here

for intuition a sketch of the proof under the assumption that the state space S is �nite. This will

show how Axiom CEB and Axiom CEB-2 work to give us the desired representation and thus, the

argument will constitute a rough roadmap for the proof of the representation for the general in�nite

state spaces.

Weak Order, Continuity, Independence and Monotonicity imply that the preference over menus

has the following representation, with � a positive measure:

V (A) =
X

s2S

�
max
z2A

(z � s)
�
�(s), for all A 2 K(�(Z)) (14)

26Note also that we impose that an element of B be strictly worse than all elements of A. Without this condition,

it is clear that the axiom would not have any bite since we could always let B be exactly the set A. The additional

condition that B is a superset of A is meant only to simplify the notation in the proof of the main theorem when we

characterize a menu by the corresponding support functional.
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Let us denote by v(�) the restriction of V (�) to singletons. Thus, v represents the ex ante
preference over lotteries and using the representation in (14) we have: v(z) =

X
s2S
(z � s)�(s), for

all z 2 �(Z). Moreover, as claimed in Section 2 since v is an a¢ ne function, there exists s� 2 SN ,
such that v(z) = �(z � s�) for all z 2 �(Z).

Now, note that as we showed above, the representation in (9) is a particular case of a DLR

representation in which the utility associated with one of the states is a negative a¢ ne transfor-

mation of the utilities associated with the rest of the states. We will prove here that under Axiom

CEB and Axiom CEB-2, the representation in (14) must have exactly that structure on the ex

post states, which basically comes down to showing that �s� 2 S. The rest of the proof consists

of showing that given that structure, the representation can be written as in (9). This second part

of the proof is just simple algebra manipulations and its presentation is relegated to the Appendix

where the proof is presented for the general case of in�nite state spaces.

Let A 2 int(K(�(Z))) and B 2 K(�(Z)) be as in the de�nition of Axiom CEB-2, that is

A � B and fxg � fyg for all x 2 A and some y 2 B. Then by Axiom CEB we must have B � A

so using the representation in (14) it follows thatX
s2S

�
max
x2B

(x � s)
�
�(s) >

X
s2S

�
max
x2A

(x � s)
�
�(s):

Since by Monotonicity the measure � is positive this implies that there must exist s0 2 S such that
max
x2B

(x � s0) > max
x2A

(x � s0). Denote the strict lower contour sets associated with an expected utility
function s and a lottery y 2 �(Z) by Ls(y) � fx 2 �(Z) : x � s < y � sg. Then, a state utility s
will be a negative a¢ ne transformation of s� if and only if Ls(y) \ Ls�(y) = ? for all y 2 �(Z).
Assume by contradiction that there is no such state utility as the one that we are looking for, that

is Ls(y)\Ls�(y) 6= ? for all s 2 S. We will show that in this case if Axiom CEB holds then Axiom

CEB-2 must be violated.

Take z 2 Ls0(y) \ Ls�(y) which is nonempty by the contradiction assumption. Then, since
y 2 B we will have max

x2B
(x � s0) > z � s0 and then immediately max

x2B[fzg
(x � s0) = max

x2B
(x � s0) >

max

�
max
x2A

(x � s0) ; z � s0
�
= max
x2A[fzg

(x � s0): Therefore:

V (B [ fzg) =
X

s2Snfs0g

�
max

x2B[fzg
(x � s)

�
�(s) + �(s0) max

x2B[fzg
(x � s0) >

X
s2Snfs0g

�
max

x2B[fzg
(x � s)

�
�(s) + �(s0) max

x2A[fzg
(x � s0) �

X
s2Snfs0g

�
max

x2A[fzg
(x � s)

�
�(s) + �(s0) max

x2A[fzg
(x � s0) = V (A [ fzg):
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Therefore, V (B [ fzg) > V (A [ fzg) so there exists z 2 Ls�(y) such that B [ fzg � A [ fzg
which violates Axiom CEB-2 as claimed. In conclusion, there must exist a state s 2 S that is a

negative a¢ ne transformation of s�.

Proving the necessity of Axiom CEB is straightforward. To see that Axiom CEB-2 must also be

satis�ed when the preferences can be represented by a utility function as in (9), take some lottery

y 2 int(�(Z)) and for each s 2 S, take xs 2 Hs(y) \ L�s�(y) \�(Z), where Hs(y) � fx 2 RN :

x � s = y � sg. Let A � [s2Sxs and B � A [ fyg. Then, by the choice of the set A, we will have
fxg � fyg for all x 2 A. On the other hand, for any z 2 Ls�(y) [Hs�(y)we will have

V (A [ fzg) =
X

s2S

�
max

w2A[fzg
(w � s)

�
�(ds)� � min

w2A[fzg

hX
s2S
(w � s)�(ds)

i
=

X
s2S

�
max

�
max
w2A

(w � s); z � s
��

�(ds)� �
hX

s2S
(z � s)�(ds)

i
=

X
s2S

�
max

�
max
w2B

(w � s); z � s
��

�(ds)� � min
w2B[fzg

hX
s2S
(w � s)�(ds)

i
= V (B [ fzg):

In the above we used the fact that the restriction of the representation to singletons implies

fxg � fyg , (1 � �)
X

s2S
(x � s) > (1 � �)

X
s2S
(x � s) and the fact that for each s 2 S, there

exists xs 2 A \Hs(y) implies max
w2A[fyg

(w � s) = max
w2A

(w � s).

While in the case of a �nite state space, it is su¢ cient to show that the state �s� must be one
of the states from the DLR representation, for the case of an in�nite state space, this is not enough.

This is because the state �s� can always be added to the state space and assign a measure zero, but
that would not give us the representation in (9) because we could not exclude the case � = 0 where

the axioms do not necessarily hold because there is no reference-point bias. Thus, in the proof of

the su¢ ciency of the axioms for the in�nite state space case, the main challenges are to show that

the DLR measure of �s� is strictly positive and to show the existence of the empty neighborhood
of �s�. In addition, the necessity part of the proof of Theorem 27 also needs a rather elaborate

approach. This is because the in�nite set [s2Sxs with xs chosen as above is not necessarily closed
and thus not necessarily compact, so we need to take A = cl([s2Sxs). But then the fact that we
select xs 2 L�s�(y) for each s 2 S does not necessarily imply fxg � fyg for all x 2 A and this

invalidates the required conclusion. Part (iii) of the De�nition 11 will help overcome this problem

but the construction is still not straightforward.

As argued above, when the state space is �nite the restriction on preferences given by Axiom

CEB-2 is not necessary. The following representation theorem deals with this case. To prove the

theorem, it is enough to show that the set of axioms that we assume imply Axiom CEB-2. Then

the argument from the sketch of the proof of Theorem 27 would complete the argument. Showing
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that Axiom CEB-2 must be satis�ed can be done by following an argument close to the one used

above.

Theorem 28 The preference � has a representation as in (9) with a �nite state space if and only
if it satis�es Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and Finiteness.

3.2.1 Uniqueness of the representation for the model with uncertainty

Proving uniqueness of the representation is essential because it allows the interpretation the objects

of the representation as intended. Most importantly in our case, the fact that the parameters of

the representation are identi�ed ensures that when observing choice it is feasible to disentangle the

impact on behavior of the context e¤ects from the impact of the presence of subjective uncertainty.

Our representation in (9) is identi�ed by the elements of the set (�; �) where � is a probability

over the SN and � measures the strength of the behavioral bias. The following theorem shows that

both � and � are identi�ed from preferences.

Theorem 29 Suppose that (�1; �1) is a normalized representation of some preferences � satisfying
Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and Axiom CEB-2. Then, if

(�2; �2) is also a normalized representation of � we must have �1 = �2 and �1 = �2.

Proof. See Appendix B3.

While the formal proof can be found in the Appendix, we will present here an intuitive argument

for why the identi�cation is possible in this model. The strategy is to �nd a way to separate the

e¤ect of the reference point bias in preference from the response to the underlying uncertainty.

This is done by constructing a menu for which the existence of an ex post stage and thus of the

uncertainty is practically inconsequential. This would show identi�cation of the parameter � and

then the identi�cation of the measure � would follow.

Thus, Remark 25 shows that if a preference relation � has a normalized reference-dependent

representation then, there exists a compact set A � int(�(Z)) and a lottery y 2 int(�(Z)) such

that fxg � fyg for all x 2 A and max
x2A

(x � s) > y � s for all s 2 S, where S is the set of ex post

states from the representation in (9). By continuity of the preference and of the scalar product it

follows immediately that there also exists y0 2 int(�(Z)) with fxg � fy0g and max
x2A

(x � s) > y0 � s
for all s 2 S.
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Now, since Vi(A) =
Z
S

�
max
z2A

(z � s)
�
�i(ds)��imin

x2A

�Z
S
(x � s)�i(ds)

�
for i 2 f1; 2g are two repre-

sentations of the same preference �, standard arguments imply that V1 = �V2 + � for some � > 0

and � 2 R. Moreover, vi(z) � Vi(fzg) the corresponding restrictions to the singletons also satisfy

v1 = �v2+�. But vi(z) = (1��i)
Z
S
(x �s)�i(ds), so Vi(A) =

Z
S

�
max
z2A

(z � s)
�
�i(ds)��i

�
min
x2A

vi(x)

�
.

Now, using the particular properties of the sets A[fyg and A[fy0g presented above, it follows
that

Vi(A [ fyg) =
Z
S

�
max
z2A

(z � s)
�
�i(ds)� �i [vi(y)] and

Vi(A [ fy0g) =
Z
S

�
max
z2A

(z � s)
�
�i(ds)� �i

�
vi(y

0)
�
:

Therefore, Vi(A [ fy0g)� Vi(A [ fyg) = �i [vi(y)� vi(y0)] and then

�1 =
V1(A[fy0g)�V1(A[fyg)

v1(y)�v1(y0) = [�V2(A[fy0g)+�]�[�V2(A[fyg)+�]
[�v2(y)+�]�[�v2(y0)+�] = V2(A[fy0g)�V2(A[fyg)

v2(y)�v2(y0) = �2:

Therefore, the parameter � is indeed identi�ed. The rest of the proof consists of showing that

this implies
Z
S

�
max
z2A

(z � s)
�
�1(ds) =

Z
S

�
max
z2A

(z � s)
�
(��2)(ds) for any compact set A � �(Z) and

then using Lemma 14 from Sarver(2005) to conclude that �1 = ��2. This immediately implies

that �1 = �2, because the measures are normalized to be probabilities. The remaining details are

presented formally in the Appendix.27

4 Applications

4.1 Principal-Agent Models

We will present here a simple example of a second degree price discrimination model, which will

show how sellers facing consumers who exhibit a reference point bias of the type studied in our

paper could exploit this irrational behavior from the part of the consumers to increase their pro�ts.

Consider a seller who faces a demand composed of two types of consumers. The seller has the

ability to design a set of menus,28 each menu containing products who are characterized by two

27The above argument does not consitute a formal proof of the fact that the parameter � is identi�ed. This is

because in order to apply Lemma 48 we would need �rst to show that the two states s� are the same for both

representations. This is done formally in the Appendix.
28For instance, many �rms specializing in retail sale open outlets under di¤erent brands, each type of outlet

containing in turn a variety of options. Similarly, most car manufacturers produce cars under di¤erent brands, each
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variables: the quality q and the price p. The consumers have di¤erent tastes so they have di¤erent

valuations for the quality of the product. Thus, a share � 2 (0; 1) of them called the low types have
valuation given by the function vl(�), while the rest of the consumers, called the high types, have
valuation given vh(�) such that the single crossing property v0h(q) > v0l(q) for all q is satis�ed. The

utility of a consumer is quasilinear in the price of the good so the utility derived by a consumer of

type vi from a product (q; p) is:

ui(q; p) = vi(q)� p (15)

Without loss of generality, we assume that the outside option for the consumers has value zero so

that they would consider buying a product only when ui(q; p) � 0. Finally, the cost for the seller
of manufacturing a product that is sold in the market of quality q is c(q), where c(�) is strictly
increasing, di¤erentiable and convex. Thus, for the sake of simplicity we assume here that the cost

for the seller of expanding the menu with options that are not meant to be sold is zero.

In addition to the above standard speci�cation of a principal-agent model, which we will call

from now on the benchmark model, we assume that the seller knows that consumers�preferences

exhibit a context e¤ects bias of the type that we study in our paper. However, for the sake of

simplicity, we assume away uncertainty from the part of the consumers regarding their future

tastes. Thus, a consumer vi evaluates a menu A � R2+ with the following utility function:

Ui(A) = max
f(q;p)2Ajui(q;p)�0g

ui(q; p)� � min
f(q0;p0)2Ajui(q0;p0)�0g

ui(q
0; p0) (16)

Note in the above de�nition of Ui(�) we assumed that the consumer uses as reference points only
one of those options that he could potentially end up buying. In other words, products that are

too bad to satisfy the consumer�s incentive rationality constraint do not a¤ect his choices.29

It is clear that with this simple speci�cation of the model, the seller cannot do better than by

restricting his strategy to o¤er only two menus, one for each type of consumer. In turn, each menu

would consist only of two options, one being the option targeted to be purchased by the consumer,

while the second option being designed to be used as the reference point. Therefore, the seller�s

brand coming again in di¤erent forms. The aim of these marketing strategies is to screen the consumers according to

their valuations for the quality of the product sold. They are therefore examples of second degree price discrimination

with the particular feature that the sellers group their products into menus, each menu being designed to appeal to

a certain class of consumers. Within each menu the seller may devise an additional price discrimination mechanism.
29The e¤ect of this assumption is that it puts an upper bound on the amount of additional pro�t that the seller

can extract from the higher type relative to the benchmark model.
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problem is:30

max
f((qi;pi);(q0i;p0i))2R2+�R2+gi2fh;lg

� [pl � c(ql)] + (1� �) [ph � c(qh)] s.t., for i 2 fh; lg (17)

ui(q
0
i; p

0
i) � 0 (IRRi)

ui(qi; pi) � ui(q
0
i; p

0
i) (ICPi)

Ui(f(qi; pi); (q0i; p0i)g) � Ui(f(q�i; p�i); (q0�i; p0�i)g) (ICMi)

Proposition 30 The solution to the seller�s problem (17) has a value of the objective function

higher than the one corresponding to the seller�s problem in the benchmark model. As in the

benchmark model, the solution to the problem (17) implies no distortion for the high type and zero

surplus for the low type. The quality o¤ered to the low type is higher than in the benchmark model.

The pro�ts extracted by the principal are increasing in the strength of the reference point bias.

Proof. See Appendix C.

Therefore, as claimed above, the sellers who face consumers exhibiting a reference point bias

of the type studied in our paper can increase their pro�ts by designing menus as in problem (17)

when this action is feasible. This is achieved by constructing a menu for the higher type that would

relax his incentive compatibility constraint so that the seller can extract more of his surplus than

he does in the benchmark model.31

4.2 Qualifying Auctions

Consider the following auction format which in practice is frequently used when a public or private

entity sells a valuable asset or awards rights to a complex contract. The auction consists of two

stages. In the �rst stage, all �rms make some non-binding o¤ers that are used as expressions of

interest. The auctioneer then ranks the o¤ers and asks the companies who submitted the top o¤ers

to resubmit other, this time binding o¤ers which are ranked to select the winner. Ye(2007) showed

30The �rst restriction IRRi ensures that the reference product is a viable product for the consumer of type i.

The restriction ICPi ensures that consumers will eventually purchase the target product while the restriction ICMi

ensures that the consumers select the menus that are designed for their types. Finally, note that IRRi and ICPi
together also ensure that the targeted product satis�es the incentive rationality constraint.
31The result of Proposition 30 can be extended from the simple second degree price discrimination model employed

here to any principal-agent model in which it is reasonable to assume that the agents may exhibit a reference point

bias and the principals have the ability to tie options together in such a way that the resulting objects are perceived

by the agents as menus in the sense used in this paper.
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that unless the entry cost is fully subsidized by the auctioneer and there is no information updating

about the value of the asset in the second round, there is no symmetric increasing equilibrium

exhibiting e¢ cient entry.32

We will present in this section a situation in which an equilibrium with the desired features

might exist under the current speci�cation of the auction procedure. Thus, note that in the second

stage of the process if there is no objective and clear economic indicator that would automatically

rank the o¤ers, the auctioneer may exhibit a reference-point bias by taking into account not only

the absolute value of each �rms�o¤er, but also the improvement perceived in each �rms�second

stage o¤er relative to the �rst stage.33 Alternatively, the reference point bias could also be an

expression of the auctioneer�s desire to discipline the bidders toward making fair o¤ers. Therefore,

when �rms have reason to believe that the auctioneer may exhibit a reference point bias, they

would not make unbounded o¤ers in the �rst stage as the Ye�s paper concluded, but instead would

need to solve a trade-o¤ between o¤ering an initial good enough o¤er to remain in competition

and leaving room for perceived improvement. Therefore, in a qualifying auction, if the auctioneer

exhibits a su¢ ciently strong reference point bias, then a symmetric equilibrium exhibiting e¢ cient

entry may exist. We will show now formally why the presence of a reference point bias might solve

the issue of the nonexistence of an equilibrium in Ye�s model.

A number N of potential buyers observe private signals Xi regarding the valuation of the asset.

The signals are independent draws from the same distribution with cdf FX(�). The bidders make
non-binding �rst stage o¤ers ai out of which the auctioneer selects the n highest ones and the

corresponding bidders move on to the second round. In the second stage, the remaining bidders

incur an entry cost c and acquire a second private signal Yi. Again, the signals are independent

draws from a distribution with cdf FY (�). The �nal value of the asset for bidder i is v(Xi; Yi) with
the function v being strictly increasing in both arguments. Each bidder makes a second binding

o¤er bi and the seller selects the winner as the bidder with the highest value of bi � �ai, where �

is the strength of the reference point bias. The winner pays his own bid bi, so his utility will be

v(Xi; Yi)� bi � c, while the remaining second round participants end up with utility �c.
32E¢ cient entry is de�ned as the situation in which the bidders with the highest �rst stage valuations of the asset

enter the second stage. Therefore, since in the absence of a symmetric increasing equilibrium e¢ cient entry cannot

be guaranteed, in order to avoid the ensuing e¢ ciency loss, Ye(2007) suggests implementing a new procedure that

at least in theory would guarantee e¢ cient bidding. The procedure would make the �rst stage o¤ers binding and

require the bidders entering the second stage to pay an entry fee equal to the highest rejected �rst stage bid. This is

hardly implementable in practice because the equilibrium �rst stage bids are the true expected valuations.
33Since the procedure is used in auctioning of complex assets or contracts, it is likely that the o¤ers are ranked

based on more coordinates than just the �nal price. The evaluation of some of these coordinates, such as the bidder�s

past history of abiding to the terms of the contract or of dealing with the labor force may be highly subjective. This

leaves room for the presence of a reference point bias in assessing the second round o¤ers since the comparison of the

�rst and second round o¤ers for the same bidder is signi�cantly easier than accross bidders.
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Let bi(Xi; Yi; ai) be the optimal second stage bid for player i and denote by di(Xi; Yi; ai) �
bi(Xi; Yi; ai) � �ai. Then, the second stage problem for player i is to choose zi to maximize:

�2(Xi; Yi; ai; zi) � Fbd1:�i(Xi)(zi) [v (Xi; Yi)� zi � �ai] � c, where Fbd1:�i(Xi)(�) is the equilibrium ex

post cdf of the highest value of d among the n � 1 remaining opponents of player i. The in-
terim expected second period pro�ts are then: E�2(Xi; ai) �

R
�2(Xi; yi; ai; di(Xi; yi; ai))dFY (yi).

Therefore, the �rst stage problem is to choose wi to maximize: �1(Xi; wi) � Fban:�i(wi)E�2(Xi; wi),
where Fban:�i(�) is the equilibrium cdf of the nth highest �rst stage bid among the N � 1 opponents
of player i. Then, assuming di¤erentiability and concavity of the relevant functions, the �rst stage

bidding function ai(Xi) is the solution to the equation in wi:

fban:�i(wi)E�2(Xi; wi) = Fban:�i(wi)
�
� @

@wi
E�2(Xi; wi)

�
(18)

The left hand side of (18) is the probability of being the marginal entrant to the second stage

with a �rst stage bid of wi multiplied by the corresponding expected pro�ts conditional on being

the marginal entrant. The right hand side is the probability of entering the second stage with that

bid multiplied by the loss in expected second stage pro�ts given due to an increased reference point

when the �rst stage bid is increased. When these two e¤ects of adjusting the value of wi compensate

each other we have the optimal bid of player i. Now, note that by the Envelope Theorem we have

� @
@wi

E�2(Xi; wi) = �

Z h
Fbd1:�i(Xi)(di(Xi; Yi; wi))

i
dFY (yi) so when � = 0, which corresponds to

the case of no reference point bias, no solution to this equation exists because the right hand side in

(18) is zero, while the left hand side is not zero unless E�2(Xi; wi) = 0, which at least generically

cannot happen. Thus, without a reference point bias, no equilibrium of this type exists which is

basically the result from Ye(2007). However, when � > 0, equation (18) may have a solution and

thus an equilibrium may exist under the current the current design of qualifying auctions.34

5 Conclusion

In this paper we proposed a model of choices a¤ected by a context e¤ects bias, that is a model

of preferences over menus with the particular feature that certain options in a given menu, even

though never selected for consumption, may in�uence the overall attractiveness of the elements in

that menu by acting as a reference point against which the rest of the elements in the menu are

compared. The testable implications of our model are di¤erent from those of other models studying

34Note that e¢ cient entry is ensured if equilibrium �rst stage bidding function is increasing in the signal. In

addition, in order to have e¢ cienct auctions in the second stage, the term bi � �ai should be increasing in v(Xi; Yi).

While there are functional forms of the primitives for which these conditions are satis�ed, this does not always happen.
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preferences over menus a¤ected by various behavioral biases, such as temptation or regret, in that

in our model adding inferior options to a menu never decreases the perceived value of that menu,

but can potentially increase it. In addition, we analyze the case in which we allow for the presence

of some uncertainty between the moment when the menu is chosen and the moment when the

element from the menu is selected. While in this case choices over menus also reveal a preference

for �exibility, our model can distinguish between the e¤ect of the context e¤ects bias and that of

the preference for �exibility under the relatively weak and, at least in theory, testable assumption,

that the uncertainty is weak enough that there exist menus which can be decorated with inferior

options that are never chosen ex post.

Finally, we mention here that depending on the empirical evidence relevant to various applica-

tions, the present model can be extended to capture preferences over objects of choice that do not

necessarily satisfy our assumptions. This can be done by using the additional empirical evidence

to construct a mapping from the larger set of objects of choice to the set that we use. For instance,

consider the case when the empirical evidence suggests that options whose utility do not exceed

a certain threshold do not play any role in the decision making. Choice data can identify the

threshold given by the participation constraint of the speci�c application. Then preferences over

menus that contain such inferior options can be modelled by employing a map that incorporates

this additional information and removes from any menu the inferior alternatives and by then using

the representation from this paper over the reduced menus.

For future reasearch, we intend to study the behavioral implications of a variable strength of

the reference point bias so that as additional inferior options are introduced in a menu, themarginal

bene�t in terms of increasing the attractiveness of the superior products decreases and eventually

vanishes. Also, we intend to study a model of rationality in which the available options are grouped

into categories.
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Appendix

A1. Proof of Theorem 14

Since the necessity of all axioms is straightforward, we will prove here the su¢ ciency of the

axioms for the representation in (7). For the rest of the proof of this Theorem, whenever it is

convenient, instead of a singleton set fzg, we will write the corresponding element z. Firstly,

note that if A � B for all A;B 2 K(�(Z)), with A � B, then we will have immediately that

A � A [ B � B so A � B for all A;B 2 K(�(Z)). Then, any constant utility function coupled

with some � 2 (0; 1) would represent the preferences. Therefore, assume that there exists A;B 2
K(�(Z)), with A � B and A � B. By Monotonicity we must have B � A and using Axiom NDF

it follows that we must have x0; y0 2 B such that x0 � y0. Let N�(A) denote the ��neighborhood
of any set A in the Hausdor¤metric topology. Then, the Continuity axiom implies that there exists

� > 0 such that

A � B, for all A 2 N�(fx0g) and B 2 N�(fy0g). (19)

Since�(Z) endowed with the topology of convergence in distribution, is a compact metric space,

there exists �1 > 0 such that �1�(Z) + (1 � �1)x0 � f�1z + (1 � �1)x0 : z 2 �(Z)g � N�(fx0g).
Similarly, there exists �2 > 0 such that �2�(Z) + (1� �2)y0 � N�(fy0g). Let � � minf�1; �2g and
for any z1; z2 2 �(Z) denote by:

�(z1; z2) � �z1 + (1� �)z2 (20)

Note that by (19) it follows that for any x; y 2 �(Z), we have �(x; x0) � �(y; y0).

Lemma 31 For any x; y; x0; y0 and any � 2 (0; 1), we have

�f�(x; x0); �(y; y0)g+(1��)f�(x0; x0); �(y0; y0)g � f�
��
�x+ (1� �)x0

�
; x0
�
; �
��
�y + (1� �)y0

�
; y0
�
g

(21)

Proof. Using the de�nition of the mixtures of menus from Section 2, the set in the right hand side

of (21) is A = f(��(x; x0)+(1��)�(x0; x0); ��(x; x0)+(1��)�(y0; y0); ��(y; y0)+(1��)�(x0; x0);
��(y; y0) + (1� �)�(y0; y0)g. Firstly, note that (19) and Binary Independence imply the following:

��(x; x0) + (1� �)�(x0; x0) � ��(x; x0) + (1� �)�(y0; y0) (22)

��(x; x0) + (1� �)�(x0; x0) � ��(y; y0) + (1� �)�(x0; x0) (23)

��(x; x0) + (1� �)�(y0; y0) � ��(y; y0) + (1� �)�(y0; y0) (24)

��(y; y0) + (1� �)�(x0; x0) � ��(y; y0) + (1� �)�(y0; y0) (25)
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Let A0 � Anf��(y; y0)+(1��)�(x0; x0)g and note that by Monotonicity we must have A � A0.

On the other hand, by Axiom NDF, (22) and (24) it follows that A0 � A so it must be that A � A0.

Let A00 � A0nf��(x; x0) + (1 � �)�(y0; y0)g so again by Monotonicity, Axiom NDF, (23) and (25)

we have A00 � A0. Then immediately A � A00 by transitivity which completes the proof. �

Consider now the product space �(Z)��(Z), and de�ne on it the binary relation �0 as follows.
For any (x; y); (x0; y0) 2 �(Z)� �(Z), let:

(x; y) �0 (x0; y0) if and only if f�(x; x0); �(y; y0)g � f�(x0; x0); �(y0; y0)g (26)

and note that the Weak Order and Continuity properties of the preference � imply Continuity

and Weak Order of the relation �0. To prove the Independence property of �0, consider any
pairs (x; y) and (x0; y0) such that (x; y) �0 (x0; y0). We want to show that for any pair (x00; y00)

and any � 2 (0; 1) we must have �(x; y) + (1 � �)(x00; y00) �0 �(x0; y0) + (1 � �)(x00; y00). Using

the de�nition in (26) this can be rewritten as: f� (�x+ (1� �)x00; x0) ; � (�y + (1� �)y00; y0)g �
f� (�x0 + (1� �)x00; x0) ; � (�y0 + (1� �)y00; y0)g. Now, using Lemma 31, the above is equivalent to:
�f�(x; x0); �(y; y0)g+(1��)f� (x00; x0) ; � (y00; y0)g � �f�(x0; x0); �(y0; y0)g+(1��)f� (x00; x0) ; � (y00; y0)g
for which, given the Binary Independence it is su¢ cient to have f�(x; x0); �(y; y0)g � f�(x0; x0); �(y0; y0)g.
This last condition holds because of the assumption (x; y) �0 (x0; y0).

Therefore, using the Herstein-Milnor Theorem (see Herstein and Milnor (1953)), we conclude

that there exists a linear and continuous function U0 : �(Z)��(Z)! R that represents the order
relation �0. Moreover, since U0 is identi�ed only up to a¢ ne transformations, it is without loss of
generality to take U0(x0; y0) = 0. Then, using linearity of U0, we have that for any (x; y) 2 �(Z)�
�(Z), U0(12(x; y) +

1
2(x0; y0)) =

1
2U0(x; y), while on the other hand U0(

1
2(x; y) +

1
2(x0; y0)) =

U0(
1
2(y; x0) +

1
2(x0; y)) =

1
2U0(x; y0) +

1
2U0(x0; y). Therefore, U0(x; y) = U0(x; y0) + U0(x0; y).

Lemma 32 U0(x1; y0) � U0(x2; y0) if and only if x1 � x2. U0(x0; y1) � U0(x0; y2) if and only if

y2 � y1.

Proof. Assume that U0(x1; y0) � U0(x2; y0) and note that the fact that U0 represents the preference

�0 and the de�nition in (26) this implies f�(x1; x0); y0g � f�(x2; x0); y0g. Assume by contradiction
that x2 � x1, and note that by Binary Independence it follows �(x2; x0) � �(x1; x0). Then, (19),

�(x2; x0) � �(x1; x0) and Axiom NDF imply f�(x2; x0); y0g � f�(x1; x0); �(x2; x0); y0g, so given
the Monotonicity we must have f�(x1; x0); �(x2; x0); y0g � f�(x2; x0); y0g. On the other hand,
(19), �(x2; x0) � �(x1; x0) and Axiom NDF also imply f�(x1; x0); �(x2; x0); y0g � f�(x1; x0); y0g.
Therefore, by transitivity f�(x2; x0); y0g � f�(x1; x0); y0g which is a contradiction, so as claimed, it
must be that x1 � x2. Conversely, assume x1 � x2 which implies �(x1; x0) � �(x2; x0). Now, since

�(x2; x0) � y0, by Axiom NDF and Monotonicity we have f�(x1; x0); y0g � f�(x1; x0); �(x2; x0); y0g �
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f�(x2; x0); y0g. Therefore, U0(x1; y0) � U0(x2; y0). Take now U0(x0; y1) � U0(x0; y2) so that

fx0; �(y1; y0)g � fx0; �(y2; y0)g and assume by contradiction that y1 � y2. Then, y1 � y2, Binary

Independence and (19) imply by Axiom CEB that fx0; �(y1; y0); �(y2; y0)g � fx0; �(y1; y0)g and
by Axiom NDF and Monotonicity that fx0; �(y1; y0); �(y2; y0)g � fx0; �(y2; y0)g. Therefore, by
transitivity fx0; �(y2; y0)g � fx0; �(y1; y0)g, which is again a contradiction. Conversely, if y2 � y1,

then Binary Independence and (19) imply x0 � �(y2; y0) � �(y1; y0), so by Axiom NDF and

Monotonicity fx0; �(y1; y0)g � fx0; �(y1; y0); �(y2; y0)g � fx0; �(y2; y0)g. This implies immediately
U0(x0; y1) � U0(x0; y2) so the proof of the Lemma is complete. �

Lemma 33 Consider any arbitrary �nite set A 2 K(�(Z)) and let xm 2 argmax
x2A

U0(x; y0) and

ym 2 argmax
y2A

U0(x0; y). Then �A+ (1� �)fx0; y0g � f�(xm; x0); �(ym; y0)g.

Proof. Take some arbitrary a 2 A, and note that U0(xm; y0) � U0(a; y0) implies by Lemma 32,

�(xm; x0) � � (a; x0). Denote now by A0 � fxm; ymg and take some a 2 AnA0. Let A1 =

A0 [ fag and note that Monotonicity implies �A1 + (1 � �)fx0; y0g � �A0 + (1 � �)fx0; y0g.
On the other hand, since f�(xm; x0); �(ym; y0)g � �A0 + (1 � �)fx0; y0g, �(xm; x0) � � (a; x0),

�(xm; x0) � � (a; y0), � (a; x0) � �(ym; y0), � (a; y0) � �(ym; y0), Axiom NDF implies iteratively

that �A0+(1��)fx0; y0g � (�A0 + (1� �)fx0; y0g)[f � (a; x0)g � �A1+(1��)fx0; y0g. Therefore,
�A0+(1��)fx0; y0g � �A1+(1��)fx0; y0g. Repeating this argument inductively for each element
in Anfxm; ymg, we obtain in the end that �A0 + (1 � �)fx0; y0g � �A + (1 � �)fx0; y0g. By the
same argument it can be shown that �A0+(1��)fx0; y0g � f�(xm; x0); �(ym; y0)g so the proof of
the Lemma is complete. �

Lemma 34 The function U : K(�(Z))! R, de�ned for all A 2 K(�(Z)), by

U(A) � max
x2A

U0(x; y0) + max
y2A

U0(x0; y) (27)

represents the preference �.

Proof. The steps in the proof of this lemma are straightforward adaptations of various steps

from the proof of the main representation theorem in Kopylov (2005). Firstly, we show that U

as de�ned above represents the preference � over B(�(Z)). Take B, B0 2 B(�(Z)), such that

B � B0. Then Binary Independence implies �B + (1 � �)fx0; y0g � �B0 + (1 � �)fx0; y0g. Take
xm 2 argmax

x2B
U0(x; y0), x0m 2 argmax

x2B0
U0(x; y0), ym 2 argmax

y2B
U0(x0; y), y0m 2 argmax

y2B0
U0(x0; y)

and note that Lemma 33 implies f�(xm; x0); �(ym; y0)g � f�(x0m; x0); �(y0m; y0)g. Therefore, we
will have (�(xm; x0); �(ym; y0)) �0 (�(x0m; x0); �(y0m; y0)) and then U0(xm; ym) > U0(x

0
m; y

0
m) and
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U(B) > U(B0). Therefore, B � B0 implies U(B) > U(B0). Conversely, assume U(B) > U(B0) and

we will show that B � B0. By the �rst part of the proof, B0 � B would imply U(B0) > U(B),

so it must be that B � B0. The continuity of U0 implies the continuity of U . Therefore, since

U(B) > U(B0), there must exist some � > 0 such that U(�y0 + (1 � �)B) > U(B0) and U(B) >

U(�x0+(1��)B0). Note that using the �rst part of the proof, these imply �y0+(1��)B � B0 and

B � �x0+(1��)B0. Now, since B � B0 and x0 � y0 transitivity implies that we must have either

B � y0 or x0 � B0. By Binary Independence, in the �rst case we will have B � �y0 + (1 � �)B

while in the second �x0 + (1� �)B0 � B0. Therefore, using the previous result it follows again by

transitivity in either case that B � B0.

Take now A and A0 two �nite sets in K(�(Z)). Then, using an argument similar to the

one from the proof of Lemma 33, it follows that A � fxm; ymg and A0 � fx0m; y0mg for some
xm 2 argmax

x2A
U0(x; y0), x0m 2 argmax

x2A0
U0(x; y0), ym 2 argmax

y2A
U0(x0; y) and y0m 2 argmax

y2A0
U0(x0; y).

Therefore, A � A0 , fxm; ymg � fx0m; y0mg , U(fxm; ymg) > U(fx0m; y0mg) , U(A) > U(A0).

For the second equivalence we used the fact that U represents � over B(�(Z)), while for the last
equivalence we used (27). Lemma 0 in Gul and Pesendorfer (2001) shows that the set of �nite

sets of K(�(Z)) is dense in K(�(Z)) under the Hausdor¤ metric. Therefore the continuity of the

function U as de�ned by (27) and Continuity imply that U represents � over K(�(Z)). �

Now, note that Lemma 32 implies that U(x0; x) is an a¢ ne transformation of �U(x; y0), because
they both represent the same preferences � over singletons. Moreover, since fx0g � fy0g, the
two functions are not constant everywhere. Therefore, U0(x0; x) = ��U0(x; y0) + � for some

� > 0 and � 2 R. Take now some z 2 �(Z)nfx0; y0g and note that by (27), it follows that
U(f�(z; x0)g) = (1 � �)U0(�(z; x0); y0) + � and U(f�(z; y0)g) = (1 � �)U0(�(z; y0); y0) + �. Since

�(z; x0) � �(z; y0), we must have U(f�(z; x0)g) > U(f�(z; y0)g) because the restriction of U to

�(Z) should represent the restriction of the preference � to singleton sets. On the other hand, by
Lemma 32, we have U0(�(z; x0); y0) > U0(�(z; y0); y0). Therefore, it must be that � < 1. Letting

u : �(Z)! R be such that u(x) = U0(x; y0) for all x 2 �(Z), we conclude that

U(A) = max
x2A

u(x)� �min
y2A

u(x) (28)

with � 2 (0; 1) and u a linear utility function, represents the preference � over K(�(Z)). �

A2. Proof of Corollary 15

Since (u1; �1) and (u2; �2) both represent the preference �, we will have for i 2 f1; 2g that
f�(x; x0); �(y; y0)g � f�(x0; x0); �(y0; y0)g if and only if ui(�(x; x0))��iui(�(y; y0)) > ui(�(x

0; x0))�
�iui(�(y

0; y0)) where � is chosen as in the proof of the Theorem 14 presented above. Let U0(x; y) �
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u1(�(x; x0)) � �1u1(�(y; y0)) and U 00(x; y) � u2(�(x; x0)) � �2u2(�(y; y0)) for any x; y 2 �(Z)

and note that both U0 and U 00 represent the preference �0 as de�ned by (26). Therefore, by

the Herstein-Milnor Theorem we must have U 00 = �U0 +  for some � > 0 and  2 R. Thus,
u2(�(x; x0))� �2u2(�(y; y0)) = �u1(�(x; x0))� ��1u1(�(y; y0)) +  for all x; y 2 �(Z). From this,

it follows immediately using also the linearity of u1 and u2 that u2(�) = �u1(�) + 1 and �2u2(�) =
��1u1(�) + 2 for some 1; 2 2 R. Then (�1 � �2)u2(�) = �11 � 2 so since x0 � y0 implies that

u2(�) is not constant everywhere, it must be that �1 = �2. �

A3. Proof of Theorem 17

Note �rstly that the fact that �1 has a stronger context e¤ects bias than �2 implies by the
restriction of De�nition 16 to singletons that u1(x) � u1(y) ) u2(x) � u2(y) for all x; y 2 �(Z).
It is a standard result in the literature that this implies in turn that u2 = �u1 + � for some � > 0

and � 2 R. Take now some arbitrary k 2 R+ and note that it is straightforward to show that

the continuity of u2 and the non-degeneracy assumption from Theorem 17 implies that there exist

xa; xb; ya; yb 2 �(Z) such that u2(xb) > u2(xa) > u2(yb) > u2(ya) and
u2(xb)�u2(xa)
u2(yb)�u2(ya) = k. Now

note that �2 > k implies by the representation result that fxa; yag �2 fxb; ybg. On the other hand,
whenever fxa; yag �2 fxb; ybg it follows fxa; yag �1 fxb; ybg so �1 > u1(xb)�u1(xa)

u1(yb)�u1(ya) = k. Therefore,

whenever �2 > k for some k 2 R+ it follows �1 > k which implies that it must be that �1 � �2.

Finally, it is clear that if there exist some sets A;B 2 K(�(Z)) with A �1 B and A �2 B, then it
must be that �1 > �2. �

A4. Proof of Lemma 18

By Lemma 0 in Gul and Pesendorfer (2001), for any A;B 2 K(�(Z)), there exist two sequences
of subsets An; Bn of A and B respectively, such that each An and each Bn have exactly n elements

and An ! A, Bn ! B in the Hausdor¤ metric. Fix n, let An = fa1; :::; ang and Bn = fb1; :::; bng
and choose some xn; yn 2 �(Z) such that xn 6= yn and 1

2(xn+bj) 6=
1
2(yn+ai), for all i; j 2 f1; :::; ng.

Now, for each i; j 2 f1; :::; ng, let �i;j be such that n��i;jn ai +
�i;j
n xn =

n��i;j
n bj +

�i;j
n yn if such a

value of �i;j exists in [0; 1]. Note that by the choice of xn and yn, at most one such value of �i;j
can exist for each pair (i; j). Take some �n 2 [0; 1]n ([i;jf�i;jg) which we ensured to be nonempty
and de�ne A0n =

n��n
n An +

�n
n fxng and B

0
n =

n��n
n Bn +

�n
n fyng. Then, by the choice of �n, we

have A0n \B0n = ? for all n, while on the other hand, it is clear that limn!1
A0n = lim

n!1
An = A and

lim
n!1

B0n = lim
n!1

Bn = B in the Hausdor¤ metric. Therefore, the sequences A0n and B
0
n satisfy the

required conditions, which completes the proof of the Lemma. �
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B1. Construction of the state space for the model with uncertainty

We will present here brie�y the construction of the state space from Dekel, Lipman and Rusti-

chini (2001) as we will utilize the concepts introduced there extensively in the rest of the proof.

Firstly, as shown in DLR(2001) under Weak Order, Continuity and Independence any set of

lotteries in �(Z) is indi¤erent to its convex hull. Thus we can restrict attention to the set of convex

sets35 in K(�(Z)), which we will denote from now on with eK(�(Z)). Recall that the number of
outcomes in Z is denoted by N and that SN is the set of normalized expected utility functions on

�(Z). De�ne by C(SN ) the set of real-valued continuous functions on SN and endow it with the

topology given by the sup-norm metric. Embed eK(�(Z)) into C(SN ) by identifying each menu with
its support function: A! �A, with �A(s) = max

x2A

PN
k=1 x

ksk. It is a standard result that the above

mapping is an embedding, one-to-one and monotonic. Thus, for all A;B 2 eK(�(Z)), �A(�) = �B(�)
implies A = B and A � B implies �A � �B. The order used on C(SN ) is the usual pointwise

partial order. Also the support functional is a¢ ne, that is: ��A+(1��)B = ��A + (1� �)�B.

Let C denote the subset of C(SN ) that � maps eK(�(Z)) into, that is C � f�A 2 C(SN )

: A 2 eK(�(Z))g. Using this mapping and the Weak Order and Continuity axioms, DLR(2001)
construct the continuous linear functional W : C ! R that basically represents the preference �
over eK(�(Z)):

W (�A) �W (�B) if and only if A � B: (29)

As in the main text, de�ne v : �(Z) ! R to be the restriction of W to the set of support

functions of the singleton sets: v(x) �W (�fxg). It can be shown using the linearity of the support

functions that v is a¢ ne, that is v(�x+(1��)y) = �v(x)+ (1��)v(y). In addition, as mentioned
in Section 2, there exists s� 2 SN and � � 0 such that v(x) = �

XN

k=1
xksk� for all x 2 �(Z).

Dekel, Lipman, Rustichini and Sarver(2005) show in the proof of their Theorem 2 that under

Monotonicity, the functional W is increasing on the space H� = fr1�1 � r2�2 : �1; �2 2 C and

�1; �2 � 0g which is dense in C(SN ). Since f � jjf jj � 1 for any f 2 H�, where 1 is the function

identically equal to 1, by the monotonicity of W we will have W (f) � jjf jjW (1) so W is bounded

on H�. Therefore, as in DLR (2001), W can be extended uniquely from C to the whole C(SN )

preserving continuity and linearity. Also, since H� is dense in C(SN ), it follows immediately that

W will be monotone on the whole C(SN ). As in Royden (1988, page 355), W can be decomposed

as W = W+ �W� where W+ and W� are two positive linear functional forms. Using again the

35Note that
Z
S

U(x; s)�(ds) is a linear function in x so even when A is not convex, the minimum of
Z
S

U(x; s)�(ds)

over A will be attained at an element of A. Thus, the reference point will always belong to A.
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monotonicity of W and the de�nition of W+ from Royden(1988) it is straightforward to show that

W (�) =W+(�) and W�(�) = 0 on C(SN ).

Then,W is a positive linear functional on C(SN ) and SN being compact, the functions in C(SN )

have compact support since closed subsets of compact spaces are compact, so the Riesz-Markov

Theorem from Royden(1988, page 352) can be used to write W (f) as an integral of f against a

�-additive positive measure � over SN for any f 2 C(SN ). In particular,

W (�A) =

Z
SN
�A(s)�(ds) for any A 2 eK(�(Z)) (30)

This last step delivers the DLR representation of the preference �. However, note that we use
here a di¤erent version of the Riesz Representation Theorem than the one used in DLR(2001).

This is because the Monotonicity Axiom makes the functional W positive and thus we can obtain

a �-additive and positive Borel measure as opposed to a �nitely additive and signed measure as in

DLR(2001). As it will be seen below, the �-additivity of the measure is necessary both for obtaining

our reference-dependent representation as well as for proving the uniqueness of this representation.

Next, we will impose the additional restrictions on preferences given by Axiom CEB and Axiom

CEB-2 to obtain our speci�c representation from (9).

B2. Proof of Theorem 27

As a �rst step in the proof, we will rewrite Axiom CEB and Axiom CEB-2 by using the support

functionals and the functional W instead of the preference relation.

Note that since v(x) represents the preference over lotteries in �(Z), using the results from Ap-

pendix B1 we have fxg � fyg , �
PN
k=1 y

k(�sk�) � �
PN
k=1 x

k(�sk�) , ��fyg(�s�) � ��fxg(�s�).
Given two sets A;B 2 eK(�(Z)), if there exists y 2 B such that fxg � fyg for all x 2 A we will

have that ��fyg(�s�) > ��fxg(�s�) for all x 2 A so ��B(�s�) > ��A(�s�). Thus, in general
if there exists a lottery in B that is strictly worse than all lotteries in A we can write this in a

compact way as ��B(�s�) > ��A(�s�). Similarly, if y is weakly worse than all elements in A,
we have ��B(�s�) � ��A(�s�). Also note that in order for Axiom CEB-2 to hold, more exactly

for a lottery y 2 �(Z) to exist such that fxg � fyg for some other x 2 �(Z), we need � > 0

since otherwise all elements in �(Z) are indi¤erent to each other. Therefore, under Axiom CEB-2

we have ��B(�s�) > ��A(�s�) if and only if �B(�s�) > �A(�s�). Finally, for any two support
functionals �A; �B 2 C, denote their join by �A _�B, that is (�A _�B)(�) � max(�A(�); �B(�)) and
note that �A[B = �A _ �B.

Using these results, the fact that A � hull(A) for any A 2 K(�(Z)) and the fact that A � B

i¤ �A � �B, we can write Axiom CEB and Axiom CEB-2 in the following equivalent forms:
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Axiom CEB: For any A;B 2 eK(�(Z)), with �A � �B such that ��B(�s�) > ��A(�s�), we
have W (�B) > W (�A).

Axiom CEB-2: For any set A 2 eK(�(Z)) such that A � int(�(Z)), there exists a set

B 2 eK(�(Z)) with �A � �B and ��B(�s�) > ��A(�s�), such that for all lotteries z 2 �(Z) with
��fzg(�s�) � ��B(�s�), we have W (�hull(B[fzg)) =W (�hull(A[fzg)).

We will introduce now some new notation. Denote by 
 � fz 2 RN :
PN
i=1 zi = 1g and note that


 is the smallest a¢ ne set that contains �(Z), so �(Z) has a nonempty algebraic interior in 
. For

any set B 2 eK(�(Z)) we denote its expanded strict lower contour set corresponding to the utility
si 2 RNnf0g by Lsi(B) � fy 2 
 : y � si < z � si for all z 2 Bg and by eLsi(B) its expanded weak
lower contour set. Also, Usi(B) = fy 2 
 : y � si > z � si for all z 2 Bg denotes the corresponding
expanded strict upper contour set. For q 2 �(Z) denote the hyperplane generated by si as being
the set Hsi(q) = fz 2 
 : z � si = q � sig. Note that while the sets denoted above by B are subsets

of lotteries from �(Z), the sets Lsi(B) contain elements from the whole space 
. The reason for

using the expansion from �(Z) to 
 is to temporary avoid some boundary issues. For a set S of

points in RNnf0g, denote the convex cone generated by S with cone(S) � fs 2 RN : s =
Pk
i=1 �isi

with �i � 0 and si 2 S for all i 2 f1; :::; kg and k 2 Ng. Also denote the convex hull generated by
S with hull(S) � fs 2 RN : s =

Pk
i=1 �isi with �i � 0,

Pk
i=1 �i = 1 and si 2 S for all i 2 f1; :::; kg

and k 2 Ng. Again, we mention that we de�ned the convex cone and hull in RNnf0g, not only in
the subset of normalized utilities SN . The need for the expansion of SN is slightly more subtle and

can be understood by following the rest of the proof.36

Proof of Su¢ ciency in Theorem 27:

We will prove two results, Proposition 35 and Proposition 47, which together will bring us one

step away from obtaining the structure on the state space from the DLR representation necessary

for writing the representation of W (�) as in (9).

Proposition 35 Under Axiom CEB and Axiom CEB-2 we must have �(f�s�g) > 0.

Proof. Assume by contradiction that �(f�s�g) = 0 and take any set A 2 eK(�(Z)) with A �
int(�(Z)) and any superset B0 2 eK(�(Z)) of A such that there exists x 2 B0nA with ��fxg(�s�) >
��A(�s�). Note that in order for such a set B0 to exist it must be that � > 0 so we must also

have �fxg(�s�) > �A(�s�). We will break up most of the rest of the proof of Proposition 35 into
a series of lemmas.

36See the footnote from Lemma 42 in the proof of Proposition 35 for some motivation for this expansion.
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Lemma 36 There exists a set B 2 eK(�(Z)) with A � B � B0 \ int(�(Z)) and �B(�s�) >
�A(�s�). Moreover, under Axiom CEB we have

Z
SN
�B(s)�(ds) >

Z
SN
�A(s)�(ds).

Proof. If x 2 int(�(Z)), then let B � hull(A [ fxg). Since B0 and int(�(Z)) are convex and
A [ fxg � B0 \ int(�(Z)), we will have hull(A [ fxg) � B0 \ int(�(Z)). On the other hand,
�B(�s�) = �A[fxg(�s�) = max(�fxg(�s�); �A(�s�)) = �fxg(�s�) > �A(�s�). If x =2 int(�(Z))

we will �nd some x0 2 int(�(Z)) \ (B0nA) with �fx0g(�s�) > �A(�s�) and then de�ne B �
hull(A[ fx0g) and repeat the argument above to prove the �rst part of the claim. Note that since
A is closed it must be that �A(�s�) = �fyg(�s�) for some y 2 A. Also, since �s� 2 SN , we have
�s� 6= 0 so y =2 int(A). Take x0 = 1

2(x+ y) and note that x0 2 int(�(Z)) \ (B0nA). On the other
hand, by the a¢ ne property of �(�) we have �fx0g(�s�) = 1

2�fxg(�s�)+
1
2�fyg(�s�) > �A(�s�). For

the second part of the claim, note that A � B implies �A � �B and since �B(�s�) > �A(�s�) we
can appeal to Axiom CEB to conclude thatW (�B) > W (�A): Using the DLR(2001) representation

from (30), this can be rewritten as
Z
SN
�B(s)�(ds) >

Z
SN
�A(s)�(ds). �

Lemma 37 There exists an open set bS1 � SN with �(bS1) > 0 and �s� 2 bS1 such that �B(s) >
�A(s) for any s 2 bS1.
Proof. We have �B(s) � �A(s) over SN so assume by contradiction that �B(�) = �A(�) everywhere
but on a set of measure zero. Since �B(�) and �A(�) are both continuos functions on SN which is

compact, they are bounded and measurable. So by Proposition 5 from Royden(1988, pp. 82) we

have
Z
SN
�B(s)�(ds) =

Z
SN
�A(s)�(ds) which constitutes a contradiction to the result of Lemma

36. Also, since �B(�s�) > �A(�s�) we may assume without loss of generality that �s� 2 bS1. �
Lemma 38 There exists " > 0 such that �(bS1ncone(N "(�s�))) > 0 where N "(�s�) is the closed
ball of radius " around �s� in RN .

Proof. If this were not true we would then have �
�bS1ncone�N 1

n
(�s�)

��
= 0 for all n � 1 so

�
�
cone

�
N 1

n
(�s�)

�
\ bS1� = �

�bS1� � �
�bS1ncone�N 1

n
(�s�)

��
> 0 for any n � 1. Note thatn

cone
�
N 1

n
(�s�)

�
\ bS1o is a decreasing sequence of sets with \1n=1

�
cone

�
N 1

n
(�s�)

�
\ bS1� =

cone(f�s�g) \ bS1. But cone(f�s�g) = f�(�s�) : � � 0g and since bS1 � SN in which the

utilities are normalized so that
PN
k=1(s

k)2 = 1, we have cone(f�s�g) \ bS1 = f�s�g. So, since
�
�
cone

�
N1(�s�)

�
\ bS1� � �

�bS1� <1 and � is �-additive we can use for instance Theorem 9.8(ii)

in Aliprantis and Border(1999, pp. 337) to conclude that �(f�s�g) = lim
n!1

�
�
cone

�
N 1

n
(�s�)

�
\ bS1� =
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lim
n!1

�
�bS1� > 0 which contradicts the assumption that �(f�s�g) = 0.37 Thus, the set bS1ncone(N "(�s�))

will be of strictly positive measure. �

Lemma 39 There exists a set bS2 � bS1 such that �(bS2) > 0 and �s� =2 cone�bS2�.
Proof. Even though�s� =2 bS1ncone(N "(�s�)), we cannot yet claim that�s� =2 cone(bS1ncone(N "(�s�))).
To obtain a set with this property, we will partition bS2 into 2N�1 elements constructed as follows.
Firstly, note that by the normalization

PN
k=1 s

k = 0 for all s 2 SN , we must have �s� � v1 = 0,

where v1 � (1; :::; 1) 2 RN . Select next some other N � 2 vectors such that fv1; v2; :::; vN�1g is
a linearly independent set and �s� � vi = 0, for all i 2 f1; :::; N � 1g. Note on the one hand
that choosing N � 1 such vectors is possible because the dimension of the underlying space is
N . On the other hand, since fv1; v2; :::; vN�1g are linearly independent, the dimension of the set
R � fs 2 RN : s�vi = 0, for i 2 f1; :::; N�1gg is 1. Thus, since �s� 2 R, we have that s 2 R implies
s = �(�s�) for some � 2 R. Let H1 � fs 2 RN : s � v1 � 0g and H2 � fs 2 RN : s � v1 � 0g and
then construct iteratively the following sets. Hi1;:::;in;1 � fs 2 Hi1;:::;in : s � vn+1 � 0g, Hi1;:::;in;2 �
fs 2 Hi1;:::;in : s�vn+1 � 0g for n = f1; :::; N�2g. Let Si1;:::;iN�1 � Hi1;:::;iN�1\

�bS1ncone(N "(�s�))
�

for all fi1; :::; iN�1g 2 f1; 2gN�1. Note that the 2N�1 elements Si1;:::;iN�1 thus constructed form a

�nite partition of bS1ncone(N "(�s�)) so since �(bS1ncone(N "(�s�))) > 0, one of the elements of the
partition which we denote bS2 must be of strict positive measure. Without loss of generality we may
assume that s � vi � 0 for all s 2 bS2 and i 2 f1; :::; N � 1g because when s � vi � 0 for some i we
may take v0i = �vi instead of vi and then except for some notation the elements of the partition ofbS1ncone(N "(�s�)) will be the same.

We will show now that �s� =2 cone(bS2). Assume by contradiction that this is not true, that is
there exist fs1; :::; smg � bS2 and f�1; :::; �mg 2 Rm+ such that �s� =

Pm
i=1 �jsj . We may assume

without loss of generality that sj 6= s� for any j, because when this is not true we must still be

able to write �s� as a positive combination of the remaining elements from fs1; :::; smg. Now, for
any i 2 f1; :::; N � 1g we have �s� � vi = 0, sj � vi � 0 and �s� =

Pm
i=1 �jsj imply sj � vi = 0 for all

j 2 f1; :::;mg. Therefore, for any j 2 f1; :::;mg, we have sj � vi = 0 for all i 2 f1; :::; N � 1g which
implies sj 2 R\SN . But R\SN = f�s�; s�g because of the normalization

PN
k=1

�
sk
�2
= 1 for the

elements in SN and of the fact that s 2 R implies s = �(�s�) for some � 2 R. Since sj 6= s� we

must therefore have sj = �s� for all j which is impossible because �s� =2 bS1ncone(N "(�s�)). This
completes the proof of Lemma 39. �

We denote by diam(S) � supfd(s; s0) : s; s0 2 Sg the diameter of a nonempty set.
37 It is important to emphasize that this is the point where the initial assumption that �(f�s�g) = 0 plays its role

in the argument.
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Lemma 40 There exists a closed set bS3 � bS2 such that �(bS3) > 0 and diam(bS3) � � for some

� < 1
2 .

Proof. We will use Proposition 15 from Royden(1988, pp. 63) which states that if E is a measurable

set and " > 0, then there exists a closed set F � E such that �(EnF ) < ". Since by Lemma 39

we have �(bS2) > 0, there exists " such that �(bS2) > " > 0. Applying the result from Royden we

conclude that there exists a closed set bS4 � bS2 such that �(bS2nbS4) < ". But since bS4 � bS2 we have
�(bS2nbS4) = �(bS2)��(bS4) > "��(bS4) from which it follows that �(bS4) > 0. Now, take some � < 1

2

and consider the open cover of bS4 consisting of the sets fN �
2
(s)\ bS4gs2bS4 . Since bS4 is a closed subset

of the compact set SN , it is compact so there exists a �nite subcover of bS4. Since �(bS4) > 0, one
of the elements of the subcover, let�s say N �

2
(s) \ bS4 must be of strict positive measure. Applying

again the result from Royden(1988) to the set N �
2
(s) \ bS4, we conclude that there exists a closed

set bS3 � bS2 such that �(bS3) > 0 and bS3 � N �
2
(s) so that diam(bS3) � diam

�
N �

2
(s)
�
� �. �

We call the dimension of a set, the dimension of the smallest a¢ ne set that includes that set.

In our case, we may assume without loss of generality that the dimension of bS3 is N , so bS3 is of
full dimension in RN . If this is not true, we can continue the argument below replacing everywhere
N with the actual dimension of the set bS3.
Lemma 41 There exists � > 0 such that �s� =2 cone([s2bS3N �(s)).

Proof. Assume by contradiction that the claim is not true so that for any n > 1, we have �s� 2
cone([

s2bS3N 1
2n
(s)). Thus, for any n � 2, there exist f�ni ; rni gi2f1;:::;p(n)g with �ni > 0 and rni 2

[
s2bS3N 1

2n
(s) such that �s� =

Pp(n)
i=1 �

n
i r
n
i . We �rstly claim that it is without loss of generality to

take p(n) = N+1 for all n. To see this, note that �s� = �
�Pp(n)

i=1 �ir
n
i

�
, where � �

�Pp(n)
i=1 �

n
i

�
and

�i � �ni
� . Since

Pp(n)
i=1 �i = 1, we have r

n �
Pp(n)
i=1 �ir

n
i 2 hull

�
[
s2bS3N 1

2n
(s)
�
. By Carathéodory�s

Convexity Theorem (see for instance Theorem 5.17 from Aliprantis and Border(1999, pp. 173)) in

an N -dimensional vector space, every vector in the convex hull of a nonempty set can be written

as a convex combination of at most N + 1 vectors from that set. Thus, in our case there exist

f�ni ; rni gi2f1;:::; N+1g with �ni > 0 and rni 2 [s2bS3N 1
2n
(s) such that rn =

PN+1
i=1 �ni r

n
i . Therefore,

�s� =
PN+1
i=1 (��

n
i )r

n
i as desired.

Now, since bS3 is closed it follows that [s2bS3N 1
n
(s) is also closed. Moreover, for any rni 2

[
s2bS3N 1

2n
(s) � [

s2bS3N 1
4
(s) we have jjrni jj � jjrni � sjj + jjsjj � 5

4 , because jjsjj = 1 when s 2 S
N .

Therefore, [
s2bS3N 1

2
(s) is a closed subset of the compact set

�
s 2 RN : jjsjj � 5

4

	
so it is compact.

Since frn1 g is a sequence in a compact set, it has a convergent subsequence r
ni
1 ! r01. Thus, it is

without loss of generality to assume that rn1 ! r01 and then repeating the argument iteratively we
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can take rni ! r0i for all i 2 f1; :::; N +1g. We claim that r0i 2 bS3 for all i. To see this, note that if
r0i =2 bS3 for some i, since bS3 is closed we will have d(r0i ; bS3) = � > 0. But then, takeM 0 such that for

any n �M 0 we have rni 2 N�
2
(r0i ) and let M � max(M 0; 1�)+ 1. Then, � = d(r0i ;

bS3) � d(r0i ; r
M
i )+

d(rMi ;
bS3) < �

2+
�
2 which is impossible so it must be that r

0
i 2 bS3 for all i. Next, we show that for any

i the real sequence f�ni g is bounded so that we can extract some convergent subsequence. Thus, we
have �s� =

PN+1
i=1 �ni r

n
i =

�PN+1
i=1 �ni

�
rn, for some rn 2 hull

�
[
s2bS3N 1

2n
(s)
�
. Now, note that since

diam(bS3) � � we will have diam
�
hull

�
[
s2bS3N 1

2n
(s)
��
= diam

�
[
s2bS3N 1

2n
(s)
�
� �+ 1

n . Thus, for

any r 2 hull
�
[
s2bS3N 1

2n
(s)
�
we have jjrjj = d(r; 0) � d(s; 0)�d(r; s) � jjsjj�(�+ 1

n) = (1�
1
n��) for

any s 2 bS3. Thus, jj � s�jj = �PN+1
i=1 �ni

�
jjrnjj �

�PN+1
i=1 �ni

� �
1� 1

n � �
�
, which since jj � s�jj = 1

and �ni � 0 implies �ni � 1
1
2
�� . Therefore, repeating the argument from above, we may assume

without loss of generality that �ni ! �0i � 0 for each i 2 f1; :::; N + 1g. But then, the sequencePN+1
i=1 �ni r

n
i !

PN+1
i=1 �0i r

0
i as n ! 1. Therefore, �s� =

PN+1
i=1 �0i r

0
i with r

0
i 2 bS3 and �0i � 0 so

�s� 2 cone(bS3) which is a contradiction and thus the proof of Lemma 41 is complete.38 �
Lemma 42 There exists a set of N linearly independent utilities39 fs1; :::; sNg � RNnf0g such
that �(int(cone(fs1; :::; sNg)) \ bS3) > 0 and �s� =2 cone(fs1; :::; sNg).
Proof. For each i 2 f1; :::; Ng, let fi � (0; :::; 1; :::; 0) 2 RN with 1 on the ith position and ei �
fi � 1

N (1; :::; 1) 2 RN . It is straightforward to show that fe1; :::; eNg is a linearly independent
set in RN so it constitutes a basis for RN . For any s 2 bS3 and i 2 f1; :::; Ng, let ssi � s + �sei

for some 0 < �s < min(�; 1), where � is given by Lemma 41 and note that s =
PN
i=1

1
N s

s
i . We

claim that for any s 2 bS3 we can choose �s such that the set fss1; :::; ssNg is linearly independent.
For this, we will show that

PN
i=1 �is

s
i = 0 must imply �i = 0 for all i. Since fe1; :::; eNg is a

basis in RN , s =
PN
i=1 

s
i ei for some i 2 R. Let � �

PN
i=1 �i and 

s �
PN
i=1 

s
i and note thatPN

i=1 �is
s
i =

PN
i=1(�

s
i + �s�i)ei =

�
�s1 + �

s�1 � �s+�s�
N ; :::; �sN + �

s�N � �s+�s�
N

�
. Setting

this equal to 0, we obtain a system of N equations with N unknowns f�1; :::; �Ng, where the ith

equation is �1(si �
s+�s

N ) + :::+ �i(
s
i + �

s � s+�s

N ) + :::+ �N (
s
i �

+�s

N ) = 0. We will show now

38Note here that unless we bound p(n) above with N + 1, the argument as presented here does not go through

because it may well be that p(n)!1 as n!1.
39We emphasize here that the set fs1; :::; sNg is not required to belong to SN , but to RNnf0g. While we could

adapt Lemma 43 below to conclude that sn+1 2 hull(f�s1; :::;�sng) and then also adapt the rest of the proof of
Proposition 35 to avoid using cones and work only with states in SN we cannot insure in the proof of this Lemma

that it is possible to choose fs1; :::; sng in SN to satisfy the desired properties. Therefore, the need to work in the

extended state space RNnf0g and use cones instead of convex hulls.

43



that the N �N coe¢ cient matrix of this system has a non-zero determinant D. Thus:

D =

����������
s1 + �

s � s+�s

N 1 � s+�s

N ::: s1 �
s+�s

N

s2 �
s+�s

N s2 + �
s � s+�s

N ::: s2 �
s+�s

N

::: ::: ::: :::

sN �
s+�s

N sN �
s+�s

N ::: sN + �
s � s+�s

N

����������
=

����������
1 1 ::: 1

s2 �
s+�s

N s2 + �
s � s+�s

N ::: s2 �
s+�s

N

::: ::: ::: :::

sN �
s+�s

N sN �
s+�s

N ::: sN + �
s � s+�s

N

����������
N � 1
N

(s + �s) =

=
N � 1
N

(s + �s) (�s)N�1

For the �rst equation, we added rows 2 throughN to the �rst row and then factored out the term
N�1
N (s + �s). For the second equation, we subtracted from each row i 2 f2; :::; Ng, the �rst row
multiplied with si �

s+�s

N . Now note that since the only restriction on �s is 0 < �s < min(�; 1) we

can always select �s such that �s 6= �s so D 6= 0. Therefore, the system has a unique solution and
since �i = 0 for i 2 f1; :::; Ng solves the system, we obtain the desired conclusion that fss1; :::; ssNg
is a linearly independent set.

We will show now that s 2 int(cone(fss1; :::; ssNg)), for which since cone(fss1; :::; ssNg) is a convex
set in an Euclidean space it su¢ ces to show that s 2 al � int(cone(fss1; :::; ssNg)), the algebraic
interior of the set cone(fss1; :::; ssNg). Thus, we will show that for any p 2 RN , there exists some
�s > 0 such that for all � 2 [0; �s), we have (1 � �)s + �p 2 cone(fss1; :::; ssNg). Since fss1; :::; ssNg
are linearly independent, they form a basis in RN so p =

PN
i=1 �is

s
i with �i 2 R. On the other hand,

by construction s =
PN
i=1

1
N s

s
i so (1 � �)s + �p =

PN
i=1

�
(1� �) 1N + ��i

�
ssi . Now, by denoting

��i � (1 � �) 1N + ��i we will have (1 � �)s + �p =
PN
i=1 �

�
i s
s
i and noting that for � su¢ ciently

small ��i � 0 for all i, the argument is complete.

Employing the procedure presented above and using the Axiom of Choice construct the family

of sets F = fint(cone(fss1; :::; ssNg)) \ bS3 : s 2 bS3g. Since s � int(cone(fss1; :::; ssNg)) \ bS3 for any
s, the elements of F are nonempty and open relative to bS3. Thus, F is an open cover of bS3 which
is compact as a closed subset of the compact set SN so there exists a �nite family F 0 � F such

that bS3 � [
F2F 0

F . Since �(bS3) > 0, one of the elements of F 0 must be of strictly positive measure
so �(int(cone(fss1; :::; ssNg)) \ bS3) > 0 for some s 2 bS3. Now, since d(ss1; s) = jj�seijj = �s N�1N < �

we have int(cone(fss1; :::; ssNg)) � int(cone(N �(s))). Therefore by Lemma 41 it follows that �s� =2
cone(fss1; :::; ssNg). Finally, for any i, jjssi jj = jjs+ �seijj � jjsjj � jj�seijj = 1� �s N�1N > 1

N implies

ssi 6= 0. �

44



Lemma 43 Let fs1; :::; sng � RNnf0g with n � 1 be such that \ni=1Lsi(B) 6= ?. Then, if sn+1 2
RNnf0g is such that (\ni=1Lsi(B)) \ Lsn+1(B) = ?, we must have sn+1 2 cone(f�s1; :::;�sng).

Proof. Note that since B is compact, Lsi(B) = Lsi(zsi) for some lottery zsi 2 B for all i 2
f1; :::; n + 1g. Moreover, \ni=1Lsi(B) � \ni=1Lsi(q) 6= ? for some q 2 \ni=1Lsi(B) because for
any x 2 \ni=1Lsi(q) and any i 2 f1; :::; ng we will have x � si < q � si � zsi � si. Therefore,

the condition that (\ni=1Lsi(B)) \ Lsn+1(B) = ? implies that (\ni=1Lsi(q)) \ Lsn+1(zn+1) = ?.
Also, q � sn+1 > zn+1 � sn+1 because otherwise (\ni=1Lsi(B)) \ Lsn+1(B) 6= ? since all elements in

\ni=1Lsi(q) would be also in Lsn+1(B). We will show now that Lsn+1(q) \ (\ni=1Lsi(q)) = ? and

to this end, assume by contradiction that there exists some y 2 Lsn+1(q) \ (\ni=1Lsi(q)). Consider
the set V � fx 2 
 : q + �(y � q) for some � > 0g and note for any x 2 V and i 2 f1; :::; ng,
we have x � si < q � si because y � si < q � si. Therefore, V � \ni=1Lsi(q) so to prove our claim
it is enough to show that V \ Lsn+1(zn+1) 6= ?. For this we need to �nd some � > 0 such that

(q + �(y � q)) � sn+1 < zn+1 � sn+1. Since q � sn+1 > zn+1 � sn+1 as stated above and y 2 Lsn+1(q) by
the contradiction assumption, any � > (q�z)�sn+1

(q�y)�sn+1 would satisfy this requirement.

Consider now the following sets Hsn+1(q) = fz 2 
 : z � sn+1 = q � sn+1g, Y = fw 2 Rn : w =
((z � q) � s1; :::; (z � q) � sn) or w = (�(z � q) � s1; :::;�(z � q) � sn) for some z 2 Hsn+1(q)g and
Y 0 = fw 2 Rn : w � 0g. Clearly, Y and Y 0 are closed and convex. We will show next that

Y \ int(Y 0) = ?. Thus, we want to show that if z � sn+1 = q � sn+1 then it cannot be that
z � si < q � si for all i 2 f1; :::; ng or z � si > q � si for all i 2 f1; :::; ng. We can assume that
si 6= �sn+1 because otherwise we would be done with the proof of the lemma, so what remains to
prove is that Hsn+1(q)\ (\ni=1Lsi(q)) = ? and Hsn+1(q)\ (\ni=1Usi(q)) = ?. The �rst claim follows

from the results we obtained above. Thus, note that if this were not true, that is if there exists

x 2 Hsn+1(q)\ (\ni=1Lsi(q)); since \ni=1Lsi(q) is open, we could take a su¢ ciently � > 0 such that
N�(x) � \ni=1Lsi(q). Since x 2 Hsn+1(q), we have that �x+ (1� �)y 2 N�(x) \Lsn+1(q) for some
y 2 Lsn+1(q) and some � su¢ ciently small and we would thus obtain a contradiction with the fact
that Lsn+1(q) \ (\ni=1Lsi(q)) = ?. As for the second part of the claim, note that if there exists
x 2 Hsn+1(q)\ (\ni=1Usi(q)) we would have x � si > q � si for all i 2 f1; :::; ng and x � sn+1 = q � sn+1.
Consider then the element x0 = q + �(q � x) for some � > 0. We will then have x0 � si < q � si for
all i � n and x0 � sn+1 = q � sn+1 so x0 2 Hsn+1(q)\ (\ni=1Lsi(q)) which we know that cannot hold
by the �rst part of the claim and thus we are done.

Given that Y and Y 0 are closed and convex and Y \ int(Y 0) = ? we can use the Separating

Hyperplane Theorem to obtain that there exists a vector � 2 Rnnf0g and a number k 2 R such that
such that � �w � k for all w 2 Y and � �w � k for all w 2 Y 0. But since ((q�q) �s1; :::; (q�q) �sn) 2
Y \Y 0 we must have k = � �0 = 0. Also, note that for any w 2 Y we have �w 2 Y so � �w � 0 and
� �(�w) � 0 so � �w = 0. Moreover, note that since � �w � k = 0 for all w 2 Y 0 we must have � � 0.
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Therefore, we obtained that for any z 2 Hsn+1(q), that is for any z 2 
 with (z � q) � sn+1 = 0 we
must have (z � q) � (�1s1 + :::+ �nsn) = 0: Then, using for instance Theorem 5.81 from Aliprantis

and Border (1999, pp. 207) we have that sn+1 =  (�1s1+ :::+�nsn) for some  2 R. From the fact
that sn+1 2 RNnf0g it follows that  6= 0. Since (\ni=1Lsi(q)) \ Lsn+1(q) = ? we must also have

 < 0 so sn+1 =
Pn
i=1 �isi with �i �  �i � 0 and the proof of the Lemma 43 is complete. �

Lemma 44 \Ni=1Lsi(B) 6= ?.

Proof. We will prove the lemma by induction. Clearly, we have Ls1(B) 6= ? so assume that

\ni=1Lsi(B) 6= ? and by contradiction that \n+1i=1 Lsi(B) = ?. By Lemma 43, it would follow that
sn+1 2 cone(f�s1; :::;�sng) so sn+1 =

Pn
i=1 �i(�si) with �i � 0. But then, sn+1 +

Pn
i=1 �isi = 0

which contradicts the fact that fs1; :::; sn+1g are linearly independent. Therefore, we must have
\n+1i=1 Lsi(B) 6= ? and this completes the induction proof. �

Lemma 45 There exists a set bS5 � bS3 with �(bS5) > 0 and z0 2 
 such that z0 2 U�s�(B) \�
\
s2bS5Ls(B)

�
.

Proof. Since \Ni=1Lsi(B) 6= ? by Lemma 44 and �s� =2 cone(fs1; :::; sNg) which implies immediately
that s� =2 cone(f�s1; :::;�sNg) we can use Lemma 43 to conclude that Ls�(B)\

�
\Ni=1Lsi(B)

�
6= ?.

But since Ls�(B) = fy 2 
 : y � s� < z � s� for all z 2 Bg = fy 2 
 : y � (�s�) > z � (�s�) for all
z 2 Bg = U�s�(B) it follows that U�s�(B)\(\Ni=1Lsi(B)) 6= ?. So we can take some z0 2 U�s�(B)\
(\Ni=1Lsi(B)). Moreover, since z0 2 \Ni=1Lsi(B) it follows that z0 2 \s2cone(fs1;:::;sNg)Ls(B). To see
this, note �rstly that z0 �si < x�si for all x 2 B and for each i. Take some s =

PN
i=1 �isi with �i � 0

for all i. Then for any x 2 B we will have z0 �s =
PN
i=1 �i(z

0 �si ) <
PN
i=1 �i(x �si ) = x �s so that z0 2

Ls(B). Now, denote by bS5 � cone(fs1; :::; sNg)\ bS3. Since z0 2 U�s�(B)\�\s2cone(fs1;:::;sNg)Ls(B)�
� U�s�(B) \

�
\
s2bS5Ls(B)

�
and bS5 � bS3 with �(bS5) > 0 by Lemma 42, the proof of the Lemma

45 is complete. �

Lemma 46 There exists a lottery z 2 �(Z) such that for all s 2 bS5 we have �B(s) > �fzg(s) and

�B(�s�) < �fzg(�s�).

Proof. Since B is compact we have U�s�(B) = U�s�(fz00g) for some z00 2 B. Since B � int(�(Z))

we have z00 2 int(�(Z)) so there exists z � �z00 + (1 � �)z0 2 int(�(Z) for some su¢ ciently

high � < 1. Since z0 2 U�s�(B) we will have �B(�s�) < z0 � (�s�). On the other hand, by
choice of z00 we have z00 � (�s�) � x �(�s�) for all x 2 B so z00 � (�s�) � �B(�s�). Therefore
�fzg(�s�) = �z00 �(�s�)+(1��)z0 �(�s�) > �B(�s�). Finally, for any s 2 bS5 we have �B(s) � z00 �s

46



while z0 2 Ls(B) implies �B(s) > z0 � s. Thus, �B(s) > �z00 � s+ (1� �)z0 � s = z � s = �fzg(s) and

the proof of the lemma is complete. �

We will complete now the proof of Proposition 35. Thus, consider the sets A[fzg and B [fzg
and we want to show that we must haveW (�hull(B[fzg)) > W (�hull(A[fzg)) which would be su¢ cient

to exclude the case when �(f�s�g) = 0. To see this, note that B � B0 implies W (�hull(B0[fzg)) �
W (�hull(B[fzg)) so we found z 2 �(Z) with ��fzg(�s�) � ��B(�s�) and W (�hull(B0[fzg)) >

W (�hull(A[fzg)). This contradicts Axiom CEB-2 because B0 was chosen arbitrarily from those sets

satisfying the requirements of the axiom. Thus, we have:

W (�hull(B[fzg)) =

Z
SNnbS5(�B _ �fzg)(s)�(ds) +

Z
bS5(�B _ �fzg)(s)�(ds) �

�
Z
SNnbS5(�A _ �fzg)(s)�(ds) +

Z
bS5(�B _ �fzg)(s)�(ds) >

>

Z
SNnbS5(�A _ �fzg)(s)�(ds) +

Z
bS5(�A _ �fzg)(s)�(ds) =W (�hull(A[fzg))

where the weak inequality comes from the fact that A � B so �B(s) � �A(s) for all s. The strict

inequality comes from the fact that for any s 2 bS5 � bS3 with �(bS5) > 0 we have �B(s) > �fzg(s)

and �B(s) > �A(s) so that (�B _�fzg)(s) > (�A _�fzg)(s). Therefore, we must have �(f�s�g) > 0
and thus the proof of Proposition 35 is complete. �

Proposition 47 Under Axiom CEB and Axiom CEB-2 there exists " > 0 such that �(N"(�s�)nf�s�g) =
0.

Proof. Most steps in the proof of this proposition are identical to steps from the proof of the

previous proposition so we will present in detail only the step at which the two proofs di¤er.

Assume Axiom CEB is satis�ed and by contradiction that the statement of Proposition 47 is false.

Thus, for any " > 0 we have �(N"(�s�)nf�s�g) > 0. Repeat the steps from Lemmas 36-37 in the

proof of Proposition 35 to construct the open set bS1 � SN with �(bS1) > 0 and �s� 2 bS1 such that
�B(s) > �A(s) for any s 2 bS1. We will next show that the result from Lemma 38 is true in this

case as well.40 Then, the rest of the proof will go through as above and thus we would conclude

that Axiom CEB-2 is violated which would constitute the contradiction.

We have �s� 2 bS1 and we claim that there exists " > 0 such that �
�bS1ncone(N "(�s�))

�
> 0

where N "(�s�) is the closed ball of radius " around �s� in RN . If this were not true we would then
have �

�bS1ncone�N 1
n
(�s�)

��
= 0 for all n � 1. Note that

nbS1ncone�N 1
n
(�s�)

�o
is an increasing

40Note that it is the proof of Lemma 38 where we used the contradiction assumption that �(f�s�g) = 0 in the

proof of Proposition 35.
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sequence of sets with [1n=1
�bS1ncone�N 1

n
(�s�)

��
= bS1ncone(f�s�g). But bS1ncone(f�s�g) =bS1n f�s�g because cone(f�s�g) \ bS1 = f�s�g as argued in the proof of the Lemma 38 from

Proposition 35. So, we can use Theorem 9.8(i) in Aliprantis and Border(1999, pp. 337) to conclude

that �(bS1nf�s�g) = lim
n!1

�
�bS1ncone�N 1

n
(�s�)

��
= 0. Since �s� 2 bS1 and bS1 is open, there

must exist an open neighborhood N�(�s�) of �s� included in bS1 such that �(N�(�s�)nf�s�g) =
0 which would contradict our assumption. Therefore, there must exist some " > 0 such that

�
�bS1ncone(N "(�s�))

�
> 0 which completes the proof of our claim and thus of the Proposition 47.

�

We will complete now the proof of the su¢ ciency of the Axioms. Using (30) for any A 2eK(�(Z)), we can write:
W (�A) =

Z
SNnf�s�g

�
max
x2A

(x � s)
�
�(ds) + max

x2A
(x � (�s�))�(f�s�g): (31)

In particular, for A = fzg we will have:

W (�fzg) =

Z
SNnf�s�g

(z � s)�(ds) + (z � (�s�))�(f�s�g):

But as shown above, W (�fzg) = v(z) = �(z � s�) so we have:

z � s� =
1

�+ �(f�s�g)

Z
SNnf�s�g

(z � s)�(ds)

so using (31) we get:

W (�A) =

Z
SNnf�s�g

�
max
x2A

(x � s)
�
�(ds) + max

z2A

"
� �(f�s�g)
�+ �(f�s�g)

Z
SNnf�s�g

(z � s)�(ds)
#

In conclusion, since W (�A) = V (A) and A � hull(A), for any A 2 K(�(Z)) we get the desired
normalized reference-dependent representation:

V (A) =

Z
S

�
max
x2A

(x � s)
� e�(ds)� �min

z2A

�Z
S
(z � s)e�(ds)� (32)

where � � �(f�s�g)
�+�(f�s�g) , S � SNnN"(�s�) and e�(ds) � �(ds)

�(SN )��(f�s�g) for s 6= �s� and e�(f�s�g) � 0.
Note that since �(f�s�g) > 0 by Proposition 35 and � > 0 we will have � 2 (0; 1). Also, since
we have �(N"(�s�)nf�s�g) = 0 by Lemma 47 it follows that e�(N"(�s�)) = e�(N"(�s�)nf�s�g) +e�(f�s�g) = �(N"(�s�)nf�s�g)

�(SN )��(f�s�g) = 0 and thus condition (iii) from De�nition 11 is also satis�ed. This

completes the su¢ ciency part of the proof of Theorem 27. �

Proof of Necessity in Theorem 27:
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We will show next that the a preference relation which can be represented by a utility function as

in (9) must satisfy Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and Axiom

CEB-2. The fact that the preference will satisfy the �rst three of the axioms is true because the

representation in (9) is just a particular form of a DLR representation which implies those axioms.

Also, given the equivalent representation in (2) it is clear that the preference must also satisfy
Monotonicity so it remains to show that also Axiom CEB and Axiom CEB-2 must be satis�ed.

Firstly, note that if V (A) =
Z
S

�
max
x2A

(x � s)
�
�(ds)� �min

z2A

�Z
S
(z � s)�(ds)

�
represents the pref-

erence over menus in K(�(Z)), then for any x; y 2 �(Z) we have fxg � fyg if and only ifZ
S
(x � s)�(ds) >

Z
S
(y � s)�(ds).

For Axiom CEB, take any A;B 2 K(�(Z)), with A � B such that there exists y 2 B with fxg �

fyg for all x 2 A. Then, using the representation in (9) we will have V (B) =
Z
S

�
max
x2B

(x � s)
�
�(ds)�

�min
z2B

�Z
S
(z � s)�(ds)

�
�
Z
S

�
max
x2A

(x � s)
�
�(ds) � �min

z2B

�Z
S
(z � s)�(ds)

�
>

Z
S

�
max
x2A

(x � s)
�
�(ds) �

�min
z2A

�Z
S
(z � s)�(ds)

�
= V (A). The second inequality comes from the fact that y 2 B and fyg �

fxg for all x 2 A implies min
z2B

�Z
S
(z � s)�(ds)

�
< min

z2A

�Z
S
(z � s)�(ds)

�
.

To prove that Axiom CEB-2 must be satis�ed, the following lemma will constitute the main

step of the argument. Note that by part (iii) of the representation in (9) there exists " > 0 such

that �(N"(�s�)) = 0.

Lemma 48 When the preferences � admit a normalized reference-dependent representation as in

(9), there exist a compact set A0 � int(�(Z)) and a lottery y 2 int(�(Z)) such that �fyg(�s�) >
�A0(�s�) and �A0(s) > �fyg(s) for all s 2 SNnN"(�s�).

Proof. Again the proof will share some steps which are similar to steps from the proof of Proposition

35 so we will present them in less detail here. However, we emphasize that while in both proofs

the initial steps consist of partitioning some compact set of ex post states into a �nite number

of subsets such that the states contained in each subset share some common properties, there is

an important di¤erence in terms of the ultimate goal of these arguments. Thus, in the proof of

Proposition 35 the partitioning was done so that we could then claim that one of these subsets

must be of strictly positive measure since the measure of the initial set was strictly positive. In the

proof of this Lemma, the goal is to partition the set SNnN"(�s�) into a �nite number of subsets
so that we can resolve the problems raised by the in�niteness of the state space.

Firstly, since �s� =2 SNncone(N"(�s�)) we can use an argument similar to the one from the
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proof of Lemma 39 from Proposition 35 to cover SNnN"(�s�) with 2N�1 elements fS1; :::; S2N�1g
such that �s� =2 cone(Sj) for any j. By taking their closures, we can assume that the elements

are all closed sets. Then, using the approach from Lemma 40, we can partition each Sj to obtain

a cover of SNnN"(�s�) with elements indexed by a �nite set J , such that diam(Sj) � � for some

� < 1
2 and all j 2 J . Again, by taking closures we can assume that Sj are closed for all j. Next,

as in Lemma 41 we can show that for each j 2 J there exists �j > 0 such that for each j we have
�s� =2 cone([s2SjN �j (s)). Thus, as in Lemma 42 we can �nd a cover of Sj with a �nite family

of sets of the form fint(cone(fs1;i; :::; sN;ig)) \ Sjgi2Ij such that for any i 2 Ij , fs1;i; :::; sN;ig are
linearly independent and �s� =2 int(cone(fs1;i; :::; sN;ig)). Let j(i) be the index j such that i 2 Ij
and let I � [j2JIj . Note that by construction, I is a �nite set. Take some arbitrary lottery
y 2 int(�(Z)).

For each i 2 I, since fs1;i; :::; sN;ig are linearly independent we can employ Lemma 43 as in the
proof of Lemma 44 from Proposition 35 to conclude that \Nk=1Lsk;i(y) 6= ? and then immediately

that \Nj=1L�sk;i(y) 6= ?. Therefore, using again Lemma 43 for the set f�s1;i; :::;�sN;ig and �s� we
will have that

�
\Nk=1L�sk;i(y)

�
\L�s�(y) 6= ? so

�
\Nk=1Usk;i(y)

�
\L�s�(y) 6= ? because L�sk;i(y) =

Usk;i(y). Now, for each i 2 I, take x0i 2
�
\Nk=1Usk;i(y)

�
\L�s�(y) and note that by an argument sim-

ilar to the one from Lemma 45 we will have x0i 2
�
\s2int(cone(fs1;i;:::;sN;ig))\Sj(i)\(SNnN" (�s�))Us(y)

�
\

L�s�(y). Since x
0
i as chosen above is not necessarily in �(Z) consider the set f�x0i + (1� �)y : � 2

(0; 1)g and note that since y 2 int(�(Z)) which is algebraically open, for a small enough � we will
have xi � �x0i+(1��)y 2 int(�(Z)). In addition, since (�x0i+(1��)y) �s � y �s when x0i �s � y �s
and (�x0i + (1� �)y) � (�s�) < y � (�s�) when x0i � (�s�) < y � (�s�) it follows that

xi 2
�
\s2int(cone(fs1;i;:::;sN;ig))\Sj(i)\(SNnN" (�s�))Us(y)

�
\ L�s�(y) \ int(�(Z)): (33)

Let A0 � [i2Ixi. Firstly, note that since xi 2 L�s�(y) for each i we have xi �(�s�) < y �(�s�))
sup
i2I

(xi � (�s�)) = max
i2I

(xi � (�s�)) < y � (�s�) so �fyg(�s�) > �A0(�s�). On the other hand, the

family fint(fcone(fs1;i; :::; sN;ig)) \ Sj(i) \
�
SNnN"(�s�)

�
gi2I being a cover of SNnN"(�s�), for

any s 2 SNnN"(�s�) we will have s 2 int(cone(fs1;i; :::; sN;ig)) \ Sj(i) for some i 2 I. Therefore,

�A0(s) � �fxig(s) > �fyg(s) which completes the proof of the Lemma 48. �

Let A � hull(A0) and B � hull(A[ y), where A0 and y are given by the Lemma 48 and we will
show that A and B thus de�ned will satisfy the conditions of the Axiom CEB-2 from Appendix B

which we already proved that is equivalent to Axiom CEB-2. Firstly, since �fyg(�s�) > �A0(�s�) it
follows that �B(�s�) = �A[fyg(�s�) = �A(�s�)_�fyg(�s�) = �A0(�s�)_�fyg(�s�) > �A0(�s�) =
�A(�s�) where we employed repeatedly the fact that �C(�) = �hull(C)(�). Using similar steps and
the monotonicity of �(�)(s), it can be shown that �A0(s) > �fyg(s) implies �A(s) = �B(s) for

s 2 SNnN"(�s�). Secondly, we want to show that for any lottery z 2 �(Z) with ��fzg(�s�) �
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��B(�s�), we have W (�hull(B[fzg)) =W (�hull(A[fzg)).

For C 2 fA;Bg we have

W (�hull(C[fzg)) =

Z
SNnN" (�s�)

�hull(C[fzg)(s)�(ds) +

Z
N"(�s�)

�hull(C[fzg)(s)�(ds):

Since �(N"(�s�)) = 0 and j�hull(C[fzg)(s)j � j��(Z)(s)j < 1 because �(Z) is compact, we have

W (�hull(C[fzg)) =

Z
SNnN" (�s�)

�hull(C[fzg)(s)�(ds). On the other hand,

Z
SNnN" (�s�)

�hull(A[fzg)(s)�(ds) =

Z
SNnN" (�s�)

�hull(B[fzg)(s)�(ds)

because �A(s) = �B(s) for s 2 SNnN"(�s�). Thus, we have W (�hull(B[fzg)) = W (�hull(A[fzg)) as

desired. Finally, note that standard results guarantee that A and B are compact sets since A0 is

�nite and A[ y is compact.

This completes the proof of the necessity of the axioms for the representation. We mention

here that this slightly elaborate construction of the set A is necessary. Thus, it would have not

been enough to select a lottery xs 2 Us(y) \ L�s�(y) for each s 2 SNnN"(�s�) appealing to
the Axiom of Choice and then de�ne A � cl

�
[s2SNnN" (�s�)xs

�
, because xs 2 L�s�(y) for all

s 2 SNnN"(�s�) would not necessarily imply sup
x2A

(x � (�s�)) < y � (�s�) as needed in order to show

the required condition that �fyg(�s�) > �A(�s�). On the other hand, \s2SNnN" (�s�)Us(y) is in
general not necessarily nonempty so we cannot just take an element in the intersection of this set

with L�s�(y) and let A be that element. An alternative approach would be to take some element

y0 2 L�s�(y) \ int(�(Z)) and then to try take elements xs 2 Us(y) \ L�s�(y0) with the aim of

obtaining the strict condition �fyg(�s�) > �fy0g(�s�) � �A(�s�). However, this approach also
runs into problems because even though Us(y) \ L�s�(y0) 6= ? we cannot insure in general that

Us(y) \ L�s�(y0) \�(Z) 6= ? as necessary to obtain A � �(Z). �

B3. Proof of Theorem 29

Since the preferences � satisfy Weak Order, Independence and Continuity, Proposition 2 in

DLR(2001) shows that the function that represents these preferences must be unique up to an

a¢ ne transformation. Thus, if Vi(A) =
Z
S

�
max
z2A

(z � s)
�
�i(ds) � �imin

x2A

�Z
S
(x � s)�i(ds)

�
are two

normalized reference-dependent representations of �, then V1 = �V2 + � for some � > 0 and

� 2 R. If vi(z) � Vi(fzg) are the corresponding restrictions to the singletons, we must have
v1 = �v2 + �. As argued in Appendix A, for each i 2 f1; 2g there exists si� 2 SN and �i � 0 such
that vi(z) = �i(z � si�) for all z 2 �(Z). Moreover, as argued in Appendix B, we must actually
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have �i > 0. Therefore, for any z 2 �(Z) we have �1(z � s1�) = ��2(z � s2�) + �. Because of the

normalization
PN
k=1 s

k = 0 for all elements in SN , if we take z� = ( 1N ; :::;
1
N ) 2 �(Z) we will have

z�� si� = 0. Thus, �1(z� � s1�) = ��2(z
� � s2�) + � implies � = 0.

Therefore, z � (�1s1�) = z � (��2s2�) for any z 2 �(Z) which in turn implies that �1s1� = ��2s
2
�.

To see this, for each k 2 f1; :::; Ng take zk = (0; :::; 0; 1; 0; :::; 0) 2 �(Z) with the 1 on kth position
and note that zk � (�1s1�) = zk � (��2s2�) implies (�1s1�)k = (��2s2�)k where by (w)k we denote the
kth coordinate of a �nite dimensional vector w. Thus, s1� is an a¢ ne transformation of s

2
� which

immediately implies that s1� = s2�, because s
i
� 2 SN for i 2 f1; 2g and we know that SN contains

the unique normalization of any a¢ ne function. On the other hand, as shown in Appendix A for

any A 2 eK(�(Z)) we have Vi(A) = Wi(�A) =

Z
SN
�A(s)�i(ds) where �i is the measure from the

DLR representation. Since V1(A) = �V2(A) we have
Z
SN
�A(s)�1(ds) =

Z
SN
�A(s)(��2)(ds) and

then Lemma 14 in Sarver(2005) shows that this implies that �1 = ��2. But �1 and �2 are both

normalized to be probability measures so it must be that � = 1 and then �1 = �2. Finally, � = 1

together with �1s1� = ��2s
2
� and s

1
� = s2� imply �1 = �2.

Now, recall that at the end of the su¢ ciency part of the proof of Theorem 27 we used the

elements of the DLR representation to de�ne the elements of our normalized reference-dependent

representation. More speci�cally, with a slight abuse of notation we have �i � �i(f�si�g)
�i+�i(f�si�g)

ande�i(ds) � �i(ds)
�i(S

N )��i(f�si�g)
for i 2 f1; 2g. Since s1� = s2�, �1 = �2 and �1 = �2 it follows that �1 = �2

and e�1 = e�2 which completes the proof of Theorem 29. �

C. Proof of Proposition 30

Throughout the proof of this Proposition, we will denote by RHS and LHS the right hand

side and left hand side of the inequation that we will be dealing with at that moment. Also, we

will use RHSa and LHSa to denote the corresponding expressions with the adjustments that we

will consider at that moment. Finally, we will use the same upperscript to refer to the adjusted

incentive constraints of the problem in (17).

Lemma 49 The optimal solution of the seller�s problem in (17) requires ul(q0l; p
0
l) = 0.

Proof. Assume by contradiction that ul(q0l; p
0
l) > 0 and note that by (ICPl) it follows ul(ql; pl) > 0.

Take now " satisfying the following conditions: (i) 0 < " < ul(q
0
l; p

0
l), (ii) " <

1
1�� [uh(q

0
l; p

0
l)� uh(ql; pl)],

whenever uh(q0l; p
0
l) > uh(ql; pl). Consider the following adjustment: pal = pl + �" and p0al = p0l + "

so that we will also have ul(ql; pal ) > 0 and ul(q0l; p
0a
l ) > 0. We want to show that all incentive

restrictions of problem (17) will still be satis�ed. Since the value of the objective function will be

52



strictly higher this is enough to prove the lemma. Note �rstly that the adjustment does not a¤ect

in any way equations (IRRah) and (ICP
a
h ) while (IRR

a
l ) would continue to hold by the choice of

" in (i). For (ICMa
l ) we have LHS

a = LHS, while the RHS is not a¤ected. For (ICP al ), note

that LHSa = LHS � �" > LHS � " > RHS � " = RHSa, where we used the fact that � 2 (0; 1)
and (ICPl). We will show now that (ICMa

h ) also holds. Note that uh(ql; p
a
l ) > ul(ql; p

a
l ) > 0 and

uh(q
0
l; p

0a
l ) > ul(q

0
l; p

0a
l ) > 0 so the products (ql; p

a
l ) and (q

0
l; p

0a
l ) satisfy the necessary incentive ratio-

nality conditions to act as selected options or as reference points. We have two cases to consider.

First, if uh(ql; pl) � uh(q
0
l; p

0
l), then we will also have uh(ql; p

a
l ) > uh(q

0
l; p

0a
l ) so RHS

a = RHS

and then immediately LHSa > RHSa because LHS is not a¤ected by the adjustment. For the

case when uh(q0l; p
0
l) > uh(ql; pl), note that the condition (ii) implies that uh(q0l; p

0a
l ) > uh(ql; p

a
l ).

Therefore, RHSa = RHS + �2"� " < RHS � LHSa. �

Lemma 50 The optimal solution of problem (17) requires uh(q0h; p
0
h) = 0.

Proof. Assume uh(q0h; p
0
h) > 0, which by (ICPh) also implies uh(qh; ph) > 0 and take " such that: (i)

0 < " < uh(q
0
h; p

0
h), (ii) " <

1
�ul(qh; ph), when ul(qh; ph) > 0, (iii) " < ul(q

0
h; p

0
h), when ul(q

0
h; p

0
h) > 0

and (iv) " < 1
1�� [ul(q

0
h; p

0
h)� ul(qh; ph)], when ul(q

0
h; p

0
h) > ul(qh; ph). Consider the following

adjustment: pah = ph + �" and p0ah = p0h + " so that uh(qh; pah) > uh(q
0
h; p

0a
h ) > 0. Using arguments

similar to ones from the proof of the previous lemma, it follows that the only condition that we need

to check is (ICMa
l ). Note that since here the signs of ul(qh; ph) and ul(q

0
h; p

0
h) are not determined,

we need to consider more cases. Firstly, if ul(qh; ph) > ul(q
0
h; p

0
h) > 0, then RHSa = RHS and

(ICMa
l ) will be satis�ed. Also, if max(ul(qh; ph); ul(q

0
h; p

0
h)) � 0 then RHSa = RHS = 0 so we

are done. If ul(qh; ph) > 0 � ul(q
0
h; p

0
h), then RHS

a = RHS � �" + �2" < RHS � LHSa, where

we used the fact that the condition (ii) implies ul(qh; pah) > 0. If ul(q0h; p
0
h) > 0 � ul(qh; ph), then

using the condition (iii), we have RHSa = RHS � "+ �" < RHS � LHSa. Finally, if ul(q0h; p
0
h) >

ul(qh; ph) > 0, then (iv) ensures ul(q0h; p
0a
h ) > ul(qh; p

a
h) while (ii) ensures ul(qh; p

a
h) > 0. Therefore,

RHSa = RHS � "+ �2" < RHS � LHSa so the proof is complete. �

Note that max(ui(q�i; p�i); ui(q0�i; p
0
�i)) � �min(ui(q�i; p�i); ui(q0�i; p

0
�i)) � 0 implies that the

RHS of (ICMi) is at least as high as the RHS of (IRPi) which is zero by the results of Lemma 49

and Lemma 50. Since the LHS of both (ICMi) and (IRPi) are equal to ui(qi; pi), (ICMi) implies

(IRPi) for i 2 fh; lg so we may also disregard both (IRP )s.

Lemma 51 The solution of problem (17) requires that (ICMh) binds and uh(ql; pl) = uh(q
0
l; p

0
l).

Proof. Consider (ICMh) and note that ul(q0l; p
0
l) = 0 implies uh(q0l; p

0
l) > 0, while (IRTl) implies

uh(ql; pl) > 0. Assume now by contradiction that (ICMh) does not bind. But then note that
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the principal could increase ph slightly and thus increase its pro�ts without violating (ICMh).

ph appears also in (ICMl), but an increase in ph would only relax that constraint. Assume that

uh(ql; pl) > uh(q
0
l; p

0
l) so that RHS = uh(ql; pl)��uh(q0l; p0l). Using the result of Lemma 49, we have

uh(q
0
l; p

0
l) = vh(q

0
l)�vl(q0l). Consider now a slight increase in q0l coupled with a corresponding increase

in p0l so that ul(q
0a
l ; p

0a
l ) = 0 and a corresponding increase in ph so that (ICM

a
h ) would continue to

bind. As argued above, this would increase the value of the objective function without violating any

of the restrictions so we must have uh(ql; pl) � uh(q
0
l; p

0
l). Assume now that uh(ql; pl) < uh(q

0
l; p

0
l) so

that the RHS is vh(q0l)�vl(q0l)��uh(ql; pl). Note that the single crossing property implies that the
RHS is increasing in q0l. Therefore, by decreasing q

0
l and p

0
l so that ul(q

0a
l ; p

0a
l ) = 0 and increasing

ph so that (ICMa
h ) continues to bind, the objective function is strictly higher while all constraints

would continue to hold. This completes the proof of the Lemma. �

Note now that Lemma 50 implies that ul(v0h; p
0
h) < 0 so theRHS of (ICMl) is (1��)max(0; ul(vh; ph)).

Also note that (ICMl) must bind because otherwise the principal could slightly increase pl and thus

increase the value of the objective function without violating any of the constraints. Therefore,

the restrictions in problem in (17) basically reduce to the following: (i) (ICMh) : uh(qh; ph) =

(1� �)uh(ql; pl) and (ii) (ICMl) : ul(ql; pl) = (1� �)max(0; ul(qh; ph)).

Lemma 52 The optimal solution of problem (17) requires ul(ql; pl) = 0.

Proof. Assume by contradiction that the claim is not true so that ul(ql; pl) = (1� �)ul(qh; ph) > 0.
But then, solving for pl and ph from the system given by (ICMh) and (ICMl), plugging the values

into the objective function of problem (17) and taking the �rst order conditions with respect to

qh and ql we obtain: c0(qh) = [v0h(qh) � (1� �)
2 v0l(qh)] +

�
1�� (1� �) [v

0
h(qh)� v0l(qh)] and c0(ql) =

[v0l(ql)� (1� �)
2 v0h(ql)]� 1��

� (1� �) [v0h(ql)� v0l(ql)]. Clearly, c0(qh) > c0(ql) so since c(�) is convex,
it follows that qh > ql. Now consider the following adjustment: pal is chosen such that ul(ql; p

a
l ) = 0

and pah such that uh(qh; p
a
h) = (1 � �)uh(ql; p

a
l ). Note that ul(qh; p

a
h) < 0 because qh > ql so for

(ICMa
l ) we have LHS

a = RHSa = 0. Therefore under the above adjustment, the value of the

objective function is strictly higher because pal > pl and pah > ph, while both restrictions are still

satis�ed. �

Using the above results to solve for the optimal solution of problem (17) we obtain: c0(qh) =

v0h(qh) and c
0(ql) = v0l(ql) � 1��

� (1� �) [v0h(ql)� v0l(ql)]. Since in the benchmark model we have
c0(qbh) = v0h(q

b
h) and c

0(qbl ) = v0l(q
b
l ) � 1��

�

�
v0h(q

b
l )� v0l(qbl )

�
, it follows that ql is closer to the value

under perfect information given by c0(qbl ) = v0l(q
b
l ). Therefore, since the objective function is strictly

concave, its value is strictly higher for problem in (17) than in the benchmark model. Also, since

c0(ql) > c0(qbl ) and c(�) is convex we have ql > qbl . Finally, it is clear that the higher is �, the smaller

is ql so the higher are the pro�ts of the principal. This completes the proof of Proposition 30. �
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