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Abstract

Starting with Feddersen-Pesendorfer (1997), most of the work exam-
ining the question of information aggregation under strategic voting has
assumed that as the state changes, everyone becomes more (or less) in-
clined towards one alternative (�common values�). We show that this
assumption is necessary and su¢ cient in delivering the result that voting
always aggregates information for any rule. We examine the �non-common
values�setting where such a correlation among voter preferences and the
state does not hold, and show that for all economically important voting
rules, there must be multiple equilibria where, in at least one equilibrium,
we get an outcome di¤erent from the full information outcome with a
probability arbitrarily close to one. And, for certain voting rules, there
is no equilibrium where the full-information outcome is achieved. This
result does not depend on the accuracy of the signal, which means that
even when there is a small uncertainty about the state, voting can deliver
a sure outcome that is di¤erent from what would happen, had the state
been known for certain.

0While writing this paper, I have bene�ted immensely from discussions with David Austen-
Smith, Tim Feddersen, Steve Callander, Marciano Siniscalchi, Sean Gailmard, Jaehoon Kim,
Alexandre Debs and all participants in the Voting and Information panel at the Econometric
Society Summer Conference at Minnesota, June 2006. Siddarth Madhav has helped a lot with
the �gures. This is a preliminary draft of this paper and it is possible that there are errors.
All responsibility for such errors is mine.
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1 Introduction

Groups often choose by voting. Choosing the vote share required by the winning
alternative has two deep problems. The �rst concerns how best to aggregate
preferences when voters have diverse preferences over alternatives. The second
concerns how to aggregate information when voters have di¤erent information
about some decision relevant aspect of the choice problem. This paper deals with
informational e¢ ciency of voting as a mechanism in general and of plurality
rules1 in particular.
If an individual is uncertain about some decision relevant feature of the

environment - the state - then his preference over alternatives is in principle
sensitive to change in his information. Consider the canonical example used in
the literature to illustrate this. Suppose that a jury has to vote on whether to
acquit or convict a defendant. If the evidence of guilt is overwhelmingly large,
then the jury members would want to convict him, otherwise they prefer to
acquit him. In many cases like this, we do not know the state for sure and
only have noisy evidence about it. If the state were known for sure, given a
voting rule, we would get a certain voting outcome for each state. Would the
voting mechanism deliver the same outcome when the state is known to every
individual only with a certain probability? If it does, then individual uncertainty
is irrelevant in the aggregate. The question addressed in this paper concerns
identifying the rules that aggregate information.
The Condorcet Jury Theorem claims that when the electorate is large and

everyone gets an independent private signal about the state that is correct with
a probability greater than half, the majority rule always aggregates informa-
tion. If everyone votes according to his signal, then the correct alternative
almost always receives more than half the votes. Over the last decade or so, the
theorem has been subjected to renewed scrutiny. Earlier proofs of the theorem
relied on the "sincere voting" assumption, but Austen-Smith and Banks (1996)
pointed out that one�s vote matters only when he is "pivotal", i.e. when the
others are tied or almost tied. Conditioning on the event of being pivotal, one
may �nd more information about the state, and may as a result vote against
his signal in equilibrium. Feddersen and Pesendorfer (1997), henceforth F-P,
showed that with such strategic voting, under conditions of reasonable general-
ity, we get full information aggregation for any voting rule. In their model, the
state represents the "commonality" of preferences in the sense that for a given
change in the state variable, everyone becomes more prone to voting for exactly
one of the two alternatives. Subsequently, Myerson (1998, 2000), Wit(1998),
Meirowitz (2002) and others examined the issue of information aggregation in
very similar settings (maintaining the "common values" assumption) and found
positive results for most plurality rules with respect to information e¢ ciency.
Notable exceptions are Razin (2003) which demonstrates that aggregation can
break down if the voters use their vote as a signal of their preference to the can-

1 In this paper we focus only on two-candidate elections with plurality rules or q-rules,
according to which the candidate getting more than q share of the votes wins the elections,
where q 2 (0; 1). We, however, denote a voting rule in this paper by �:
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didates, and Martinelli (2006) which shows that aggregation may not happen if
information is not cheap enough.
Kim (2005) looks at a non-common values setting with two groups of voters

that have opposed ranking over the alternatives in each state. In this paper,
the preferences in each group are identical, and he too �nds that information is
fully aggregated for most voting rules as long as the.voter cares enough about
mistakes in each state2 . Kim and Fey (2006) works with a similar setting, and
�nd that aggregation may break down when abstention is allowed. Meirowitz
(2005) examines the issue of aggregation in the same setting with the addition
of a communication stage. Oliveros (2005) examines the same issue in a similar
setting, allowing for both abstention and costly information.
In order to demonstrate that the source of informational ine¢ ciency in the

democratic institution of voting lies in the nature of relationship between the
uncertainty and voter preferences, we do not allow for abstention, communica-
tion or signaling motivation, and consider an environment with a more general
correlation between the state variable and preferences. In our setting, contrary
to F-P, commonly perceived information about the true state need not lead to
a common shift in induced preferences, and contrary to Kim, types with the
same ranking over the alternatives under full information need not have the
same intensity of preference for them, leading to di¤erent behaviour under un-
certainty. Our claim is that elections may involve voter preferences which look
neither like adversarial committees nor like jury boards. Our model is similar
to Kim (2005) and Meirowitz (2005), in that we allow two competing groups of
voters.with opposed preferences in either state, but since we use a spatial model
of voting, we can allow for di¤ering preferences within each group. Our main
result is that common values is necessary and su¢ cient for information to be
fully aggregated.
To understand the "common values" assumption, consider the canonical

jury example where voters vary over what counts as "reasonable doubt". All
the individual rankings are similar in the sense that everyone wants to acquit
for low levels of guilt and convict for high levels, but they vary with the precise
level at which they switch from acquittal to conviction. So, as the level of
guilt increases, more and more members favour the guilty verdict. However, the
common values assumption may be violated in other situations. Consider the
following example.
Suppose a country has so far been isolated and now is voting on whether

to allow free trade by joining the WTO. Because of their isolation, they have
developed both an industrial sector and an agricultural sector that suits their
own consumption needs. If they allow free trade, the sector in which they have
comparative advantage will grow and the other will die. Assume that they do
not know where their comparative advantage lies. If their advantage lay in
industry and this was commonly known, those in the industrial sector would

2What is erroneously claimed as a failure of aggregation in Proposition 3 in Kim (2005) is
really a full information equivalent outcome under what we call a Q-trivial rule in this paper.
We can indeed have a failure of aggregation in Kim�s set up if the exogenous utility loss from
a mistake in one state is low enough for the majority group (see his Proposition 4).
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vote in favour of joining WTO while those engaged in the agricultural sector
would vote against, and conversely if their advantage lay in agriculture, people
engaged in agriculture. Note here that, it is as if there are two opposing interest
groups. Their rankings over alternatives change with the state, but given a
state the ranking of each is opposed to that of the other. In other words, as the
state changes, one set of types switch from status quo to the alternative, while
another set switches the other way round. We call this type of situation one
of non-common values. In contrast, in a common value situation, as the state
changes, there is switching in only one direction.
For a second example consider an election with an incumbent candidate and

a challenger. Assume for now that a candidate cannot commit to any location
other than his own most preferred point on the policy space. The incumbent�s
best point is known to be Q, but there is some uncertainty about that of the
challenger, it can be one of two locations: L or R. If L is to the left of Q and R
to the right, then we are in a non-common values situation similar to the ones
described above. However, if L is to the left of R, but both locations are to
the left of Q, then, for all practical purposes we have a leftist challenger and
a rightist incumbent. As the challenger becomes more extremely leftist (state
changes from R to L), he loses support of some of the moderates but does not
have anyone new switching to him. Thus we are back in the common values
situation.
The rest of the paper is organized as follows. In Section 2, we provide an

intuitive discussion of our model, show how it works in an illustrative example,
and discuss the main results. In Section 3, we set up the formal model to be used
throughout the rest of the paper. Section 4 discusses the benchmark common
value case and Section 5 analyses the non-common values situation. Section 6
compares and contrasts the two settings and discusses the implications and an
extension. Most of the proofs are relegated to the appendix.

2 Discussion of the Model and Results

In this paper we develop a model that allows for both the common values and the
non-common values situation depending on parameters and compare equilibria
across the two cases. Voters have quadratic preference over a policy space which
is a compact subset of the real line. An extension of the model considering a
policy space with a higher dimensions is discussed later. A voter�s type is
identi�ed by his bliss point on this space. There is a status quo Q whose location
on the space is known. The state variable is the location of the alternative policy
P. The state space is binary �P can be located at one of two given points on
the policy space. Based on where these two points are located, we may have
a non-common value or a common value set-up, as illustrated in the candidate
competition example above. The voting rule � is the share of votes requited for
P to win. We study the limiting outcomes as the number of voters becomes
large.
Our main result is that while in the common values case, information is
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aggregated with a very high probability in the unique limiting equilibrium for
any voting rule, the property breaks down in the non-common values case. In
the latter case, we have multiple limiting equilibria depending on beliefs, and
for all economically important voting rules, one or more of the equilibria reach a
"wrong" outcome with a very high probability. To understand why information
aggregation can break down, note that, in equilibrium, there is always a set of
types voting informatively while others do not pay heed to the signal. In most
equilibria of the one-dimensional model, the set of responsive voters is an interval
of types, with types on either side of the interval voting in opposite directions
uninformatively. Based on the full information outcome, there are two kinds of
voting rules - the ones which, under full information, lead to di¤erent outcomes
in the two states (the consequential rules), and those which lead to the same
outcome in both states (the trivial rules).
For voting with consequential rules, we need the following to happen in

equilibrium for information to aggregated:

1. The responsive types should be in�uential, i.e. the overall voting out-
come should change as the responsive types vote di¤erently in the di¤erent
states. For a voting rule �, this condition is satis�ed if the �-quantile type
lies in the responsive set.3

2. The responsive types are aligned with the society, i.e. they vote the same
way as the full information mapping from the states to the outcomes
demands. This always happens under common values, but under non-
common values it happens only if the responsive types belong to the larger
interest group.

On the other hand, for voting with trivial rules, we need the responsive types
not to be in�uential for information to be aggregated.
All these conditions are satis�ed under equilibrium in the common values

situation, but in the non-common values situation, each of these conditions can
individually fail in the limiting equilibrium.
To see how the model works, let us �rst consider the common values case.

Assume that the policy space is [�1; 1], Q is located at 0, and the policy P is
located under states L and R at �0:8 and �0:2 respectively. A voter votes for
whichever alternative is located closer to his bliss point. If the state is known
to be L, everyone left of �0:4 votes for P and if it is known to be R, and
everyone left of �0:1 votes for P. Everyone else votes for Q. Therefore, if the
state is known, the types between �0:4 and �0:1 vote for P when it the state is
moderate (R) and switch to Q when it is extreme (L). These are the types that
have an incentive to change their vote based on information about the state.
The responsive set is thus a subset of [�0:4;�0:1] for any voting rule. Assume
that 35% of the voters have bliss points left of �0:4, and 55% have bliss points
to the left of �0:1. Under full information, for � < 35%, P obtains as the

3We de�ne the �-quantile type as the type which has exactly � proportion of types below
it, when the types are ranked in order of their bliss points.
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winner under both states, for 35% < � < 55% we get Q under state L and P
under state R, and for � > 55% we always get Q. To follow what happens in
equilibrium under incomplete information for di¤erent values of �, we need to
track the responsive set in equilibrium and whether the �-quantile type belongs
to the set.

Quantile of type

Voting rule θ
100%

100%

F(-0.4) = 35%

F(-0.1) = 55%

45o

P-trivial Q-trivialConsequential

Figure 1a: Responsive set of types in limiting equilibrium under common
values

We show the responsive set of types in the limiting equilibrium for each
voting rule in Figure 1a. The voting rule � is plotted on the horizontal axis
and the quantile of types (considered from the left) on the vertical axis. For
all � < 35% (P-trivial rules), the �-quantile type is to the left of �0:4, and the
responsive set is stuck at a small interval of types just right of �0:4, so the
responsive types are never in�uential. P gets slightly more than 35% votes in
both states and wins. Similarly, for all � > 55% (Q-trivial rules), the responsive
set is a small set of types just left of �0:1; and P receives less than 55% share of
votes in both states and loses. .For rules between 35% and 55% (consequential
rules), the responsive set includes the �-quantile type. Hence the responsive set
is in�uential for these rules. Also, the responsive types are aligned with the
society � they vote for Q when L and P when R. Therefore, information is
aggregated in the common values set up under any voting rule � .
Next, consider the case where the locations of the alternative at L and R are

on two sides of Q - say at �0:8 and at 0:8 respectively. If the state is known,
under L, only the types to the left of �0:4 (say 35% of the voters) vote for
P, while under R, only those to the right of 0:4 vote for P (say 55% of the
voters). We shall call these two groups of types as the L-group and R-group
respectively. Note that both these groups are sensitive to information about the
state, while the others, i.e. the types in (�0:4, 0:4) always vote for Q. Under
full information, here too, � < 35% is P-trivial, � > 55% is Q-trivial, while
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� 2 (35%; 55%) is consequential with P winning in state R and losing in state
L. Note that R-group, the majority interest group, is aligned with the society
while the L-group is not.
In this setting, for any distribution of bliss points, we can identify voting

equilibria only for rules greater than some minimum threshold �< 35%. For
each � >�; there are are at least two generic4 equilibria, one with the responsive
set in the L-group and one with the responsive set in the R-group. If everyone
believes that the responsive set will be in the L-group, then conditional on being
pivotal, there is a larger probability that the state is L, i.e. the policy is at �0:8.
Under state L, although the utility di¤erence between Q and P is positive in
the R- group and negative in the L-group, due to quadratic preferences, the
absolute value of the di¤erence is larger for the R-group since it is farther away
from the location of the policy. As a result, under uncertainty, all the members
of the R-group vote for Q without paying attention to the signal, while some
in group L vote informatively � thus con�rming the belief. Similarly, if the
responsive set is believed to lie in the R-group, members of the L-group vote
uninformatively forQ while some in R-group have incentive to vote responsively.
It is this phenomenon that gives us multiple equilibria based on the di¤erent
beliefs.
Given a �; to examine the equilibrium where the responsive set is in the

L-group, consider the �-quantile when types are considered from the left. We
illustrate this equilibrium in �gure 1b.

Quantile of types

Voting rule θ
100%

100%

F(-0.4) = 35%

P-trivial

Q-trivial

Consequential

55%

Figure 1b: Limiting equilibrium under non-common values: responsive set in
L-group

For � > 35%; the respective �-quantile is greater than �0:4 and hence is
outside the L-group. The responsive set for all these rules is a small set just
left of �0:4, and hence Q always wins. For � < 35%; the �-quantile is in the

4These equilibria are generic in the sense that they hold true for any distribution of bliss
points. There can be other equilibria for speci�c distributions.
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L-group. The responsive set for these rules (above �) always contain the �-
quantile, and hence is in�uential. As a result, in this equilibrium, we have
various ways in which information aggregation fails �for the consequential rules
due to the responsive set not being in�uential when it should be, and for the
P-trivial rules due to the responsive set being in�uential when it should not be.
This happens because the L-group is the smaller interest group.
Given a voting rule, to examine the other equilibrium where the respon-

sive set is in the R-group, we need to consider the �-quantile when types are
considered from the right. We illustrate this equilibrium in �gure 1c.

Quantile of types

Voting rule θ
100%

100%

1-F(0.4) = 55%

P-trivial Q-trivialConsequential

35%

Figure 1c: Limiting equilibrium under non-common values: responsive set in
R-group

As illustrated by the �gure, Q is the outcome under both states for � >
55%: For � < 55%; the �-quantile is inside the group and is contained by the
responsive set. The responsive set is thus in�uential, and because it belongs
to the larger interest group, is aligned with the social objective too. So, the
outcome for these rules (above �) is P in state R and Q in state L. In these
equilibria, although information is aggregated for consequential rules and Q-
trivial rules, we have a failure for P-trivial rules because the responsive set is
in�uential when it should not be.
Two things are to be noted here. In all equilibria in both settings, informa-

tion is fully aggregated for all Q-trivial rules, including the unanimity rule in
particular, about which there is some debate in the literature. This can be read
as a status quo bias in this setting. Also, we have a breakdown of information
aggregation even for the majority rule �if we have a non-common values setting
and the rule is not trivial.
One important thing to note here that is although the failure of aggregation

happens only when there is noise in the signals, it does not depend on the level
of noise. Thus, for a large set of rules in the non-common values situation, with
a slight noise in the signals, we can get outcomes di¤erent from those under
full information with a very high probability. This is explained by the fact that
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the two di¤erent equilibria are a result of a peculiar kind of voting strategies
based on learning from the event of being pivotal that does not happen under
full information. When states are known, no one is pivotal, so we do not have
the pivotal voting outcomes under full information.
The above, somewhat technical issue apart, our major inference from the

above analysis is the di¤erence between information aggregation properties be-
tween the common values and the non-common values situation. The common
values situation is essentially a discrete version of F-P and hence it is no wonder
that we �nd full information aggregation in the unique equilibrium. But more
interestingly, in the non-common values situation, while for the consequential
rules there may be one equilibrium that has the aggregation property, there is al-
ways one where we get the status quo in both states with a very high probability.
And for all P-trivial rules above some minimum, neither equilibrium aggregates
information. This singles out the common values condition as the necessary and
su¢ cient condition for information aggregation for any voting equilibrium with
any voting rule and any distribution of single peaked preferences.
Lastly, how important is this non-common values condition empirically? Is

it really common enough for us to bother about the informational e¢ ciency
of voting as a mechanism? At least in the incumbent-challenger example, it
appears a little far-fetched. Although we may not know the exact policy pref-
erences of a challenger, we at least know whether he is to the right or to the
left of the incumbent. Thus, we seem to be getting back to the common values
world in the model with one-dimensional policy space. But, elections are most
often fought over many issues. Real policy spaces are often multidimensional.
We show in an extension that the above analysis holds true even in the case
of a policy space with �nitely many dimensions. Moreover, the common val-
ues condition is more di¢ cult to obtain in a multidimensional context. Hence
our claim is that there is a very real problem with voting as a mechanism of
information aggregation.

3 The Set-up

Suppose there is an electorate composed of a �nite number (n+1) of people who
are voting for or against a policy P. If the policy gets more than � proportion
of the votes5 , then P wins; otherwise the status quo Q wins. Assume that the
policy space is [�1; 1]: While Q is known known to be located at 0; there is
uncertainty about the location of the alternative P on the policy space. P is
located at L 2 [�1; 1] or R 2 [�1; 1] with equal probability. This event that
P is located at S; where S 2 fL;Rg is referred to as state S: To give a natural
meaning to the names of the state, we assume that L < R; which is without loss
of generality6 . We also assume that the policy never coincides with the status

5To simplify the analysis, we assume the tie breaking rule that if the policy receives exactly
� proportion of votes, the status quo wins.

6There is some loss of generality - by this assumption, we exclude the case that in the policy
location is state invariant, i.e. L = R: Thus assuming L < R is tantamount to assuming that
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quo, i.e both L and R are non-zero numbers7 : Everyone receives a private signal
� 2 fl; rg about the state. Signals are independent and identically distributed
conditional on the state, with the distribution being:

Pr(ljL) = Pr(rjR) = q 2 (1
2
; 1)

Voters have single peaked preference de�ned on the policy space. Every
individual has a privately known bliss point x that is drawn independently from
a commonly known distribution F (�) that has the entire policy space [�1; 1] as
its support and admits a density f(�). The utility function from the alternative
A; when the location of the alternative is at a; is given by:

U(x;A) = �(x� a)2; A 2 fQ;Pg

Given a draw of x and S; we de�ne v(x; S) as the di¤erence in utility between
the policy alternative and the status quo:

v (x; S) = U(x;P)� U(x;Q) = x2 � (x� S)2; S 2 fL;Rg (1)

From here onwards, we shall use v(x; S); the utilitity di¤erence between
the two alternatives as given by (1) for all further analysis. If the state S
is known, a voter votes for P if and only if v(x; S) is non-negative. If S is
not known, a voter calculates the expected value of this function using the
relevant probability distribution over the states and votes P if the expectation
is non-negative. The equilibrium concept we employ is symmetric Bayesian
Nash equilibrium in undominated strategies.
Given an individual�s private information (bliss point x and signal �), the

strategy speci�es a probability of voting for P:

�(x; �) : [�1; 1]� fr; lg ! [0; 1]

Thus, under state S;the expected share of votes is:

t(S; �) =

Z 1

�1
Pr(ljS)�(x; l)dF (x) +

Z 1

�1
Pr(rjS)�(x; r)dF (x); S = L;R (2)

Exapanding (2) we can write

t(L; �) = q
R 1
�1 �(x; l)dF (x) + (1� q)

R 1
�1 �(x; r)dF (x)

t(R; �) = (1� q)
R 1
�1 �(x; l)dF (x) + q

R 1
�1 �(x; r)dF (x)

Under a rule � a voter is pivotal if n� votes are cast for the policy P from
the remaining n voters. So, the probability of being pivotal under state S is
given by8 :

Pr(pivj�; S) =
�
n

n�

�
(t(S; �))

n�
(1� t(S; �))n�n� ; S = L;R (3)

there is always some uncertainty about the policy location.
7 In other words, we assume that if the state were known, then there will always be a

positive interval of types that would strictly prefer to vote for the policy in either state.
8For technical convenience, we assume that n� is an integer.
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Note that (3) actually denotes a pair of equations, one for each state. Call
these the pivot equations. Note that if t(S; �) 2 (0; 1) then Pr(pivj�; S) > 0:We
later show that in any equilibrium of our model, we must have t(S; �) 2 (0; 1):
Had the probabilistic belief on the state conditional on being pivotal been well
de�ned, it would be given by:

� (Sjpiv; �) = Pr(pivj�; S)
Pr(pivj�; L) + Pr(pivj�;R) ; S = L;R (4)

Since Pr(pivj�; S) > 0 for both states, we have � (Sjpiv; �) 2 (0; 1). The
strategies played in equilibrium determine the pivot probabilities in each state
through (2) and (3): In return;the probability of state L conditional on being
pivotal is determined by Bayes rule by (4). We call �(Ljpiv; �) the induced prior
and denote it as �L. The posterior beliefs given a signal are:

�(Ljpiv; �; l) = q�L
q�L+(1�q)(1��L)

�(Ljpiv; �; r) = (1�q)�L
(1�q)�L+q(1��L)

�(Rjpiv; �; l) = q(1��L)
q�L+(1�q)(1��L)

�(Rjpiv; �; r) = q(1��L)
(1�q)�L+q(1��L)

9>>>>=>>>>; (5)

We refer to �(Ljpiv; �; l) as pl and to �(Ljpiv; �; r) as pr: Note that while
both pl and pr are increasing functions of the induced prior, pl is concave and pr
is convex throughout. This, coupled with their equality at the extreme values
of �L; i.e. pl = pr = �L at �L = 0 and �L = 1; implies that pl > pr for all
other values of �L. Figure 2 graphs the posteriors as functions of the induced
prior �L.

Posteriors as functions of induced prior βL

βL

1-q

q

1/2 +b/4

1/2 -b/4

pl,pr

pr

pl

0 1

1

1/2

Figure 2

Before identifying equilibrium strategies, we provide some important de�ni-
tions.
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De�nition 1 A voting strategy is a cut-o¤ strategy if given a signal and an
induced belief, the type space [�1; 1] can be partitioned into exactly two intervals
(one possibly empty) such that every type votes for Q in one interval and for
P in the other. The cut-o¤s are said to be ordered9 if, as the location of the
cutpoint changes due to changes in the induced belief, only the types to the left
(or right) of the cutpoint vote for P:

In other words, a voting strategy is a cut-o¤ strategy if given � 2 fl; rg
and �L 2 (0; 1); there is some x� (�L) such that for any x1 < x� (�L) and
x2 > x� (�L) ; the absolute value of �(x2; �)� �(x1; �) is 1: If x� (�L) 2 f0; 1g;
a cut o¤ strategy requires that �(x; �) be 0 or 1 for all x: A cut-o¤ strategy
is said to be ordered if, given any two types x and x0 with x 6= x0; the sign
of �(x; �)� �(x0; �) is either always nonnegative or always nonpositive for any
value of �L:
The nature of the cut-o¤ strategies vary on the basis of the possible loca-

tions of the uncertain alternative. Based on the location of the policy P, we
distinguish between two situations with a condition that is very important for
this paper.

De�nition 2 De�ne P(S) to be the set of types that (weakly) prefer the alter-
native policy to the status quo if they know that the state is S:

P(S) = fx : v(x; S) � 0g

P(S) exhibits common values if P(L) � P(R) or P(L) � P(R); and non-common
values otherwise.

Denote P(L)\P(R) as PLR; and note that it can be empty. This set of types
always votes for the policy irrespective of the state. They are committed types,
or type-P partisans according to the nomenclature in Feddersen-Pesendorfer
(1996)10 . Now consider the sets P(L)nPLR and P(R)nPLR: These are the inde-
pendent types, as they change their vote based on the state. The above de�nition
says that when S changes, if the independent types switch their votes in only
one direction (P to Q or Q to P ), then it is a common values situation. If some
(a positive mesaure of) independents switch from P to Q and some from Q to
P for a change in S then it is a non-common values situation.
The intuition behind De�nition (2) can be clari�ed by looking at the common

values condition in F-P. Their assumption is that v(x; S) is strictly increasing
in S for every value of x: If x 2 P(L)nPLR; then v(x; L) > 0; but v(x;R) < 0:
And if x 2 P(R)nPLR; the v(x; L) < 0; but v(x;R) > 0: If P(L) � P(R) or

9Note that the de�nition of ordering of cut-o¤s is di¤erent here from the one in F-P (page
1035) where ordering is de�ned based on whether cut-o¤s are monotonic in signals. Here, for
any location of P , we always have cut-o¤s monotonic in the signals. However, it is possible
that for some values of the cutpoint, those to the left of the cut-o¤ vote for P while for other
values of the cut-point, those to the right of the cut-o¤ vote for P: We distinguish those
situations as unordered.
10Given that the location of Q is known and bi 6= 0; there is always an interval of types

around 0 that are Q-partisans.
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P(L) � P(R); exactly one of P(L)nPLR or P(R)nPLR is empty. So, for all
independent types, v(x; L)�v(x;R) takes the same sign. In other words, for all
independent types, the F-P condition holds, at least in the weak sense. That
justi�es the name common value. On the other hand, if neither of P(L)nPLR
and P(R)nPLR are empty, then we are considering independent types that do
not satisfy the F-P condition. Although the ranking for each of the two sets
of types changes with the state, their preferences are opposed to each other in
both states.

Remark 1 If L and R have the same sign, we have a common values situation,
and if they have di¤erent signs, we have a non-common values situation.

Proof. In Appendix.
The intuition behind this remark is illustrated by the example in Section 1.

De�nition 3 If the vote of an individual with type x changes with the signal,
i.e. if �(x; l) 6= �(x; r); then type x is said to be responsive. Suppose that
given a consequential rule �; under full information, P wins under state L:
Then the responsive type x is said to be aligned with the society if �(x; l) = 1
and �(x; r) = 0: Similarly if, under a consequential rule �; the full information
outcome is P under state R; the responsive type x is said to be aligned with the
society if �(x; l) = 0 and �(x; r) = 1

The responsiveness and alignment conditions have been discussed in the
introduction in detail.

4 Common values

We start by looking at the benchmark case with common values. As we shall
see, this turns out to be the discrete version of the F-P model. A common value
game is de�ned by its parameters (F (�); q; L;R; n; �): Since we shall look for the
sequence of limiting equilibria of this game for all values of � as n ! 1; we
denote a common value setting as a collection (F (�); q; L;R):

4.1 Strategies and equilibria

Lemma 1 In the common values case, all equilibrium strategies are ordered
cut-o¤ strategies.

Proof. A voter with signal �; (� 2 fl; rg) evaluates the state using the distrib-
ution �(Sjpiv; �; �) and votes for the policy if and only if the expected value of
the function v(:; :) is non-negative. Assume for now that �(Sjpiv; �; �) is well-
de�ned. De�ne x(p�) as the solution of the equation E(v(x; S)jpiv; �; �) = 0:
Solving,

x(p�) =
1

2

 
(L)

2
p� + (R)

2
(1� p�)

Lp� +R(1� p�)

!
2
�
L

2
;
R

2

�
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Thus, x(p�) always exists uniquely. Also, since
@Ev(x;S)

@x = 2 (Lp� +R(1� p�)) ;
R > L > 0 ) @Ev(x;S)

@x > 0 ) Ev(x; S) > 0 i¤ x > x(p�):Similarly, if L <
R < 0; Ev(x; S) > 0 i¤ x < x(p�): This establishes the cut o¤ nature of
strategies. Given L and R; the strategies do not depend on the precise location
of x(p�):If L < R < 0; types to the left of the cut-o¤ x(p�) vote for P, while if
0 < L < R; types to the right of the cut-o¤ x(p�) vote for P. This proves the
ordered nature of the cut-o¤ strategies, and establishes the lemma, under the
assumption that.�(Sjpiv; �; �) is well-de�ned.
Denote x(pl) as xl and x(pr) as xr: The the cut-o¤ strategies are given by

(6) and (7):8>><>>:
�(x; l) =

�
1 if x � xl
0 otherwise

;

�(x; r) =

�
1 if x � xr
0 otherwise

9>>=>>; when R > L > 0 (6)

8>><>>:
�(x; l) =

�
1 if x � xl
0 otherwise

;

�(x; r) =

�
1 if x � xr
0 otherwise

9>>=>>; when L < R < 0 (7)

Remark 2 Note that for �L = 1; xr = xl =
L
2 ; and likewise for �L = 0; xr =

xl =
R
2 :Since

dx(p)
dp = � 1

2

�
(R�L)LR

(Lp+R(1�p))2

�
< 0; and since pl > pr for �L 2 (0; 1);

xr > xl for these values of �L.

Thus, for any induced prior, the strategies in the benchmark case are charac-
terised by cutpoints xl and xr; with xl � xr: If R > L > 0; types x < xl always
vote for Q, types x 2 [xl; xr] vote for P if they get signal l and Q if they get
signal r; and the types x > xr vote for P regardless of the signal. If L < R < 0;
types left of xl always vote for P and those right of xr vote for Q while types
in [xl; xr] vote informatively. In either case, [xl; xr] is the responsive set, while
the other types vote their bias. Henceforward, we shall deal only with the case
L < R < 0; noting that the other case is completely symmetric.
Note that the ordered cuto¤ nature of the strategies ensures that there will

always be one and only one responsive interval. Also, irrespective of the location
of the cuto¤s, the responsive set is always aligned with the society. This means
that whenever the responsive set is in�uential, information will be aggregated.
Thus, for consequential rules, all we need to show for information aggregation is
that in any limiting equilibrium, the responsive set is indeed in�uential. For this,
we need monotonicity of the vote shares under both states, which is again en-
sured by the ordered nature of the cut o¤ strategies. We de�ne the probability of
an individual voting for the alternative P given � as z�; i:e: z� �

R 1
�1 �(x; �)dF:

For L < R < 0; we have from (7),

z� = F (x�); � = fl; rg

14



Therefore, using (2) we write11 :

t(L; �) = qzl + (1� q)zr = qF (xl) + (1� q)F (xr)
t(R; �) = (1� q)zl + qzr = (1� q)F (xl) + qF (xr)

�
(8)

Note that since the cut-o¤s xl and xr are functions of the induced prior, the
vote shares t(L; �) and t(R; �) are also functions of �L: The following lemma
examines how the vote share in each state changes as a function of the induced
prior.

Lemma 2 The expected share of votes t(S; �) in state S decreases strictly with
the induced prior �L from F (R2 ) at �L = 0 to F (L2 ) at �L = 1: Also, for all
interior values of the induced prior, i.e. for all �L 2 (0; 1); t(L; �) < t(R; �)12 :

Proof. By Remark 2, at �L = 0; zl = zr = F (R2 ) ) t(S; �) = F (R2 ) for
S 2 fL;Rg: Similarly, at �L = 1; t(S; �) = F (L2 ) for S 2 fL;Rg: Also, since
p� is a strictly increasing function of �L; x� is decreasing in �L by Remark 2.
The full support assumption guarantees that F (�) is strictly increasing. Hence,
t(S; �) is strictly decreasing in �L: For the second part of the lemma, note that

t(L; �)� t(R; �) = (2q � 1) (F (xl)� F (xr))

By remark 2 again, for � 2 (0; 1); F (xl)� F (xr) < 0; and since q > 1
2 ; we have

t(L; �) < t(R; �):
The above lemma states that as the induced prior probability of the state

being L (conditional of being pivotal) increases, the expected share of votes
for the alternative policy decreases under either state because the state L is
deemed to be more "extreme". Informative voting by the responsive set ensures
that the policy receives more votes in the "moderate" state (R) unless the prior
is degenerate. Note also that at any induced prior, the di¤erence in expected
vote shares is increasing in the informativeness of the signal. The expected vote
shares in the two states are plotted against the induced prior in �gure 3.

11For 0 < L < R; we have z� = G(x�); where G(y) � 1� F (y); y 2 [�1; 1]
12 If 0 < L < R; then both t(L; �) and t(R; �) increase strictly with the induced prior �L

from F (R
2
) at �L = 0 to F (

L
2
) at �L = 1: Also, for all �L 2 (0; 1); t(L; �) > t(R; �):
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Vote shares under states L & R under common values(b1<b2<0)

t(L,π)

t(R,π)

F(R/2)

F(L/2)

βL

t(L,π), t(R,π)

0

1

1

Figure 3

Lemma 2 also ensures that since t(S; �) lies strictly between 0 and 1, and
�(Sjpiv; �; �) is always well-de�ned. Intuitively, since the types left of L2 are P-
partisans and those to the right of R2 are Q-partisans, there is always a positive
probability for any type to be pivotal. This �nally proves our Lemma 1.
The following proposition guarantees the existence of an equilibrium of the

common values voting game (F (�); q; L;R; n; �):

Proposition 1 In the common values case, there exists a voting equilibrium ��

for every population size n and every voting rule � 2 (0; 1) characterized by or-
dered cut-o¤ strategies x� given by the solution of the equation E(v(x�; s)jpiv; ��; �) =
0 for � = (l; r):

Proof. For the proof of this proposition, we �rst note that the strategy for
each voter can be denoted by two numbers xl and xr; both lying between L

2 and
R
2 : Thus the strategy space is a compact, convex and non-empty set

�
L
2 ;

R
2

�
��

L
2 ;

R
2

�
: The rest of the proof follows from the proof of Proposition 1 in F-P.

To �nd the equilibrium of the model, what we essentially do is �nd a �xed
point on the belief space �L 2 [0; 1]: In other words, suppose everyone else holds
some belief �L, which determines two distributions p� (�L) according to (5) and
correspondingly, the cut-o¤ strategies x� (�L) according to (7). From the cuto¤
strate�es, the expected shares of votes for the policies t(S; �) in the two states
S = L;R is determined by (8): Given these shares, the number of players n and
the voting rule �, a player forms Pr(pivj�; S): probabilities of being pivotal in
each state according to the pivot equations (3). These probabilities de�ne belieff�L by (4); which in turn yields the cuto¤s x� �f�L� that are the best response
to the strategy x� (�L). In equilibrium, the cuto¤s x� (�L) and x�

�f�L� must
be the same, i.e. the pivot equations using shares with belief �L should deliver
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pivotal probabilities that lead to the same belief �L: Note that

Pr(pivj�; L)
Pr(pivj�;R) =

� (Ljpiv; �)
� (Rjpiv; �) =

�L
1� �L

Thus, using the above and the pivot equations, the equilibrium condition
can be simply stated as:

�L
1� �L

=
Pr(pivj�; L)
Pr(pivj�;R) =

"
(t(L; �n))

�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

#n
(9)

4.2 Limiting Equilibria under Common Values

In this section, we consider the properties of the voting equilibria as the elec-
torate grows in size arbitrarily, keeping all other parameters of the model con-
stant.Therefore, we superscript everything by the number of voters n. At times
we will suppress the superscript n when there is no ambiguity Suppose, given
L;R and � for some n; the equilibrium is �n; and the cuto¤s are xn�: As long
as common values assumption is satis�ed, existence of equilibrium for any n
implies the existence of a convergent subsequence with an accumulation point
as n ! 1: If a limit of this sequence exists, we call it �0: By continuity ar-
guments , as xn� ! x0�; t(S; �

n); �nL; p
n
l ;and p

n
r all converge to �nite limits

t(S; �0); �0L; p
0
l ; and p

0
r respectively along the sequence.

Rewriting the equilibrium condition:

�nL
1� �nL

=

"
(t(L; �n))

�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

#n
for all n (10)

By Proposition 1, a solution to (10) exists for every n: From continuity, if a
limit exists, we can also say that the above relation has to hold in the limit; call
this the limiting equilibrium condition.

�0L
1� �0L

= lim
n!1

"�
t(L; �0)

�� �
1� t(L; �0)

�1��
(t(R; �0))

�
(1� t(R; �0))1��

#n
(11)

To avoid writing complicated expressions, we de�ne:

�n =
(t(L; �n))

�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

and �0 =

�
t(L; �0)

�� �
1� t(L; �0)

�1��
(t(R; �0))

�
(1� t(R; �0))1��

Note that the vote shares t(S; �n) are functions of �nL: Next, we look at
the properties of the limit, assuming existence for the time being. We later
show that in the commmon values game, for any voting rule, there is only one
accumulation point of �n which must be the limit.

Lemma 3 If �0L 2 (0; 1); �0 = lim
n!1

�n = 1
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Proof. See Appendix. Note that this lemma does not use the common values
condition, so it is true of non-common values too.

Lemma 4 If �0L = 1; then xn� ! R
2 from the left for � = l; r: Similarly, if �0L

= 0; then xn� ! L
2 from the right for � = l; r

Proof. Follows from continuity of xn� in p
n
� and of p

n
� is �

n
L; along with Remark

2.
Note, as an aside to Lemma 4, that although under both signals the cuto¤s

converge to R
2 or L

2 if the induced prior converges to 1 or 0; by remark 2,
we always have xnl < xnr : Thus, in the responsive set, the voters always vote
for Q if they get moderate signal r and P if they get the extreme signal l:
In the limit, the responsive interval is vanishingly small as the induced prior
distribution converges to state R , grows for intermediate values of the prior, and
again shrinks to a vanishing size as the distribution converges to a degenerate
distribution at state L: Thus, given q; a level of precision of the signals, the
di¤erence between expected shares in the two states is low for extreme values
of the induced prior and high for intermediate values.
Lemma 3 and Lemma 4 together imply that for any limiting induced prior,

given a voting rule under any equilibrium the vote shares in each state must be
related in a certain way, which is stated in Proposition 2 below. According to
Lemma 3, if �n is bounded away from 1; then �

0
L must be either 0 or1: And under

conditions of Lemma 4, if �nL is indeed 0 (or 1); then the voters are almost sure of
the state in which they are pivotal and vote as if under (almost) full information.
Every type except those in a vanishing set votes uninformatively, and the vote
shares under either state are the same in the limit. Thus, in equilibrium, we
have �0 = 1 for all values of the induced prior.

Proposition 2 In all limiting equilibria, we must have �0 = 1; i.e.�
t(L; �0)

�� �
1� t(L; �0)

�1��
=
�
t(R; �0)

�� �
1� t(R; �0)

�1��
; i:e: �0 = 1

Proof. For any equilibrium with �0L 2 (0; 1); the proposition follows straight-
forwardly from Lemma 3. If �0L = 1; the �rst part of Lemma 4 implies that

t(L; �n) = qF (xnl ) + (1� q)F (xnr )! qF (
R

2
) + (1� q)F (R

2
)! F (

R

2
)

t(R; �n) = qF (xnr ) + (1� q)F (xnl )! qF (
R

2
) + (1� q)F (R

2
)! F (

R

2
)

) �0 = lim
n!1

(t(L; �n))
�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

=

�
F (R2 )

�� �
1� F (R2 )

�1���
F (R2 )

�� �
1� F (R2 )

�1�� = 1�* F (R2 ) 2 (0; 1)
�

If �0L = 0; the proof follows in exactly the same way since the second part of
Lemma 4 implies that then t(S; �n)! F (L2 ) for S 2 fL;Rg:
Note that the above proposition is based on a necessary condition that must

be true for a �0L to which induced belief converges in the limiting equilibrium.
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It helps exclude certain voting rules that cannot support a given value of �L in
the limit. To do that formally, we de�ne �(�L) as the set of voting rules that
can support �L as an induced belief in the limiting equilibrium condition (11)
for some distribution of preferences in the cut-o¤ equilibrium. To emphasize
that t(S; �) is a function of �L; we write t(S; �) as tS(�L) for S 2 fL;Rg:

Lemma 5 Under common values, (i) If �L 2 (0; 1); then �(�L) is a strictly
increasing function ��(�L); with tL(�L) < ��(�L) < tR(�L): (ii) Otherwise,
�(1) = f� : � < F (L2 )g; and �(0) = f� : � > F (

R
2 )g

Proof. In Appendix.
The �rst part of the lemma is almost a corollary of Proposition 2. For each

interior value �L of the induced prior, it identi�es a unique � as the only possible
voting rule to support �L in the limiting equilibrium. As long as the expected
vote shares in the two states are di¤erent, the only voting rule that can satisfy
Proposition 2 is one that lies strictly between the two shares. This has the
implication that under one state the status quo wins, while in the other, the
policy wins. If there are any equilibria with beliefs that place positive probability
on both states, then the responsive set of types for these equilibria are always
in�uential. The lemma also notes that such equilibria are possible only for
consequential rules. The second part of the lemma says that the extreme beliefs
can be supported only by extreme values of the voting rules.
Note that since ��(�L) is strictly increasing, its inverse function �

�1
L (�)

exists for � 2
�
F (L2 ); F (

R
2 )
�
and is strictly increasing. Thus, according to

Lemma 5, for every �; there is a unique �L that is supportable as an induced
prior in the limit, for any distribution of types. Call it � (�) : We can write:

� (�) =

8<:
1 if � < F (L2 )

��1L (�) if � 2
�
F (L2 ); F (

R
2 )
�

0 if � > F (R2 )

(12)

We plot the correspondence �(�L) along with the expected vote shares in
each state against the induced prior in �gure 4.
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Correspondence Θ under common values(b1<b2<0)

t(L,π)

t(R,π)

F(R/2)

F(L/2)

βL

t(L,π), t(R,π)

0

1

1

Θ(0)

Θ(βL)=θ*(βL)

Θ(1)

Figure 4

The next theorem gives a characterization of cut-o¤ equilibria in large pop-
ulations for di¤erent voting rules under common values.

Theorem 1 Assume L;R satisfy the common values condition, F (�) satis�es
full support, and q 2 ( 12 ; 1): Fix a voting rule � 2 (0; 1): Then there is a unique
limiting equilibrium �0 with ordered cut-o¤ strategies and with the induced prior
converging to �L if and only if � 2 �(�L); or alternatively, if and only if �L =
� (�) :

Proof. According Proposition 2, a voting equilibrium �n with ordered cuto¤
strategies exists for a given � for any n: Since �L lies in a compact set, there
is an accumulation point �a given �: We show in the appendix that this �a is
the limiting equilibrium �0 given �: Lemma 5 states that for any distribution
of types, if a limit exists, there is a unique number � (�) to which the induced
prior converges in the limit along the sequence of equilibria under voting rule �:

Note that once the limiting value of the induced prior �L is established, the
limiting posterior distributions p�; the limit cut-o¤s x� etc. are all determined
from �L: Thus this theorem describes all relevant information about strategies,
vote shares and statewise outcomes in equilibria with a voting rule when the
population size becomes large. Note that, by the Law of Large numbers, the
actual vote shares are arbitrarily close to the expected vote shares13 . From here
onwards, we do not make a distinction between the expected and actual, and
just call it "vote share". We postpone the discussion of the actual outcomes for
each voting rule till the next section.

13More speci�cally, given any � > 0 and � > 0; we can �nd some number N such that as
long as the polupation size is larger than N , the actual vote share is within � of the exoected
share with a probability higher than 1� �:
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4.3 Outcomes and Information Aggregation

In the introduction we have informally discussed a classi�cation of voting rules
according to the outcomes produced under full information. Here we formalise
the discussion, and then examine the information aggregation properties of each
class of voting rules.
For purposes of this paper de�ne a social choice rule H as a function that

maps a state to an outcome, i.e.

H : fL;Rg ! fP;Qg

When H(�) is a constant function, i.e. when the planner wants the same
outcome in both states, we call it a trivial rule. There are two trivial rules - one
where the planner always wants the status quo to prevail (H(L) = H(R) = Q),
and the one that maps both states to the policy (H(L) = H(R) = P): We call
the �rst one Q-trivial and the second one P-trivial rule. If the function maps
di¤erent states to di¤erent outcomes (H(L) 6= H(R)), we call it a consequential
rule.
A voting rule is said to correspond to a particular social choice rule if under

full information of the state, the voting outcome is the same as the outcome
determined by the social choice rule for that state. A voting rule is said to
implement the corresponding social choice rule H(�) if, for any � > 0, we can �nd
a number N such that when the population size is larger than N; in either state
the outcome of the voting game under incomplete information of the state is
the same as the outcome determined by the social choice rule with a probability
larger than 1��:When a voting rule implements the corresponding social choice
rule, then voting rule is said to satisfy full information equivalence14 . In other
words, the voting game under incomplete information gives the same outcome
that would have occurred if there were common knowledge of the state.
With full information, under state L; the policy would get F (L2 ) share of

votes; and similarly under state R; the policy would get F (R2 ) share of votes.
Therefore:

� Any voting rule � < F (L2 ) corresponds to the P-trivial rule, i.e. P wins
under both states.

� Any voting rule F (L2 ) < � < F
�
R
2

�
corresponds to a consequential rule,

i.e. P wins in state R and Q in state L15 .

� Any voting rule � > F
�
R
2

�
corresponds to the Q-trivial rule, i.e. outcome

is status quo under both states.

14The concept of full information equivalence was formalised by F-P, and we use the same
de�nition adapted for our setting.
15Note that the other consequential rule, i.e. fG(L) = P; G(R) = Qg cannot be imple-

mented under full information by the plurality rule with the common values case we are
considering, i.e. L < R < 0:
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We classify the respective voting rules by the name of the social choice rule
they correspond to.

Outcome under a consequential rule θ under common values (β1<β2<0)

t(L,π)

t(R,π)

F(R/2)

F(L/2)

βL

t(L,π), t(R,π)

0

1

1

Θ(0)

Θ(1)

θ

β*

t(R,β*)

t(L,β*)P in R
Q in L

Outcome under a Q-trivial rule θ under common values (β1<β2<0)

t(L,π)

t(R,π)

F(R/2)

F(L/2)

βL

t(L,π), t(R,π)

0=β*

1

1

Θ(0)

Θ(1)

θ

t(R,β*) =t(L,β*)

Q in R
Q in L

Figure 5(a), 5(b)

Theorem 2 Under common values, any plurality rule � 2 (0; 1) satis�es full
information equivalence for any distribution of types.

Proof. In appendix.
According to the theorem, under common values, any voting rule aggregates

information. Since the vote shares in each state is between F (L2 ) and F
�
R
2

�
;

any trivial rule aggregates information. Essentially, the responsive types lying
between L

2 and
R
2 can never be in�uential with trivial rules. With P-trivial

rules, everyone is virtually sure that conditional on being pivotal, the state is
L: In other words, under such a rule, being pivotal at state L (when P receives
least votes) is in�nitely more probable than being pivotal at state R: Similarly,
with any Q-trivial rule, one has far higher chance of being pivotal in state R
(when P receives most votes) than in state L. We depict the outcome in the
limiting equilibrium with a Q-trivial rule in �gure 5(a). On the other hand,
for any consequential rule, the induced prior places positive probability on both
states in the limit, and the responsive set is in�uential. Since the responsive
types are aligned too, we have outcome P in state R and Q in state L almost
surely, and hence we have information aggregation. The limiting equilibrium
outcome with a consequential rule is depicted in �gure 5(b).

5 Non-common values

Recall that a non-common values situation occurs if L < 0 < R:We now look at
the strategies and equilibria in this situation and compare and contrast its prop-
erties with that of the benchmark common value model. Speci�cally, we show
how voting can fail to aggregate information in the presence of heterogeneous
groups with competing interests.
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We shall simplify the model a bit and consider a slightly special case with
L = �b and R = b > 0: Note that this is not too strong an assumption as we are
considering all possible distributions of voter ideal points. However, we need to
make an additional assumption on the informativeness of the signals. Assume
that :

Pr(ljL) = Pr(rjR) = q > 1

2
+
b

4

Call it Assumption I. The full support assumption is heneceforth referred
to as Assumption F. We denote a non-common value setting by the collection
(F (�); q; b) : To be able to compare and contrast this with the common value
setting, we denote similar lemmata, propositions and theorems in this sections
with numbers analogous to those assigned in Section 4.

5.1 Strategies and equilibria

A voter with signal �; (� 2 fl; rg) evaluates the state using the distribution
�(Sjpiv; �; �) and votes for P if and only if the expected value is non-negative.
So, the condition for voting for the policy after having received � is:

Ev(x; �) � 0) 2x(1� 2p�) � b

Hence, the voter votes for P i¤

1 � jxj � b

2(1� 2p�)
(13)

Using (13); we can determine the cut-o¤s:

x� =

(
min(1; b

2(1�2p�) ); 0 � p� < 1
2

max(�1; b
2(1�2p�) );

1
2 � p� � 1

(14)

Now, according to the above de�nitions of the cuto¤, we get:

�(x; �) =

8>><>>:
1 for x � x�
0 for x > x�

�
if 1

2 � p� � 1

1 for x � x�
0 for x < x�

�
if 0 � p� < 1

2

(15)

Or alternatively, combining (14) and (15); we de�ne the strategies in terms
of p� as follows:

�(x; �) =

8>>>>>><>>>>>>:

1 for x � b
2(1�2p�)

0 for x > b
2(1�2p�)

)
if p� � 1

2 +
b
4

0 for all x if p� 2
�
1
2 �

b
4 ;

1
2 +

b
4

�
1 for x � b

2(1�2p�)
0 for x < b

2(1�2p�)

)
if p� � 1

2 �
b
4

9>>>>>>=>>>>>>;
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Any equilibria must have strategies of the above form. Note, �rst, that
p� 2 [0; 1]) �1 � 1� 2p� � 1 and so x� 2 [�1;� b

2 ] [ [
b
2 ; 1]; and second, that

for all values of p�, �(x; �) = 0 in the range (� b
2 ;

b
2 ): Thus a voter with her bliss

point in this range always votes for the status quo irrespective of the signal.

Cutoffs in a private value setting

-b/2

b/2

xl xr

xl

xr

-1

1

1 βL

0

0

Figure 6

Thus, although all equilibria must have cut-o¤ strategies, the cut-o¤s are
not ordered. The cuto¤s as functions of the induced prior are plotted in �gure
6. From the �gure we see the cuto¤ functions have a discontinuity that leads
to a nonconvexity in the strategy space. When a cut-o¤ is in [�1;� b

2 ] (the
L-group); the types to the left of the cut-o¤ vote for P; and when the cut-o¤
lies in [ b2 ; 1] (the R-group), types to the right of the cut-o¤ vote for P. This
has several implications. First, the responsive types lying in these two groups
would vote in opposite ways based on the same information. Thus. one of the
groups is aligned with the society and the other is not. Second, the vote shares
in either state are not monotonic functions of the induced belief. Note that
the monotonicity in vote shares was crucial for information aggregation with
consequential rules in the common values case. Third, with unordered cut-o¤s,
the existence of a well-de�ned induced prior is no longer trivial, and we need the
informativeness assumption I on signals to guarantee that. Lastly, with a loss
of the ordering property, uniqueness of the responsive set is no longer assured.
This can give rise to a certain kind of equilibria that is not seen in the common
values case, as we shall see in Proposition 3.
Recall that the probability of an individual voting for the alternative P given

� is z�; i:e: z� �
R 1
�1 �(x; �)dF: In any equilibrium, we have:

z� =

8<: F (x�) if x� � � b
2

1� F (x�) if x� � b
2

0 otherwise
(16)

Although the de�nition of z� is di¤erent in the non-common values case, the
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vote shares in the two states in terms of z� are still given by equation (8):

t(L; �) = qzl + (1� q)zr
t(R; �) = (1� q)zl + qzr

Lemma 6 In any equilibrium in the non-common values setting, the expected
share of votes in any state lies strictly between 0 and 1; i:e: t(S; �) 2 (0; 1) for
S 2 fL;Rg:

Proof. See Appendix.
Lemma 6 guarantees that the induced prior is indeed always well-de�ned.

The expected share of people voting is less than unity because there is always
a set of types close enough to 0 (between � b

2 and
b
2 ) who vote for the Q. On

the other hand, the signal being informative enough (Assumption I) guarantees
that the cut-o¤s are su¢ ciently distant when the induced priors are not over-
whelmingly strong. In other words, if for one signal, no type votes for P, there
is an interior cut-o¤ for the other signal. This ensures positive expected share
for intermediate induced priors in each state. To see that from �gure 2, note
that the range of �L for which pl lies between

1
2 �

b
4 and

1
2 +

b
4 lies entirely to

the left of 12 ; while the range of �L for which pr lies between
1
2 �

b
4 and

1
2 +

b
4

lies entirely to the right of 12 : This guarantees that, for any induced prior, at
least one signal always leads to an interior cut-o¤.
Next, we show the existence of an equilibrium for the non-common value

game (F (�); q; b; n; �): This is the analogous result to Proposition 1. Although
the strategy set is non-convex and we cannot use a �xed point theorem to prove
existence the way we did in the common values setting, we can still show the
existence of a solution to equation (10); which is the equilibrium condition.

Proposition 1a In the non-common values case, there exists a voting equilib-
rium �� for every population size n and every voting rule � 2 (0; 1): The
equilibrium is characterized by cut-o¤ strategies x� given by the solution
of E(v(x�; s)jpiv; ��; �) = 0 for � = (l; r):

Proof. From Lemma 5, we know that t(S; �), is bounded by positive numbers
both above and below. This implies that for any n; the right hand side of
equation (10) is bounded above and below. However, as �L goes from 0 to
1; the left hand side continuously increases from 0 to 1: This guarantees the
existence of a solution �nL to the equation, and hence existence.
We can immediately identify one particular equilibrium for the case with a

distribution of types with pdf f(�) that is symmetric about 0:

Proposition 3 For any F (�) for which the pdf f(�) is symmetric about 0; there
is an equilibrium with x�l = � b

2(2q�1) and x
�
r = �x�l : This is an equilibrium for

all values of � 2 (0; 1) and n:

Proof. Consider the situation where everyone else plays x� = x��; and � 2
fl; rg: Note that x�l < � b

2 and x
�
r >

b
2 : So, z

�
l = F (x

�
l ) and z

�
r = 1 � F (x�r) =
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1�F (�x�l ) = F (x�l ) = z�l ; by symmetry of f(�): Therefore, t(L; �) = t(R; �) =
F (x�l ) for each n; which implies that �L = 1

2 for every � and n: Thus, the
signals are fully informative, and we have pl = q and pr = 1� q: These, coupled
with the assumption I, imply that the best response to x�� is indeed x

�
�; which

establishes the claim.
The proposition says that if the commonly held induced priors are uninfor-

mative, then su¢ ciently extreme types vote for the alternative P if and only if
they get favourable signals, and everyone else votes "uninformatively". There
are a few things to be noted about the above equilibrium. First, this is the only
"stable" equilibrium sequence in the sense that the strategies do not change
with the number of players. Second, in this equilibrium, the expected vote
share does not change with the state or the voting rule. If the required plurality
for the policy to pass is higher than F (x��) ; then the status quo always passes,
and if the required share is lower than F (x��) ; then the status quo always loses.
If � = F (x��), then we get either alternative (policy or status quo) with equal
probability. As we shall see later in section 5.3, this constitutes a failure of infor-
mation aggregation. We note here that we do not even require the full force of

symmetry of f(�) here. As long as we have F
�
� b
2(2q�1)

�
= 1�F

�
b

2(2q�1)

�
; we

shall have this equilibrium. Next, we examine how the vote shares will behave
when we do not necessarily have this symmetry.

Lemma 7 There exists some numbers �1 and �2 satisfying 0 < �1 < ��L <
�2 < 1 such that the expected vote share in both states t(S; �) strictly decreases
with the induced prior �L for �L < �1 and strictly increases with �L for �L >
�2: Also, for �L < �

�
L; t(R; �) > t(L; �); for �L > �

�
L; t(R; �) > t(L; �) and for

�L = �
�
L; t(R; �) = t(L; �):

Proof. See Appendix.
This Lemma says that if the commonly held induced prior probability that

one is pivotal at state L falls below a critical value ��L; :then the expected vote
share in favour of the policy in state L is higher than that in state R: If, on
the contrary, the belief is higher than ��L, then the alternative P is expected to
get a higher vote share in state R: However, given a state, the expected share
of the votes in favour of the policy alternative increases as one gets more and
more extreme beliefs, i.e. as one is surer and surer of the state in which one is
pivotal. As the voters get more unsure about the state, only the very extreme
types vote for the policy. Note that at ��L; we have F (xl) + F (xr) = 1; and
under a symmetric distribution of types, ��L =

1
2 ; and we have an equilibrium at

�L =
1
2 according to Proposition 3. The expected share of votes under the two

states in the non-common value situation (according to Lemma 7) as functions
of the induced prior are shown in �gure 7. To illustrate how the shares are
constructed according to (8); we also show the functions zl and zr (i.e. the
probability of voting for P on getting the signal l and r respectively) in the
�gure.
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5.2 Limiting equilibria in large elections

Given Proposition 1a, equilibrium exists for every n: Therefore, we use the
same notation as in Section 4.2. Since the cuto¤s are bounded within a com-
pact set, any sequence of xn� will have a convergent subsequence. We look at
such convergent subsequences xn� as n ! 1: We call an accumulation point of
such a sequence of cuto¤s as x0�; and the resulting equilibrium as �0: By the
continuity arguments , as xn� ! x0�; t(S; �

n); �nL; p
n
l ;and p

n
r all converge to

t(S; �0); �0L; p
0
l ; and p

0
r respectively along the subsequence. In this section we

examine which outcomes can be supported as the limiting values.
The necessary conditions for the limit, the limiting equilibrium condition as

identi�ed in equation (11) remains exactly the same. Lemma 3 goes through,
without any change. Lemma 4 goes through too, with the slight modi�cation
that now it is no longer true of all n; but it holds for large enough n: We state
this in Lemma 4a. If the induced prior converges to 0 or 1; both the cut-o¤s
are either in the L-group or in the R-group respectively, if the population size
is large enough. Locally, the structure of the equilibrium is no di¤erent from
that in the common values case.

Lemma 4a If �0L = 1 ; (i) 9 some m such that xnl > xnr for all n > m; and
(ii) xn� ! � b

2 from the left for � = l; r: Similarly, if �0L = 0 ; (i) 9 some
m1 such that xnl > x

n
r for all n > m1; and (ii) xn� ! b

2 from the right for
� = l; r

Proof. See Appendix.
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Proposition 2 now goes through in exactly the same form. The proof follows
from lemma 3 and Lemma 4a analogously. Thus, in the limiting equilibrium,
we must have the same relationship between the shares and the voting rule in
the common value case and the non-common value case. In other words, the
local properties of the limiting equilibria are the same. Next, we examine which
voting rules are supportable by a given value of the induced prior in the limit.
We look for an equivalent of Lemma 5.

Lemma 5a Under non-common values, (i)for �L 2 (0; ��L) [ (��L; 1); �(�L) is
a continous function ��(�L); with tL(�L) < �

�(�L) < tR(�L) for �L < �
�
L;

and tL(�L) > �
�(�L) > tR(�L) for �L > �

�
L; (ii)Otherwise, �(1) = f� :

� > F (� b
2 )g; �(0) = f� : � > 1� F (

b
2 )g and �(�

�
L) = f� : � 2 (0; 1)g:

Proof. In Appendix.

Θ(βL) under private values
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The correspondence �(�L) for the non-common values system, as inferred
in Lemma 5a, is depicted in �gure 8. Note that in this case, if we invert the
correspondence to get the supporting induced belief �L for each voting rule �;
we no longer get a function �(�) as de�ned in (12) in the common values case,
but rather a correspondence.
Figure 8 illustrates the relationship between the non-common values and the

common values models. If, in any equilibrium, the induced prior converges to a
value above ��L it must be that conditional on being pivotal, everyone considers
the state L to have a likelihood large enough that the R-group votes for Q in
each state en masse and although the extreme left types in the L-group vote for
P uninformatively; some moderate members in the L-group vote informatively.
The reason that these two groups behave di¤erently is quadratic preference: in
state L; the policy is perceived to be located so far to the extreme left for the
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R-group that the members of the group feel very strongly against it, while the
members of the L-group have a closer choice between the policy and the status
quo. This makes a di¤erence in the voting behaviour of the types in each group
when there is uncertainty about the state. Thus, if there is an equilibrium with
�0L > �

�
L; locally it will look like an equilibrium in a common value setting where

the L-group forms the set of independent types (with the more extreme types
within the group having a stronger preference for P while the more moderate
types have a bias towards Q) and the R-group is committed to Q: By extension
of this analogy, if there is an equilibrium with �0L = 1; it can be supported by
any voting rule above F (� b

2 ): The case for �
0
L < ��L is symmetric. Note that

we cannot rule out any voting rule at ��L; as evidenced from Proposition 3.
For a large set of voting rules, we can construct equilibria in two ways.

Based on whether the equilibrium limiting belief is above or below the cut-o¤
��L; the responsive set is expected to be in the L-group or R-group, and we
have two di¤erent equilibria. Since these two groups have opposite rankings
in either state, if the responsive sets are in�uential in both equilibria, we get
opposite outcomes in these two equilibria given a voting rule. If the responsive
set is in�uential in one and not in the other equilibrium, we still get di¤erent
outcomes in one state and the same outcome in the other.
Next we specify the outcomes for each voting rule. Note that the character-

ization result in the common values set up depends on the fact that for each �;
there is a unique induced prior �(�) that can support the voting rule in a lim-
iting equilibrium. This in turn hinges the monotonicity of expected vote shares
in the induced prior. In the non-common values setting, we no longer have
uniqueness of the supporting induced belief for a given voting rule, although we
have an existence result for every �. Thus, for any given �; it is di¢ cult to say
for certain which beliefs in the set of possible supporting beliefs can support an
equilibrium for all possible distributions of preferences.
However, we have already noted that, locally, these equilibria should have

the same properties as those in the common value setting. More speci�cally,
for �L > �2 both the cut-o¤s are to the left of � b

2 : For this interval of beliefs,
the cut-o¤ strategies are ordered, and therefore, the vote shares are monotonic
with beliefs in both states. The same is true for �L < �1: Exploiting this
similarity with the common values situation, we use Theorem 1 to get a partial
characterization theorem for equilibria under non-common values.

Theorem 3 For any b > 0 satisfying the non-common values condition, and for
any q satisfying assumption I; identify two numbers 0 < �1 = p

�1
l ( 12+

b
4 ) < �2 =

p�1r ( 12�
b
4 ) < 1. For any distribution of preferences F (�) satisfying assumption F,

given a voting rule �; there is a limiting equilibrium �0 with cut-o¤ strategies and
with the induced prior converging to �L if � 2 �(�L); and �L 2 [0; �1)[ (�2; 1].

Proof. In appendix.
We utilise the local nature of the limiting equilibrium to prove this theorem.

Given a non-common values set up (b; q; F (�)), considering any �L = �; we
look at the vote shares in both states in a neighbourhood of �: All we need for
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the existence of a limiting equilibrium at voting rule �(�) is the existence of a
sequence �nL that gives rise to the same shares, and converges to �: This only
needs to be true in a small neighbourhood of �: We construct an appropriate
common values set up such that for the same neighbourhood of �; the vote
share functions are exactly the same. We can always do that as long as the vote
shares are monotonic in the non-common values set-up. From Theorem 1, we
claim that � is supported in limiting equilibrium by �(�), which implies that
the equilibrium sequence we are looking for indeed exists.
Note that since the shares are not necessarily increasing or decreasing to-

gether in both states in the range [�1; �2]; we will not �nd an appropriate
common value set up in this range of beiefs. As a result, we cannot guarantee
the existence of an equilibrium for these beliefs for every distribution of voter
ideal points. The reason for this failure is the non-convexity of the strategy set.
Note that in this range of beliefs, while xl lies in [�1;� b

2 ]; xr lies in [
b
2 ; 1]: This,

in turn, translates to a break-up of the responsive set into two disjoint intervals.
So we cannot have the usual limiting equilibria. That does not mean, however,
that there cannot be any equilibria in this range. Proposition 3, for example,
demonstrates the existence of an equilibrium at ��L in this range for any voting
rule, for any symmetric distribution of preferences.

5.3 Voting rules and Information Aggregation

From Lemma 5a, we can deduce possible outcomes for each value of the induced
prior. All these outcomes occur almost surely, in the same way as in the com-
mon.values case. De�ne two intervals (0; ��L) and (�

�
L; 1) of �L as BR and BL

respectively.

� For �0L = 0; the only possible outcome is Q under both states. Here, the
responsive set is in R-group but is not in�uential.

� For �0L 2 BR ; the only possible outcome is Q under state L and P under
state R. Here, the responsive set is in R-group and is in�uential.

� For �0L = ��L ; the vote shares in each state is �xed, say at z, and the
outcome depends on whether the voting rule is greater or less than z:

� For �0L 2 BL ; the only possible outcome is P under state L and Q under
state R. Here, the responsive set is in L-group and is in�uential.

� For �0L = 0; the only possible outcome is Q under both states. Here, the
responsive set is in L-group but is not in�uential.

From here onwards, we assume with a slight loss of generality that F (� b
2 ) >

1 � F ( b2 )
16 : In other words, we assume that the L-group is the larger interest

group, and hence the group that is aligned with the society. Therefore,

16 If F (� b
2
) = 1�F ( b

2
);then there are no consequential rules. � = F (� b

2
) would implement

a random social choice rule under full information if the L-group is the larger interest group.
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� Any voting rule � < 1� F
�
b
2

�
is P-trivial

� Any voting rule 1�F
�
� b
2

�
� � < F

�
b
2

�
is a consequential rule17 , i.e. the

policy wins in state L and the status quo in state R.

� Any voting rule � � F
�
� b
2

�
is a Q-trivial rule.

For all Q-trivial rules, there are at least two limiting equilibria, one with the
induced prior at 0 and one with that at 1. Any possible equilibrium at ��L too
aggregates information. Figure 9(a) depicts the limiting equilibria for aQ-trivial
rule. For consequential rules, we need the responsive set to be in�uential and
in the L-group for information aggregation. For these rules however, there is
always one equilibrium with �0L = 0, the responsive set in the R-group, and is
not in�uential. Hence we get Q in both states. If for the consequential rule
� is larger than ��(�2); there is an equilibrium with �0L 2 BL ; information is
aggregated in this equilibrium. If � < ��(�2); this aggregating equilibrium may
or may not exist. There may be another equilibrium with �0L = ��L for some
distributions of preference (e.g. when f(�) is symmetric about 0): Here too, we
get Q in both states with a very high probability. Figure 9(b) depicts all the
possible limiting equilibria for a consequential rule.
For P-trivial rules greater than � = max(��(�1); �

�(�2)) we have exactly
two equilibria with opposite outcomes in the di¤erent states. The responsive
sets are in�uential here when information aggregation requires that they not be
so. So, for these voting rules we have no information-aggregating equilibrium.
Figure 9(c) shows the possible equilibria for one such rule. However, information
is aggregated almost surely by the very low P-trivial rules18 .
We summarise the inferences about information aggregation for di¤erent

voting rules in a non-common value setting in the next proposition. We use
the same de�nition of full information equivalence as in Section 4.3. We de-
�ne an equilibrium as non-information aggregating when in at least one state,
voting under incomplete information delivers an outcome di¤erent from the full-
information outcome with a probability arbitrarily close to 1:

Theorem 3a All (limiting) voting equilibria with Q-trivial voting rules satisfy
full information equivalence property. For consequential rules, there is one
or more equilibria that are non-information aggregating. For consequential
rules that are su¢ ciently large, there is always one equilibrium that is
satis�es full information equivalence. There is some P-trivial rule � such
that voting equilibria with all P-trivial rules larger than � are always
non-information aggregating.

17Note that the other consequential rule, i.e. fG(L) = Q;G(R) = Pg cannot be imple-
mented under full information by the plurality rule
18More spe�cically, the P-trivial voting rules that aggregate information for sure for any

distribution of preferences are those that are below the minimum share of votes received by P
for any belief, i.e. those rules that satisfy � < minfmin�L t(L; �);min�L t(L; �)g: Equilibrium
induced prior is ��L and equilibrium shares in both states are z > � in the limit.
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Proof. In appendix.
The above theorem establishes the bias in favour of the status quo. Unless

the required vote share for the policy to win is very low, competition between
two groups along with risk aversion ensures that the status quoi wins in at least
one state. Note that the only voting rules for which information ius aggregated
in any equilibrium are all Q-trivial rules and the very low P-trivial rules.

Possible equilibria with a Q-trivial rule
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Possible equilibria with a P-trivial rule
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6 Discussion and extension

The unidimensional spatial model brings into sharp relief the role of the common
value assumption. It shows how the common value condition ensures that the
responsive set voters always swing the election in the direction of the majority
preference, which is the full-information outcome. Under non-common values,
we have two competing groups with opposed preferences, and it is possible
that swing voters can belong to the minority group. Then, depending on the
equilibrium, we may have a sure outcome di¤erent from the full information
outcome. We also show that this competition e¤ect dominates the e¢ ciency-
enhancing e¤ect of increased precision of signals. In other words, the same
results prevail even if the signals are almost fully informative.
Another issue that the non-common values framework demonstrates is how

exactly information aggregation can fail in presence of competing interests. We
show that such failure can happen in several ways: the misaligned set of types
can be in�uential, the responsive set of types may be in�uential when they
should not be, or there can be two disjoint sets of responsive voters under any
rule, making the swing voters behave in two di¤erent ways.
The non-common values model also presents the problem of multiple equilib-

ria, with di¤erent equilibria giving completely di¤erent results. The multiplicity
issue makes the role of beliefs crucial. The model endogenises the process of for-
mation of beliefs about which types are going to be responsive to information.
We show that information aggregation can fail because of "wrong" beliefs. For
example, while a consequential rule needs the responsive set to be in the larger
interest group, voters can believe that almost everyone is voting uninformatively,
pretending that the state is known. However, a more serious failure is possible
with everyone believing that the responsive set is in the minority interest group
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and is in�uential, leading to "wrong" outcome in both states. This requires us
to look at a multidimensional policy space.
The framework discussed in the paper also throws light on a problem that is

slightly di¤erent from the information aggregation issue. From the point of view
of implementation one could look for a voting rule which would deliver two pre-
speci�ed outcomes in two states with a very high probability in all equilibria.
For example, we might look for a voting rule that delivers the majority preferred
outcome in both states. We show here that such a rule does not exist unless the
pre-speci�ed outcome is the same in both states.
Lastly, one might wonder how empirically relevant the non-common values

condition is. In the unidimensional model, unless the uncertainty is somewhat
extreme, we do not encounter the non-common value situation. For example,
in most elections, it is known whether the challenger is to the left or right
of the incumbent. However, in a multidimensional policy space, the common
value assumption is much harder to justify. We claim that our framework can
readily handle the extension to a multidimensional policy space, and the main
conclusions carry over. In this paper, we only provide the intuition for why this
is so.

6.1 Multidimensional extension

R

Q

L

HL

HR

P(L)

P(R)

Figure 10: Multidimensional Policy space

Think of the policy space as a many-dimensional cube, with each dimension
being [�1; 1]: Suppose that the status quo Q is located at the origin, and the
policy alternative P is located at two points L and R under states L and R
respectively. Given a state S, a hyperplane HS separates the cube into two
parts, one containing the origin that supports Q and the other that supports P
under full information. Just as described in Section 3, we can de�ne as P(S) the
set of types that support P in state S: The common value condition is exactly
the same - that P(L) be included in P(R) or vice versa. Note that this is harder
to satisfy. In particular, for a given location L; as the size of the cube increases,
the set of locations R for which P(S) exhibits common values keeps shrinking
and approches a ray connecting L with the origin.
If the hyperplanes HL and HR are parallel, we are either in a common value

situation or in a situation where there are two disjoint, completely opposed in-
terest groups, much like the unidimensional non-common value situation. Oth-

34



erwise, we typically have four sets: two of opposed independent types, one type
committed to P under both states and one type committed to Q under both
states. Suppose the hyperplanes meet at a straight line L: Under uncertainty,
given a signal �; the "cuto¤s" that separate those who vote for P from those
who vote Q are hyperplanes X�. As the induced prior changes from 0 to 1; X�
rotates about L, starting at HR; and ending at HL: The strategy of a voter can
also be described by the angle that each of the cuto¤ hyperplanes makes with
the line L. This is a compact set, and therefore, an equilibrium exists. If the
hyperplanes HL and HR are parallel, then the cuto¤s X� do not rotate, but
translate from HR to HL:Thus we can trace vote shares tL and tR in the two
states as a function of the induced prior �L: Once we have done that, the rest
of the analysis is exactly like the way we did in the unidimensional model.
In a common value setting, the vote shares in both states are monotonic-

functions of the induced prior, with the derivative having the same sign in both
states. Thus all our results for this case hold. However, in the non-common
value case, we do not necessarily have U-shaped share functions. The equilibria
depend on the particular shape of the distribution of preferences. This makes
generalised equilibrium characteristics and aggregation (or non-aggregation) re-
sults di¢ cult to get in a multidimensional set-up. However, given a distribution
of preferences we can use the limiting equilibirium conditions developed in this
paper to identify all the possible voting equilibria for that particular case and
make judgements about information aggregation properties of each voting rule.
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8 Appendix

8.1 Proof of Remark 1

Proof. Let us �rst look at the situation with 0 < L < R: Here, P(R) = fx :
x � R

2 g � fx : x � L
2 g = P(L): Similarly, if we have L < R < 0; P(L) =

fx : x � L
2 g � fx : x � R

2 g = P(R): On the other hand, if L < 0 < R;

P(L) = fx : x � L
2 g and P(R) = fx : x �

R
2 g; thus P(L) \ P(R) = �:

8.2 Proof of Lemma 3

By hypothesis of the lemma, lim
n!1

�nL
1��nL

=
�0L
1��0L

is a �nite, positive number.

Now suppose 9 some " > 0 such that �n > 1 + " for all n. Then �nL
1��nL

=

(�n)
n
> (1 + ")

n !1 as n!1 which is a contradiction. On the other hand,
suppose 9 some " 2 (0; 1) such that �n < 1� " for all n. Then �nL

1��nL
= (�n)

n
<

(1� ")n ! 0 as n!1; which is again a contradiction.

8.3 Proof of Lemma 5

Proof. For part (i) of the lemma, since �L 2 (0; 1); Proposition 2 holds.
Suppose 0 < y < x < 1; and f(z; �) = z�(1 � z)1��; with both z and �
lying in (0; 1) : We show that 9! ��s:t: f(x; ��) = f(y; ��); �� is increasing in
x;and x < �� < y: Note that f(x; 0) = 1�x < 1�y = f(y; 0) and f(x; 1) = x >
y = f(y; 1): Continuity of f in � establishes the existence of ��. For uniqueness,
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note that �� =
log 1�y

1�x

log
x(1�y)
y(1�x)

: Also, d�
�

dx =
�

1
1�x

��
log x

y

(log x(1�y)
y(1�x) )

2

�
; which implies that

d��

dx > 0 (* x < 1 and x
y > 1): For the second part of the lemma, note that

@h
@z =

�
z �

1��
1�z ; and

@2h
@z2 = �

�
z2 �

1��
(1�z)2 < 0: So f(x; �

0) is single-peaked with

the peak at x = �0: Since x > y; now f(x; ��) = f(y; ��) ) x > �� > y: Since
0 < F (L2 ) < tL(�L) < tR(�L) < F (

R
2 ) < 1; taking tR(�L) = x and tL(�L) = y

and noting that tR(�L) is a strictly increasing function of �L is su¢ cient for the
proof of (i):
For part (ii); note that for any n; by Remark 2, we have xnl < xnr : Since

zn� = F (xn�) ; we have z
n
r > znl > 0. De�ne, for any n; hn = znr � znl > 0:

Substituting, we have: t(R; �n) = znl + qh
n; and t(L; �n) = znl + (1 � q)hn:

Therefore:

1� �nL
�nL

=

"
(t(R; �n))

�
(1� t(R; �n))1��

(t(L; �n))
�
(1� t(L; �n))1��

#n
=

"
(znl + qh

n)
�
(1� znl � qhn)

1��

(znl + (1� q)hn)
�
(1� znl � (1� q)hn)

1��

#n
If �0L = 0 (or 1) ; the left hand side of the above equation goes to in�nity (or 0).
This requires the term in the bracket large enough n to be greater (or less) than
unity, or its logarithm to be positive (or negative). We can write,

log
(znl + qh

n)
�
(1� znl � qhn)

1��

(znl + (1� q)hn)
�
(1� znl � (1� q)hn)

1�� > 0, � > �(znl ; h
n) 8n

where the function �(znl ; h
n) is de�ned as:

�(znl ; h
n) �

� log
h

1�znl �qh
n

1�znl �(1�q)hn

i
log

�
(znl +qhn)(1�znl �(1�q)hn)
(znl +(1�q)hn)(1�znl �qhn)

�
By Lemma 4, we know that for any sequence, with �0L 2 f0; 1g; hn ! 0+.
Hence,

lim
hn!0+; znl =t

�(znl ; h
n) = lim

hn!0+; znl =t

0BB@ � log
h

1�znl �qh
n

1�znl �(1�q)hn

i
log

�
(znl +qhn)(1�znl �(1�q)hn)
(znl +(1�q)hn)(1�znl �qhn)

�
1CCA = lim

znl =t
zn� = t

By Lemma 4, if �0L = 0; t = F (
R
2 ); and � > �(z

n
l ; h

n) 8n) � > limhn!0+; znl =t
�(znl ; h

n) =

F (R2 ): Similarly, if �
0
L = 1; t = F (

L
2 ); and � < �(z

n
l ; h

n) 8n) � < limhn!0+; znl =t
�(znl ; h

n) =

F (L2 ):

8.4 Proof of Theorem 1

Here we only show that the only accumulation point is also the limit. For this,
it is enough to show that given � 2 �

�
�0L
�
; for any neighbourhood � of �0L;
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there is some large enough N; such that �nL in the equilibrium sequence must
lie within the nighbourhood for all values of n > N:
First consider �0L 2 (0; 1):Suppose the accumulation point is not the limit,

and there is an in�nite equilibrium subsequence �mL of the sequence �nL; such
that for any � > 0; there is some M so that for all values of m larger than M;
�mL lies outside

�
�0L � �; �0L + �

�
: Since even this subsequence must have an

accumulation point, it must be either 0 or 1: But, by the second part of Lemma
5, since the limiting equilibrium condition must hold for accumulation points
too, there cannot be an accumulation point for � in �

�
�0L
�
at 0 or 1: Hence

there is no such in�nite subsequence.
The proof for �0L 2 f0; 1g is similar.

8.5 Proof of Theorem 2

Proof. Theorem 1 guarantees existence of limiting equilibrium for all �:
Consider � < F

�
L
2

�
: By Lemma 2, t(S; �n) > F

�
L
2

�
8n for S = L;R: Let

� = F
�
L
2

�
� �: By Law of large numbers, given � we can �nd N such that

actual share of votes �(S,�n; �) under rule � in any state S is greater than
F
�
L
2

�
� � > � for any n > N with a probability larger than 1� �: Thus, under

both states, P wins with a probability larger than 1� �:
Since t(S; �n) < F

�
R
2

�
8n8S; by the same logic as above, any Q-trivial rule

aggregates information too.
Consider a consequential rule �; for which the only equilibrium induced prior

in the limit is ��1L (�): By Lemma 5, tL
�
��1L (�)

�
< � < tR

�
��1L (�)

�
:

Also, for any consequential rule �; we can �nd a positive number � such that
F
�
L
2

�
+ � < � < F

�
R
2

�
� �: By Lemma 5, we can �nd a similar number � > 0

such that � < ��1L (�) < 1 � �: Now, by Lemma 1 and Lemma 2, we can �nd
some � > 0 such that tR

�
��1L (�)

�
� tL

�
��1L (�)

�
> �: Now, from Proposition 2,

we can derive � from tR
�
��1L (�)

�
and tL

�
��1L (�)

�
and can �nd another number

� > 0 such that tL
�
��1L (�)

�
+� < � < tR

�
��1L (�)

�
��: Since tR; tL and �� are

all continuous functions of �L; we can �nd a number � > 0 such that for a range�
��1L (�)� �; ��1L (�) + �

�
around ��1L (�); tL � �

2 < � < tR +
�
2 : Given �;we can

�nd M1 such that �
n
L 2

�
��1L (�)� �; ��1L (�) + �

�
in any �n whenever n > M1:

Now consider � = min
�
(tR
�
��1L (�)� �

�
+ �

2 � �; � � tL(�
�1
L (�) + �)� �

2

�
: By

Law of large numbers, given � we can �nd M2 such that actual share of votes
under rule � under state R; �(R,�n; �) is less than tR

�
��1L (�)� �

�
+ �

2 � � < �
for any n > M2 and the actual share under state L; �(L,�n; �) is greater than
tL
�
��1L (�) + �

�
+ �

2 �� > � for any n > M2 with a probability larger than 1� �:
Set N = max(M1;M2) and we are done.

8.6 Proof of Lemma 6

Proof. If x� � � b
2 ; z� = F (x�) � F (� b

2 ) since F (�) is nondecreasing. If on
the other hand, x� � b

2 ; z� = 1�F (x�) � 1�F (
b
2 ): Thus, for � 2 fl; rg; z� �
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max
�
F (� b

2 ); 1� F (
b
2 )
�
:Therefore,

t(S; �) � qmax(zl; zr)+(1�q)max(zl; zr) = max(zl; zr) � max
�
F (� b

2
); 1� F ( b

2
)

�
< 1

The last inequality in the chain is guaranteed by assumption F. To show t(S; �) >
0, it is su¢ cient to show that both zl and zr cannot be 0 simultaneously. From
assumption F and the de�nition of x�, z� = 0 ) p� 2 [ 12 �

b
4 ;

1
2 +

b
4 ]: We

show that both pl and pr cannot be simultaneouly in this range. We start
by noting that pl and pr increase in tandem, since both increase with �L:
When pl = q; �L = 1

2 : So, pr = 1 � q: By the above positive relationship,
pl < q ) pr < 1 � q and pr > 1 � q ) pl > q: Note that by Assumption I,
q > 1

2 +
b
4 and 1� q <

1
2 �

b
4 :Hence,

pl 2 [
1

2
� b
4
;
1

2
+
b

4
]) pr < 1�q <

1

2
� b
4
and pr 2 [

1

2
� b
4
;
1

2
+
b

4
]) pl > q >

1

2
+
b

4

8.7 Proof of Lemma 7

Proof. At �L = 0; xl = xr =
b
2 ) zl = zr = 1 � F

�
b
2

�
: Now, consider the

interval of �L such that pl lies in (0;
1
2+

b
4 ]: In this interval, xl 2 (

b
2 ; 1][f�1g )

zl = 1 � F (xl): Also, in this interval of �L; pr < 1
2 �

b
4 ) xr 2 ( b2 ; 1) ) zr =

1 � F (xr) > 0; by assumptions F and I: For values of �L such that xl � 1;
xr < xl ) zl = 1 � F (xl) < 1 � F (xr) = zr; again by assumption F. For
values of �L such that xl = �1; zl = 1 � F (�1) = 0 < zr: Thus, over this
entire interval zr > zl. Note also that over this set of values of �L; zr is strictly
decreasing, while zl �rst strictly decreases and then stays at 0: For �L such that
pl =

1
2 +

b
4 ; zr = zr; say. In the same way, consider the interval of �L such that

pr lies in [ 12 �
b
4 ; 1]: Here, by the same token, zr < zl except for �L = 1 where

zl = zr = F
�
� b
2

�
: zl increases strictly from zl > 0 to F

�
� b
2

�
over this interval,

while zr is initially 0 and then strictly increases. Noting that �1 = p
�1
l ( 12 +

b
4 )

and �2 = p
�1
r ( 12 �

b
4 ) su¢ ces for the �rst part of the proof.

Now, consider the remaining interval of �L which is
�
p�1l ( 12 +

b
4 ); p

�1
r ( 12 �

b
4 )
�
:

That this is a valid nonempty interval is guaranteed by assumption I. In this
interval, xr 2 ( b2 ; 1], and xr increases with �L: Thus, zr = 1 � F (xr) is a
strictly falling continuous function, going from zr > 0 to 0 over this interval.
Similarly, zl strictly and continuously increases from 0 to zl > 0: Therefore,
there exists a unique ��L in this interval where zl = zr: This implies that at
��L; t(L; �) = t(R; �): For all �L < ��L; zl < zr ) t(L; �) = qzl + (1 � q)zr <
qzr + (1 � q)zl = t(R; �): Similarly, for �L > ��L; where zl > zr; we have
t(L; �) > t(R; �):

8.8 Proof of Lemma 4a

Proof. We prove the result for the case �0L = 1, the other one follows symmet-
rically. First we look at how pl

pr
changes with �L:
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pl
pr
=

�
q

1� q

��
q�R + (1� q)�L
q�L + (1� q)�R

�
=

�
q

1� q

��
q + (1� q)�
q�+ (1� q)

�
;

where � = �L
�R
: Therefore, we have:

d

d�L

�
pl
pr

�
=
d�

d�L
� d
d�

�
pl
pr

�
=

1

(1� �L)
2

�
q

1� q

�
(1� q)2 � q2

(q�+ (1� q))2
< 0

At �L = 1; we have pl = pr = 1: Thus, for �L 2 [0; 1); we always have pl > pr
by the above strictly monotonic relationship. Since �0L = 1 ) pnr ! 1; by
continuity we can �nd some m large enough such that for all n > m; we have
pnr >

1
2 +

b
4 : Since p

n
l > pnr ; for all n > m; pnl >

1
2 +

b
4 too. Since we always

have �nL < 1; p
n
� < 1: Therefore, for all n > m; both x

n
l and x

n
r lie in the open

interval (�1;� b
2 ): Also, p

n
l > pnr ) xnl > xnr for all n > m: This proves part

(i) : Part (ii) follows trivially from pn� ! 1:

8.9 Proof of Lemma 5a

Proof. Part (i) follows from Lemma 5 and Lemma 7.
For part (ii), we �rst consider the case with �0L = 1: By Lemma 4a, we know

that for any such sequence, xn� !
�
� b
2

��
for � = fl; rg; and xnl > xnr for all

large enough n: For large enough n; pn� >
1
2 +

b
4 ) zn� = F (x

n
�)) znl > z

n
r > 0

and zn� ! F (� b
2 ): De�ne h

n = znl �znr ! 0+: Substituting, we have: t(L; �n) =
znr + qh

n; and t(R; �n) = znr + (1� q)hn: Therefore:

�nL
1� �nL

=

"
(t(L; �n))

�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

#n
=

"
(znr + qh

n)
�
(1� znr � qhn)

1��

(znr + (1� q)hn)
�
(1� znr � (1� q)hn)

1��

#n
If �0L = 1; the left hand side of the above equation goes to in�nity. This requires
the term in the bracket large enough n to be greater than unity, or its logarithm
to be positive .
For the case with �0L = 0; we again use Lemma 4a which tells us that

xn� !
�
b
2

�+
for � = fl; rg; and xnl > xnr for all large enough n:We also know

that for large enough n; pn� >
1
2 �

b
4 ) zn� = 1 � F (xn�) ) znr > znl > 0

and zn� ! 1 � F (� b
2 ): De�ne h

n = znr � znl ! 0+: Substituting, we have:
t(R; �n) = znr + qh

n; and t(L; �n) = znr + (1� q)hn: Therefore:

�nL
1� �nL

=

"
(t(L; �n))

�
(1� t(L; �n))1��

(t(R; �n))
�
(1� t(R; �n))1��

#n
=

"
(znr + qh

n)
�
(1� znr � qhn)

1��

(znr + (1� q)hn)
�
(1� znr � (1� q)hn)

1��

#�n
Since the LHS goes to 0 in the limit, the term within the bracket in the RHS
has to be greater than 1: Thus we have the exact same situation as in the proof
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of Lemma 5, and therefore, we need.

log
(znr + qh

n)
�
(1� znr � qhn)

1��

(znr + (1� q)hn)
�
(1� znr � (1� q)hn)

1�� > 0, � > �(znr ; h
n) 8n

where the function �(znl ; h
n) is de�ned as in the proof of lemma 5.

By Lemma 4, if �0L = 0; t = 1 � F ( b2 ); and � > �(znl ; h
n) 8n ) � >

limhn!0+; znl =t
�(znl ; h

n) = 1 � F ( b2 ): Similarly, if �
0
L = 1; t = F (� b

2 ); and
� > F (� b

2 ):

For �0L = �
�
L; from Proposition 3, no value of � can be ruled out.

8.10 Proof of Theorem 3

This is a proof by construction. Consider any non-common value setting (F (�); q; b):
We show that every � 2 [0; �1)[(�2; 1] can be supported by any � 2 �(�) for any
F (�) satisfying full support. The proof strategy is to �nd a non-common value
setting (F c(�); qc; L;R) with the same �(�); tL(�); and tR(�) in the neighbour-
hood of � and use Theorem 1 to guarantee the existence of a limiting sequence
of equilibria converging to �:
Consider �rst some �0 2 (�2; 1): By Lemma 4a, tL(�) and tR(�) are increas-

ing functions, and tL(�) >.tR(�): By assumption F, they are di¤erentiable too.
By Proposition 2,

��(�0) =
log 1�tR(�

0)
1�tL(�0)

log tL(�
0)(1�tR(�0))

tR(�0)(1�tL(�0))

Call ��(�0) simply �p: Consider some � such that
�
�0 � �; �0 + �

�
2 (�2; 1):

Consider any qc 2 ( 12 ; 1) and de�ne the functions GL(�) and GR(�) over the
domain

�
�0 � �; �0 + �

�
:

GL(�) � qctL(�) + (1� qc)tR(�)
2qc � 1

GR(�) � qctR(�) + (1� qc)tL(�)
2qc � 1

We need GS(�), S = L;R to satisfy several properties over the domain, and
choose qc accordingly.

1. GS(�) > 0) qc > max
[�0��; �0+�]

�
tL

tL+tR
; tR
tL+tR

�
=M1:

2. GS(�) < 1 ) qc > max
[�0��; �0+�]

�
1�tL

(1�tL)+(1�tR) ;
1�tR

(1�tL)+(1�tR)

�
= M2 2

( 12 ; 1)

3. dGS(�)
d� > 0 ) qc > max

[�0��; �0+�]

�
�
tL

�
tL+

�
tR
;

�
tR

�
tL+

�
tR

�
= M3 2 ( 12 ; 1); where

�
tS =

dtS(�)
d� > 0:
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4. Also, de�ne M4 =
1

1+

r
(�0��)(1��0��)
(�0+�)(1��0+�)

< 1:

Choose qc 2 (maxfM1;M2;M3;M4g; 1). Consider any common value setting
0 < L < R < 1: From Lemma 1, given �; L; R and qc we can �nd the cut-o¤s
x(pl(�)) and x(pr(�)): We claim that qc > M4 ) pl(�

0 � �) > pr(�0 + �):The
proof follows from simple algebra, given that

pl(�
0��) = qc(�0 � �)

qc(�0 � �) + (1� qc)(1� �0 + �)
>

(1� qc) (�0 + �)
qc(1� �0 � �) + (1� qc)(�0 + �)

= pr(�
0+�)

This implies that
�
x(pl(�

0 � �)); x(pl(�0 + �))
�
and

�
x(pr(�

0 � �)); x(pr(�0 + �))
�

are disjoint sets. Now de�ne functionsGS(�) over the domain � 2
�
�0 � �; �0 + �

�
as:

GL(�) � G(x(pl(�)) and GR(�) � G(x(pr(�))

Finally, de�ne the preference distribution F c(�) as any distribution with
F c(�) = 1�G(�) for x 2

�
x(pl(�

0 � �)); x(pl(�0 + �))
�
[
�
x(pr(�

0 � �)); x(pr(�0 + �))
�
;

and any other legitimate value elsewhere. By choice , qc > M1 and qc > M2

guarantee that F c(�) is a legitimate cumulative distribution function satisfying
full support over the range. Since p� increases with �; x� decreases with p� ; and
F c(�) increases with x�; G(�) must be increasing with �; which is satis�ed by
qc > M3:
The vote shares tCL (�) and t

C
R(�) in favour of P in the common value setting

are given by:

tCL (�) = qc(1� F c(x(pl(�)) + (1� qc) (1� F c(x(pr(�))
tCR(�) = qc(1� F c(x(pr(�)) + (1� qc) (1� F c(x(pl(�))

In the domain � 2
�
�0 � �; �0 + �

�
; we have:

tCL (�) = qGL(�) + (1� qc)GR(�) = tL(�)
tCR(�) = qGR(�) + (1� qc)GL(�) = tR(�)

By Theorem 1, for a voting rule ��(�0); there exists a sequence of equi-
libria �n that converges to �0; and the induced prior beliefs converge to �0:
Since (F c(�); qc; L;R) is a common values setting that has the same values of
the functions tL(�) and tR(�) in the chosen domain as our non-common value
setting, ��(�0) = �c. Thus, for �c; there exists a series �n which satis�es the
equilibrium condition lying entirely in the domain for all values of n greater
than some N . Hence, in the non-common value setting too, for ��(�0); we can
claim the existence of a sequence that satis�es the equilibrium condition (10)
for all values larger of n than N; that converges to �0:
Next, consider the case �0 = 1:
Consider any � 2 �(1) and the non-common value setting (F (�); b; q) :
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We claim that there exists a sequence of equilibria �n with �n satisfying the
equilibrium condition with �n ! 1: We prove our claim by contradiction.
Suppose the claim is not true and there is some � < 1 and some N such

that for all n > N; there is no �n satisfying the equilibrium condition in the
non-common value setting (F (�); b; q) with voting rule � 2 �(1):
Consider the range � 2 (�; �) with � > max(�; �2); and � < � < 1. Construct

a common value setting (F c(�); qc; L;R) that has the same values of the functions
tL(�L) and tR(�L) in this range, and has G(

L
2 ) � F (�

b
2 ). Since � > F (�

b
2 ) in

the non-common value setting � 2 �(1) in the common value setting too. By
Theorem 1, there is an equilibrium sequence �nc with �

n
c ! 1 in (F c(�); qc; L;R):

Therefore, the equilibrium condition is satis�ed in the non-common value setting
(F (�); b; q) for all those values of n for which �nc lies in (�; �): Now, de�ne:

K(�) = max
n
f�nc : � < �nc < �g

Note that since �nc ! 1; K(�) increases arbitrarily as � gets closer and closer
to 1:If K(�) > N; we are done showing the contradiction in our supposition. If
K(�) � N; let � increase, and we can always �nd. some �0 such that K(�0) > N:
If �0 < �1; consider a common value case with �1 < L < R < 0; and the

construction proceeds the same way.

8.11 Proof of Theorem 3a

Proof. From Lemma 5a, the only possible equilibria with Q-trivial voting rules,
i.e. � � F

�
� b
2

�
involve �0L 2 f0; ��L; 1g : If �0L = 0; then t(L; �0) = t(R; �0) =

F
�
� b
2

�
� �: Similarly, if �0L = 1; then t(L; �0) = t(R; �0) = 1 � F

�
b
2

�
<

F
�
� b
2

�
� �: If on the other hand, �0L = ��L;then again, t(L; �

0) = t(R; �0) =

z < 1 � F
�
b
2

�
< F

�
� b
2

�
� �:In all cases therefore, the outcome is Q in both

states with an arbitrarily high probability. This proves the �rst part of the
proposition.
For the second part, note that for a consequential rule, there is always one

equilibrium at �0L = 0 and for those greater than �
�(�2);, there is another one

at �0L 2 (0; �1):The second one aggregates information while the �rst leads to
Q in either state almost surely. The third possibility, �0L = �

�
L also leads to Q

in either state almost surely.
For the third part, consider any � 2

�
�; 1� F

�
b
2

��
: It can support exactly

three values of beliefs, one lying in the range (0; ��L); one in (�
�
L; 1) and of course,

the third value being ��L: In the �rst two cases. we get di¤erent outcomes in
di¤erent states (namely, for �0L < ��L; the policy wins in state R and state R
alone, while for �0L > ��L; the policy wins only in state L). If the equilibrium
is at ��L; then in either state, t(L; �

0) = t(R; �0) = z < �: Thus, the status quo
wins in both states. This proves the third part.
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