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Abstract.

Previous work shows that reputation results may fail in repeated games with long-run

players with equal discount factors. We restrict attention to stage games where two play-

ers, with equal discount factors, move sequentially. A pure Stackelberg action is assumed

to exist. One and two sided reputation results are provided. If one of the players is a

Stackelberg type with positive probability, then that player receives the highest individu-

ally rational payoff in all perfect equilibria, as agents become patient. If both players are

Stackelberg types with positive probability, then equilibrium payoffs converge to a unique

payoff vector; and the equilibrium play converges to the unique equilibrium of a continuous

time war of attrition. All results generalize to simultaneous move stage games, if the stage

game is a game of strictly conflicting interest.
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of Attrition.
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1. Introduction and Related Literature

This paper proves one and two sided reputation results for a class of two-player repeated

games. The players have equal discount factors. Our first main result shows that if there

is incomplete information about the type of only one player, then that player receives the

highest possible payoff, in any equilibrium, as the discount factors converge to one. Our

second main result establishes that if there is incomplete information about both players’
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types, then the equilibrium path of play, in any equilibrium, resembles a war of attrition, as

the time between repetitions of the stage game shrinks to zero. Also, all equilibrium payoffs

converge to the unique equilibrium payoff of an appropriately defined continuous time war

of attrition.

Reputation effects were first established for finitely repeated games by Kreps and Wil-

son (1982) and Milgrom and Roberts (1982); and extended to infinitely repeated games

by Fudenberg and Levine (1989). Fudenberg and Levine (1989, 1992) focused on repeated

games where one long-run player faces a sequence of short-run players. The authors con-

sidered an incomplete information version of the repeated game where the long-run player

is a “Stackelberg” (or commitment) type who always plays the “Stackelberg” (or commit-

ment) action. They proved a one-sided reputation result that shows if the long-run player

is sufficiently patient, then the long-run player’s equilibrium payoff is at least as large as

what the player could get by publicly committing to the Stackelberg action. However, most

reputation results in the literature are for repeated games where one of the players is a

short-run player (as in Fudenberg and Levine (1989, 1992)); or for repeated games where

the player building the reputation is infinitely more patient than his rival and so the rival is

essentially a short-run player, at the limit (for example, see Schmidt (1993b) or Celantani,

Fudenberg, Levine, and Pesendorfer (1996)).

Previous research has also shown that reputation results may fail when long-run players

with equal discount factors play an infinitely repeated game in which the stage game is

a simultaneous-move game in normal form. In particular, one-sided reputation results

obtain only if the stage game is a game of strictly conflicting interest (Cripps, Dekel, and

Pesendorfer (2005)), or the commitment action is a dominant action in the stage (Chan

(2000)).1 For all other simultaneous move games, folk theorems by Chan (2000) and Cripps

and Thomas (1997) have shown that any individually rational and feasible payoff can be

1A game has strictly conflicting interests (Chan (2000)) if a best reply to the commitment action of player
1 yields the best feasible and individually rational payoff for player 1 and the minimax for player 2.
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sustained in perfect equilibria of the infinitely repeated game, if the players are sufficiently

patient.

In what follows, a particular strategy for the extensive form stage game is termed a

Stackelberg action for player 1 (him) if, whenever player 2 (her) best replies to this stage

game strategy, player 1 receives his highest individually rational payoff.2 A Stackelberg type

is a player who always plays the Stackelberg action in every repetition of the stage game.

A game is termed a generic Stackelberg game if there exists a pure Stackelberg action and

the Stackelberg payoff vector is unique. One-sided reputation refers to a repeated game

with one-sided incomplete information, where player 1 is a Stackelberg type with positive

probability; and two-sided reputation refers to a repeated game with two-sided incomplete

information, where each player can be Stackelberg type with positive probability.

Almost all the recent work on reputation has focused on simultaneous move stage games.

In sharp contrast, we restrict attention to stage games which are extensive form games where

the two agents move sequentially. Also, we assume that the normal form representation

of the extensive form stage game is a generic Stackelberg game. These games include

common interest games, the battle of the sexes, the chain store game as well as all strictly

conflicting interest games (see section 2.1). For the class of games we consider, without

incomplete information, the folk theorem of Fudenberg and Maskin (1986) applies, under

a full dimensionality condition (see Sorin (1995) and Rubinstein and Wolinsky (1995)).

Also, if the normal form representation of the extensive form game we consider is played

simultaneously in each period, then under one-sided incomplete information, a folk theorem

applies for a subset of the class of games we consider (see Chan (2000)).

Our one sided reputation result shows that any perfect equilibrium payoff for player 1

converges to his highest individually rational payoff, as the discount factor converges to

one. The result does not depend on the order of moves within the stage game but is

sensitive to the assumption that the players do not move simultaneously. Sequential moves

by the players enables perfection to preclude folk theorems. The one-sided reputation

2In our set-up a pure stage game action is a pure strategy profile for the extensive form stage game.
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result remains valid without alteration, if the stage is a simultaneous move game of strictly

conflicting interest. Also, our one-sided reputation result is robust to a small positive

probability that player 1 is any other arbitrary behavioral type.

Our two sided reputation result establishes that equilibrium play in the repeated game

resembles a war of attrition and all equilibrium payoffs converge to the unique equilibrium

payoff vector of a continuous time war of attrition, as the time between the repetitions

of the stage game shrinks to zero. In the war of attrition, the two players insist on their

Stackelberg action, revealing rationality slowly over time, according to a mixed strategy.

Once one of the players reveals rationality by playing an action that differs in outcome

from the Stackelberg action, then the one-side reputation result applies. The player who

is not known to be rational with certainty receives the highest individually rational payoff

for that agent, in the continuation. The continuation payoff of the agent that has revealed

rationality is equal to the payoff the player gets from best responding to the Stackelberg

action. The unique limit payoff entails the “weak” player receiving a payoff equal to the

payoff from best responding to the Stackelberg action. If the game is not a common interest

game, then the “strong” player receives a payoff that is less then the highest individually

rational payoff for this agent.3 This is because it takes time for the “weak” player to reveal

rationality. Consequently, the limit equilibrium is inefficient. Strength in the repeated game

is determined by the relative costs of not best responding to the Stackelberg actions, and by

the relative initial probabilities of being a Stackelberg type. Also, our two sided reputation

results remain valid, without alteration, if the stage game is a simultaneous move strictly

conflicting interest game.

The two sided reputation result we obtain is closely related to previous work by Kreps and

Wilson (1982), Abreu and Gul (2000) and Abreu and Pearce (2007). In their seminal paper,

Kreps and Wilson (1982) partially showed that the equilibrium set of a finitely repeated

game, with two-sided incomplete information, resembles equilibrium play in a continuous

3If the game is a common interest game, then both players are “strong” and they receive their highest
individually rational payoffs.
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time war of attrition. Our approach is closest to Abreu and Gul (2000). In this paper the

authors show that in a two-sided alternating offer bargaining game, as the frequency of offers

increases, the equilibria of the (two-sided) incomplete information game converges to the

unique equilibrium of a continuous time war of attrition. They use a one-sided reputation

result for bargaining games with frequent offers due to Myerson (1991).

As stated earlier, in a repeated game with one-sided incomplete information, with a

simultaneous move stage game, many payoffs can be supported in perfect equilibria. There-

fore there are also many perfect equilibria of the two-sided incomplete information repeated

game. Abreu and Pearce (2007) deal with this multiplicity by allowing players to write

enforceable contracts that determine uniquely continuation payoffs. They consider a re-

peated interaction where every period a player chooses a stage game action, and is allowed

to offer a contract that determines the continuation equilibrium payoff vector. They show

that the equilibrium strategies converge to the unique equilibrium of a continuous time war

of attrition as the period length shrinks to zero. If the support of the commitment types is

rich enough, then as the commitment type probabilities approach zero, the limit of the equi-

librium payoff vectors is the unique solution of the “Nash demand game.” Their approach

differs significantly from ours. We do not assume enforceable contracts. In our set-up, once

one of the players is known not to be a commitment type, then the continuation payoff is

uniquely determined as a direct consequence of our one-sided reputation result.

The paper proceeds as follows: section 2 describes the model and discusses some examples

that satisfy our assumptions; section 3 presents the main one-sided reputation result; section

4 outlines the continuous time war of attrition and presents the two-sided reputation result

as well as some comparative statics; and section 5 concludes. All proofs that are not in the

main text are in the appendix.

2. The Model

The stage game Γ is an extensive form game of perfect recall. The set of players in the

game is I = {1, 2}.
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Assumption 1. In the stage game Γ player 1 and player 2 never move simultaneously.

ΓN is the normal form of the extensive form game Γ. The set of pure stage game actions,

ai, for player i in the game ΓN is denoted Ai and the set of mixed stage game strategies αi

is denoted Ai. The payoff function of player i for the game ΓN is gi : A1 × A2 → R.

The minimax for player i, ĝi = minαj
maxαi

gi(αi, αj). The set of feasible payoffs F =

co{g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1×A2}; and the set of feasible and individually rational

payoffs G = F∩{(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}. Largest feasible and individually rational payoff

for player i, ḡi = max{gi : (gi, gj) ∈ G} = 1. Also, let M > maxg∈F |gi|.

Assumption 2 (Generic Stackelberg Game for Player i). There exists as
i ∈ Ai such that if

aj is a best response for player j to action as
i , then gi(a

s
i , aj) = ḡi = 1. Also, for any two

payoff vectors g ∈ G and g′ ∈ G, if gi = g′i = 1, then gj = g′j .

Assumption 2 requires that there exists a pure Stackelberg action for player 1, denoted

as
1, which gives player 1 his highest individually rational payoff if player 2 best replies

to as
1. The assumption also requires that the Stackelberg payoff profile is unique, more

precisely, whenever player 1 receives his largest individually rational payoff ḡ1, player 2

receives the same payoff. Put another way, there can be more than one Stackelberg action

for player 1, however, player 1 cannot guarantee ḡ1 unless player 2 best replies. Moreover,

player 2’s best response to player 1’s Stackelberg actions need not be unique, however,

player 2’s payoff from best responding to player 1’s Stackelberg actions is assumed to be

unique. If Assumption 2 holds for player 1, then there is a finite constant ρ ≥ 0 such that

(1 − g1)ρ + g2(a
s
1, a

b
2) ≥ g2 ≥ g2(a

s
1, a

b
2) − (1 − g1)ρ for any (g1, g2) ∈ G, where ab

2 denotes a

best reply to as
1.

Assumption 3 (Strictly Conflicting Interest for Player i). There exists as
i ∈ Ai such that

if aj is a best response for player j to action as
i , then gi(a

s
i , aj) = ḡi = 1. Also, for all

(ḡi, gj) ∈ G, gj = ĝj.
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Assumption 3 implies Assumption 2 and so it is a strict strengthening of Assumption

2. If Assumption 3 holds for player 1, then there exists a finite constant ρ ≥ 0 such that

ĝ2 ≤ g2 ≤ ĝ2 + ρ (ḡ1 − g1) for all (g1, g2) ∈ G.

In the repeated game Γ∞, the stage game Γ is played in each of periods t = 0, 1, 2, ....

Players have perfect recall and can observe past outcomes. H is the set of all possible

histories for the stage game Γ and Z ⊂ H the set of all terminal histories of the stage game.

Ht ≡ Zt denotes the set of partial histories at time t. A behavior strategy is a function

σi :
⋃∞

t=0 Ht → Ai. A behavior strategy chooses a mixed stage game strategy given the

partial history ht. Players discount payoffs using their discount factor δ = e−r∆. The

players’ continuation payoffs in the repeated game given the partial history ht are given by

the normalized discounted sum of the continuation stage-game payoffs

ui(h∞, ht) = (1 − δi)

∞
∑

s=t

δs−tg(ai, aj)

where h∞ = (ht, h−t) is any infinite history where the play in the first t−1 periods conforms

to ht.

Before time 0 nature selects each player i, with probability zi, to be a “commitment”

type that always plays action as
i or to be a normal type. A belief for player i is a function

zj :
⋃∞

t=0 Ht → [0, 1], that is, the belief, zj (ht), is the probability that player i places

on player j being a commitment type given any history ht. Beliefs are obtained using

Bayes’ rule given the initial probabilities zi and players’ strategies. A player’s expected

continuation utility, following a partial history ht, when the normal players use the strategy

profile σ, is given by

Ui(σ|ht) = (1 − zj(ht))E[ui(h∞, ht)|σ] + zj(ht)E[ui(h∞, ht)|σi, a
s
j ]

where the expectation is taken over all histories h∞ = (ht, h−t), generated when normal

players use strategy profile σ and the commitment type always plays as
j .
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The repeated game where the initial probability that the players are commitment types

z = (z1, z2) and the discount factor is δ is denoted Γ∞(z, δ). The analysis in the paper

focuses on perfect Bayesian equilibria of the game of incomplete information Γ∞(z, δ). In

particular, a strategy profile σ comprises a perfect Bayesian equilibrium for the repeated

game of incomplete information if the strategy profile is a Bayesian Nash equilibrium for

any subgame of the repeated game given beliefs zi.

2.1. Examples. The following are examples of stage games that satisfy Assumption 2.

These examples are not games of strictly conflicting interest, and also, the players do not

have strictly dominant actions in these games. Consequently, if in any of these stage games

the two players move simultaneously (i.e, subgame perfection is not imposed within the

stage game), then Folk theorems apply implying that there is no scope for reputation

effects. (See Cripps and Thomas (1997) for Example 1, and Chan (2000) for Examples

1 through 4). That is, in any of these games, any individually rational payoff profile can

be sustained as a perfect equilibrium of the repeated game, for sufficiently high discount

factor and sufficiently small probability of facing a commitment type. In marked contrast,

if the players move sequentially in these examples, (i.e., if the games satisfy Assumption

1), then Theorem 1 and Theorem 2 provide one and two sided reputation results. It should

be noted that in these examples if the repeated game is played under complete information

and if the players move sequentially, that is, the stage game is viewed as an extensive

form game, then the usual folk theorems continue to apply and all (strictly) individually

rational payoffs can be sustained in perfect equilibria for sufficiently high discount factors.

(see for example, Rubinstein and Wolinsky (1995) or Sorin (1995) for more on repeated

extensive-form games.)

2.1.1. Common Interest Games. Consider the following simplified common interest game

as depicted in Figure 1 and suppose that player 2 chooses between L and R first and player

1 chooses between U and D after observing player 2’s chosen action.
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P1

Player 2
L R

U 1, 1 0, 0
D ǫ, 0 0, 0

Figure 1. Common Interest Game (ǫ < 1).

Assume that there is a (possibly small) probability that one of the two players (but not

both) is a commitment type that always plays the Stackelberg action (action U for 1 and

L for 2). In this case Theorem 1 implies that the player who is potentially a commitment

type can guarantee a payoff arbitrarily close to 1 in any perfect equilibrium of the repeated

game, for sufficiently high discount factors. Instead assume that there is a (possibly small)

probability that both players are commitment types that always play the Stackelberg action.

In this case, Theorem 2 implies that the equilibrium path of play involves both players always

choosing the Stackelberg action in every period and equilibrium payoffs equal to (1,1), for

discount factors close to 1.

2.1.2. Battle of the Sexes. In the version of the battle of the sexes depicted in Figure 2

suppose that player 1 chooses his action first and player 2 follows. In this game both players

prefer action profiles on the diagonal of the payoff matrix but Player 1 prefers (U,L) while

player 2 prefers (D,R). The minimax payoff for each player is 1/2 and is attained by the

action profile (M,M).

P1

Player 2
L R M

U 2, 1 0, 0 0, 0
D 0, 0 1, 2 0, 0
M 0, 0 0, 0 1/2, 1/2

Figure 2. Battle of the Sexes.

Theorem 1 and 2 provide one and two sided reputation results for this example. In

particular, if each of the two players is a commitment type with probability zi > 0, then

Theorem 2 implies that the equilibrium path of play for this game resembles a war of

attrition. During the “war” player 1 insists on playing U while player 2 insists on playing
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R and both receive per period payoff equal to 0. The “war” ends when one of the players

reveals rationality by playing a best reply and accepting a continuation payoff equal to 1,

while the opponent, who wins the war of attrition, receives continuation payoff equal to 2.

2.1.3. Hawk-Dove. In the hawk-dove game outlined in Figure 3, action T (ough) is preferable

only if the opponent plays W (eak) while D(estroy) is a dominated action and results in

hurting both players.

P1

Player 2
T W D

T −1,−1 2, 0 −1/2,−1/2
W 0, 2 0, 0 −1/2,−1/2
D −1/2,−1/2 −1/2,−1/2 −1,−1

Figure 3. Hawk - Dove.

In the unique subgame perfect equilibrium of the static stage game, player 1 moves first

and plays T and player 2 observes T and best responds by playing W . In contrast, in the

perturbed repeated game where there is a chance that player 2 is a commitment type, player

2 can guarantee a payoff of 2 in every equilibrium by feigning irrationality and playing T .

With two sided incomplete information, each players insist on play T , in a war of attrition

like behavior, until one of them reveals rationality by switching to play W .

2.1.4. A Game in Extensive Form. In the static version of the extensive form game depicted

in Figure 4, the subgame perfect equilibrium involves player 1 choosing to declare W (ar)

and player 2 best responding by choosing to S(urrender). Suppose that player 2 is a

Stackelberg type who always plays F if player 1 chooses W and plays S if player 2 plays P ,

with probability z > 0. (The Stackelberg type in this example is a “tit-for-tat” type.) In

this case, Theorem 1 implies that player 2 can guarantee an outcome where player 1 chooses

to play P and player 2 best replies by choosing S. In the two-sided reputation version the

two players will be locked into playing (W,F ), (W,F ) until one of them gives in. The player

that gives in will reveal rationality by choosing to play P , in the case of player 1, and S, in

the case of player 2.
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P (eace)W (ar)

Player 1

S

(1
2 ,−ǫ)

F

P2
S(urrender)

(0, 1)

F (ight)

(−1
2 , 1

2)

P2

P

(−1
2 , 1

2)

W

1

S

(0,−1
2 )

F

(−1,−1)

2

Figure 4. A Game in Extensive Form

3. One Sided Reputation

The central finding of this section, Theorem 1, establishes a one sided reputation result.

The theorem maintains Assumption 1 and Assumption 2, and shows that if the probabil-

ity that player 1 is a commitment type is positive while the probability that player 2 is a

commitment type is zero, then player 1 can guarantee a payoff close to his highest individ-

ually rational payoff for sufficiently high discount factors. The result in Theorem 1 does

not depend on the order of moves in the extensive form game but crucially depends on the

assumption that the two players do not move simultaneously.

This section also presents two corollaries to Theorem 1. Corollary 1 shows that the one

sided reputation result can also be established without Assumption 1, if Assumption 2 is

strengthened by maintaining Assumption 3, that is, under the stronger strictly conflicting

interest stage game assumption. Corollary 2 shows that the one-sided reputation result

continues to hold in the case where player 1, who builds reputation, is any other arbitrary

type, different from the Stackelberg type, with sufficiently small probability.

In order to provide some intuition for Theorem 1 and to establish the contrast with

previous literature suppose that the stage game is given by the common interest game as

outlined in Figure 1 and that the players discount the future at a common rate δ < 1.

Note that (D,R) is a Nash equilibrium of the stage game and the minimax value for both

players is zero. In the complete information repeated game, for sufficiently high δ < 1, any
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(strictly) individually rational payoff can be sustained in a perfect equilibrium. This is true

when the stage game is played simultaneously (Fudenberg and Maskin (1986)) as well as

when it is played sequentially (Sorin (1995)).

Suppose that there is a small chance z that player 1 is a commitment type that plays

U in every period of the repeated game and suppose, in contrast to Assumption 1, that

the players move simultaneously in the stage game. Cripps and Thomas (1997) have shown

that there are many perfect equilibrium payoffs in this repeated game. In particular, they

construct equilibria where players’ payoffs are close to 0 when z is close to 0 and δ is close

to 1. In the equilibrium that they construct, in the first K periods player 2 plays R. As δ

converges to 1, K increases to ensure that the discounted payoffs converge to 0. To make

K large, Player 1’s equilibrium strategy is chosen to be similar to the commitment type

strategy; this ensures that player 1 builds a reputation very slowly. If this strategy exactly

coincided with the commitment strategy, player 2 would not have the incentives to play R.

Therefore this strategy is a mixed strategy that plays D with small probability. To ensure

that player 2 has an incentive to play R, she is punished when she plays L. Punishment

entails a continuation payoff for player 2 that is close to 0, if player 2 plays L and player

1 plays D (and hence reveals rationality). Observe player 1 is willing to mix between U

and D in the first K periods since player 2 only plays R on the equilibrium path. Also, the

punishment that follows (D,L) is subgame perfect since, after such a history, the players

are in a repeated game of complete information and any continuation payoff between 0 and

1 can be sustained in equilibrium, by a standard folk theorem.

Instead suppose that Assumption 1 is satisfied and player 1 moves after player 2. When

players move sequentially, the “follower” (player 1) observes the outcome of the behavior

strategy used by his opponent. For the payoff of player 1 to be low, there should be many

periods in which player 2 plays R. To give her an incentive to play R, player 1 must punish

player 2 if she plays L. After any history where player 1 has not revealed rationality yet,

punishing player 2 is also costly for player 1. Following a play of L by player 2, in order

for player 1 to punish player 2, he must be indifferent between U and D. However, this is
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not possible since playing U gives player 1 a payoff of 1 for the period and improves his

reputation. On the other hand, a play of D gives a payoff of zero for the period and moves

the game into a punishment phase. Consequently, subgame perfection rules out player 1

punishing player 2 for playing L.

The reason Cripps and Thomas (1997)’s construction works and avoids the previous logic

is as follows: If the stage game is a simultaneous move game, then subgame perfection has

no “bite” within the stage game. Consequently, because player 1 does not observe that

player 2 has deviated and played L, and this never actually happens on the equilibrium

path of play in the first K periods, player 1 is willing to randomize between U and D, and

so, the required punishments can be sustained.

3.1. The Main One Sided Reputation Result. Theorem 1 considers a repeated game

Γ∞(z, δ) where z1 > 0 and z2 = 0, that is player 2 is known to be the normal type and player

1 is potentially a commitment type. Attention is restricted to sequential move stage games

(Assumption 1) where player 1 has a pure Stackelberg action and the Stackelberg payoff

profile is unique (Assumption 2). Within this class of games, the theorem demonstrates

that a normal type for player 1 can secure a payoff arbitrarily close to the Stackelberg

payoff ḡ by mimicking the commitment type, in any equilibrium of the repeated game, for

a sufficiently large discount factor.

Theorem 1. Suppose that the extensive form stage game Γ satisfies Assumption 1 and

the normal form representation, ΓN , of the extensive form game satisfies Assumption 2 for

player 1. For any z = (z1 > 0, z2 = 0) and any γ > 0, there exists a δ̄ such that, for

any δ > δ̄ and any equilibrium strategy profile σ for the repeated game Γ∞(z, δ), U1(σ) >

ḡ1 − γ = 1 − γ.

Proof.

Step 1. For this proof let Γ∞(z, δ) denote a repeated game where z1 = z and z2 = 0; and

let z(h) denote the probability that player 1 is a commitment type given history h. Observe
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that following any history in which player 1 has only played as
1, z(h) ≥ z, that is z(h) must

be at least as large as the initial probability, z, that player 1 is the commitment type. Let

ab
2 denote a best reply to as

1. By Assumption 2, g1(a
s
1, a

b
2) = ḡ. Normalize payoffs such that

ḡ = 1, g2(a
s
1, a

b
2) = 0 and g2(a

s
1, a2) ≤ −l for any a2 that is not a best reply to as

1, for some

l > 0. Also, let mina2∈A2
g1(a

s
1, a2) = 0.

Step 2. For an action profile a = (a1, a2), let i(a) = 1 if a2 is not a best reply to as
1

and i(a) = 0, otherwise. Fix a history h∞ and let i(δ, h∞) = (1 − δ)
∑∞

t=0 δti(at). Let σ∗

denote a strategy where player 1 always plays the Stackelberg action as
1 and player 2 follows

strategy σ2. Let w(δ, σ2) = Eσ∗ [i(δ, h∞)] where the expectation is taken over all histories

generated when the players use strategy profile σ∗. In words, w(δ, σ2) is the expectation of

the normalized discounted sum of the number of non-best replies player 2 will play against

a commitment type who always plays the Stackelberg action as
1.

Step 3. Note that U1(σ) ≥ 1 − w(δ, σ2). This is because the payoff to player 1 of always

taking the Stackelberg action is at least 1 − w(δ, σ2) by definition.

Step 4. Fix δ < 1, K > 0 and let for each n ≥ 0

zn = sup{z : ∃ equilibrium σ of Γ∞(z, δ) such that w(δ, σ2) ≥ Knǫ}

For any ξ > 0, let zξ = z1 − ξ and

Kξ = sup{k : ∃ equilibrium σ of Γ∞(z, δ) such that w(δ, σ2) ≥ kǫ and z1 ≥ z ≥ zξ}.

Observe that by the definition of Kξ, there exists z1 ≥ z ≥ zξ and an equilibrium strategy

profile σ such that w(δ, σ2) ≥ (Kξ − ξ)ǫ, in the game Γ∞(z, δ). Also, by the definition of

the supremum Kξ ≥ K.

Define q1 such that z1

1−q1
= z0 and similarly define qξ such that

zξ

1−qξ
= z1. To interpret

q1, suppose that player 2 believes player 1 to be the commitment type with probability z.

Also, suppose that the probability that player 1 plays an action different that as
1 at least
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once over the next M periods is q. Now note that if player 1 plays the Stackelberg action

as
1 in each of the M periods, then the posterior probability that player 2 places on player 1

being the commitment type is z
1−q

.

Step 5. For any reputation level z1 ≥ z ≥ zξ and for any equilibrium σ,

(LB) U2(σ) ≥ −qξKξǫρ − q1Kǫρ − (1 − z − q1 − qξ)ǫρ − 2(1 − δ)(1 + M)ρ.

Proof of Step 5. Suppose that player 2 always plays ab
2. Using this strategy player 2 will

receive payoff equal to zero in any period where player 1 plays as
1. Let

Tξ = min{T : P{∃n ≤ T : (a1)n 6= as
1} > qξ}.

That is, Tξ is the smallest time T such that, the probability with which player 1 is expected

to take an action different than the Stackelberg action as
1 at least once, in any period n ≤ T ,

exceeds qξ. Note that by definition for any T < Tξ, P{∃n ≤ T : (a1)n 6= as
1} ≤ qξ. Also, let

T1 = min{T : P{∃n ≤ T : (a1) 6= as
1} > q1 + qξ}.

The definition implies that T1 ≥ Tξ and also that

zξ

1 − q1 − qξ

>
zξ

(1 − q1)(1 − qξ)
.

In any period n < Tξ, where player 1 has always played as an action compatible with a1
s in

history hn,

U1(σ|hn) ≥ 1 − w(σ, δ) ≥ 1 − Kξǫ

where the first inequality follows from step 2 and the second from the definition of zξ.

Consequently, in any such period n < Tξ, if player 1 plays an action different from as
1, then

player 2 will receive continuation payoff

U2(σ|hn<Tξ
, a1) ≥ −ρKξǫ , U2(σ|hn<Tξ

, a1)
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by Assumption 2, and otherwise if player 1 plays the Stackelberg action as
1, then player 2

will receive zero for the period. In period Tξ, player 1’s equilibrium payoff U1(σ) must be

at least as large as δ(1−Kǫ)− (1− δ)M , if he has not revealed rationality. This is because

player 1 can play as
1 in this period, lose at most M for the period, increase his reputation

to at least z1 and thereby guarantee a continuation payoff of at least 1 − Kǫ. This implies

that if player 1 plays an action different from as
1, then player 2 will receive continuation

payoff

U2(σ|hTξ
, a1) ≥ −ρ(1 − δ(1 − Kǫ) + (1 − δ)M) ≥ −ρKǫ − (1 − δ)(1 + M)ρ , U2(σ|hTξ

, a1)

and otherwise if player 1 plays the Stackelberg action as
1, then player 2 will receive zero for

the period. In any period, Tξ < n < T1 player 1’s continuation payoff is at least 1−Kǫ and

so player 2’s continuation payoff

U2(σ|hTξ<n<T1
, a1) ≥ −ρKǫ , U2(σ|hTξ<n<T1

, a1),

if player 1’s action for the period a1 6= as
1. In period T1, by the same logic as above, player

1’s payoff is at least δ(1 − ε) − (1 − δ)M and so

U2(σ|hT1
, a1) ≥ −ρ(1 − δ(1 − ǫ) + (1 − δ)M) ≥ −ρǫ − (1 − δ)(1 + M)ρ , U2(σ|hT1

, a1),

if player 1’s action for the period a1 6= as
1. Also, for any period, n > T1,

U2(σ|hn>T1
, a1) ≥ −ρǫ , U2(σ|hn>T1

, a1).

Observe that the probability that player 1 takes action a1 6= as
1 for the first time in

any period n < Tξ is less than qξ and in any period n < T1 is less than qξ + q1. Also,

U2(σ|hn>T1
, a1) ≥ U2(σ|hTξ<n<T1

, a1, ) ≥ U2(σ|hn<Tξ
, a1) and so

U2(σ) ≥ qξU2(σ|hn<Tξ
, a1)+q1U2(σ|hTξ<n<T1

, a1)+(1−z−qξ−q1)U2(σ|hn>T1
, a1)−2(1−δ)(1+M)ρ
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delivering the required inequality. Observe that if Tξ = ∞ and T1 = ∞ the bound is still

valid. �

Step 6. Choose z1 ≥ z ≥ zξ and an equilibrium strategy profile σ of the game Γ∞(z, δ) such

that w(δ, σ) ≥ (Kξ − ξ)ǫ. For the chosen z and σ,

(UB) U2(σ) ≤ qξKξǫρ + q1Kǫρ + (1 − z − q1 − qξ)ǫρ + 2(1 − δ)(1 + M)ρ − z(Kξ − ξ)ǫl.

Step 7. Let K be such that zl
2ρ

− 2
K

> 0 and let δ̄ = 1 − ǫ
2(1+M) . For all δ > δ̄, if z1 ≥ z,

then there exists an r > 0 such that z1 ≤ z0
1

1+zr
.

Proof of Step 7. Combining the lower bound for U2(σ), given Equation (LB) established in

Step 5, and the upper bound for U2(σ), given by Equation (UB) established in Step 6, and

simplifying by canceling ǫ delivers

z(Kξ − ξ)l ≤ 2ρ(qξKξ + q1K + (1 − z − q1 − qξ) +
2(1 − δ)(1 + M)

ǫ
).

and so,

z ≤
2ρ(qξKξ + q1K + 2 − z − q1 − qξ)

(Kξ − ξ)l
.

However ξ is arbitrary, thus qξ → 0 and z → z1, as ξ → 0. Also, Kξ ≥ K and so limξ→0

(Kξ − ξ)l ≥ Kl. So

z1 ≤
2ρ(q1K + 2 − z1 − q1)

Kl
≤

2ρ(q1K + 2)

Kl

Rearranging,

q1 ≥
z1l

2ρ
−

2

K
.

Remember K is such that zl
2ρ

− 2
K

> 0. Note that K is independent of δ. If z1 ≥ z, then

pick r > 0 such that
z1l

2ρ
−

2

K
≥

zl

2ρ
−

2

K
> r ≥ rz1 ≥ rz.
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By definition z1

1−q1
= z0 or q1 = 1 − z1

z0
, and so 1 − z1

z0
≥ z1r and consequently,

z1 ≤
z0

1 + rz0
≤

z0

1 + rz
,

delivering the required inequality. �

Step 8. The argument in Step 5 through 7 implies that if zn ≥ z, then

zn ≤ zn−1
1

1 + rz
.

The constants K and r > 0 are independent of δ and depend only on z. So for some finite

n∗, also independent of δ, zn∗ < z. However, in any subgame where player 1 is yet to reveal

his rationality, i.e., is yet to play an action different than as
1, the reputation level is at least

z. Consequently, w(δ, σ2) ≤ Kn∗

ǫ for all δ > δ̄ and all equilibria σ of the repeated game

Γ∞(z, δ). Pick ǫ = γ

Kn∗ . Consequently, for all δ > δ̄ = 1− γ

2Kn∗(1+M)
, player 1’s equilibrium

payoff, in any equilibrium, will be at least 1 − γ completing the proof.

�

As first demonstrated by Cripps, Dekel, and Pesendorfer (2005), it is possible to obtain

reputation results for simultaneous move stage games by strengthening Assumption 2. In

particular, if Assumption 2 is strengthened to assume that the stage game is a game of

strictly conflicting interest (Assumption 3), then Assumption 1 can be omitted. The follow-

ing corollary to Theorem 1 maintains Assumption 3 and shows that Player 1 can guarantee

a payoff arbitrarily close to ḡ1.
4

Corollary 1. Assume that a normal form stage game ΓN satisfies Assumption 3 for player

1. For any z = (z1 > 0, z2 = 0) and any γ > 0, there exists a δ̄ such that, for any δ > δ̄ and

any equilibrium strategy profile σ for the repeated game Γ∞(z, δ), U1(σ) > ḡ1 − γ = 1 − γ.

4This provides an alternative argument, albeit by imposing subgame perfection, for the result in Cripps,
Dekel, and Pesendorfer (2005). Cripps, Dekel, and Pesendorfer (2005) proved a reputation result in Nash
equilibria for repeated games where the stage game is a game of strictly conflicting interest.
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Proof. Normalize the minimax for player 2, ĝ2 = 0. The argument is identical to Theorem

1. However, the lower bound for Player 2’s payoff, as in step 6, is U2(σ) ≥ 0, since player 2

can guarantee her minimax value. The upper bound for player 2’s payoff, given by Equation

(UB), is again

U2(σ) ≤ qξKξǫρ + q1Kǫρ + (1 − z − q1 − qξ)ǫρ + 2(1 − δ)(1 + M)ρ − z(Kξ − ξ)ǫl.

Observe this is a game of conflicting interest and so g2 ≤ ρ (ḡ1 − g1) for all (g1, g2) ∈ G

which enables us to impose the upper bound. Combining the lower and upper bound and

working through step 8 gives

q1 ≥
z1Kl − 2

ρK

and the rest proceeds again according to the theorem above. �

The following corollary shows that the one sided reputation result extends to a situation

where player 1 is another arbitrary type with probability φ. In particular, the corollary

demonstrates that a normal type for player 1 can secure a payoff arbitrarily close to the

Stackelberg payoff by mimicking the commitment type, in any equilibrium of the repeated

game, for a sufficiently large discount factor, and for sufficiently low φ. Let Γ∞(z, φ, δ)

denote a repeated game where the probability that player 1 is an arbitrary type is equal to

φ and consequently the probability that player 1 is the normal type is 1 − z − φ.

Corollary 2. Suppose that the extensive form stage game Γ satisfies Assumption 1 and

the normal form representation, ΓN , of the extensive form game satisfies Assumption 2 for

player 1. For any z = (z1 > 0, z2 = 0) and any γ > 0, there exists a δ̄ and φ∗ such that,

for any δ > δ̄, any φ < φ∗ and any equilibrium strategy profile σ for the repeated game

Γ∞(z, φ, δ), U1(σ) > ḡ1 − γ = 1 − γ.

Proof. The lower bound, Equation (LB), can be altered as follows

U2(σ) ≥ −qξKξǫρ − q1Kǫρ − (1 − z − φ − q1 − qξ)ǫρ − 2(1 − δ)(1 + M)ρ − φM.
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since player 2 can loose at most M against another type and this happens with probability

φ. The upper bound, Equation (UB) can be altered as follows:

U2(σ) ≤ qξKξǫρ + q1Kǫρ + (1− z − φ− q1 − qξ)ǫρ + 2(1− δ)(1 + M)ρ + Mφ− z(Kξ − ξ)ǫl.

since player 2 can make at most M against another type and this happens with probability

φ. Given these bounds, choosing φ∗ and δ̄ such that ǫ = φ∗M +(1− δ̄)(1+M) and following

the steps in Theorem 1 gives the result. �

3.2. Examples with no Reputation Effects. As mentioned earlier previous researchers

have shown that reputation results may fail without Assumption 1, for the class of games

that we consider. (See for example, Chan (2000)). In this subsection we show that Assump-

tion 2 is essential for reputation even when Assumption 1 is maintained. In particular, we

provide two games that do not satisfy Assumption 2, where reputation results can not be

obtained, and a wide range of payoffs can be sustained in perfect equilibria of the repeated

game.

3.2.1. Another Common Interest Game. In the following altered version of the common

interest game outlined in Figure 5 suppose that player 2 moves first and player 1 moves

second.

P1

Player 2
L M R

U 1, 1 1, ǫ 0, 0
D ǫ, 0 0, 0 0, 0

Figure 5. Another Common Interest Game.

This example does not satisfy Assumption 2 since the Stackelberg payoff profile is not

unique; when Player 1 receives 1, player 2 may receive 1 or ǫ. In this game many payoff

vectors can be sustained in equilibria. This game differs significantly from the Common

Interest Game as outlined in Figure 1 in that player 1 can actually punish player 2 without
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hurting himself by playing the action profile (U,M). In this game the Cripps and Thomas

(1997) construction will work since if player 2 deviates from the equilibrium strategy and

plays L or M , then player 1 can be made indifferent between playing U and D. This is

accomplished by designing the punishment phase so that the players receive payoff close to

(1, ǫ). This is made possible by the introduction of the action profile (U,M) which punishes

player 2 but is not costly for player 1.

3.2.2. Moral Hazard Game. In the game demonstrated in Figure 6 suppose that player 1

moves first and player 2 moves second. In this game, player 1’s highest individually rational

payoff is 1.5. However, player 1 does not have a pure Stackelberg action that would give

his highest individually rational payoff. In order to receive 1.5 player 1 would have to use a

mixed strategy that plays U and D with equal probability and have player 2 best respond

by playing B. Let αs
1 denote the mixed action where player 1 plays U and D with equal

probability. Even if a pure action that replicated αs
1 was available to player 1, the game still

would not satisfy Assumption 2. This is because player 2’s best reply to αs
1 is not unique and

if player 2 chooses to play N , which is a best reply to αs
1, player 1 receives payoff 0, which is

not his highest individually rational payoff. Consequently, even if player 1 convinces player

2 that he is the Stackelberg type, many equilibrium payoffs can be sustained.

P1

Player 2
B N

U 1, 1 0, 0
D 2,−1 0, 0

Figure 6. Moral Hazard Game.

4. Two Sided Reputation and a War of Attrition

The main finding presented in this section, Theorem 2, establishes a two sided reputation

result. Throughout the discussion we assume that z1 > 0 and z2 > 0, that is the initial

probability of being the Stackelberg type is strictly positive for both of the players. Recall
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that δ = e−r∆. The focus of analysis is on sequences of repeated games Γ∞(z,∆n) pa-

rameterized by the time ∆n between repetitions of the stage game. Theorem 2 maintains

Assumption 1 and Assumption 2 for both players and demonstrated that as ∆n → 0, for

any sequence of perfect equilibrium strategy profiles σn for the repeated game Γ∞(z,∆n),

any equilibrium payoff vector (U1(σn), U2(σn)) converges to a unique limit. This unique

limit is the unique equilibrium payoff vector of a continuous time war of attrition which

is outlined below. Corollary 3 shows that Assumption 1 can be discarded and the players

can be allowed to move simultaneously in the stage game if the stage game is a game of

conflicting interest (Assumption 3).

In what follows we assume that as
1 is not a best response for as

2 (and consequently as
2 is not

a best response for as
1). This assumption is maintained out of convenience in order to focus

attention on the interesting cases. If as
1 is a best response for as

2 and consequently, as
2 is a best

response for as
1, then Theorem 1 immediately implies that (U1(σn), U2(σn)) → (ḡ, ḡ) for any

sequence of perfect equilibria σn for the sequence of repeated games Γ∞(z,∆n) where z1 > 0

and z2 > 0.5 For the remainder of the discussion normalize g1(a
b
1, a

s
2) = g2(a

s
1, a

b
2) = 0 and

define li , −gi(a
s
1, a

s
2) > 0, i.e., li is the loss incurred from playing the Stackelberg action

against the Stackelberg action.

4.1. The War of Attrition. The War of Attrition is played over continuous time by the

two players. At time zero, both players simultaneously choose either to concede or insist.

If both players choose to insist, then the continuous time war ensues. The game continues

until one of the two players concedes. Each player can concede at any time t ∈ [0,∞]. If

player i concedes at time t ∈ [0,∞] and player j continues to play insist through time t, then

player i’s payoff is −li
(

1 − e−rt
)

and player j’s payoff is e−rtḡ−lj
(

1 − e−rt
)

. If both players

concede concurrently at time t, then they receive payoff e−rtgi(t) −li
(

1 − e−rt
)

and e−rtgj(t)

5Observe that given the definition of w(δ, σ2) in Theorem 1, Step 2, the lower bound for player 1’s payoff
in Step 3 is unchanged. This is because the commitment type of Player 2 always best responds to the
Stackelberg action of Player 1. Consequently, the Equations (LB) and (UB) are also unchanged. So, the
theorem implies that w(δ, σ2) converges to zero. Going through the symmetric argument for Player 2 would
show w(δ, σ1) converges to zero. So, (U1(σn), U2(σn))→ (ḡ, ḡ).
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−li
(

1 − e−rt
)

where (gi(t), gj(t)) ∈ G, and consequently, −ρ(ḡ−gj(t)) ≤ gi(t) ≤ ρ(ḡ−gj(t)).

Before the game begins at time 0, nature chooses a type for each player independently. A

player is chosen as either a Stackelberg type that never concedes, with probability zi > 0,

or a normal type, with probability 1 − zi.

This War of Attrition is closely related to the repeated game Γ∞(z,∆) for ∆ ≈ 0: Insisting

corresponds to playing the Stackelberg action in each period, and conceding corresponds to

switching to any other action that reveals that the player is not the Stackelberg type. Players

incur cost li from insisting on the Stackelberg action against the Stackelberg action.6 They

insist on the Stackelberg action in the hope that their rival will give in and play another

action. If one of the players deviates from the Stackelberg action and the other does not,

then the player that deviated from the Stackelberg action is known to be the rational type

with certainty. After such a history, Theorem 1 implies that the player known as normal

receives payoff zero and the rival receives payoff ḡ. This corresponds exactly to the payoffs

when one of the players conceding at time t in the War of Attrition. Both players incur the

cost li for t units of time, i.e., li
(

1 − e−rt
)

; the conceding player receives continuation payoff

of zero; and the player that wins receives continuation payoff of ḡ, i.e., e−rtḡ. If both players

reveal rationality concurrently in period t, that is, if both players play concede in the War

of Attrition in period t, then Theorem 1 puts no restrictions on continuation payoffs. So,

agents receive an arbitrary payoff from the set of individually rational and feasible repeated

game payoffs.

The War of Attrition outlined above differs from the game analyzed in Abreu and Gul

(2000). In the War of Attrition presented here, the payoffs that the players receive, if

they concede concurrently, depend on t and are potentially non-stationary. In contrast,

in Abreu and Gul (2000) concurrent concessions involve stationary payoffs. Nevertheless,

the argument below (for condition (i)) shows that the non-stationarity of payoffs does

not introduce any new complications and Abreu and Gul (2000)’s analysis applies without

alteration. In particular, the unique equilibrium of the War of Attrition satisfies three

6Best replying gives a per-period payoff of zero.
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conditions: (i) at most one agent concedes with positive probability at time zero, (ii) after

time zero each player concedes with constant hazard rate λi, (iii) the normal types finish

conceding at some finite time T . Consequently, at time T the posterior probability that an

agent faces a Stackleberg type equals one.

In order to provide a rationale for condition (i) suppose that both players were to concede

with positive probability at time t. If they concede concurrently, then player 1’s payoff is

g1(t) and player 2’s payoff is g2(t). By Assumption 2, gi(t) ≤ ρ(ḡ − gj(t)). Consequently,

for one the of the two players gi(t) < ḡ. But for this player i waiting to see whether player j

quits at time t and then quitting immediately afterwards does strictly better than quitting

at time t. Consequently, both players cannot concede with positive probability at any time

t; and in particular, at most one of the players can concede with positive probability at

time zero.

For some insight into condition (ii) note that player i cannot concede with certainty at

any time. If player i were to concede with certainty at time t, then by not conceding player

i would ensure that player j believes that player i is the Stackelberg type with probability

one. But this would induce player j to concede immediately improving i’s payoff.

Condition (ii) implies that the hazard rate λi must leave j indifferent between conceding

immediately and waiting for an additional △ units of time and then conceding. Conceding

immediately guarantees player j zero. By waiting for △ units of time player j incurs cost

lj(1 − e−r△), but receives ḡ if i quits which happens with probability △ λi. Consequently,

0 = lim
△→0

△ λiḡ − lj(1 − e−r△)

λi = lim
△→0

(1 − e−r△)lj
ḡ △

=
rlj
ḡ

Once one of the players’ normal type has finished conceding and so the player is known

as the Stackelberg type with certainty, then the normal type of the other player should also

concede immediately. Because a Stackelberg type never concedes, the normal player has no
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incentive to insist. Consequently, condition (iii) must hold and both players must complete

their concession by the same finite time T . Given the concession rate λi, let Ti = − ln zi

λi
. If

player i does not concede with positive probability at time zero, then by time Ti the normal

type of player i concedes with probability one, i.e., if Fi(0) = 0, then Fi(Ti) = 1 − zi. The

common concession time T must equal min{T1, T2}. And so, if Ti > Tj , then Fi(0) > 0. In

words, the player with the larger Ti, the player that concedes more slowly or who is more

likely to be the normal type, is the weaker player that concedes with positive probability

at time zero.

Let Fi(t) denote the cumulative probability that player 1 concedes by time t. That is,

Fi(t) is 1 − zi multiplied by the probability that the normal type of player i quits by time

t. Conditions (i) through (iii) imply that (F1, F2) is an equilibrium of the War of Attrition

if and only if

Fi(t) = 1 − cie
−λit for all t ≤ T < ∞

λi =
rlj
ḡ

(1 − c1)(1 − c2) = 0 for ci ∈ [0, 1],

Fi(T ) = 1 − zi.

Proposition 1. The unique sequential equilibrium of the War of Attrition is (F1, F2). Also,

the unique equilibrium payoff vector for the War of Attrition is ((1 − c2)ḡ, (1 − c1)ḡ).

Proof. Observe if F1 jumps at time t, then F2 does not jump at time t. This follows from

the argument provided for condition (i). The rest of the argument in Abreu and Gul (2000)

applies verbatim. Thus F1 and F2 comprise the unique equilibrium for the War of Attrition.

Suppose that player 1 is the player that concedes with positive probability at time zero.

Since player 1 concedes with positive probability at time zero, he is indifferent between

conceding immediately and receiving a payoff equal to zero and continuing. Consequently,

player 1’s equilibrium payoff must equal zero. Player 2 is also indifferent between quitting
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and conceding at any time after time zero. This implies that player 2’s payoff is equal to

zero at any time t > 0. Consequently, player 2’s equilibrium payoff at the start of the game

must equal (1 − c1)ḡ. �

4.2. The Main Two Sided Reputation Result. Let the function Gn
1 (t) denote the

cumulative probability that player 1 reveals that he is rational by time t, if he is playing

against the Stackelberg type of player 2, in an equilibrium σ of the repeated game Γ∞(z,∆n).

Theorem 2 demonstrates that the distributions Gn
i have a limit and proves that this limiting

distribution solves the War of Attrition and is thus equal to Fi. The Theorem then proceeds

to show that convergence of Gn
i to Fi implies that the equilibrium payoffs in the repeated

game also converge to the unique equilibrium payoff for the War of Attrition.

Theorem 2. Suppose that as
1 is not a best response to as

2. Also, Γ satisfies Assumption

1 and ΓN satisfies Assumption 2 for both players. For any z = (z1 > 0, z2 > 0) and any

ǫ > 0, there exists a ∆∗ such that, for any ∆ < ∆∗, any equilibrium strategy profile σ for

the repeated game Γ∞(z,∆), |U1(σ) − (1 − c2)ḡ| < ǫ and |U2(σ) − (1 − c1)ḡ| < ǫ.

4.2.1. Comparative Statics. Before proving the theorem we discuss some comparative stat-

ics. Theorem 2 establishes that the the unique limit equilibrium payoff for the repeated

game is (1 − c2)ḡ and (1 − c1)ḡ. Suppose that 1 − c2 = 0, and make the generic assump-

tion, ln z1

λ1
6= ln z2

λ2
. Since player 2 never concedes at time zero, player 1’s payoff is equal

to zero, and player 2’s payoff is equal to (1 − c1)ḡ. Hence, player 1 is the weaker player.

The identity of the agent who quits with positive probability at time zero, player 1 in this

case, is determined by the quitting time if the agent was not expected to quit at time zero,

that is, Ti = − ln zi

λi
which solves the equation Fi(Ti) = 1 − zi under the assumption ci = 1.

Since c2 = 1, T1 > T2. The time zero quitting probability c1 is calculated to ensure that

F1(T2) = 1 − z1. Consequently, player 2’s payoff is decreasing in λ1 and z1; and increasing

in λ2 and z2. The concession rate of player 2, in turn, is increasing in player 1’s cost of

resisting the Stackelberg action, l1. Thus, player 2’s payoff is increasing in l1 and z2; and
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decreasing in l2 and z1. Also note that because c1 > 0, player 2’s payoff is strictly less than

ḡ and so the limit equilibrium payoff is inefficient.

Another comparative statics exercise of possible interest is the limit of the equilibrium

payoffs as the probabilities of irrationality z1 and z2 converge to zero at the same rate.

Suppose that λ1 < λ2. Observe that as z1 and z2 converge to zero at the same rate,

T1/T2 converges to λ2/λ1 > 1. So, player 1 is the weak player close to the limit. Note

that c1 = z1z
−

λ1

λ2

2 , and so c1 converges to zero as the z’s converge to zero. This shows

that the equilibrium payoff vector converges to zero for player 1 and ḡ for player 2 as

the model converges to full rationality. Hence the limiting payoff at full rationality is

(0, ḡ) if λ1 < λ2 and (ḡ, 0) if λ1 > λ2. This argument suggests that the equilibrium

payoffs become efficient as the incomplete information in the model disappears. Also, as

incomplete information becomes negligible, the prediction of the model is similar to the one-

sided incomplete information case; the stronger player attains his/her highest individually

rational payoff.

4.2.2. Proof of Theorem 2. After any history h where player i has always played only as
i

and player j has played an action different than as
j at least once zi(h) > zi and zj(h) = 0.

Consequently, after such a history Theorem 1 implies that Ui(σ|h) ≥ ḡ − 2(1 + M)(1 −

e−ri∆)Kn∗

where both K and n∗ are independent of ∆. Let K(∆) = Kn∗

2(1+M)(1−e−r∆)

and so Ui(σ|h) ≥ ḡ−K(∆) after any history where i has only played as
i . Also, let M(∆) =

(ḡ + M)(1 − e−r∆) which converges to zero when ∆ goes to zero. Take ∆ sufficiently small

so that ρK(∆) + M(∆) < li and ḡ − K(∆) > 0.

Step 1. Let σ denote a mixed (not behavioral) repeated game strategy profile. Consequently,

σi is a probability distribution over all pure repeated game strategies for player i. Let Ri(n)

denote the set of pure repeated game strategies that have the following properties:

(1) In all periods l < n, at each decision node in the extensive form stage game where

player i moves, the strategy picks an action compatible with the Stackelberg type,
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if only actions compatible with the Stackelberg type have been played up to that

point in the game.

(2) In period n, the strategy picks an action incompatible with the Stackelberg type, at

some decision node in the extensive form stage game where player i moves, if only

actions compatible with the Stackelberg type have been played up to that point in

the game.

Given this definition, σi(Ri(n)) is the probability that player i chooses a pure repeated

game strategy profile in the set Ri(n). Observe that the sets Ri(n) are disjoint and their

union
⋃

n Ri(n) gives all pure repeated game strategies excluding the set of strategies Ni

that never play an action incompatible with the Stackelberg type, if only actions compatible

with the Stackelberg type have been played up to that point in the game.

Let

Gi(t) = (1 − zi)
∑

∆n≤t

σi(Ri(n)).

This is just the probability that player i will reveal rationality by playing an action in-

compatible with the Stackelberg type by time t. Step 4 given below shows that for all

equilibria σ of the repeated game Γ∞(z,∆), there exists a time T such that Gi(T ) = 1− zi,

that is, every normal player eventually reveals rationality, if faced with a sufficiently long

history of play compatible with the Stackelberg type. Consequently, for any equilibrium σ,

σi(Ni) = 0.

If σi(Ri(n)) > 0, then let Ui(σ|Ri(n)) denote the expected repeated game payoff for

player i, under mixed strategy profile σ, conditional on player i having picked a strategy

in the set Ri(n). If σi(Ri(n)) = 0, then let Ui(σ|Ri(n)) = supa∞

i ∈Ri(n) Ui(a
∞
i , σj). Also, for

any real number t, let Ui(σ|t) = Ui(σ|Ri(n̄)) where n̄ = maxn{∆n ≤ t}. Observe that for
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any equilibrium mixed strategy profile σ,

Ui(σ) =
∞

∑

n=0

σi(Ri(n))Ui(σ|Ri(n)) + σi(Ni)Ui(σ|Ni)

=

∞
∑

n=0

σi(Ri(n))Ui(σ|Ri(n)) =
1

1 − zi

∫ ∞

t=0
Ui(σ|t)dGi(t).

Step 2. Define

Ūi(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t ≥ k

= −li(1 − e−r min{t,k}) if t < k.

In this definition t, k ∈ R+. For any equilibrium profile σn for the repeated game Γ∞(z,∆n)

Ui(σ
n) ≤

1

1 − zi

∫

t

∫

k

Ūi(t, k)dGn
j (k)dGn

i (t) + ρK(∆).

Proof of Step 2. Fix an equilibrium strategy σ and suppose that j behaves according to σj .

Consider a strategy for player i that chooses to play the Stackelberg action up to period

t = ∆n, if no player has played an action that is incompatible with the Stackelberg type.

Then, in period t chooses any stage game action ai that reveals rationality with certainty

in that period, if player j does not reveal rationality before i in that period. Also, let

this strategy behave according to the equilibrium profile after one of the players reveals

rationality. Note that player i is choosing a strategy in Ri(n). Let Ui(σ|t, ai) denote the

utility to i from using any such strategy. If j does not reveal rationality in any period k ≤ t,

then player i will reveal rationality. Consequently, the continuation utility, by Theorem 1,

for player j will be at least ḡ−K(∆). This implies that player i’s continuation utility after

period t is at most ρK(∆). In period t player i will get at most zero since j plays as
j and

player i will incur −(1 − e−rt)li since both players will play the Stackelberg action up to

period t. This event occurs with probability 1−G2(t). If player j reveals rationality at any

time ∆m = k ≤ t, then player 1 will receive payoff at most ḡ from that period onwards and
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will incur −(1 − e−rk)li up to time k. Consequently,

Ui(σ|t, ai) ≤

∫

{t≥k}
(e−rkḡ − li(1 − e−rk))dGj(k) + (1 − Gj(t))(ρK(∆) − li(1 − e−rt))

Ui(σ|t, ai) ≤

∫

Ūi(t, k)dGj(k) + ρK(∆)

However, Ui(σ|t, ai) ≤
∫

Ūi(t, k)dGj(k) + ρK(∆) implies that Ui(σ|t) ≤
∫

Ūi(t, k)dGj(k) +

ρK(∆). Hence,

Ui(σ) ≤
1

1 − zi

∫ ∫

Ūi(t, k)dGj(k)dGi(t) + ρK(∆)

�

Step 3. Define

U i(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t > k

= −li(1 − e−r min{t,k}) if t ≤ k

In this definition t, k ∈ R+. For any equilibrium profile σn for the repeated game Γ∞(z,∆n)

Ui(σ
n) ≥

1

1 − zi

∫ ∫

U i(t, k)dGn
j (k)dGn

i (t) − K(∆)(1 + ρ) − 2M(∆)

Step 4. There exists a T such that Gn
i (T ) = 1 − zi.

Step 5. There exists a subsequence {nk} ⊂ {n} such that (Gnk

1 (t) , Gnk

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)).

Proof of Step 5. Since Gn
1 and Gn

2 are distribution functions, by Helly’s theorem they have

a (possibly) subsequential limit Ĝ1 (t) , Ĝ2 (t). Also, since the support of the Gn
1 and Gn

2 ’s

is uniformly bounded by the previous lemma, the limiting functions Ĝ1 (t) , Ĝ2 (t) are also

distribution functions. �

Step 6. The distribution functions Ĝ1 (t) and Ĝ2 (t) do not have any common points of

discontinuity.
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Step 7. If (Gn
1 (t) , Gn

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)), then

lim Ui(σ
n) =

∫ ∫

Ūi(t, k)dĜj(k)dĜi(t) =

∫ ∫

U i(t, k)dĜj(k)dĜi(t).

Step 8. The distribution functions (Ĝ1 (t) , Ĝ2 (t)) solve the War of Attrition and conse-

quently (Ĝ1 (t) , Ĝ2 (t)) = (F1 (t) , F2 (t))

Step 9. Observe that lim Ui(σ
n) =

∫ ∫

Ūi(t, k)dFj(k)dFi(t). However,
∫ ∫

Ūi(t, k)dFj(k)dFi(t)

is just the expected utility of player i from playing the War of Attrition. Consequently,
∫ ∫

Ūi(t, k)dFj(k)dFi(t) = (1 − cj)ḡ thus completing the argument.

Assumption 1 and Assumption 2 were used for two purposes in the previous Theorem.

First, to bound the continuation payoff of the two agents. Second, to show that the two

agents never concede concurrently, at the limit. Both of these can be achieved if we drop

Assumption 1, but strengthen Assumption 2 by assuming Assumption 3 instead. The bound

on continuation payoffs continue to hold since Theorem 1 is valid under Assumption 3. Also,

to prove that the two players never concede concurrently, only the bound of continuation

payoffs and Assumption 2 is required. Since, Assumption 3 is a strict strengthening of

Assumption 2, this result also holds.

Corollary 3. Suppose that ΓN satisfies Assumption 3 for both players. For any z =

(z1 > 0, z2 > 0) and any ǫ > 0, there exists a ∆∗ such that, for any ∆ < ∆∗, any

equilibrium strategy profile σ for the repeated game Γ∞(z,∆), |U1(σ) − (1 − c2)ḡ| < ǫ and

|U2(σ) − (1 − c1)ḡ| < ǫ.

5. Conclusion and Discussion

In this paper we proved one and two sided reputation results for extensive form stage

games that satisfy assumptions 1 and 2. Also, we showed that our results continue to

hold without alteration if assumption 1 is dropped, but assumption 2 is strengthened by

assuming that the stage is a game of strictly conflicting interest.
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The assumption that the agents do not move simultaneously is an essential ingredient for

our findings. This restriction gives perfection arguments considerable selection power. It

should be noted, however, that none of our results depend on the order of moves, they just

depend on non-simultaneity. For example, in a two-stage extensive form stage game if the

identity of the player that moves first was selected at random, or the two players alternated

in moving first, our results would not be affected. More generally, the one and two sided

reputation results would continue to hold in a stochastic game where the game played in

each period is selected at random, according to a stationary probability, from a finite subset

of games that satisfy assumptions 1 and 2.7

Appendix A. Omitted Proofs

A.1. Omitted Steps in the Proof of Theorem 1.

Proof of Step 6. Statement. Choose z1 ≥ z ≥ zξ and equilibrium σ such that w(δ, σ) ≥

(Kξ − ξ)ǫ. For the chosen z and equilibrium strategy profile σ,

U2(σ) ≤ qξKξǫρ + q1Kǫρ + (1 − z − q1 − qξ)ǫρ + 2(1 − δ)(1 + M)ρ − z(Kξ − ξ)ǫl.

proof. In any period, player 2 will receive payoff less than or equal to zero if player 1 takes

action as
1. By the same reasoning as in Step 6, in any period n < Tξ, with player 1 only

playing action as
1 in history hn,

U1(σ|hn) ≥ 1 − w(δ, σ2) ≥ 1 − Kξǫ.

Consequently, in any such period n < Tξ, player 2 will receive payoff equal to at most zero

for the period if player 1 takes action as
1, and otherwise will receive continuation payoff

U2(σ|hn<Tξ
, a1) ≤ ρKξǫ , Ū2(σ|hn<Tξ

, a1),

7In this case ĝ and li would have to be appropriately defined as the expectation over the set of finite stage
games.
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by Assumption 2. Likewise, for periods Tξ, Tξ < n < T1, T1 and n > T1,

U2(σ|hTξ
, a1) ≤ ρ(1 − δ(1 − Kǫ) + (1 − δ)M) ≤ ρKǫ + ρ(1 − δ)(1 + M) , Ū2(σ|hTξ

, a1)

U2(σ|hTξ<n<T1
, a1) ≤ ρKǫ , Ū2(σ|hTξ<n<T1

, a1)

U2(σ|hT1
, a1) ≤ ρǫ + ρ(1 − δ)(1 + M) , Ū2(σ|hT1

, a1)

U2(σ|hn>T1
, a1) ≤ ρǫ , Ū2(σ|hn>T1

, a1)

Player 1 is a commitment type with probability z and in this case player 2 will lose at least

(Kξ − ξ)ǫl by not best replying to as
1 since w(δ, σ2) ≥ (Kξ − ξ)ǫ in the equilibrium σ under

consideration. Also, as before the probability that player 1 takes action a1 6= as
1 for the first

time in any period n < Tξ is less than qξ and in any period Tξ < n < T1 is less than qξ + q1.

Also, Ū2(σ|hn>T1
, a1) ≤ Ū2(σ|hTξ<n<T1

, a1, ) ≤ Ū2(σ|hn<Tξ
, a1) and so

U2(σ) ≤ qξŪ2(σ|hn<Tξ
,a1) + q1Ū2(σ|hTξ<n<T1

, a1)

+(1 − z − qξ − q1)Ū2(σ|hn>T1
, a1) + 2ρ(1 − δ)(1 + M) − z(Kξ − ξ)ǫl

delivering the required inequality. Observe that if Tξ = ∞ and T1 = ∞ the bound is still

valid. �

A.2. Omitted Steps in the Proof of Theorem 2.

Proof of Step 3. Statement. Let

U i(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t > k

= −li(1 − e−r min{t,k}) if t ≤ k

For any equilibrium profile σn for the repeated game Γ∞(z,∆n)

Un
i (σn) ≥

1

1 − zi

∫ ∫

U i(t, k)dGn
j (k)dGn

i (t) − K(∆)(1 + ρ) − 2M(∆)
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proof. Fix an equilibrium strategy σ and suppose that j behaves according to σj. As in step

2, consider a strategy for player i that chooses to play the Stackelberg action up to time

t = ∆n, if both players have played actions compatible with the Stackelberg type. Then,

at time t chooses any stage game action ai that reveals rationality with certainty in that

period, if player j does not reveal rationality before i in that period. Also, once rationality

is revealed, then let the strategy behave according to the equilibrium strategy. Note that

player i is choosing a strategy in Ri(n). Let Ui(σ|t, ai) denote the utility to i from using any

such strategy. If j reveals rationality in any period ∆m = k < t, then player i incurs −li up

to that time, loses at most −M in period k and receives continuation payoff ḡ−K(∆). This

exceeds −(1− e−rk)li + e−rk(ḡ −K(∆))− (ḡ + M)(1− e−r∆). If player i reveals rationality

first in period t, then she loses at most M for the period and receives as a continuation

−ρK(∆) ≤ 0. If player j reveals first in period t, then player i loses again at most M for

the period and receives in continuation ḡ − K(∆) > 0. Consequently,

Ui(σ|t, ai) ≥

∫

k<t

(e−rkḡ−(1−e−rk)li)dGj(k)−(1−Gj(t
−))(1−e−rt)li−(1+ρ)K(∆)−2M(∆)

where 1−Gj(t
−) denotes the probability that player j reveals at a time k ≥ t. This implies

that

Ui(σ|t, ai) ≥

∫

U i(t, k)dGj(k) − (1 + ρ)K(∆) − 2M(∆)

However, Ui(σ|t, ai) ≥
∫

U i(t, k)dGj(k) − (1 + ρ)K(∆) − 2M(∆) for all ai implies that

Ui(σ|t) ≥
∫

U i(t, k)dGj(k) − (1 + ρ)K(∆) − 2M(∆). Hence,

Ui(σ) ≥
1

1 − zi

∫ ∫

U i(t, k)dGj(k)dGi(t) − (1 + ρ)K(∆) − 2M(∆)

proving the result. �

Proof of Step 4. Statement. There exists a T such that Gn
i (T ) = 1 − zi.

proof. For some time s suppose that (as
i , a

s
j) has been played in all periods ∆k < s and

consider the strategy of i that continues to play as
i for all periods n such that ∆n ∈ [s, s+ t],

given that (as
i , a

s
j) has been played in all prior periods. For this strategy to be considered,
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it must do better for player i than revealing rationality which guarantees her −ρK(∆) by

loosing at most M(∆) for the period. For this strategy to do better than revealing rationality

for i, the probability with which player j plays as
j in all periods {n : ∆n ∈ [s, s + t]}, given

that (as
i , a

s
j) has been played in all prior periods, P{an,j = as

j ∀∆n ∈ [s, s + t]|ak<n =

(as
i , a

s
j)}, must satisfy the following:

−ρK(∆) − M(∆) ≤ P{an,j = as
j ∀∆n ∈ [s, s + t]|ak<n = (as

i , a
s
j)}(ḡe−rt − li(1 − e−rt))+

(1 − P{an,j = as
j ∀∆n ∈ [s, s + t]|ak<n = (as

i , a
s
j)})ḡ

and consequently:

P{an,j = as
j ∀∆n ∈ [s, s + t]|ak<n = (as

i , a
s
j)} ≤

ḡ + ρK(∆) + M(∆)

(ḡ + li)(1 − e−rt)

Observe that for t large, ḡ+ρK(∆)+M(∆)
(ḡ+li)(1−e−rt)

< 1. This implies that for i to be willing to play as
i

for all ∆n ∈ [0, tk]

zj ≤ P{as
j ∀tk} =

k
∏

s=0

P{an,j = as
j ∀∆n ∈ [s, s + t]|ak<n = (as

i , a
s
j)} ≤

(

ḡ + ρK(∆) + M(∆)

(ḡ + li)(1 − e−rt)

)k

However for t and k sufficiently large this is not possible. �

Proof of Step 6. Statement. The distribution functions Ĝ1 (t) and Ĝ2 (t) do not have any

common points of discontinuity.

proof. Assume that Ĝ1 and Ĝ2 have a common point t where they are both discontinuous.

Let J1 = Ĝ1(t)− limsրt Ĝ1(s) and let J2 = Ĝ2(t)− limsրt Ĝ2(s). We can pick ζ, arbitrarily

close to t, such that both Ĝ1 and Ĝ2 are continuous at t + ζ and t − ζ. This implies that

for each ǫ > 0, there is a N such that the game is played at least once in each interval of

length 2ζ and Gn
i [t − ζ, t + ζ] = Gn

i (t + ζ) − Gn
i (t − ζ) ≥ Ji − ǫ > 0, for all n ≥ N . In

words, the probability that 1 plays an action different than as
i in the interval [t− ζ, t+ ζ] is

greater than J1 − ǫ. Also, pick N such that the value to any player after she has played an
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action other than the commitment action is less than ǫ and the payoff to any player who

has not played an action different than the commitment action against an opponent known

to be rational is greater than ḡ − ǫ. Pick the first period k such that ∆nk ∈ [t − ζ, t + ζ]

and P{ak1 6= as
1} > 0 or P{ak2 6= as

2} > 0. Since Gn
i [t− ζ, t + ζ] > 0 such a period exists for

all n > N .

Without loss of generality assume that P{ak1 6= as
1} > 0. Observe that this implies that

player 1 is willing to play something other than as
1 in period k. Consequently, the payoff

that player 1 receives from this strategy must do at least as well as playing as
1 throughout

the interval [t − ζ, t + ζ]. Let Ui denote the payoff that player i receives in equilibrium

conditional on both players not playing as
i in period k. Consequently,

P{ak2 6= as
2}U1 + (1 − P{ak2 6= as

2})ǫ ≥ e−r4ζ(ḡ − ǫ)Gn
2 [t − ζ, t + ζ]− l(1 − e−r4ζ)

Redefine ǫ′ = ǫ + ǫ
e−r4ζ(Ji−ǫ)

+ l(1−e−r4ζ)
e−r4ζ(Ji−ǫ)

and rewrite the above equation as follows:

P{ak2 6= as
2}U1 ≥ e−r4ζ(ḡ − ǫ′)Gn

2 [t − ζ, t + ζ].

For ǫ and ζ sufficiently small, the right hand side of the equation is approximately J2ḡ

and the left hand side is close to P{ak2 6= as
2}U1. Consequently, for this inequality to hold,

P{ak2 6= as
2} > 0. Also, by definition, P{ak2 6= as

2} ≤ Gn
2 [t − ζ, t + ζ], and consequently,

U1 ≥ e−r(4ζ)(ḡ − ǫ′).

P{ak2 6= as
2} > 0 implies, by a symmetric argument as in the case of player 1, that

P{ak1 6= as
1}U2 ≥ e−r4ζ(ḡ − ǫ′)Gn

1 [t − ζ, t + ζ]



REPUTATION 37

Consequently, U2 ≥ e−r4ζ(ḡ−ǫ′). However, U1 ≥ e−r4ζ(ḡ−ǫ′), implies that U2 ≤ ρ(ḡ−U1) =

ρ(ḡ(1 − e−r4ζ) + ǫ′e−r4ζ). So,

ρ(ḡ(1 − e−r4ζ) + ǫ′e−r4ζ) ≥ e−r4ζ(ḡ − ǫ′)

Taking the limit first with respect to ǫ and then with respect to ζ gives 0 ≥ ḡ, which is a

contradiction. �

Proof of Step 7. Statement. If (Gn
1 (t) , Gn

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)), then

lim Ui(σ
n) =

∫ ∫

Ūi(t, k)dĜj(k)dĜi(t) =

∫ ∫

U i(t, k)dĜj(k)dĜi(t).

proof. If Gn
1 converges to Ĝ1 and Gn

2 converges to Ĝ2, then the product measure Gn
1 × Gn

2

converges to Ĝ1 × Ĝ2, see Billingsley (1995), Page 386, Exercise 29.2. Observe that the

functions Ū1(t, k) and U1(t, k) are continuous at all points except on the set {t = k}. By

the previous lemma,
∫

R2 1{t=k}d(Ĝ1 × Ĝ2) = 0. Consequently, the Ĝ1 × Ĝ2 measure of the

points of discontinuity of Ū1(t, k) and U1(t, k) is zero. Billingsley (1995), Theorem 29.2,

shows that if the set of discontinuities of a measurable function h, Dh, has µ measure zero,

i.e., µ(Dh) = 0 and µn → µ, then
∫

hdµn →
∫

hdµ. So,

lim
n

∫

t1

(
∫

t2

Ū1(t1, t2)dGn
2 (t2)

)

dGn
1 (t1) = lim

n

∫

R2

Ū1d(Gn
1 × Gn

2 ) =

∫

R2

Ū1d(Ĝ1 × Ĝ2)

and similarly for U1. Also, since Ū1 and U1 differ only on a set of zero measure,
∫

R2 Ū1d(Ĝ1×

Ĝ2) =
∫

R2 U1d(Ĝ1 × Ĝ2). �

Proof of Step 8. Statement. The distribution functions (Ĝ1 (t) , Ĝ2 (t)) solve the War of

Attrition and consequently (Ĝ1 (t) , Ĝ2 (t)) = (F1 (t) , F2 (t))

proof. In the continuous time war of attrition, if player 1 is behaving according to Ĝ1,

then for each ǫ, there is a N such that for all n > N , Gn
2 is an ǫ best response to Ĝ1 and

consequently, since ǫ is arbitrary Ĝ2 is a best response to Ĝ1. Also, the symmetric argument
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is true for player 2 showing that Ĝ1 is a best response to Ĝ2. Proving that Ĝ1 and Ĝ2 form

an equilibrium for the continuous time war of attrition. Since the war of attrition has a

unique equilibrium Ĝ1 = F1 and Ĝ2 = F2. This argument is identical to Abreu and Gul

(2000), proof of Proposition 4, on page 114 where a more detailed proof may be found. �
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