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Abstract

We study computational aspects of moral-hazard problems. In particular, we con-
sider deterministic contracts as well as contracts with action and/or compensation
lotteries, and formulate each case as a mathematical program with equilibrium con-
straints. We investigate and compare solution properties of the MPEC approach to
that of the linear programming (LP) approach with lotteries. We propose a hybrid
procedure that combines the best features of both. The hybrid procedure obtains a so-
lution that is, if not global, at least as good as an LP solution. It also preserves the fast
local convergence property by applying an SQP algorithm to MPECs. The numerical
results on an example show that the hybrid procedure outperforms the LP approach in
both computational time and solution quality in terms of the optimal objective value.

1 Introduction

We study mathematical programming approaches to solve moral-hazard problems. More
specifically, we formulate moral-hazard problems with finitely many action choices, including
the basic deterministic models and models with lotteries, as mathematical programs with
equilibrium constraints. One advantage of using an MPEC formulation is that the size of
resulting program is often orders of magnitude smaller than the linear programs derived from
the LP lotteries approach [17, 18]. This feature makes the MPEC approach an appealing
alternative when solving a large-scale linear program is computationally infeasible because
of limitations on computer memory or computing time.

The moral-hazard model studies the relationship between a principal (leader) and an
agent (follower) in situations in which the principal can neither observe nor verify an agent’s
action. The model is formulated as a bilevel program, in which the principal’s upper-level
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decision takes the agent’s best response to the principal’s decision into account. Bilevel pro-
grams are generally difficult mathematical problems, and much research in the economics
literature has been devoted to analyzing and characterizing solutions of the moral-hazard
model (see Grossman and Hart [6] and the references therein). When the agent’s set of ac-
tions is a continuum, an intuitive approach to simplifying the model is to assume the agent’s
optimal action lies in the interior of the action set. One then can treat the agent’s prob-
lem as an unconstrained maximization problem and replace it by the first-order optimality
conditions. This is called the first-order approach in the economics literature. However,
Mirrlees [11, 12] showed that the first-order approach may be invalid because the lower-level
agent’s problem is not necessarily a concave maximization program, and that the optimal
solution may fail to be unique and interior. Consequently, a sequence of papers [19, 7, §]
has developed conditions under which the first-order approach is valid. Unfortunately, these
conditions are often more restrictive than is desirable.

In general, if the lower-level problem in a bilevel program is a convex minimization (or
concave maximization) problem, one can replace the lower-level problem by the first-order
optimality conditions, which are both necessary and sufficient, and reformulate the original
bilevel problem as an MPEC. This idea is similar to the first-order approach to the moral-
hazard problem with one notable difference: MPEC formulations include complementarity
constraints. The first-order approach assumes that the solution to the agent’s problem lies
in the interior of the action set, and hence, one can treat the agent’s problem as an uncon-
strained maximization problem. This assumption may also avoid issues associated with the
failure of the constraint qualification at a solution. General bilevel programs do not make an
interior solution assumption. As a result, the complementarity conditions associated with
the Karush-Kuhn-Tucker multipliers for inequality constraints would appear in the first-
order optimality conditions for the lower-level program. MPECs also arise in many appli-
cations in engineering (e.g., transportation, contact problems, mechanical structure design)
and economics (Stackelberg games, optimal taxation problems). One well known theoreti-
cal difficulty with MPECs is that the standard constraint qualifications, such as the linear
independence constraint qualification and the Mangasarian-Fromovitz constraint qualifica-
tion, fail at every feasible point. A considerable amount of literature is devoted to refining
constraint qualifications and stationarity conditions for MPECs; see Scheel and Scholtes [21]
and the references therein. We also refer to the two-volume monograph by Facchinei and
Pang [2] for theory and applications of equilibrium problems and to the monographs by Luo
et al. [10] and Outrata et al. [15] for more details on MPEC theory and applications.

The failure of the constraint qualification conditions means that the set of Lagrange
multipliers is unbounded and that conventional numerical optimization software may fail to
converge to a solution. Economists have avoided these numerical problems by reformulating
the moral-hazard problem as a linear program involving lotteries over a finite set of outcomes.
See Townsend [23, 24] and Prescott [17, 18]. While this approach avoids the constraint
qualification problems, it does so by restricting aspects of the contract, such as consumption,
to a finite set of possible choices even though a continuous choice formulation would be
economically more natural.



The purpose of this chapter is twofold: (1) to introduce to the economics community the
MPEC approach, or more generally, advanced equilibrium programming approaches, to the
moral-hazard problem; (2) to present an interesting and important class of incentive prob-
lems in economics to the mathematical programming community. Many incentive problems,
such as contract design, optimal taxation and regulation, and multiproduct pricing, can be
naturally formulated as an MPEC or an equilibrium problem with equilibrium constraints
(EPEC). This greatly extends the applications of equilibrium programming to one of the
most active research topics in economics in past three decades. The need for a global solu-
tion for these economical problems provides a motivation for the optimization community
to develop efficient global optimization algorithms for MPECs and EPECs.

The remainder of this chapter is organized as follows. In the next section, we describe
the basic moral-hazard model and formulate it as a mixed-integer nonlinear program and
as an MPEC. In Section 3, we consider moral-hazard problems with action lotteries, with
compensation lotteries, and with a combination of both. We derive MPEC formulations for
each of these cases. We also compare the properties of the MPEC approach and the LP
lottery approach. In Section 4, we develop a hybrid approach that preserves the desired
global solution property from the LP lottery approach and the fast local convergence of the
MPEC approach. The numerical efficiency of the hybrid approach in both computational
speed and robustness of the solution is illustrated in an example in Section 5.

2 The Basic Moral-Hazard Model

2.1 The deterministic contract

We consider a moral-hazard model in which the agent chooses an action from a finite set
A ={ay,...,ap}. The outcome can be one of N alternatives. Let Q = {q,...,qn} denote
the outcome space, where the outcomes are dollar returns to the principal ordered from
smallest to largest.

The principal can only observe the outcome, not the agent’s action. However, the
stochastic relationship between actions and outcomes, which is often called a production
technology, is common knowledge to both the principal and the agent. Usually, the produc-
tion technology is exogenously described by the probability distribution function, p(q|a),
which presents the probability of outcome ¢ € O occurring given that action a is taken. We
assume p(q|a) > 0 for all ¢ € Q and a € A; this is called the full-support assumption.

Since the agent’s action is not observable to the principal, the payment to the agent is
only based on the outcome observed by the principal. Let C C R be the set of all possible
compensations.

Definition 1. A compensation schedule ¢ = (c(q1), ..., clqy)) € RY is an agreement between
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the principal and the agent such that ¢(q) € C is the payoff to the agent from the principal
if outcome ¢ € Q is observed.

The agent’s utility u(z, a) is a function of the payment = € R received from the principal
and of his action a € A. The principal’s utility w(q — z) is a function over net income q — z
for g € Q. We let W (¢, a) and U(c,a) denote the ezpected utility to the principal and agent,
respectively, of a compensation schedule ¢ € R when the agent chooses action a € A, i.e.,

W(c,a) = Y plgla)w(q—clq)),
- (1)
Ue,a) = > plgla)ul(c(q),a).

qeQ

Definition 2. A deterministic contract (proposed by the principal) consists of a recom-
mended action a € A to the agent and a compensation schedule ¢ € RY.

The contract has to satisfy two conditions to be accepted by the agent. The first condition
is the participation constraint. It states that the contract must give the agent an expected
utility no less than a required utility level U*:

Ul(c,a) > U™ (2)

The value U* represents the highest utility the agent can receive from other activities if he
does not sign the contract.

Second, the contract must be incentive compatible to the agent; it has to provide in-
centives for the agent not to deviate from the recommended action. In particular, given
the compensation schedule ¢, the recommended action a must be optimal from the agent’s
perspective by maximizing the agent’s expected utility function. The incentive compatibility
constraint is given as follows:

a € argmax{U(c,a): a € A}. (3)

For a given U*, a feasible contract satisfies the participation constraint (2) and the in-
centive compatibility constraint (3). The objective of the principal is to find an optimal
deterministic contract, a feasible contract that maximizes his expected utility. A mathemat-
ical program for finding an optimal deterministic contract (¢*,a*) is

maiiin)lize Wie,a)

subject to U(c,a) > U™, (4)
a € argmax{U(c,a): a € A}.

Since there are only finitely many actions in A, the incentive compatibility constraint
(3) can be presented as the following set of inequalities:

U(c,a) > Uleya;), fori=1,..., M. (5)
4



These constraints ensure that the agent’s expected utility obtained from choosing the rec-
ommendation action is no worse than that from choosing other actions. Replacing (3) by the
set of inequalities (5), we have an equivalent formulation of the optimal contract problem:

maximize W(c,a)

(c,a)
subject to U(c,a) > U™,
Uc,a) > Ulc,ay), fori=1,..., M,
aEA:{al,...,aM}.

(6)

2.2 A mixed-integer NLP formulation

The optimal contract problem (6) can be formulated as a mixed-integer nonlinear program.
Associated with each action a; € A, we introduce a binary variable y; € {0,1}. Let y =
(y1,...,yn) € R™ and let ey denote the vector of all ones in RM. The mixed-integer
nonlinear programming formulation for the optimal contract problem (6) is

M
maximize W (c, a;y;
() ( ; Y )

M
subject to U(C,Zaiyi) >U”,
i=1
> @
U(Cvza'iyi) > U(Caa'j)v \V/] = ]-7"'7M7

=1
ey =1,
vy €{0,1} Vi=1,..., M.

The above problem has N nonlinear variables, M binary variables, one linear constraint
and (M + 1) nonlinear constraints. To solve a mixed-integer nonlinear program, one can
use MINLP [3], BARON [20] or other solvers developed for this class of programs. For (7),
since the agent will choose one and only one action, the number of possible combinations
on the binary vector y is only M. One then can solve (7) by solving M nonlinear programs
with y; = 1 and the other y; = 0 in the i-th nonlinear program, as Grossman and Hart
suggested in [6] for the case where the principal is risk averse. They further point out
that each nonlinear program can be transformed into an equivalent convex program if the
agent’s utility function u(z,a) can be written as G(a) + K(a)V(x), where (1) V is a real-
valued, strictly increasing, concave function defined on some open interval Z = (I, 1) C R;
(2) lim,; V(z) = —o0; (3) G, K are real-valued functions defined on A and K is strictly
positive; (4) u(z,a) > u(z,a) = u(z,a) > u(z,a), for all a, a € A, and x, & € Z. The above
assumption implies that the agent’s preferences over income lotteries are independent of his
action.



2.3 An MPEC formulation

In general, a mixed-integer nonlinear program is a difficult optimization problem. Below,
by considering a mixed-strategy reformulation of the incentive compatibility constraints for
the agent, we can reformulate the optimal contract problem (6) as a mathematical program
with equilibrium constraints (MPEC); see [10].

For i« = 1,..., M, let §; denote the probability that the agent will choose action a;.
Then, given the compensation schedule ¢, the agent chooses a mixed strategy profile §* =
(67,...,0%) € RM such that

M
§" € argmax {Z SuU(c,a) 1 ey, 6=1,6 > 0} : (8)
k=1

Observe that the agent’s mixed-strategy problem (8) is a linear program, and hence, its
optimality conditions are necessary and sufficient.

The following lemma states the relationship between the optimal pure strategy a; and
the optimal mixed strategy 6*. To ease the notation, we define

Ule) = (U(c,a1),...,Ulc,an)) € RM, -
W) = (W(c,a1),...,W(e,an)) € RM.

Lemma 3. Given a compensation schedule ¢ € RY, the agent’s action a; € A is optimal for
problem (8) iff there exists an optimal mized strategqy profile 6* for problem (8) such that

o7 >0,
M
> iU ar) =U(e ap),
k=1

eTor =1, & >0.

Proof. 1f a; is an optimal action of (3), then let 6* = ¢;, the i-th column of the identity matrix
of order M. It is easy to verify that all the conditions for §* are satisfied. Conversely, if a; is
not an optimal solution of (3), then there exists an action a; such that U(¢, a;) > U(¢, a;).
Let & = e;. Then 6TU(c) = U(¢,a;) > U(¢,a;) = 6*"U(c). We have a contradiction. [

An observation following from Lemma 3 is stated below.

Lemma 4. Given a compensation schedule c € RY, a mized strategy profile & is optimal for
the linear program (8) iff

0<0L(6"U(c)) enr —Ulc) >0, er0 = 1. (10)
6



Proof. This follows from the optimality conditions and the strong duality theorem for the
LP (8). |

Substituting the incentive compatibility constraint (5) by the system (10) and replacing
W(c,a) and U(c,a) by 6TW(c) and 67U (c), respectively, we derive an MPEC formulation
of the principal’s problem (6):

maidglize §TW ()
subjéct to §TU(c) > U™,
erd =1,

0<8L (0%U(c)) ems — Ulc) > 0.

(11)

To illustrate the failure of constraint qualification at any feasible point of an MPEC,
we consider the feasible region F; = {(x,y) € R*|z > 0,y > 0, zy = 0}. At the point
(z,y) = (0,2), the first constraint = > 0 and the third constraint zy = 0 are binding. The
gradients of the binding constraints at (z,y) are (1,0) and (2,0), which are dependent. It is
easy to verify that the gradient vectors of the binding constraints are indeed dependent at
other feasible points.

0 T
Figure 1: The feasible region F; = {(z,y) |z >0, y > 0, xzy = 0}.

The following theorem states the relationship between the optimal solutions for the
principal-agent problems (6) and the corresponding MPEC formulation (11).

Theorem 5. If (¢*,0%) is an optimal solution for the MPEC (11), then (c*,a}), where
i € {j : 07 > 0}, is an optimal solution for the problem (6). Conversely, if (c*,a;) is an
optimal solution for the problem (6), then (c*,e;) is an optimal solution for the MPEC (11).

Proof. The statement follows directly from Lemma 4. |

The MPEC (11) has (N + M) variables, 1 linear constraint, 1 nonlinear constraint, and
M complementarity constraints. Hence, the size of the problem grows linearly in the number
of the outcomes and actions. As we will see in Section 4, this feature is the main advantage
of using the MPEC approach rather than the LP lotteries approach.
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3 Moral-Hazard Problems with Lotteries

In this section, we study moral-hazard problems with lotteries. In particular, we consider
action lotteries, compensation lotteries, and a combination of both. For each case, we first
give definitions for the associated lotteries and then derive the nonlinear programming or
MPEC formulation.

3.1 The contract with action lotteries

Definition 6. A contract with action lotteries is a probability distribution over actions,
7(a), and a compensation schedule c(a) = (c¢(q1,a),...,c(qy,a)) € RN for all a € A. The
compensation schedule ¢(a) is an agreement between the principal and the agent such that
c(q,a) € C is the payoff to the agent from the principal if outcome ¢ € Q is observed and
the action a € A is recommended by the principal.

In the definition of a contract with action lotteries, the compensation schedule c(a) is
contingent on both the outcome and the agent’s action. Given this definition, one might raise
the following question: if the principal can only observe the outcome, not the agent’s action,
is it reasonable to have the compensation schedule ¢(a) contingent on the action chosen by
the agent? After all, the principal does not know which action is implemented by the agent.
One economic justification is as follows. Suppose that the principal and the agent sign a total
of M contracts, each with different recommended action a € A and compensation schedule
c(a) as a function of the recommended action, a. Then, the principal and the agent would go
to an authority or a third party to conduct a lottery with probability distribution function
m(a) on which contract would be implemented on that day. If the i-th contract is drawn
from the lottery, then the third party would inform both the principal and the agent that
the recommended action for that day is a; with the compensation schedule ¢(a;).

Arnott and Stiglitz [1] use ez ante randomization for action lotteries. This terminology
refers to the situation that a random contract occurs before the recommended action is
chosen. They demonstrate that the action lotteries will result in a welfare improvement if
the principal’s expected utility is nonconcave in the agent’s expected utility. However, it is
not clear what sufficient conditions would be needed for the statement in the assumption to
be true.

3.2 An NLP formulation with star-shaped feasible region

When the principal proposes a contract with action lotteries, the contract has to satisfy
the participation constraint and the incentive compatibility constraints. In particular, for
a given contract (m(a),c(a))aca, the participation constraint requires the agent’s expected
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utility to be at least U™:

> " 7(a)U(c(a),a) > U*, (12)

acA

For any recommended action a with 7(a) > 0, it has to be incentive compatible with
respect to the corresponding compensation schedule c(a) € RY. Hence, the incentive com-
patibility constraints are

Vae{a:n(a) >0}: a=argmax{U(c(a),a): a € A}, (13)
or equivalently,
if m(a) > 0, then U(c(a),a) > Ul(c(a),a;), fori=1,..., M. (14)

However, we do not know in advance whether 7(a) will be strictly positive at an optimal
solution. One way to overcome this difficulty is to reformulate the solution-dependent con-
straints (14) as:

Vae A: w(a)U(c(a),a) > m(a)U(c(a),a;), fori=1,..., M, (15)
or in a compact presentation,
m(a) (U(c(a),a) — Ule(a),a)) >0, V(a,a(#a)) € Ax A. (16)

Finally, since 7(+) is a probability distribution function, we need

Z m(a) =1,

acA (17)
m(a) >0, VaeA

The principal chooses a contract with action lotteries that satisfies participation con-
straint (12), incentive compatibility constraints (16), and the probability measure con-
straint (17) to maximize his expected utility. An optimal contract with action lotteries
(7m*(a), c*(a))qen is then a solution to the following nonlinear program:

maximize Y w(a)W(c(a), a)

acA
subject to Zw(a)U(c(a),a) > U™,
acA
S w(a) =1, (18)
acA

V(a,a(# a)) € Ax A: w(a)(U(c(a),a) —U(c(a),a)) >0,

m(a) >0, VacA

The nonlinear program (18) has (N * M + M) variables and (M * (M — 1) + 2) constraints.
In addition, its feasible region is highly nonconvex because of the last two sets of constraints
in (18). As shown in Figure 2, the feasible region F» = {(z,y) |zy > 0, x > 0} is the union
of the first quadrant and the y-axis. Furthermore, the standard nonlinear programming
constraint qualification fails to hold at every point on the y-axis.
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Figure 2: The feasible region Fy = {(z,y)|zy > 0, x > 0}.

3.3 MPEC formulations

Below, we introduce an MPEC formulation for the star-shaped problem (18). We first show
that constraints of a star-shaped set 21 = {z € R"|gi(2) > 0, gi(2) hi(2) > 0,i=1,...,m}
can be rewritten as complementarity constraints if we introduce additional variables.

Proposition 7. A point z is in 21 = {z € R"|gi(z) > 0, gi(2) hi(z) > 0,i=1,....,m} iff
there exists an s such that (z,s) is in Zo = {(z,s) € R"™™ |0 < g(z) L s >0, h(z) > —s}.

Proof. Suppose that z is in Z;. If g;(z) > 0, choose s; = 0; if g;(z) = 0, choose s; = —h;(z).
Then (z,s) is in Z5. Conversely, if (z,s) is in 25, then g;(2)h;(2) > gi(2)(—s;) = 0 for all
1 =1,...m. Hence, the point z is in Z;. [ |

Following Proposition 7, we introduce a variable s(a,a) for each pair (a,a) € A x A
for the incentive compatibility constraints in (18). We then obtain the following MPEC
formulation with variables (7(a), c(a), s(a,@))(,aecaxa for the optimal contract with action
lottery problem:

maximize Y m(a)W(c(a),a)

acA
subject to ZW(Q)U(C((I),&) >U*,
acA
Zﬁ(a) =1, (19)
acA

V(a,a(#a)) e Ax A: Ulc(a),a) —Ul(c(a),a) + s(a,a) > 0,
V(a,a(#a)) e AxA: 0<m(a)L s(a,a)>0.



Allowing the compensation schedules to be dependent on the agent’s action will increase
the principal’s expected utility; see Theorem 8 below. The difference between the optimal

objective value of the NLP (18) (or the MPEC(19)) and that of the MPEC (11) characterizes
the principal’s improved welfare from using an optimal contract with action lotteries.

Theorem 8. The principal prefers an optimal contract with action lotteries to an optimal
determanistic contract. His expected utility from choosing an optimal contract with action
lotteries will be at least as good as that from choosing an optimal deterministic contract.

Proof. This is clear. |

3.4 The contract with compensation lotteries

Definition 9. For any outcome ¢ € Q, a randomized compensation ¢(q) is a random variable
on the set of compensations C with a probability measure F'(-).

Remark If the set of compensations C is a closed interval [c, ¢] € R, then the measure of
¢(q) is a cumulative density function (cdf) F : [¢, ¢] — [0, 1] with F(¢) = 0 and F(¢) = 1.
In addition, F(+) is nondecreasing and right-continuous.

To simplify the analysis, we assume that every randomized compensation ¢(g) has finite
support.

Assumption 10 (Finite support for randomized compensation.). For all ¢ € Q, the ran-
domized compensation ¢(q) has finite support over an unknown set {c1(q),ca(q), ..., cr(q)}
with a known L.

An immediate consequence of Assumption 10 is that we can write ¢(q) = ¢;(¢) with
probability p;(¢) > 0 for alli =1,..., L and ¢ € Q. In addition, we have Zle pi(q) =1 for
all ¢ € Q. Notice that both (c;(¢))2, € RY and (p;(¢))L, € RL are endogenous variables
and will be chosen by the principal.

Definition 11. A compensation lottery is a randomized compensation schedule ¢
= (¢(q1),...,c(qy)) € RN, in which ¢(q) is a randomized compensation satisfying Assump-
tion 10 for all ¢ € Q.

Definition 12. A contract with compensation lotteries consists of a recommended action a
to the agent and a randomized compensation schedule ¢ = (¢(q1), ..., c(qn)) € RY.

Let ¢? = (¢;i(q))E, € RE and p? = (p;(q))L, € RE. Given that the outcome g is observed

by the principal, we let w(c?, p?) denote the principal’s expected utility with respect to a
randomized compensation ¢(q), i.e.,

w(c?,p?) = Ew(q—éq) = Zp@-(q)w(q — ci(q)).
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With a randomized compensation schedule ¢ and a recommended action a, the principal’s
expected utility then becomes

EW(éa) =) plg|a) (Zpi(Q)w(q - Cz‘(Q))) = plgla)w(c’,p). (20)

qeQ qeQ

Similarly, given a recommended action a, we let u(c?, p?, a) denote the agent’s expected
utility with respect to é(q) for the observed outcome g:

u(c?,p?, a) = Eu(é(q),a) = Zpi(Q)u(Cz‘(Q)v a).

The agent’s expected utility with a randomized compensation schedule ¢ and a recommended
action a is

EU(@Ea) =) plg|a) <ZP¢(Q)U(@(Q),&)> = plala)u(c,p’,a). (21)

qeQ qeQ

To further simply to notation, we use cg = (¢?)4eo and pgo = (p?)4eo to denote the
collection of variables ¢? and p?, respectively. We also let W (cg, pg, a) denote the principal’s
expected utility IE W (¢, a) as defined in (20), and similarly, U(cg, pg, a) for IEU(¢, a) as in
(21).

An optimal contract with compensation lotteries (cg, pg, a*) is a solution to the following
problem:
maximize W (cg, po,a)

subject to U(cg, pg,a) > U*,
(22)
Ul(cg,po,a) > Ulcg, po,a;), Vi=1,...,M,

aE.A:{al,...,aM}.

Define u
Wi(cg,po) = (Wl(ca,po,a1),...,W(ca,po,an)) € RY,

U<CQ7pQ) - <U<CQ7PQ7 al)? s 7U(CgﬂpQ7 aM)) S RM

Following the derivation as in Section 2, we can reformulate the program for an optimal
contract with compensation lotteries (22) as a mixed-integer nonlinear program with decision
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variables (co,pgo) and y = (y;)M,:

M
maximize W (cg, po, Z a;y;)
i=1
M
SUbjeCt to U<CQ7PQ7 Zazyz) Z U*u
i=1
o (23)
U<CQaanzaiyi) > U(CQaanaj)a v] = 17"'7Ma
i=1
ey =1,
v €{0,1} Vi=1,..., M,
Similarly, the MPEC formulation with decision variables (cg, pg) and § € RM is
maximize 5T W (cg,po)
subject to  dTU(cg, pg) > U*,
(24)

ey =1,

0<d L (6"U(cg,po)) enr — Ulcg, po) > 0.

Arnott and Stiglitz [1] call the compensation lotteries ex post randomization; this refers
to the situation where the random compensation occurs after the recommended action is
chosen or implemented. They show that if the agent is risk averse and his utility function
is separable, and if the principal is risk neutral, then the compensation lotteries are not
desirable.

3.5 The contract with action and compensation lotteries

Definition 13. A contract with action and compensation lotteries is a probability distribu-
tion over actions, 7(a), and a randomized compensation schedule ¢é(a)
= (é(q1,0a),...,¢(qgn,a)) € RN for every a € A. The randomized compensation schedule
c(a) is an agreement between the principal and the agent such that ¢(q,a) € C is a random-
ized compensation to the agent from the principal if outcome ¢ € Q is observed and the
action a € A is recommended by the principal.

Assumption 14. For every action a € A, the randomized compensation schedule ¢(q,a)
satisfies the finite support assumption (Assumption 10) for all q € Q.

With Assumption 14, the notation ¢?(a), p?(a), co(a), po(a) is analogous to what we have
defined in Section 3.1 and 3.2. Without repeating the same derivation process described
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earlier, we give the star-shaped formulation with variables (7(a),cgo(a),po(a))qeca for the
optimal contract with action and compensation lotteries problem:

maximize Z m(a)W(cgo(a),po(a),a)
aceA
subject to ZW(@)U(CQ(a),pQ(a), a) > U",
acA
S () =1, (25)
acA

V(a,a) € Ax Az m(a) (Ulcg(a), pola), a) — Ulco(a), pola), a)) = 0,

m(a) > 0.

Following the derivation in Section 3.3, an equivalent MPEC formulation is with variables
(W(a), CQ(CL),]?Q(CL), S(CL, a))(a,&)EAX.A:

maximize > w(a)W(cola), pola), a)
acA
subject to ZW(@)U(CQ(a),pQ(a), a)>U",
acA
S w(a) =1, (26)
acA

V(a,a) € Ax A: Ulco(a),pola),a) — Ulcola), po(a), a) > —s(a, a),

V(a,a) e Ax A: 0<m(a)L s(a,a)>0.

3.6 Linear programming approximation

Townsend [23, 24] was among the first to use linear programming techniques to solve static in-
centive constrained problems. Prescott [17, 18] further apply linear programming specifically
to solve moral-hazard problems. A solution obtained by the linear programming approach
is an approximation to a solution to the MPEC (26). Instead of treating cg(a) as unknown
variables, one can construct a grid = with elements £ to approximate the set C of compen-
sations. By introducing probability measures associated with the action lotteries on A and
compensation lotteries on =, one can then approximate a solution to the moral-hazard prob-
lem with lotteries (26) by solving a linear program. More specifically, the principal chooses
probability distributions 7(a), and 7(£| g, a) over the set of actions A, the set of outcomes
@, and the compensation grid Z. One then can reformulate the resulting nonlinear program
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as a linear program with decision variables 7 = (7(§, ¢, a)) ez e .aca

maximize ) Z w(qg—&m(&, q,a)

&q,a
subject to Z (& a)m(&,q,a) > U™,
§aq.a ~
V(e,a) e Ax A: > ul€ a)m(E g a) >Z fap ala) 76 0.0
&g (27)

V(G.a) e Qx A: S w(€d.a) = pldla) Zﬂ(f,q,a),
£ £
> 7€ qa) =1,

§.q,a
(€, q,a) 20 V({,q,a) €Zx Qx A

Note that the above linear program has (|=| « N « M) variables and (M * (N + M — 1) + 2)
constraints. The size of the linear program will grow enormously when one chooses a fine
grid. For example, if there are 50 actions, 40 outputs, and 500 compensations, then the linear
program has one million variables and 4452 constraints. It will become computationally
intractable because of the limitation on computer memory, if not the time required. On
the other hand, a solution of the LP obtained from a coarse grid will not be satisfactory
if an accurate solution is needed. Prescott [18] points out that the constraint matrix of
the linear program (27) has block angular structure. As a consequence, one can apply
Dantzig-Wolfe decomposition to the linear program (27) to reduce the computer memory
and computational time. Recall that the MPEC (11) for the optimal contract problem has
only (N + M) variables and M complementarity constraints with one linear constraint and
one nonlinear constraint. Even with the use of the Dantzig-Wolfe decomposition algorithm
to solve LP (27), choosing the “right” grid is still an issue. With the advances in both theory
and numerical methods for solving MPECs in the last decade, we believe that the MPEC
approach has greater advantages in solving a much smaller problem and in obtaining a more
accurate solution.

The error from discretizing set of compensations C is characterized by the difference
between the optimal objective value of LP (27) and that of MPEC (26).

Theorem 15. The optimal objective value of MPEC (26) is at least as good as that of LP
(27).
Proof. 1t is sufficient to show that given a feasible point of LP (27), one can construct a
feasible point for MPEC (26) with objective value equal to that of the LP (27).
Let m = (7(£, ¢, a))¢ez ye0.ae4 D€ @ given feasible point of LP (27). Let
w(a)= Y w(&qa)

£€eE,qeQ
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For every ¢ € Q and a € A, we define

S(q,a) ={{€EZ[n( q,a) > 0},

La) :=15(q,a)l,
c(a) = (eesa)
pq(a> = (W(&, q, a))&ES(q,a)

It is easy to check that m(a), ¢?(a) and p?(a) is a feasible for MPEC (26). Furthermore, its
objective value is the same as that of 7 for the LP (27). |

4 A Hybrid Approach toward Global Solution

One reason that nonconvex programs are not popular among economists is the issue of the
need for global solutions. While local search algorithms for solving nonconvex programs
have fast convergence properties near a solution, they are designed to find a local solution.
Algorithms for solving MPECs are no exception. One heuristic in practice is to solve the
same problem with several different starting points. It then becomes a trade-off between the
computation time and the quality of the “best” solution found.

Linear programming does not suffer from the global solution issue. However, to obtain
an accurate solution to a moral-hazard problem via the linear programming approach, one
needs to use a very fine compensation grid. This often leads to large-scale linear programs
with millions of variables and tens or hundreds of thousands of constraints, which might
require excessive computer memory or time.

Certainly, there is a need to develop a global optimization method with fast local con-
vergence for MPECs. Below, we propose a hybrid approach combining both MPECs and
linear programming approaches to find a global solution (or at least better than the LP
solution) of an optimal contract problem. The motivation for this hybrid method comes
from the observation that the optimal objective value of the LP approach from a coarse grid
could provide a lower bound on the optimal objective value of the MPEC as well as a good
guess on the final recommended action a*. We can then use this information to exclude
some undesired local minimizers and to provide a good starting point when we solve the
MPEC (11). This heuristic procedure toward a global solution of the MPEC (11) leads to
the following algorithm.
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A hybrid method for the optimal contract problem as MPEC (11)

Step 0: Construct a coarse grid = over the compensation interval.
Step 1: Solve the LP (27) for the given grid =.

(2.1) : Compute p(a) = ZZTF(&(],CL), Vae A;

£€2 qeQ
(22): Compute BE()] = 3 én(6,q,0), Vg€ Q
{eE
(2.3) : Set initial point ¢ = (IE[£(¢)])qeo and 6° = (p(a))sea;

;

Step 2:

[ (2.4) : Solve the MPEC (11) with starting point (%, 4°).

Step 3: Refine the grid and repeat Step 1 and Step 2.

Remark If the starting point from an LP solution is close to the optimal solution of the
MPEC (11), then the sequence of iterates generated by an SQP algorithm converges Q-
quadratically to the optimal solution. See Proposition 2 in Fletcher et al. [4].

One can also develop similar procedures to find global solutions for optimal contract
problems with action and/or compensation lotteries. However, the MPECs for contracts
with lotteries are much more numerically challenging problems than the MPEC (11) for
deterministic contracts.

5 An Example and Numerical Results

To illustrate the use of the mixed-integer nonlinear program (7), the MPEC (11) and the
hybrid approaches, and to understand the effect of discretizing the set of compensations
C, we only consider problems of deterministic contracts without lotteries. We consider a
two-outcome example in Karaivanov [9]. Before starting the computational work, we sum-
marize in Table 1 the problem characteristics of various approaches to computing the optimal
deterministic contracts.
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Table 1: Problem characteristics of various approaches.

] | MINLP (7) | MPEC (11) | LP (27) \
Regular Variables N N+ M |Z] % N« M
Binary Variables M - -
Constraints M +2 2 Mx(N+M-1)+2
Complementarity Const. - M —

Example 1: No Action and Compensation Lotteries

Assume the principal is risk neutral with utility w(q — ¢(q)) = ¢ — ¢(q), and the agent is risk
averse with utility

B Cl—’y (1 _ a)l—d

R

Suppose there are only two possible outcomes, e.g., a coin-flip. If the desirable outcome (high
sale quantities or high production quantities) happens, then the principal receives ¢y = $3;
otherwise, he receives ¢q;, = $1. For simplicity, we assume that the set of actions A consists
of M equally-spaced effort levels within the closed interval [0.01,0.99]. The production
technology for the high outcome is described by p(¢ = gyla) = a® with 0 < o < 1. Note
that since 0 and 1 are excluded from the action set A, the full-support assumption on
production technology is satisfied.

u(c(q), a)

The parameter values for the particular instance we solve are given in Table 2.

Table 2: The value of parameters used in Example 1.
v K 4] Q@ U* M
0.5 1 0.5 0.7 1 10

We solve this problem first as a mixed-integer nonlinear program (7) and then as an
MPEC (11). For the LP lotteries approach, we start with 20 grid points in the compensation
grid (we evenly discretize the compensation set C into 19 segments) and then increase the
size of the compensation grid to 50, 100, 200, . . ., 5000.

We submitted the corresponding AMPL programs to the NEOS server [14]. The mixed-
integer nonlinear programs were solved using the MINLP solver [3] on the computer host
newton.mcs.anl.gov. To obtain fair comparisons between the LP, MPEC, and hybrid
approaches, we chose SNOPT [5] to solve the associated mathematical programs. The AMPL
programs were solved on the computer host tate.iems.northwestern.edu.

Table 3 gives the solutions returned by the MINLP solver to the mixed-integer nonlinear
program (7). We use y = 0 and y = e as starting points. In both cases, the MINLP solver
returns a solution very quickly. However, it is not guaranteed to find a global solution.
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Table 3: Solutions of the MINLP approach.

Starting | Regular Binary | Constraints | Solve Time | Objective
Point | Variables | Variables (in sec.) Value
y=20 2 10 12 0.01 1.864854251
y=en 2 10 12 0.00 1.877265189

For solving the MPEC (11), we try two different starting points to illustrate the possi-
bility of finding only a local solution. The MPEC solutions are given in Table 4 below.

Table 4: Solutions of the MPEC approach with two different starting points.

(22 variables and 10 complementarity constraints)

Starting | Read Time | Solve Time | # of Major | Objective
Point (in sec.) (in sec.) Iterations Value
0=0 0 0.07 45 1.079621424
0 =ep 0 0.18 126 1.421561553

The solutions for the LP lottery approach with different compensation grids are given
in Table 5. Notice that the solve time increases faster than the size of the grid when |Z| is
of order 10° and higher, while the number of major iterations only increases about 3 times
when we increase the grid size 250 times (from |Z| = 20 to |=| = 5000).

Table 5: Solutions of the LP approach with 8 different compensation grids.

# of Read Time | Solve Time # of Objective

|Z| | Variables (in sec.) (in sec.) Tterations Value
20 400 0.01 0.03 31 1.876085819
50 1000 0.02 0.06 46 1.877252488
100 2000 0.04 0.15 53 1.877252488
200 4000 0.08 0.31 62 1.877254211
500 10000 0.21 0.73 68 1.877263962
1000 20000 0.40 2.14 81 1.877262184
2000 40000 0.83 3.53 71 1.877260460
5000 100000 2.19 11.87 101 1.877262793

Finally, for the hybrid approach, we first use the LP solution from a compensation grid
with |Z|] = 20 to construct a starting point for the MPEC (11). As one can see in Table
6, with a good starting point, it takes SNOPT only 0.01 seconds to find a solution to the
example formulated as the MPEC (11). Furthermore, the optimal objective value is higher
than that of the LP solution from a fine compensation grid with |=| = 5000.

19



Table 6: Solutions of the hybrid approach for Example 1.

LP Read Time | Solve Time # of Objective
|=] (in sec.) (in sec.) Iterations Value
| 20 | 001 [ 003 ] 31 | 1.876085819 |
MPEC Read Time | Solve Time | # of Major | Objective
Starting Point (in sec.) (in sec.) Iterations Value
|06 =1,0;6=0] 002 [ 001 ] 13 | 1.877265298 |

6 Conclusions and Future Work

The purpose of this chapter is to introduce the MPEC approach and apply it to moral-
hazard problems. We have presented MPEC formulations for optimal deterministic contract
problems and optimal contract problems with action and/or compensation lotteries. We also
formulated the former problem as a mixed-integer nonlinear program. To obtain a global
solution, we have proposed a hybrid procedure that combines the LP lottery and the MPEC
approaches. In this procedure, the LP solution from a coarse compensation grid provides a
good starting point for the MPEC. We can then apply specialized MPEC algorithms with fast
local convergence rate to obtain a solution. In a numerical example, we have demonstrated
that the hybrid method is more efficient than using only the LP lottery approach, which
requires the solution of a sequence of large-scale linear programs. Although we cannot prove
that the hybrid approach will guarantee to find a global solution, it always finds one better
than the solution from the LP lottery approach. We plan to test the numerical performance
of the hybrid procedure on other examples such as the bank regulation example in [17] and
the two-dimensional action choice example in [18].

One can extend the MPEC approach to single-principal multiple-agent problems without
any difficulty. For multiple-principal multiple-agent models [13], it can be formulated as an
equilibrium problem with equilibrium constraint. We will investigate these two topics in our
future research.

Another important topic we plan to explore is the dynamic moral-hazard problem; see
Phelan and Townsend [16]. In the literature, dynamic programming is applied to solve this
model. Analogous to the hybrid procedure proposed in Section 4, we believe an efficient
method to solve this dynamic model is to combine dynamic programming and nonlinear
programming.
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