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Abstract

A central question in game theory, learning, and other �elds is how a ratio-
nal intelligent agent should behave in a complex environment, given that it cannot
perform unbounded computations. We study strategic aspects of this question by
formulating a simple model of a game with additional costs (computational or oth-
erwise) for each strategy. While a zero-sum game with strategy costs is no longer
zero-sum, we show that its Nash equilibria have an interesting structure and the
game has a new type of �value.� We also show that potential games with strategy
costs remain potential games. Both zero-sum and potential games with strategy
costs maintain a very appealing property: simple learning dynamics converge to
Nash equilibrium.

1 The Approach and Basic Model
How should an intelligent agent play a complicated game like chess, given that it does
not have unlimited time to think? This question re�ects one fundamental aspect of
�bounded rationality,� a term coined by Herbert Simon [2]. However, bounded ratio-
nality has proven to be a slippery concept to formalize (prior work has focused largely
on �nite automata playing simple repeated games such as prisoner's dilemma, e.g.
[3, 4, 5, 6]). This paper focuses on the strategic aspects of decision-making in com-
plex multi-agent environments, i.e., on how a player should choose among strategies of
varying complexity, given that its opponents are making similar decisions. Our model
applies to general strategic games and allows for a variety of complexities that arise in
real-world applications. For this reason, it is applicable to one-shot games, to exten-
sive games, and to repeated games, and it generalizes existing models such as repeated
games played by �nite automata.
Let us motivate with an example of two players preparing to play a computer-

ized chess game for $100K prize. Suppose, for simplicity, the players simultaneously
choose among two options: to use a $10K program A or an advanced program B, which
costs $50K. We refer to the row chooser as white and to the column chooser as black,
with the corresponding advantages re�ected by the win probabilities of white described
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in Table 1a. For example, when both players use program A, white wins 55% of the
time and black wins 45% of the time (we ignore draws). The players naturally want
to choose strategies to maximize their expected net payoffs, i.e., their expected payoff
minus their cost. Each cell in Table 1b contains a pair of payoffs in units of thousands
of dollars; the �rst is white's net expected payoff and the second is black's.

a) A B
A 55% 13%
B 93% 51%

b) A (-10) B (-50)
A (-10) 45, 35 3, 37
B (-50) 43,-3 1,-1

Figure 1: a) Table of �rst-player winning probabilities based on program choices. b)
Table of expected net earnings in thousands of dollars. The unique equilibrium is (A,B)
which strongly favors the second player.

This simple example illustrates how computational costs can dramatically change
the outcome of a constant-sum game. Everything about the game seems to favor white.
Yet due to the (symmetric) costs, at the unique Nash equilibrium (A,B) of Table 1b,
black wins 87% of the time and nets $34K more than white. In fact, it is a dominant
strategy for white to play A and for black to play B. To see this, note that playing B
increases white's probability of winning by 38%, independent of what black chooses.
Since the pot is $100K, this is worth $38K in expectation, but B costs $40K more than
A. On the other hand, black enjoys a 42% increase in probability of winning due to B,
independent of what white does, and hence is willing to pay the extra $40K.
Before formulating the general model, we comment on some important aspects of

the chess example. First, traditional game theory states that chess can be solved in
�only� two rounds of elimination of dominated strategies [11], and the outcome with
optimal play should always be the same: either a win for white or a win for black. This
theoretical prediction is in stark contrast to reality: in grandmaster play, the outcome
is very nondeterministic with the white winning about 4% more often than black. The
game is too large and complex to be solved by brute force.
Second, we have been able to analyze the above chess program selection example

exactly because we formulated as a game with a small number of strategies per player.
We elaborate on the advantages and disadvantages of our simplistic approach in Section
5. Note that our model also applies to the full game of chess, though it is beyond our
means to analyze such a large game.1
Third, in the example above we used monetary software cost to illustrate a type

of strategy cost. But the same analysis could accommodate many other types of costs
that can be measured numerically and subtracted from the payoffs, such as time or
effort involved in the development or execution of a strategy, and other resource costs.
Additional examples in this paper include the number of states in a �nite automaton,
the number of gates in a circuit, and the number of turns on a commuter's route. Our
analysis is limited, however, to cost functions that depend only on the strategy of the
player and not the strategy chosen by its opponent. For example, if our players above

1We also discuss an integer factorization game which has a huge number of strategies, but for which we
can analyze the game under standard cryptographic assumptions.
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were renting computers A or B and paying for the time of actual usage, then the cost
of using A would depend on the choice of computer made by the opponent.
Generalizing the example above, we consider a normal form game with the addition

of strategy costs, a player-dependent cost for playing each strategy. Our main results
regard two important classes of games: constant-sum and potential games. We show
that despite changes due to strategy costs, some important properties are preserved.
First, in the class of two-person constant-sum games the equilibria sets have simple
elegant structures. Second, learning dynamics converge in both classes of games.

2 De�nition of strategy costs
We �rst de�ne an N -person normal-form game G = (N;S; p) consisting of �nite
sets of pure strategies S = (S1; : : : ; SN ) for the N players, and a payoff function
p : S1 � : : : � SN ! RN : Players simultaneously choose strategies si 2 Si after
which player i is rewarded with pi(s1; : : : ; sN ). A randomized or mixed strategy �i
for player i is a probability distribution over its pure strategies Si,

�i 2 �i =
n
x 2 RjSij :

X
xj = 1; xj � 0

o
:

We extend p to�1� : : :��N so that pi(�1; : : : ; �N ) = E[pi(s1; : : : ; sN )] where
each si is drawn from �i, independently. Denote by s�i = (s1; : : : ; si�1; si+1; : : : ; sN )
and similarly for ��i. A best response by player i to ��i is �i 2 �i such that
pi(�i; ��i) = max�0i2�i

pi(�
0
i; ��i). A (mixed strategy) Nash equilibrium of G is

a vector of strategies (�1; : : : ; �N ) 2 �1 � : : : � �N such that each �i is a best
response to ��i.
We now de�ne G�c, the game G with strategy costs c = (c1; : : : ; cN ), where

ci : Si ! R. It is simply anN -person normal-form gameG�c = (N;S; p�c) with the
same sets of pure strategies asG, but with a new payoff function p�c : S1�: : :�SN !
RN where,

p�ci (s1; : : : ; sN ) = pi(s1; : : : ; sN )� ci(si); for i = 1; : : : ; N:

We similarly extend ci to �i in the natural way.

3 Two-person constant-sum games with strategy costs
Recall that a game is constant-sum (k-sum for short) if at every combination of in-
dividual strategies, the players' payoffs sum to some constant k. Two-person k-sum
games have some important properties, not shared by general sum games, which result
in more effective game-theoretic analysis. Since incorporating strategy costs into a k-
sum game destroys the constant-sum property, it is not clear which of the properties
survive.
One property that is violated by the chess example could be called the �advantage

of strength� property. Formally, we say Player 1 is stronger than Player 2 in a square
game if p1(s1; s2) � p2(s2; s1) for all strategies s1; s2. At equilibrium of a k-sum
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game, a stronger player must have a payoff at least as large as its opponent. This is
no longer the case after incorporating strategy costs, as seen in the chess example,
where Player 1 is stronger (even including strategy costs), yet his equilibrium payoff is
smaller than 2's.
The remainder of the section covers properties of k-sum games that are preserved.

The min-max theorem states that every two-person k-sum game has a value v such that
the payoffs to the players are (v; k�v) at any equilibrium. Moreover, each player has a
set of mixed optimal strategies, and the set of equilibria is exactly the cross-product of
these two sets. This condition is often referred to as exchangeability because it states
that if strategy pairs (�1; �2) and (�01; �02) are both equilibria, then so are (�1; �02) and
(�01; �2). Lastly, it is well-known that equilibria in two-person k-sum games can be
learned in repeated play by simple dynamics that are guaranteed to converge [18].
The above properties do not hold for general-sum games. There may be a mul-

tiplicity of equilibria with very different payoffs, and players may face coordination
problems among the multiple equilibria. Unfortunately, there are no known learning
dynamics that ef�ciently converge to Nash equilibrium in general-sum games. In fact,
recent results suggest that even ef�ciently computing one equilibrium in an n�n two-
person general-sum game is computationally intractable in the worst case [10, 9]. We
show that games with strategy costs are more similar to k-sum games, in these senses.

Theorem 1. Let G be a �nite two-person k-sum game and G�c be the game with
strategy costs c = (c1; c2).

1. The equilibria of G�c are exchangeable: the set of mixed-strategy Nash equilib-
ria is a cross product OPT1�OPT2, where the sets OPT1 and OPT2 are called
the optimal strategies for players 1 and 2.

2. Among equilibria, each player's choice of strategy affects only its opponent's
payoff. More precisely, the expected net payoffs at equilibrium (�1; �2) are (v�
c2(�2); k� v� c1(�1)), where v 2 R is a �xed number which we call the value
of the game G�c.

3. The set of net payoffs possible at equilibrium is an axis-parallel rectangle inR2.

The proof of the above theorem is based on the following simple observation. Con-
sider the k-sum game H = (N;S; q) with the following payoffs:

q1(s1; s2) = �q2(s1; s2) = p1(s1; s2)� c1(s1) + c2(s2) = p�c1 (s1; s2) + c2(s2):

That is to say, Player 1 pays its strategy cost to Player 2 and vice versa. It is easy to
verify that,

8�1; �01 2 �1; �2 2 �2 q1(�1; �2)� q1(�01; �2) = p�c1 (�1; �2)� p�c1 (�01; �2) (1)

This means that the relative advantage in switching strategies in gamesG�c andH
are the same. In particular, �1 is a best response to �2 in G�c if and only if it is in H .
A similar equality holds for player 2's payoffs. Note that these conditions imply that
the games G�c and H are strategically equivalent in the sense de�ned by Moulin and
Vial [17].
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Proof of Theorem 1. Since the best responses of G�c and H are the same, the Nash
equilibria of the two games are the same. Since H is a k-sum game, its Nash equilibria
are exchangeable, and thus we have part 1. (This holds for any game that is strategically
equivalent to k-sum.)
Let v be the value of the gameH . The payoffs at any Nash equilibrium (�1; �2) in

H are (v;�v). Since qi(�1; �2)�p�ci (�1; �2) = c�i(��i), we have that p�c(�1; �2) =
(v � c2(�2); k � v � c1(�1)), as required for part 2.
Finally, the optimal mixed strategies OPTi of any k-sum game are convex sets. If

we look at the achievable costs of the mixed strategies in OPTi, by the de�nition of
the cost of a mixed strategy, this will be a convex subset of R, i.e., an interval. By
parts 1 and 2, the set of achievable net payoffs at equilibria of G�c are therefore the
cross-product of intervals.

To illustrate Theorem 1 graphically, let us give a 4� 4 example with costs of 1, 2,
3, and 4, respectively:

2a) A B C D
A 6, 4 5, 5 3, 7 2, 8
B 7, 3 6, 4 4, 6 3, 7
C 7.5, 2.5 6.5, 3.5 4.5, 5.5 3.5, 6.5
D 8.5, 1.5 7, 3 5.5, 4.5 4.5, 5.5

2b) A (-1) B (-2) C (-3) D (-4)
A (-1) 5, 3 4, 3 2, 4 1, 4
B (-2) 5, 2 4, 2 2, 3 1, 3
C (-3) 4.5, 1.5 3.5, 1.5 1.5, 2.5 0.5, 2.5
D (-4) 4.5, 0.5 3, 1 1.5, 1.5 0.5, 1.5

c)

A,AA,B

A,CA,D

B,AB,B

B,CB,D

C,AC,B

C,CC,D

D,A
D,B

D,CD,D

value

PLAYER 1 NET PAYOFF

P
LA

Y
E

R
 2

 N
E

T
 P

A
Y

O
FF Nash Eq.

A,AA,B

A,CA,D

B,AB,B

B,CB,D

C,AC,B

C,CC,D

D,A
D,B

D,CD,D

value

PLAYER 1 NET PAYOFF

P
LA

Y
E

R
 2

 N
E

T
 P

A
Y

O
FF Nash Eq.

In table a) Payoffs in 10-sum game G. b) Expected net earnings in G�c. OPT1 is
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any mixture of A and B, and OPT2 is any mixture of C and D. Each player's choice of
equilibrium strategy affects only the opponent's net payoff. c) A graphical display of
the payoff pairs. The shaded region shows the rectangular set of payoffs achievable at
mixed strategy Nash equilibria.
Example 2 illustrates a situation with multiple optimal strategies. Notice that player

1 is completely indifferent between its optimal choices A and B, and player 2 is com-
pletely indifferent between C and D. Thus the only question is how kind they would
like to be to their opponent. The (A,C) equilibrium is perhaps most natural as it is
yields the highest payoffs for both parties.

3.1 Learning in repeated two-person k-sum games with strategy
costs

Another desirable property of k-sum games is that, in repeated play, natural learning
dynamics converge to the set of Nash equilibria. Before we state the analogous condi-
tions for k-sum games with costs, we brie�y give a few de�nitions. A repeated game
is one in which players chooses a sequence of strategies vectors s1; s2; : : :, where each
st = (st1; : : : ; s

t
N ) is a strategy vector of some �xed stage game G = (N;S; p). Un-

der perfect monitoring at each stage, the players know the actions of all players from
previous stages. As we shall discuss, it is possible to learn to play without perfect
monitoring as well.
Perhaps the most intuitive dynamics are best-response: at each stage, each player

selects a best response to the opponent's previous stage play. Unfortunately, these
naive dynamics fails to converge to equilibrium in very simple examples. The �ctitious
play dynamics prescribe, at stage t, selecting any strategy that is a best response to the
empirical distribution of opponent's play during the �rst t�1 stages. It has been shown
that �ctitious play converges to equilibrium (of the stage gameG) in k-sum games [18].
However, �ctitious play requires perfect monitoring. One can learn to play a two-

person k-sum game with no knowledge of the payoff table or anything about the other
players actions. Using experimentation, the only observations required by each player
are its own payoffs in each period (in addition to the number of available actions). So-
called bandit algorithms [8] must manage the exploration-exploitation tradeoff. The
proof of their convergence follows from the fact that they are no-regret algorithms.
(No-regret algorithms date back to Hannan in the 1950's [13], but his required perfect
monitoring). The regret of a player i at stage T is de�ned to be,

regret of i at T =
1

T
max
si2Si

TX
t=1

�
pi(si; s

t
�i)� pi(sti; st�i)

�
;

that is, how much better in hindsight player i could have done on the �rst T stages
had it used one �xed strategy the whole time (and had the opponents not changed their
strategies). Note that regret can be positive or negative. A no-regret algorithm is one
in which each player's asymptotic regret converges to (�1; 0], i.e., is guaranteed to
approach 0 or less. It is well-known that no-regret condition in two-person k-sum
games implies convergence to equilibrium (see, e.g., [14]). In particular, the pair of
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mixed strategies which are the empirical distributions of play over time approaches the
set of Nash equilibrium of the stage game.
Inverse-polynomial rates of convergence (that are polynomial also in the size of the

game) can be given for such algorithms. Hence no-regret algorithms provide arguably
reasonable ways to play a k-sum game of moderate size. Note that in general-sum
games, no such dynamics are known. Fortunately, the same algorithm that work for
learning in k-sum games seem to work for learning in such games with strategy costs.

Theorem 2. Fictitious play converges to the set of Nash equilibria of the stage game
in a two-person k-sum game with strategy costs, as do no-regret learning dynamics.

Proof. The proof again follows from equation (1) regarding the game H . Fictitious
play dynamics are de�ned only in terms of best response play. Since G�c andH share
the same best responses, �ctitious play dynamics are identical for the two games. Since
they share the same equilibria and �ctitious play converges to equilibria in H , it must
converge in G�c as well.
For no-regret algorithms, equation (1) again implies that for any play sequence, the

regret of each player i with respect to game G�c is the same as its regret with respect
to the game H . Hence, no regret in G�c implies no regret in H . Since no-regret
algorithms converge to the set of equilibria in k-sum games, they converge to the set of
equilibria in H and therefore in G�c as well.

4 Potential games with strategic costs
Let us begin with an example of a potential game, called a congestion games [19].
There is a �xed directed graph with n nodes andm edges. Commuters i = 1; 2; : : : ; N
each decide on a route �i, to take from their home si to their work ti, where si and ti are
nodes in the graph. For each edge, uv, let nuv be the number of commuters whose path
�i contains edge uv. Let fuv : Z ! R be a non-negative monotonically increasing
congestion function. Player i's payoff is �

P
uv2�i fuv(nuv), i.e., the negative sum of

the congestions on the edges in its path.
Consider a congestion game with 50 players with the graph below, where all players

route from s to t, with congestion functions fsu(k) = fvt(k) = k, fut(k) = fsv(k) =
55, and the congestion is some small � > 0 elsewhere. Without complexity costs, all
players will travel from s ! u !(side streets)! v ! t, with a commute time just
over 100. Increasing the complexity cost of turns forces the traf�c to split between the
two highway routes s ! u ! t and s ! v ! t with a decreased commute of 80 for
every player.
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An N -person normal form game G is said to be a potential game [16] if there is
some potential function � : S1 � : : : SN ! R such that changing a single player's
action changes its payoff by the change in the potential function. That is, there exists
a single function �, such that for all players i and all pure strategy vectors s; s0 2
S1 � : : :� SN that differ only in the ith coordinate,

pi(s)� pi(s0) = �(s)� �(s0): (2)

Potential games have appealing learning properties: simple better-reply dynamics
converge to pure-strategy Nash equilibria, as do the more sophisticated �ctitious-play
dynamics described earlier [16]. In our example, this means that if players change
their individual paths so as to sel�shly reduce the sum of congestions on their path, this
will eventually lead to an equilibrium where no one can improve. (This is easy to see
because � keeps increasing.) The absence of similar learning properties for general
games presents a frustrating hole in learning and game theory.
It is clear that the theoretically clean commuting example above misses some re-

alistic considerations. One issue regarding complexity is that most commuters would
not be willing to take a very complicated route just to save a short amount of time.
To model this, we consider potential games with strategy costs. In our example, this
would be a cost associated with every path. For example, suppose the graph repre-
sented streets in a given city. We consider a natural strategy complexity cost associated
with a route �, say �(#turns(�))2, where there is a parameter � 2 R and #turns(�)
is de�ned as the number of times that a commuter has to turn on a route. (To be more
precise, say each edge in the graph is annotated with a street name, and a turn is de�ned
to be a pair of consecutive edges in the graph with different street names.) Hence, a
best response for player i would minimize:

min
� from si to ti

(total congestion of �) + �(#turns(�))2:

The example in Figure 3 is inspired by Braess' paradox, which was used to illus-
trate the surprising property that closing a road can decrease the commute time for
all commuters. In our model, increasing � suf�ciently will cause fewer commuters to
travel on the small streets, and will again decrease the commute time for all.
While adding strategy costs to potential games allows for much more �exibility in

model design, one might worry that appealing properties of potential games, such as
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having pure strategy equilibria and easy learning dynamics, no longer hold. This is not
the case. We show that strategic costs �t easily into the potential game framework:

Theorem 3. For any potential gameG and any cost functions c,G�c is also a potential
game.

Proof. Let � be a potential function for G. It is straightforward to verify that the G�c
admits the following potential function �0:

�0(s1; : : : ; sN ) = �(s1; : : : ; sN )� c1(s1)� : : :� cN (sN ):

5 Additional remarks
Part of the reason that the notion of bounded rationality is so dif�cult to formalize is
that understanding enormous games like chess is a daunting proposition. That is why
we have narrowed it down to choosing among a small number of programs.
A game theorist might begin by examining the complete payoff table of Figure 1a,

which is prohibitively large. Instead of considering only the choices of programs A and
B, each player considers all possible chess strategies. In that sense, our payoff table in
1a would be viewed as a reduction of the �real� normal form game. A computer scien-
tist, on the other hand, may consider it reasonable to begin with the existing strategies
that one has access to. Regardless of how you view the process, it is clear that for prac-
tical purposes players in real life do simplify and analyze �smaller� sets of strategies.
Even if the players consider the option of engineering new chess-playing software, this
can be viewed as a third strategy in the game, with its own cost and expected payoffs.
Again, when considering small number of strategies, like the two programs above,

it may still be dif�cult to assess the expected payoffs that result when (possibly random-
ized) strategies play against each other. An additional assumption made throughout the
paper is that the players share the same assessments about these expected payoffs. Like
other common-knowledge assumptions made in game theory, it would be desirable to
weaken this assumption. In the special families of games studied in this paper, and
perhaps in additional cases, learning algorithms may be employed to reach equilibrium
without knowledge of payoffs.

5.1 Finite automata playing repeated games
There has been a large body of interesting work on repeated games played by �nite
automata (see [15] for a survey). Much of this work is on achieving cooperation in
the classic prisoner's dilemma game (e.g., [3, 4, 5, 6]). Many of these models can be
incorporated into the general model outlined in this paper.
For example, to view the Abreu and Rubinstein model [7] as such, consider the

normal form of an in�nitely repeated game with discounting, but restricted to strategies
that can be described by �nite automata (the payoffs in every cell of the payoff table are
the discounted sums of the in�nite streams of payoffs obtained in the repeated game).
Let the cost of a strategy be an increasing function of the number of states it employs.

9



For Neyman's model [4], consider the normal form of a �nitely repeated game with
a known number of repetitions. You may restrict the strategies in this normal form to
be only ones with a bounded number of states, as required by Neyman, and assign zero
cost to all strategies. Alternatively, you may allow all strategies but assign zero cost
to ones that employ number of states below Neyman's bounds, and an in�nite cost to
strategies that employ a number of states that exceeds Neyman's bounds.
The structure of equilibria proven in Theorem 1 applies to all the above models

when dealing with repeated k-sum games.

6 Future work
There are very interesting questions to answer about bounded rationality in truly large
games that we did not touch upon. For example, consider the following zero-sum
factoring game, which has applications to cryptography. Player 1 chooses an n-bit
number and sends it to Player 2, who attempts to �nd its prime factorization. If Player
2 is correct, he is paid 1 by Player 1, otherwise he pays 1 to Player 1. A pure strategy for
Player 1 would be outputting a single n-bit number. A pure strategy for Player 2 would
be any factoring program, described by a circuit that takes as input an n-bit number and
attempts to output a representation of its prime factorization. The complexity of such a
strategy would be an increasing function of the number of gates in the circuit. Ignoring
complexity costs, the game is a trivial win for Player 2. However, with appropriate
complexity costs2 the game should be essentially a win for Player 1, who can easily
output a large random number that Player 2 cannot factor with a small circuit. It would
be interesting to see how such games �t into the model.
Another direction regards an elegant line of work on learning to play correlated

equilibria by repeated play [12]. It would be interesting to consider how strategy costs
affect correlated equilibria. Another question that arises in the congestion example is
how the strategy cost affects the so-called �price of anarchy� [20] in the congestion
game, which is a measure of social inef�ciency. It would also be interesting to see if
existing bounds [21] still apply.
There is no question that a good model of bounded rationality could have far-

reaching applications across a broad range of �elds, just as other game-theoretic no-
tions of equilibrium have impacted a great many subjects. Finding such a model seems
like a problem perfectly suited for the intersection of game theory and computer sci-
ence.
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