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Abstract

We show that a simple “reputation-style” test can always identify
which of two experts is informed about the true distribution. The
test presumes no prior knowledge of the true distribution, achieves
any desired degree of precision in some fixed finite time, and does
not use “counterfactual” predictions. Our analysis capitalizes on an
elegant result due to Fudenberg and Levine (1992) on the convergence
of reputations.

We use our setup to shed some light on the apparent paradox that a
strategically motivated expert can ignorantly pass any test. We point
out that this paradox arises because in the single-expert setting, any
mixed strategy for Nature over distributions is reducible to a pure
strategy. This eliminates any meaningful sense in which Nature can
randomize. Comparative testing reverses the impossibility result be-
cause the presence of an expert who knows the realized distribution
eliminates the reducibility of Nature’s compound lotteries.
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“O False and treacherous Probability,
Enemy of truth, and friend of wickednesse;
With whose bleare eyes Opinion learnes to see,
Truth’s feeble party here, and barrennesse.”

Keynes1

1 Introduction

A recent literature emerged studying whether an expert’s claim to knowledge
can be empirically tested. Specifically, assume that there is an unknown
underlying probability distribution P generating a sequence of observations
in some finite set. For example, observations may be weather conditions,
stock prices, or GDP levels, while P is the true stochastic process governing
changes in these variables. In each period, the expert makes a probabilistic
forecast that he claims is based on his knowledge of the true process P . Can
this claim be tested?

The seminal paper in this literature is that of Foster and Vohra (1998).
They showed that a particular class of tests, known as calibration tests, can
be passed by a strategic but totally ignorant expert.2 Such expert can pass
a calibration test on any sample path without any knowledge of the un-
derlying process. A calibration test, therefore, cannot distinguish between
an informed expert who knows P and an ignorant expert. Fudenberg and
Levine (1999) provided a simpler proof of this result, Lehrer (2001) gener-
alized it to passing many calibration rules simultaneously, as do Sandroni,
Smorodinsky, and Vohra (2003). Kalai, Lehrer, and Smorodinsky (1999)
establish various connections to learning in games.

In a striking result, Sandroni (2003) proved the following impossibility
result in a finite horizon setting: Any test that passes an informed expert
can be ignorantly passed by a strategic expert on any sample path. The
remarkable feature of this result is that it is not limited to any special class

1A Treatise on Probability, 1921.
2A calibration test compares the actual frequency of outcomes with the corresponding

frequencies in the expert’s forecast in each set of periods where the forecasts are similar.
See, for example, Sandroni (2003, Sec. 3) for precise statement.
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of tests, and it requires only that an expert who knows the truth can pass
the test.

This disturbing result motivated a number of authors to consider mod-
els that can circumvent its conclusions. Dekel and Feinberg (2006) consider
infinite horizon problems and show that there are tests that reject an igno-
rant expert in finite (but unbounded) time. Their positive results, however,
require the use of the continuum hypothesis which is not part of standard
set theory. Olszewski and Sandroni (2006) refine these findings by, among
many other results, dispensing with the use of the continuum hypothesis.
The tests used in these positive results do not validate a true expert in finite
time. Olszewski and Sandroni (2007) prove a powerful new impossibility re-
sult showing that any test that does not condition on counterfactuals (i.e.,
forecasts at unrealized future histories) can be ignorantly passed.

In this paper we show that these impossibility results do not extend to
tests that compare two (or more) experts.3 Our main results are stated
for finite horizon testing because this is where the impossibility results are
strongest and conceptually clearer.4

The finite horizon case therefore provides the sharpest contrast between
comparative and single-expert testing. In Section 5 we show that our main
results extend in sharper form to the infinite horizon case.

Our first theorem shows that in a setting with two experts there is a sim-
ple reputation-style test with the following property:5 If one expert knows
the true process P and the other is uninformed, then either

1. the test will pick the informed expert; or

2. the uninformed expert makes forecasts that are close to the truth in
most periods.

3In independent work, Feinberg and Stewart (2006) also study testing multiple experts.
Their work is discussed in detail in Section 5.

4By “finite horizon” we mean a length of time bounded independent of the true distri-
bution or predictions made. The term “finite horizon test” is sometimes used in a different
sense in the literature on testing one expert, namely as referring to tests that reject an
uninformed expert in finite but not necessarily bounded amount of time. Olszewski and
Sandroni (2006) show that for such tests, rejection can be delayed for as long as one wishes,
limiting their applicability in practice.

5 For expository clarity, we shall ignore quantifiers on probabilities and degrees of
approximation in the introduction.
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The test does not rely on counterfactuals of any kind: no information about
the experts’ forecasts at unrealized histories is used. The theorem uses a
remarkable property of the rate of convergence of martingales, discovered
by Fudenberg and Levine (1992).

Case (2) of the conclusion above cannot be eliminated entirely, since
an uninformed expert who randomizes will pick forecasts that are close to
the truth with positive probability. The intuition, of course, is that this
is an unlikely event. To make this precise, we note that the comparative
test defines an incomplete-information constant-sum game between the two
experts. Theorem 3 shows that the value of this constant-sum game to
the uninformed player is low if the informed player is even slightly better
informed, when the horizon is long enough.

Although we emphasize the finite horizon to highlight the contrast with
impossibility results, most of the literature concerns the infinite horizon set-
ting. This is indeed the case with the older calibration literature pioneered
by Foster and Vohra (1998), as well as the more recent literature on general
tests like Dekel and Feinberg (2006), Olszewski and Sandroni ((2006)and
(2007)) and Feinberg and Stewart (2006). In Section 5 we consider the in-
finite horizon case and show that our main result on comparative testing
extends in a stronger form.

It should be emphasized that our comparative test does not blunt the
force of the single-expert impossibility results. In Theorem 2 we show that
there can be no non-manipulable test that can tell when there is at least
one informed expert. This shows that any positive results in multiple-expert
settings must be of the form: if there is an informed expert, the test will
select him.

Although our primary emphasis is on comparative testing, our analysis
makes a slightly more general point by shedding light on the source of the
impossibility results. Roughly, we argue that the impossibility results are
consequences of the facts that: (1) a stochastic process P typically has many
equivalent representations, and (2) these representations are observationally
indistinguishable based on a single sample path. In the the single-expert set-
ting, this observational equivalence effectively impoverishes Nature’s strat-
egy sets, making it possible for a strategic expert to win. These observations
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provide, we believe, a unified way to understand when impossibility results
are likely to obtain. For instance, impossibility results are incompatible with
tests that reward information, with repeated observations of the stochastic
process, or with comparison across experts, as we do here. Each of these
variants works by either fully or partially restoring the richness of Nature’s
strategy set. Section 6 elaborates on these points.

2 Model

Fix a finite set A representing outcomes in any given period. For any set let
∆(·) denote the set of probability distributions on that set.

There are n periods, t = 1, . . . , n. The set of complete histories is Hn =[
A,∆(A),∆(A)

]n, with the interpretation that the tth element(
a(t), α0(t), α1(t)

)
of a history h consists of an outcome a(t), and the prob-

abilistic forecasts αi(t) of experts i = 1, 2 for that period.6 Define the null
history h0 to be the empty set. A partial history of length t, denoted ht, is
any element of

[
A,∆(A),∆(A)

]t.
A time t forecasting strategy is any t−1-measurable function f t : Ht−1 →

∆(A), interpreted as a probabilistic forecast of the time t outcome contingent
on a partial history ht−1. A forecasting strategy f ≡ {f t}n

t=1 is a sequence
of time t forecasting strategies. Two forecasts f t

i (h
t−1), i = 0, 1, are ε-close

if |f t
0(h

t−1)(a)− f t
1(h

t−1)(a)| < ε for every outcome a.
There is a true stochastic process P on An that generates outcomes. Let

fP be any forecasting strategies that coincides with the one-period-ahead
conditionals at partial histories with P -positive probability.

We shall think of the set of all forecasting strategies, denoted Fn, as the
set of pure strategies available to an expert. Mixed strategies are probability
distributions ϕ ∈ ∆(Fn) on the set of pure strategies.7

Notational Conventions. A superscript t will denote either the t-fold product
of a set (as in At), an element of such product (e.g., the vector at), or a

6To minimize repetition, from this point on, all product spaces are endowed with the
product topology and the Borel σ-algebra.

7All probabilities on a product space are assumed to be countably additive and defined
on the Borel σ-algebra generated by the product topology. Spaces of probability measures
are endowed with the weak topology.
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function measurable with respect to the first t components of a history (e.g.,
a time t forecast f t or a test T t).

An n-period comparative test is any measurable function8

Tn : An × Fn × Fn → {0, 1}

such that for every f, f ′ ∈ Fn and an,

Tn(an, f, f ′) = 1− Tn(an, f ′, f).

Here, i = Tn(hn) is interpreted to mean that the test picks expert i after
observing the history of forecasts and Nature’s realizations for the past n

periods.
Note the following:

• The test does not presume any structure on the underlying law;

• Each expert can condition not only on his own past forecasts and past
outcomes, but also on the past forecasts of the other expert;

• The test is symmetric, in the sense that which expert is chosen by the
test does not depend on the expert’s label.

The test we construct below will have an additional property:

• The test does not condition on counterfactuals of any kind: What the
experts would have forecasted at unrealized histories is not taken into
account; only forecasts along the actual history are used;

3 A Comparative Test of Experts

An expert is informed if he forecasts outcomes using the true distribution
P . Formally, his strategy is the deterministic forecast fP . In Theorem 2 we
will show that no test can determine whether or not at least one of the two
experts is informed. Therefore the appropriate goal is a comparative test
that picks an informed expert if there is indeed one.

8Here, measurability is with respect to σ-algebra generated by the Borel sets on the
product space Hn.
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We introduce for each n a particular comparative test Tn as follows. Let
L0(h0) = 1 and

Lt(ht) =
f t
1(h

t−1)(a(t))
f t
0(ht−1)(a(t))

Lt−1(ht−1), (1)

where ht is the initial t segment of a complete history hn, and a(t) is the
outcome at time t according to the history hn. Given a history hn Expert 1
is chosen if Ln(hn) > 1, Expert 0 is chosen if Ln(hn) < 1, and an expert is
chosen at random with probability 0.5 if Ln(hn) = 1.

Theorem 1 For every ε > 0, there is an integer K such that for all integers
n, distributions P , and mixed forecasting strategies ϕ0, ϕ1 with at least one
informed expert, there is P -probability at least 1− ε that either

(a) Tn picks an informed expert; or

(b) The two experts’ forecasts are ε-close in all but K periods.

Case (a) is, in a sense, the desired outcome of the test. Case (b) reflects
the possibility that uninformed forecaster may get lucky and correctly guess
the true law P . Note that the theorem has no bite when n is small relative
to K, because case (b) will trivially obtain. The crucial point is that K is
independent of the true distribution and the forecasters’ strategies, so by
setting n large enough case (b) says that the uninformed forecaster must
have an excellent guess about the true law. Theorem 3 will support the
conclusion that case (b) is “unlikely” when n is large relative to K.

Proof: The argument relies on a result by Fudenberg and Levine (1992) on
the rate of convergence of supermartingales.9

Assume for the moment that Expert 0 is informed and that he reports
the truth.10 It is a standard observation that the stochastic process {Lt} is a

9Although our test has a “reputation” flavor and we use some of Fudenberg and Levine
(1992)’s techniques, the analogy between the two frameworks is not transparent. For the
reader familiar with their paper, one may think of the realized outcomes in our model as
the random signals generated by the long-run player’s actions. The two experts’ forecasts
are then the distributions over signals induced by the mixed strategies of the two types of
this player. The tester, who updates beliefs over two experts, is analogous to the short-run
players, who update their beliefs over two types.

10 The informed expert may have a strategy that does better than reporting the truth;
if so, this only strengthens our conclusion.
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supermartingale under the distribution induced by the strategy of Expert 0
(Lemma 4.1 in Fudenberg and Levine (1992)). As in Fudenberg and Levine,
define {L̃t} to be the faster process obtained from {Lt} through a sequence
of stopping times that contains all finite histories at which |f t

0(h
t−1)(a(t))−

f t
1(h

t−1)(a(t))| > ε.
Fudenberg and Levine show that {L̃t} is an active supermartingale with

activity ε. We refer the reader to their paper for definitions. Their Theorem
A.1 implies that for any ε > 0 there is an integer K such that for any active
supermartingale {L̃t}

P

[
sup
k>K

L̃k < 1
]

> 1− ε.

The key point is that K depends only on ε and not on the true stochastic
process P or the forecasting strategy f1.

Assume that Expert 1 uses a deterministic strategy. Under the assump-
tion that Expert 0 is informed, with probability 1 − ε, on any history of n

periods, either |f t
0(h

t−1)(a(t)) − f t
1(h

t−1)(a(t))| < ε for all but at most K

periods, or Ln < 1.
If Expert 1 uses a mixed strategy ϕ, the same conclusion still follows via

an application of Fubini’s theorem using the assumption that Tn is jointly
measurable and the fact that the constant K is uniform over all forecasting
strategies.

To further elucidate the second part of the conclusion of the theorem,
suppose that A = {Heads, Tails} and P is an i.i.d. distribution with prob-
ability of Heads α. Assume that the strategic expert knows that P is i.i.d.,
but does not know the value α. If this expert estimates the true value of α

from the data then whether or not he will be picked will depend on how fast
he comes close to learning α relative to the size of K. Unfortunately, useful
bounds on the value of K are not known, but if the true value of K happens
to be large, then the expert who only knows the process is i.i.d. may end up
being picked. Note, however, that such an expert is hardly uninformed; after
all, he knows that the true distribution belongs to a simple one-parameter
family and he eventually forecasts outcomes almost as well as the informed
expert.

7



Now we turn to the issue of whether there is a way to determine if among
the two experts at least one is informed. Formally, consider a function

τ : Hn → {0, 1}

with the interpretation that τ(an, f0, f1) = 1 iff at least one expert is in-
formed. The following theorem is an important consequence of Sandroni
(2003)’s impossibility result:

Theorem 2 Suppose that τ is such that for every P, f0 and f1

P{an : τ(an, f0, f1) = 1} > 1− ε if either f0 = fP or f1 = fP . (2)

Then for every mixed strategy ϕ0 of Expert 0 there is a mixed strategy ϕ1 of
Expert 1 such that for every an

ϕ0 × ϕ1

{
(f0, f1) : τ(an, f0, f1) = 1

}
> 1− ε. (3)

That is, if τ has the property that it returns a 1 (with high probability)
whenever at least one expert is informed, then each of the two experts can
manipulate τ by forcing it to return 1 (with high probability) without any
knowledge of the true process P and regardless of the outcomes an and the
strategy of the other expert.

Proof: For any forecasting strategy f0 of Expert 0, define the single-expert
test

Mf0 : An × Fn → {0, 1}

by
Mf0(a

n, f1) = 1 ⇐⇒ τ(an, f0, f1) = 1.

By 2, the single-expert test Mf0 passes the truth with probability 1 − ε.
From Sandroni (2003) we know that there is a mixed strategy ϕ1 such that
for every an

ϕ1{f1 : Mf0(a
n, f1)} > 1− ε.

This establishes 3 for pure ϕ0.
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For a general ϕ0 Expert 1 is facing a lottery over deterministic tests.
We show that Sandroni (2003)’s impossibility result extends to the case of
stochastic tests. Formally, for each an and f1 define the single-expert test

Mϕ0
(an, f1) ≡ ϕ0{f0 : τ(an, f0, f1) = 1}.

The reader may interpret Mϕ0
as either a score in a continuous valued test,

or as the probability chosen by the tester to pass the expert at an and f1.
Note that for any f1∫
An

Mϕ0
(an, f1) dPf1 ≡

∫
An

∫
f0

τ(an, f0, f1) dϕ0 dPf1

=
∫

f0

∫
An

τ(an, f0, f1) dPf1 dϕ0

=
∫

f0

Pf1{an : τ(an, f0, f1) = 1} dϕ0 > 1− ε.

Applying the Minimax Theorem (Fan (1953)), we conclude that there is ϕ1

such that for every an

ϕ1{f1 : Mϕ0
(an, f1)} > 1− ε,

from which 3 directly follows.

4 The Scope of Strategic Manipulations

Theorem 1 establishes statistical properties of a simple “reputation-style”
test, taking the experts’s forecasts as given. That theorem does not account
for experts’ strategic behavior and leaves open the possibility that an unin-
formed expert might make a lucky guess that lands him close to the true P .
This section addresses these issues.

4.1 A Bayesian Game

Consider the following family of incomplete-information constant-sum games
between Expert 0 and Expert 1, parametrized by n = 1, 2 . . . and µ ∈
∆(∆(An)):

9



• Nature chooses an element P ∈ ∆(An) according to a probability
distribution µ;

• Expert 0 is informed of P , while Expert 1 only knows µ;

• The two players simultaneously choose forecasting strategies f0, f1 ∈
Fn;

• Nature then chooses an according to P ;

• The payoff of Expert 1 is

Tn
(
an, f0, f1

)
,

where Tn is the test constructed in Theorem 1.

• The payoff of Expert 0 is 1− Tn
(
an, f0, f1

)
.

Payoffs are extended to mixed strategies by expected utility:

z(µ, ϕ) ≡
∫

∆(An)

∫
F n

[∫
An

Tn
(
an, f0, f1

)
dP (an)

]
dϕ(f1) dµ(P ). (4)

4.2 The Value of the Game to the Uninformed Expert

The value of this incomplete-information constant-sum game to the unin-
formed player depends on how diffuse µ is. For example, if µ puts unit mass
on a single P ∈ ∆(An), then the “uninformed” player knows just as much
as the informed one, and so he can guarantee himself a value of 0.5. On
the other hand, Theorem 1 tells us that the uninformed player can win “the
reputation game” only when he succeeds in matching the true distribution
in all but K periods. Our next theorem says that if µ is even slightly diffuse
then his value is low when the horizon is long enough.

In the sequel, whenever convenient, we identify µ ∈ ∆(∆(An)) with
its one-step-ahead conditionals, denoted µt(·|αt−1) ∈ ∆(∆(A)). Define
M(ε, δ, L) ⊂ ∆(∆(An)) to consist of all µ such that there are at least L

periods 1 ≤ t ≤ n such that for µ-a.e. hn

max
p∈∆(A)

µt(Bε(p)|αt−1) < 1− δ.11 (5)

11The notation Bε(p) denotes the ε ball around p.
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This condition, which states that in each of at least L periods µ does not
concentrate its mass in some small ball, becomes less restrictive as n becomes
large.

Theorem 3 For every ε and δ > 0 there is an integer L such that for every
µ ∈M(ε, δ, L) the value of the game to Expert 1 is less than ε.

Proof: Assume that the informed expert is required to report the truth. If
he were to play strategically, the game would only become less favorable to
the uninformed expert.

Let K = K(ε/2) be the integer obtained in Theorem 1. Let L = L(ε, δ)
be the smallest integer so that the binomial distribution with L trials and
probability δ assigns probability at most ε

2 to {0, . . . ,K}.
Fix any µ ∈ M(ε, δ, L). It suffices to show that any fixed forecasting

strategy for Expert 1 has winning probability less than ε. In each of the
L periods described in 6, his probability of being ε

2 -close to the truth is at
most 1−δ. The definition of L then guarantees that his probability of being
ε
2 -close to the truth in all but K periods is at most ε

2 .
Theorem 1 tells us that when the above case does not obtain, Expert 1’s

probability of winning is at most ε
2 . We conclude that his overall winning

probability is at most ε.

4.3 The Non-manipulability of Comparative Tests

Informally, the next corollary is an “anti-impossibility” result: It says that
if one expert knows Nature’s distribution, an uninformed strategic expert
cannot guarantee success simultaneously against all distributions. That is,
for any mixed strategy over forecasts, Nature has a distribution P ∈ ∆(An)
such that the uninformed expert passes the test with probability at most ε.

Corollary 4 For every ϕ1 and every µ ∈ M(δ1, δ2, L) there is P ∈ suppµ

such that
z(P,ϕ1) < ε.
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Proof: From Theorem 3 we have

z(µ, ϕ1) < ε.

Then there must be an element in P ∈ suppµ such that the conclusion of
the theorem holds.

4.4 What does it mean to be Uninformed?

Consider three environments that would look identical to an uninformed
expert in the absence of an informed one:

• µ̂ is characterized by µ̂t(·|αt−1) being the uniform distribution, inde-
pendently across partial histories, on the vertices of ∆(A);

• µ̄ is characterized by µ̄t(·|αt−1) being the uniform distribution, inde-
pendently across partial histories, over a small ball around the distri-
bution p̄ that assigns equal probability to all outcomes;

• µ̃ is defined similarly, except that µ̃t(·|αt−1) puts unit mass on p̄.

Fix a sufficiently large n so that µ̄ and µ̂ defined above both belong to
M(ε, δ, L) for some ε, δ > 0 and L as in Theorem 3.

The first point to make is that our assumption that the informed player
knows the true distribution P is not as strong as it might first appear. Under
µ̂ the informed player knows the deterministic path of outcomes, and so he
knows as much as there is to be known. By comparison, the informed player
under µ̄ or µ̃ knows much less, yet we still refer to him as “informed.”

Our second point is that in stochastic environments the relevant measure
of being (un)informed is relative. Under µ̃ both players are uninformed, and
so they achieve equal value of 0.5. Under µ̄ the informed player is only
slightly more informed, yet this is enough to tilt the game in his favor.

In summary, the uninformed experts in these three environments have
identical beliefs over realized events and so in any single-expert test they
would necessarily perform equally well. On the other hand, their perfor-
mance in comparative tests vary widely. These differences in performance
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in a comparative test stem from how much they know relative to their op-
ponents. This supports our view that any identifiable notion of truth is
inherently relative: In recognizing a stochastic truth we cannot do better
than to define it as the belief of the most knowledgeable expert.

5 Infinite Horizon

So far we have confined ourselves to the finite horizon setting because it
provides the sharpest contrast between the one- and two-experts cases. Most
of our results in fact extend the infinite horizon in stronger form.

The comparative test can be extended by first defining the process Lt(ht)
exactly as in 1. In defining the test we need to account for the possibility that
Lt might not converge. Thus, the test chooses Expert 0 if limn→∞ Ln(hn) <

1, Expert 1 is chosen if limn→∞ Ln(hn) > 1, and chooses an expert at
random if either limn→∞ Ln(hn) = 1 or this sequence fails to converge.12

The constant K derived in Theorem 1 is independent of the horizon.13

In the infinite horizon case we obtain the sharper result that either an
informed expert is picked, or the two experts asymptotically make identical
forecasts:

Theorem 5 For any distribution P and mixed forecasting strategies ϕ0, ϕ1

with at least one informed expert, with P -probability 1 either

(a) T picks an informed expert; or

(b) limt→∞ |f t
0(h

t−1)− f t
1(h

t−1)| = 0.

Proof: Assume without loss of generality that Expert 0 is informed, and
fix arbitrary P and f1. Write εn ≡ 1

2n and repeatedly apply Theorem 1 to
obtain a sequence of integers {Kn} such that each event

An ≡
{

h : lim
t→∞

Lt > 1 & #{t : |f t
0(h

t−1)− f t
1(h

t−1)| > εn} > Kn

}
12By the martingale convergence theorem the last case occurs with zero probability if

there is an informed expert.
13As it is in Fudenberg and Levine (1992) active supermartingale result.
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has probability less than εn.14 , 15 Since
∑

n P (An) < ∞, by the Borel-
Cantelli Lemma we have:

P{h ∈ An i.o.} = 0.

Thus, with P -probability 1 along each path h, either Expert 0 wins or
|f t

0(h
t−1)−f t

1(h
t−1)| ≤ εn for all but Kn periods. In the latter case |f t

0(h
t−1)−

f t
1(h

t−1)| → 0.

Theorem 2, by contrast, does not extend to the infinite horizon because
a key ingredient of its proof is the impossibility result for finite-horizon
testing. In the infinite-horizon case there are a number of positive results,
as noted in the introduction. However, Olszewski and Sandroni (2007) prove
an impossibility theorem for all infinite-horizon tests which, like ours, do not
use counterfactuals. This again provides a contrast between the single- and
multiple-expert frameworks.

Our final result shows that Theorem 3 extends to the infinite horizon in
a sharper form. The Bayesian game in Section 4.1 extends to the infinite
horizon setting.16 As in Section 4.1 we identify µ ∈ ∆(∆(A∞)) with its one-
step-ahead conditionals, denoted µt(·|αt−1) ∈ ∆(∆(A)). Define M(ε, δ) ⊂
∆(∆(A∞)) to consist of all µ such that for µ-a.e. infinite history h∞, for
infinitely many periods,

max
p∈∆(A)

µt(Bε(p)|αt−1) < 1− δ. (6)

Theorem 6 For every ε, δ > 0 and µ ∈ M(ε, δ) the value of the game to
Expert 1 is zero.

14We note that it is evident from the proof of Theorem 1 that finiteness of the horizon
is is superfluous to that theorem; the argument used in its proof can be cast in an infinite
horizon to draw the conclusion that for every ε there is K such that for every integer n
with P -probability at least 1− ε either

(a) Ln < 1; or

(b) The two experts’ forecasts are ε-close in all but K periods.

15By appealing to Footnote 12, we ignore the possibility that Lt might not converge.
16The details are standard. The sets of infinite realizations A∞ and histories H∞ are

given the product topologies. Probabilities on these spaces are defined on the Borel σ-
algebras on these spaces. Mixed strategies are defined on the Borel σ-algebra generated
by the weak topology on ∆(A∞).
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Proof: The proof closely follows that of Theorem 3 so assume, as in that
proof, that the informed expert reports the truth.

It suffices to show that the payoff of the strategic expert is 0 for each of
his pure strategies f1. For any pair of integers K and L, we have

µ
{

f0 : #{t : |f t
0(h

t−1)− f t
1(h

t−1)| > ε} ≤ K
}

< B(K, L, δ)

where B(K, L, δ) denotes the binomial probability of no more than K suc-
cesses in L trials when the probability of success is δ. Taking L to infinity
(holding K fixed), the RHS goes to 0. Therefore the LHS is equal to zero
for every K.

µ{f0 : |f t
0(h

t−1)− f t
1(h

t−1)| > ε i.o.} = 1

so Case b in Theorem 5 holds with probability 0. The payoff of the strategic
expert is therefore 0.

We now discuss the recent interesting and independent work of Feinberg
and Stewart (2006). Feinberg and Stewart study an infinite horizon model
of testing multiple experts using a cross-calibration test. Although the mo-
tivation is similar, the results are quite distinct. The first obvious difference
is that our tests are motivated by very different considerations (reputation
vs. calibration) and thus work quite differently. Second, the finite-horizon
setting we work with has some advantages, including its relevance to appli-
cations where the test is used as basis for a decision to be made at a given
point in time. Also, the finite-horizon setting is conceptually clearer since
the impossibility result of Sandroni (2003) holds without any qualifications,
unmarred by technical issues arising in the infinite horizon case.17 Third, in
Theorem 1 of their paper they show that two uninformed strategic experts
cannot simultaneously pass the test (except on a category 1 set of proba-
bility measures). Our analysis says little about the case of two uninformed
strategic experts. Finally, the conclusion of our Theorem 3 is in terms of
the value in an incomplete-information constant-sum game, and has a simple
probabilistic interpretation. Feinberg and Stewart (2006) show that in the

17These issues are especially delicate since discounting does not seem to be meaningful
in the testing setting. Undiscounted infinite horizon problems are problematic because of
the loss in the compactness of the strategy spaces.
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presence of an informed expert their test is non-manipulable, in the sense
that for every strategy of the uninformed expert there is a true distribution
for which he fails with probability 1. They show in addition is that for every
such strategy this expert will fail for “almost all” true distributions, where
“almost all” is in the sense of all but category one set of distributions.

6 Discussion

For expositional clarity, we shall refer to the forecaster’s pure strategies as
measures Q ∈ ∆(An), so his set of mixed strategies is ∆(∆(An)), exactly
the same as Nature’s.

6.1 Key intuition underlying impossibility results

We begin with an informal review of the typical minimax argument used to
prove impossibility. Our prototype is Sandroni (2003)’s disarmingly elegant
argument, which we informally outline.

In the single-expert setting a test is a function of the form:

Tn
s : An ×∆(An) → {0, 1}

with the interpretation that the test decides whether or not to pass the
expert based on the sequence of outcomes an and the expert’s forecast Q ∈
∆(An). A strategic expert’s payoff is the expected probability of passing
the test:

zs(P,ϕ) =
∫

An

∫
∆(An)

Tn
s (an, Q) dϕ(Q) dP (an).

Here, expectation is taken with respect to the expert’s randomization ϕ over
forecasts and Nature’s randomization over the sequence of outcomes an.

An impossibility result asserts that the expert has a strategy ϕ that
guarantees him a high payoff regardless of what Nature does. Think of the
forecaster as playing a constant-sum game against Nature, in which case the
Minimax Theorem asserts:

max
ϕ∈∆(∆(An))

min
P∈∆(An)

zs(P,ϕ) = min
P∈∆(An)

max
ϕ∈∆(∆(An))

zs(P,ϕ). (7)
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The impossibility theorem boils down to putting a lower bound on maxmin
value in the above expression.

This is where the crucial assumption that a test must pass the truth
comes into play. Formally, a test Tn

s passes the truth with probability 1 − ε

if:
zs(P, P ) ≡ P{Tn

s (an, P ) = 1} > 1− ε. (8)

This condition ensures that the RHS of Eq. 7 is close to 1: if the expert knew
that Nature has chosen P , then he has an obvious best response, namely to
report P , guaranteeing himself a payoff of 1−ε. This delivers the conclusion
that it is impossible to design a test that a strategic expert cannot pass with
high probability.

To summarize, the impossibility theorem consists of two key ingredients:

• The Minimax Theorem;

• The assumption that the test must pass the truth.

We examine these in turn.

6.2 Nature’s Strategies and the Minimax Theorem

In a game between an expert and Nature, mixed strategies µ, ϕ ∈ ∆(∆(An))
are two stage lotteries. Let Pµ, Qϕ ∈ ∆(An) denote the corresponding prob-
ability measures obtained from µ and ϕ through the usual reduction of
compound lotteries.

In the single-expert setting one may write the conclusion of the Minimax
theorem as:

max
ϕ∈∆(∆(An))

min
µ∈∆(∆(An))

zs(µ, ϕ) = min
µ∈∆(∆(An))

max
ϕ∈∆(∆(An))

zs(µ, ϕ). (9)

But Nature’s randomization in this case is completely superfluous. As far
as the payoffs are concerned, whether Nature uses a mixed strategy µ or its
equivalent pure strategy reduction Pµ makes no difference:

zs(µ, ϕ) = zs(Pµ, ϕ), ∀µ, ϕ ∈ ∆(∆(An)). (10)

This is because µ and Pµ induce identical distributions on the set of outcomes
An. As far as realized outcomes are concerned, µ and Pµ are observationally
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indistinguishable. For example, an outside observer (in particular, the test)
can never distinguish between whether Nature is playing a 50/50 lottery on
two measures P1 or P2 or putting unit mass on the measure Pµ = P1+P2

2 .
By contrast, in general, an expert’s mixed strategy ν is not reducible in

the same manner: choosing between the two forecasts Q1 or Q2 with equal
probability is not payoff equivalent to the forecast Q = Q1+Q2

2 .
The crucial consequence of this asymmetry between Nature’s and the

expert’s randomization is that the values appearing in Eq. 7 and 9 coincide:

min
µ∈∆(∆(An))

max
ϕ∈∆(∆(An))

zs(µ, ϕ) = min
P∈∆(An)

max
ϕ∈∆(∆(An))

zs(P,ϕ).

This effectively impoverishes Nature’s strategy sets, making it possible for
a strategic expert to win.

Our results on comparative testing may be understood as a consequence
of the restoration of ∆(∆(An)) as Nature’s strategy space. To facilitate
comparison with the single-expert literature, think of a constant-sum game
where Nature uses a mixed strategy µ and informs Expert 0 of its random
choice P ∈ ∆(An). Unless µ is degenerate, Nature’s use of a mixed strategy
µ is strategically distinct from Pµ, in the sense that Eq. 10 no longer holds.
To win, the the strategic expert has to guess Nature’s selection of a pure
strategy. What changed relative to the single-expert model is that the pres-
ence of the informed expert’s forecasts breaks the observational equivalence
between µ and Pµ.

We should emphasize that the issue is not that Nature does not have
the opportunity to randomize, but whether randomization is meaningful in
terms of payoffs (Eq. 10). When randomization is superfluous, as in Eq. 7,
the expert is “a step ahead,” giving him the advantage against Nature.

These observations provide a systematic way to understand why some
structural assumptions are critical for the impossibility results. For example,
why are they inconsistent with repeated sampling, so commonly assumed in
statistical inference? Consider the variant of the single-expert model where
the only departure is that we now provide the test with repeated samples
generated independently by the same unknown distribution µ. With many
such samples, one can find a test such that a strategic expert cannot igno-
rantly pass. The reason here is that Nature’s strategy space is no longer
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reducible to ∆(An): a µ that picks either P1 or P2 with equal probability
generates observations according to either P1 or P2, and this is observation-
ally distinguishable from observations generated by Pµ.

6.3 Passing the Truth and the Value of Information

A striking aspect of the impossibility results is the weakness of its assump-
tions. Aside from structural assumptions, the only requirement is that an
expert who knows the true distribution should pass with probability 1 − ε.
This seemingly weak and compelling requirement is more subtle and pow-
erful than it might initially appear.

To appreciate its power, think of the hide-and-seek game where Nature
“hides” the true probability law P somewhere in the convex set ∆(An);
the expert’s task is to find the hidden P . With many (in fact, infinite)
locations for hiding, the hider should have the advantage in such game. Yet
the impossibility results say that the seeker (the strategic expert) has the
upper hand. How can that be?

The discussion in the last subsection explains this puzzle: A randomized
hiding location µ by Nature is equivalent to it choosing the deterministic
expected hiding location Pµ. The expert, on the other hand, can randomize
his search, negating the hider’s advantage.

Where does that leave us with the assumption that a test must pass the
truth? There is clearly no ambiguity in the meaning of a deterministic truth.
The meaning of stochastic truth, as the quote from Keynes suggests, is much
less obvious. A typical distribution P on outcomes can have infinitely many
two-stage lottery representations µ (with Pµ = P ). Different representations
correspond to meaningful and distinct information structures. But these
different information structures are relevant only to the extent that there is
an observer who is at least partially informed of what the truth is.

7 Concluding Remarks: Isolated vs. Comparative
Testing

Impossibility results provide invaluable insights by uncovering the subtle
consequences of their assumptions. In this sense, Sandroni (2003)’s theorem
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revealed how innocuous-looking properties of the testing environment make
it impossible to test probabilistic theories. That any test can be passed by
a strategic expert is a profoundly disturbing message to the countless areas
of human activity where testing an expert’s knowledge is vital.

In this paper we construct tests with good properties by departing from
the assumption that forecasts are tested in isolation. We also use the model
of comparative testing to shed light on what makes the impossibility result
possible and, thus, what it takes to avoid it.

How are experts and their theories tested in practice? We are unaware
of any comprehensive study, but it is not hard to identify regularities in spe-
cific contexts. The human activity where testing theories is handled with
the greatest care and rigor is, arguably, scientific knowledge.18 There are
numerous and well-known examples where theories are judged in terms of
their performance relative to other theories rather than in isolation. Some
of the greatest scientific theories were, or continue to be, maintained despite
a large body of contradicting evidence. A well-known example is Newtonian
gravitational theory which was upheld for decades despite various empirical
anomalies—not to mention its implicit reliance on “action at a distance”
in the transmission of gravitational force. This theory was eventually re-
placed, but only as a consequence of a comparison with a better theory,
general relativity. Perhaps less known to the reader is the steady accumula-
tion of empirical findings inconsistent with general relativity—as well as its
fundamental incompatibility with other theories in physics. Yet this theory
continues to be maintained because no other theory does better.19 Eco-
nomics is full of similar examples. Expected utility theory continue to be
the dominant theory in economic models despite the overwhelming evidence
against it. The reason, we suspect, is the lack of a convincing alternative.

The classical, frequentist, view attaches probabilities only to events that
are subject to repeated identical trials. In the context of testing experts,

18The impossibility results seem to undermine the central methodological principle of
falsifiability as a criterion for judging whether a theory is scientific or not. The impossi-
bility results imply that given any rule of evaluating scientific theories, a strategic experts
can produce a falsifiable theory Q that is very unlikely to be rejected by that rule, regard-
less of what the truth is. Harman and Kulkarni (2007) provide a different perspective and
discuss the limitations of simplistic popperian falsifiability when theories are probabilistic.

19For details on these examples, see Darling (2006).
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such repetition is not possible, since probability laws may change arbitrarily
every period. The impossibility results can be seen as a confirmation of the
classical view. If there is no effective test for the truth, perhaps the concept
of “true” probabilities is not worthwhile.

To what extent does our comparative test recover the concept of truth?
Using an extension of our test to compare multiple experts, we can say that
if anyone knows the truth, our chosen expert does. If this is the best we can
do, perhaps the appropriate interpretation is that for all practical purposes,
the truth is always relative. We cannot say whether or not a theory is correct
in an absolute sense, only that it is better than the others.

In practice, comparative testing is common and, arguably, a more preva-
lent method of testing theories. Weather forecasters, stock analysts, and
macroeconomists can be, and often are, judged relative to each other, not
according to some absolute pass/fail test. Our results show that a very
simple reputation-type comparative test provides both normatively and de-
scriptively appealing method of testing experts.
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