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Abstract

We analyze a version of Akerlof�s market for lemons in which a sequence of buyers make
o¤ers to a long-lived seller endowed with a single unit for sale. We consider both the case
in which previous o¤ers are observable and the case in which they are not. When o¤ers are
observable, trade may only occur in the �rst period, so that the resulting ine¢ ciency may
be worse than in the static model. In the unobservable case, trade occurs with probability
one eventually.

1 Introduction

In this paper, we examine the relationship between the outcome of trade with asymmetric in-
formation and the observability of past o¤ers. Search models typically assume that successive
potential buyers never learn anything over time about the o¤ering of the seller, so that the dis-
tribution of o¤ers faced by the seller is stationary. On the other hand, bargaining models usually
assume that potential buyers observe the entire public history, including past o¤ers that were
rejected. This a¤ects the buyers�beliefs about the quality of the good that is being put on sale,
and therefore the o¤ers that are submitted.
While most markets characterized by adverse selection fall between those two extremes, they

widely vary in this respect. In the housing market, potential buyers typically know the time
on market, as well as the list price that is quoted by the seller. Buyers of second-hand cars do
not usually have any reliable information regarding what o¤ers and how many o¤ers have been
turned down by the seller. Employers may obtain veri�able information about the duration of
unemployment of potential employees, but much less evidence regarding o¤ers they may have
rejected in the meantime. In yet other markets, it is up to the seller to decide ex ante whether
his decisions will be public or private.
We consider two variants of Akerlof�s market for lemons. In both variants, a su¢ ciently

patient single seller with private information faces a sequence of (short-run) potential buyers who
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submit o¤ers. Buyers know how long the item has been put on sale. In the �rst variant, buyers
also know the o¤ers that were rejected, while in the second those o¤ers remain unobservable. All
that is known by a potential buyer is that all the previous o¤ers must have been turned down.
Results contrast sharply. In the case of public o¤ers, only the �rst potential buyer submits a

serious o¤er. That is, only the �rst o¤er is accepted with positive probability. In case this o¤er is
turned down by the seller, as does occur if his valuation is high enough, all later o¤ers are losing
o¤ers: from that point on, the seller rejects all equilibrium o¤ers. Therefore, merely allowing for
trade over time does not solve the adverse selection problem. In fact, it may worsen it. Not so,
however, in the case of private o¤ers. In every equilibrium, trade occurs with probability one
eventually, and there always exist equilibria in which trade occurs in �nite time.
This striking contrast can be understood as follows. Consider the case of public o¤ers.

Suppose that an out-of-equilibrium high o¤er is submitted. Because turning it down is interpreted
as very favorable news by the next buyer, whose o¤er following such a deviation will be serious,
the seller accepts this high o¤er only if his valuation is especially low. That is, the perspective
of selling at a higher price tomorrow exacerbates the adverse selection problem today, making
the high o¤er unattractive to the seller. While this intuition helps explain why it is equilibrium
behavior for all potential buyers but the �rst one to submit losing o¤ers, it is worth pointing out
that we show that this is the unique equilibrium.
Consider next the case of private o¤ers. For the sake of contradiction, suppose that from

some point on, all equilibrium o¤ers are losing. Because o¤ers are unobservable, the behavior
of future bidders is not a¤ected by a deviation by the current bidder. Therefore, a potential
buyer would strictly prefer an o¤er slightly below his worst-case valuation for the good to his
equilibrium o¤er, as the former always implies a strictly positive pro�t conditional on trade, and
it is necessarily accepted by the seller with some positive probability.
In terms of actual payo¤s, comparisons are less clear-cut. For instance, the dynamic game

with public o¤ers may actually be more or less e¢ cient than the static game, depending on
the parameters. As we argue, the low probability of trade in the dynamic model is driven by
competition among potential buyers. Somewhat paradoxically, if there is a unique, long-lived and
equally patient potential buyer, the good is traded with probability one in the unique equilibrium
outcome. To shed more light on the relationship between the static game and the in�nite-horizon
game, we provide a detailed analysis of the game with �nite, but arbitrary, horizon.
While it is possible to explicitly solve for equilibrium strategies in the case of private o¤ers,

the case of public o¤ers is more complex, and we provide only a partial characterization of the
equilibrium strategies. We show by means of speci�c example that equilibrium multiplicity can
occur, and we prove that, quite generally, all potential buyers but the �rst and the last ones
must use mixed strategies. Explicit solutions are available in some special cases: (i) the case of
two periods, (ii) the case of two values, (iii) some particular ranges of parameters.
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1.1 Related Literature

Our contribution is related to three strands of literature. First, several authors have already
considered dynamic versions of Akerlof�s model. Second, our model shares many features with
the bargaining literature. Finally, a pair of papers have investigated the di¤erence between public
and private o¤ers in the framework of Spence�s educational signaling model.
Janssen and Roy (2002) consider a dynamic, competitive durable good setting, with a �xed

set of sellers. They prove that all trade for all qualities of the good occurs in �nite time. While
there are several inessential di¤erences between their model and ours, the critical di¤erence lies in
the market mechanism. In their model, the price in every period must clear the market. That is,
by de�nition, the market price must be at least as large as the good�s expected value to the buyer
conditional on trade, with equality if trade occurs with positive probability (this is condition (ii)
of their equilibrium de�nition).1 This expected value is derived from the equilibrium strategies
when such trade occurs with positive probability, and is assumed to be at least as large as the
lowest unsold value even when no trade occurs in a given period (this is condition (iv) of their
de�nition). This immediately implies that the price exceeds the valuation to the lowest quality
seller, so that trade must occur eventually, if not in a given period. Also related are Taylor
(1999), Hendel and Lizzeri (1999), and Hendel, Lizzeri and Siniscalchi (2005).
In the bargaining literature, the closest paper is Evans (1989), which shows that, with corre-

lated values, the bargaining may result in an impasse when the buyer is too impatient relative
to the seller. Our assumption of short-run buyers is less general, since it implies that the buyer
is actually myopic.2 However, Evans considers the case of binary values. Moreover, there is no
gain from trade in case of a low value. In our set-up, Proposition 1 holds instead quite generally,
and trade is always strictly e¢ cient. In his appendix, Vincent (1989) provides another example
of equilibrium in which bargaining breaks down. As in Evans, there are only two possible values
in his object. While there are gains of trade for both values in his case, it is not known whether
his example admits other equilibria, potentially exhausting all gains of trade eventually. Other
related contributions include Cramton (1984), Gul and Sonnenschein (1988) and Vincent (1990).
Other related contributions include Cramton (1984), Gul and Sonnenschein (1988) and Vincent
(1990).
Nöldeke and van Damme (1990) and Swinkels (1999) develop an analogous distinction in

Spence�s signalling model. Both consider a discrete-time version of the model, in which education
is acquired continuously and a sequence of short-run �rms submit o¤ers that the worker can either
accept or reject. Nöldeke and van Damme considers the case of public o¤ers, while Swinkels
focuses mainly on the case of private o¤ers. Nöldeke and van Damme shows that there is a
unique equilibrium outcome that satis�es the never a weak best response requirement, and that

1More precisely, equality obtains whenever there is a positive measure of goods�qualities traded, since there
is a continuum of sellers in their model.

2There is no di¢ culty in generalizing Proposition 1 to the case of an impatient, but not myopic buyer, but we
feel that there is no much gain from such generality.
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the equilibrium outcome converges to the Riley outcome as the time interval between consecutive
periods shrinks. With private o¤ers, Swinkels proves that the sequential equilibrium outcome is
unique, and shows that, in contrast to the public case, it involves pooling in the limit. While
the set-up is rather di¤erent, the logic driving these results is similar to ours, at least with
public o¤ers. Indeed, in both papers, when o¤ers are observable, �rms (buyers) are deterred
from submitting mutually bene�cial o¤ers because rejecting such an o¤er sends a strong signal
to future �rms (buyers) that is so attractive that only very low types would prefer to accept the
o¤er immediately.

2 The model

We consider a dynamic game between a single seller, with one unit for sale, and a countable
in�nity of potential buyers, or buyers for short. Time is discrete, and indexed by n = 1; : : : ;1.
At each time n, one buyer makes an o¤er for the unit. Each buyer makes an o¤er only at one
time, and we refer to buyer n as the buyer who makes an o¤er in period n, provided the seller
has accepted no previous o¤er. After observing the o¤er, the buyer either accepts or turns down
the o¤er. If the o¤er is accepted, the game ends. If the o¤er is turned down, a period elapses
and it is the next buyer�s turn to submit an o¤er.
The (reservation) value of the unit is seller�s private information. The reservation value to the

seller is c (x), where the random variable x is determined by nature and uniformly distributed
over the interval [x; 1] ; x 2 [0; 1). We interpret x as an index, such as the quality of the good.
The valuation of the unit to buyers is common to all of them, and is denoted v (x). Buyers do
not observe the realization of x, but its distribution is common knowledge.
We assume that c is strictly increasing, positive and twice di¤erentiable, with bounded deriva-

tives. We assume that v is positive, strictly increasing and di¤erentiable, with bounded derivative.
We set Mc0 = sup jc0j, Mc00 = sup jc

00j, Mv0 = sup jv0j, M = max(Mc0 ;Mc00 ;Mv0), and m = inf jv0j.
Observe that the assumption that x is uniformly distributed is with little loss of generality,

since few restrictions are imposed on the functions v and c.3

We assume that gains from trade are always positive with � := infx fv (x)� c (x)g > 0. In
examples and extensions, we shall often restrict attention to the case in which v (x) = x and
c (x) = �x, with x > 0, i.e. the reservation value to the seller is a fraction � 2 (0; 1) of the
valuation x to the buyers. The seller is impatient, with discount factor � < 1. We are particularly
interested in the case in which � is su¢ ciently large. To be speci�c, we set �� = 1�m=3M , and
will always assume � > ��. In each period in which the seller owns the unit, he derives a per-period
gross surplus of (1� �) c (x). Therefore, the seller can always guarantee a gross surplus of c (x)
by never selling the unit.

3In particular, our results are still valid if the distribution of x has a bounded density, bounded away from
zero.
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Buyer n submits an o¤er pn that can take any real value. An outcome of the game is a
triple (x; n; pn), with the interpretation that the realized index is x, and that the seller accepts
buyer n�s o¤er of pn (implying that he rejected all previous o¤ers). The case n =1 corresponds
to the outcome in which the seller rejects all o¤ers (set p1 equal to zero). The seller�s von
Neumann-Morgenstern utility function over outcomes is his net surplus:

n�1X
i=1

(1� �) �i�1c (x) + �n�1pn � c (x) = �n�1 (pn � c (x)) ;

when n <1, and zero otherwise. An alternative formulation that is equivalent to the one above
is that the seller derives no per-period gross surplus from owning the unit, but incurs a production
cost of c (x) at the time he accepts the buyer�s o¤er. It is immediate that this interpretation
yields the same utility function.
Buyer n�s utility is v (x) � pn in the outcome (x; n; pn), and zero otherwise. We de�ne the

players�expected utility over lotteries of outcomes, or payo¤ for short, in the standard fashion.
We allow for mixed strategies on the part of all players.
We consider both the case in which o¤ers are public, or observable, and the case in which

previous o¤ers are private, or not observable. It is worth pointing out that the results for the
case in which o¤ers are public would also hold for any information structure (about previous
o¤ers) in which each buyer n > 1 observes the o¤er made by buyer n� 1.
A history hn�1 2 Hn�1 in case no agreement has been reached at time n is a sequence

(p1; : : : ; pn�1) of o¤ers that were submitted by the buyers and rejected by the seller (we set H0

equal to f?g). A behavior strategy for the seller is a sequence (�nS), where �nS is a probability
transition from [x; 1] � Hn�1 � R in to fAccept; Declineg mapping the realized valuation v,
the history hn�1, and buyer n�s o¤er pn into a probability of acceptance. In the public case,
a strategy for buyer n is a probability transition �nB from Hn�1 to R.4 In the private case, a
strategy for buyer n is a probability distribution �nB over R.
Observe that, whether o¤ers are public or private, the seller�s optimal strategy must be of the

cut-o¤ type. That is, if �nS (x; h
n�1; pn) assigns positive probability to Accept for some v, then

�nS (x
0; hn�1; pn) assigns probability one to Accept, for all x0 > x. The proof of this skimming

property can be found in Fudenberg and Tirole (Chapter 10, Lemma 10.1), for instance. The
in�mum of such valuations x is called the marginal valuation (at history (hn�1; pn) given the
strategy pro�le). Since the speci�cation of the action of the seller with marginal valuation does
not a¤ect payo¤s, we also identify equilibria which only di¤er in this regard. For de�niteness,
in all formal statements, we shall follow the convention that the seller with marginal valuation
rejects the o¤er. For conciseness, we shall omit to specify that some statements only hold �with
probability one�. For instance, we shall say that the seller accepts the o¤er when he does so with

4That is, for each hn�1 2 Hn�1, �nB(h
n�1) is a probability distribution over R, and the probability �nB(�)[A]

assigned to any Borel set A � R is a measurable function of hn�1
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probability one. Standard arguments also establish that buyers never submit any o¤er that is
strictly larger than c (1) = �c, the highest possible reservation value to the seller.
We use the perfect bayesian equilibrium concept. In the public case, we will compute the

belief of buyer n after a (possibly out-of-equilibrium) history hn�1 under the assumption that
the seller rejected previous o¤ers out of rational purposes.5 Thus, the belief of buyer n over x is
the uniform distribution over some interval [xn; 1].
In the private case, the only information sets which are reached with probability zero are

associated with stages for which the probability is one that the seller will have accepted some
earlier o¤er. In such a stage, we assume that buyer n�s belief assigns probability 1 to x = 1.
Given some (perfect bayesian) equilibrium, a buyer�s o¤er is serious if it is accepted by the

seller with positive probability. An o¤er is losing if it is not serious. Clearly, the speci�cation
of losing o¤ers in a equilibrium is to a large extent arbitrary. Therefore, statements about
uniqueness are understood to be made up to the speci�cation of the losing o¤ers. Finally, an
o¤er is a winning o¤er if it is accepted with probability one.
We brie�y sketch here the static version of the dynamic game described above: there is only

one potential buyer, who submits a take-it-or-leave-it o¤er. The game then ends whether the
o¤er is accepted or rejected, with payo¤s speci�ed as before (with n = 1). The model considered
by Akerlof (1970) is not quite the static version of this game, as the market mechanism adopted
there is Walrasian. Much closer is the second variant analyzed by Wilson (1980), although he
considers a continuum of buyers. Clearly, the seller accepts any o¤er p provided p > c (x).
Therefore, the buyer o¤ers c (x�), where x� maximizesZ x

x

(v (t)� c (x)) dt;

over x 2 [x; 1]. More generally, given t 2 [x; 1), let x� (t) denote the marginal valuation given the
optimal o¤er when the distribution is uniform over [t; 1]. Observe that x� (t) > t for all t 2 [x; 1).

3 Observable o¤ers

3.1 Main result

In this section, we maintain the assumption that o¤ers are public. Observe that the equationZ 1

x

(v (t)� �c) dt = 0

5This is well-de�ned as long as a seller with x = 1 would �nd it optimal to reject all o¤ers along hn�1. If this
is not the case, the belief of buyer n is assumed to assign probability 1 to x = 1.
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admits either no or exactly one solution x in [x; 1) since its integrand is strictly positive (negative)
above (below) the unique root of v (t) = �c. Obviously, this solution x1 exists if and only if:Z 1

x

(v (t)� �c) dt < 0;

that is, if it is unpro�table for the �rst buyer to submit an o¤er that is accepted with probability
one by the seller. More generally, given 1 =: x0 > x1 > � � � > xk, de�ne xk+1 as the unique
solution in [x; xk), if any, of the equationZ xk

x

(v (t)� c (xk)) dt = 0:

Clearly, xk � xk+1 is bounded away from zero, hence this process must eventually stop. The
resulting �nite sequence fxkgKk=0, xk � [x; 1], all k, is easy to compute for special functions v and
c. For instance, if c (x) = �v (x) = �x, with � > 1=2, one has xk = (2�� 1)k. The sequence
fxkg plays an important role in Proposition 3.1.

Proposition 3.1 Assume that xK > x, and � > ��. There is a (essentially) unique equilibrium,
which is independent of �. On the equilibrium path, the �rst buyer submits the o¤er c (xK), which
the seller accepts if and only if x < xK. If the o¤er is rejected, all buyers n > 1 submit a losing
o¤er.

For each n > 1, buyer n�s strategy o¤ers c(xk), after any history hn�1 with marginal type
x 2 (xk+1; xk].
Proof : The proof is by induction over K. The proof for K = 0 is in most respects identical

to the proof of the induction step, and we therefore provide only the latter. We let an equilibrium
be given and assume that, for every n � 1 and after any history hn�1 on the equilibrium path
such that xn = x, buyer n o¤ers c(xl) whenever x 2 (xl+1; xl] for some l < k. We now prove that
the same conclusion holds for l = k. The proof is broken into the following four steps:

� whenever xn = x 2 (xk+1; xk), no equilibrium o¤er of buyer n is accepted by some type
s > xk;

� whenever xn = x 2 (xk+1; xk], if an equilibrium o¤er of buyer n is accepted by s = xk,
then all subsequent o¤ers are losing ones; besides, if xn = xk, the unique equilibrium o¤er
of buyer n is c(xk);

� whenever xn = x 2 (xk+1; xk] is close enough to xk, the unique equilibrium o¤er of buyer
n is c(xk), which the seller accepts if and only his type is at most xk;

� whenever xn = x 2 (xk+1; xk], the unique equilibrium o¤er of buyer n is c(xk), which the
seller accepts if and only his type is at most xk.
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Step 1: If buyer n submits an o¤er p(s) with marginal type s 2 (xl+1; xl] for some l < k, the
following o¤er is c(xl) by the induction hypothesis. Hence, p(s) must solve

p(s)� c(s) = �(c(xl)� c(s));

so that buyer n�s payo¤ is

1

1� x

Z s

x

(v(t)� �c(xl)� (1� �)c(s)) dt:

As a function of s, the integral is twice di¤erentiable over the interval (xl+1; xl], with �rst and
second derivatives given by

v(s)� �c(xl)� (1� �)c(s)� (1� �)c0(s)(s� x)

and
v0(s)� 2(1� �)c0

00
(s)(s� x):

Since (2Mc0 +Mc00 )(1 � �) < m, buyer n�s payo¤ is strictly convex over (xl+1; xl]. Since buyer
n�s payo¤ is negative for s = xl, the claim follows.

Step 2: We argue by contradiction. We thus assume that, for some n and hn�1 with xn = x 2
(xk+1; xk), an equilibrium o¤er pn by buyer n with marginal type xk is eventually followed, with
positive probability, by a serious o¤er. This implies pn > c(xk). Let �p be the supremum of all
such o¤ers, where the supremum is taken over all x, n and hn�1, and consider a buyer and a
history �still denoted n and hn�1�such that pn > (1� �)c(xk)+ ��p. If instead, buyer n deviates
and submits a serious o¤er p(s) with marginal type s < xk, then p(s) does not exceed

p(s) � (1� �)c(s) + ��p � (1� �)c(xk) + ��p:

By choosing s close enough to xk, buyer n�s payo¤,
1

1� x

Z s

x

fv(t)� p(s)g dt, is thus higher than

the equilibrium payo¤,
1

1� x

Z xk

x

fv(t)� png dt �a contradiction.

We turn to the second assertion, and let n and hn�1 2 Hn�1 be given, with xn = xk. Since
x < xK , there must exist, along hn�1, a buyer who submitted a serious o¤er with marginal type
xk. As we just proved, any such o¤er is necessarily followed by losing o¤ers. In particular, buyer
n�s equilibrium o¤er is c(xk).

Step 3: Let n and hn�1 2 Hn�1 be given, with xn = x < xk. Consider a potential o¤er p(s),
with marginal type s. Obviously, p(s) � c(s). Observe also that p(xk) = c(xk) by Step 2.

Hence, buyer n�s payo¤,
1

1� x

Z s

x

fv(t)� p(s)g dt, is at most 1

1� x

Z s

x

fv(t)� c(s)g dt, with
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equality if s = xk. The latter integral, as a function of s, is di¤erentiable, with derivative
v(s) � c(s) � c0(s)(s � x), which is positive as soon as s � x < m

Mc0
. Thus, for x close enough

to xk, the upper bound,
1

1� x

Z s

x

fv(t)� c(s)g dt, is increasing over [x; xk]. Hence, for such x,
buyer n�s equilibrium o¤er is c(xk).

Step 4: Again, we argue by contradiction. We assume that, for some n and hn�1 with xn > xk+1,
buyer n assigns positive probability to serious o¤ers with marginal type below xk. Among all
such n and hn�1, let ~x 2 (xk+1; xk) be the supremum of xn.
Consider now any n and hn�1 with x = x < ~x. By de�nition of ~x, any o¤er p(s) with marginal

type s > ~x is followed by an o¤er c(xk) from the next buyer, so that p(s) must satisfy

p(s)� c(s) = �(c(xk)� c(s));

and buyer n�s payo¤ writes

1

1� x

Z s

x

fv(t)� �c(xk)� (1� �)c(s)g dt:

As in Step 1, the integral is strictly convex in s. Therefore, the marginal type of any equilibrium
o¤er is either equal to xk, or lies in the interval [x; ~x]. In the former case, buyer n�s o¤er is
c(xk), and his payo¤ is positive since ~x > xk+1. In the latter case, buyer n�s payo¤ is at most
(~x � x) (v(~x)� c(x)), which is arbitrarily close to zero, provided x is close enough to ~x. As a
consequence, for x < ~x close to ~x, the unique equilibrium o¤er of buyer n is c(xk), with marginal
type xk. This contradicts the de�nition of ~x.
�
For completeness, let us brie�y comment on the knife-edge case in which x = xK . Then

as long as the marginal valuation is x, any randomization over the o¤ers fc (xK) ; c (xK�1)g is
optimal, the payo¤ of either o¤er being zero. Because x = xK , equilibrium considerations do
not uniquely �pin down�the mixture, as is done in the proof above for the case x < xK in which
the marginal valuation is xk, k � K, after an equilibrium o¤er that is serious. Indeed, the only
reason why the equilibrium (as opposed to the equilibrium outcome) for the case x < xK is
not unique is that nothing pins down the behavior when the marginal valuation is xk, k � K,
following an out-of-equilibrium o¤er. Beyond this indeterminacy, the case x = xK is identical to
the case x < xK ; in particular, along the equilibrium path, the seller will reject all o¤ers provided
t � xK�1.
The comparison to the static case is immediate: if x is su¢ ciently close to xK , then the

probability of agreement is arbitrarily small, and the outcome is more ine¢ cient than in the
static case. On the other hand, if x is su¢ ciently small relative to xK , then the probability of
agreement is larger than in the static case, as it must be that x� (x) < xK , since the payo¤ from
o¤ering c (xK) can be chosen arbitrarily close to zero.
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3.2 Patient Single buyer

Proposition 1 assumes that each buyer makes only one o¤er. However, its proof goes through
with a single, long-lived buyer provided the buyer�s discount factor is small enough, �xing the
seller�s discount factor. On the other hand, the result is no longer valid if the long-lived buyer
and seller share the same discount factor � < 1. In that case, we know from Vincent (1989) that
there exists a (generically) unique Perfect Bayesian Equilibrium, and that, in this equilibrium,
bargaining ends after a �nite sequence of serious o¤ers, one of which is accepted. Furthermore,
Vincent exhibits an example with binary values in which delay does not vanish as the time
interval between successive o¤ers tends to zero.6

For sake of illustration, we describe here the equilibrium in the case in which c (x) = �v (x) =
�x. De�ne the sequences:

x0 = 0, xn+1 =
�

1� �
+

�x2n
xn�1

; z0 = 1, zn =
nY
k=1

xk � 1
xk

:

We show in appendix that there exists a unique equilibrium of the game with a long-lived buyer
with discount factor �. With probability one, agreement is reached in �nite time. If the marginal
valuation is s 2 [zn+1; zn), the buyer o¤ers

p = (1� �) (1� �)
x2n

xn � 1
s+ �n�;

which the seller accepts if and only if:

t <
xn

xn � 1
s:

The expected payo¤ of the buyer is then:

1

2

�
(1� �) (1� �)

x2n
xn � 1

� 1
�
s2 + �n�s� 2�� 1

2
�n:

We solve here for the case in which F is the uniform distribution. All proofs are gathered in
Appendix.
In fact, the maximal number of o¤ers in equilibrium, N , converges as � ! 1, so that, as the

time interval between successive o¤ers tends to zero, agreement is immediate, contrasting with
the binary example studied by Vincent (1989). [To see this, observe that, for all n, the value
of xn tends to a well-de�ned limit strictly larger than one, and therefore zn+1 � zn tends to a
strictly positive limit; given x, it then follows that, for � large enough, the duration of bargaining
is independent of �.]

6In fact, Vincent (1989) proves this result more generally for the case in which the buyer is at least as patient
as the seller.
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3.3 Finite Horizon

Proposition 1 implies that all buyers but the �rst one submit losing o¤ers. Yet when the game
has �nite horizon, this conclusion is blatantly false when x < x1. In particular, if the seller
rejects all previous o¤ers with positive probability, the last buyer must submit a serious o¤er.
Indeed, his problem reduces then to the static case, for some speci�c x. Whether agreement is
reached with probability one before the last buyer, or the last buyer submits a serious bid, the
qualitative conclusions of the �nite horizon game seem to cast some doubt on the pertinence of
Proposition 1. Therefore, the analysis of the game of the �nite-horizon is not only an important
extension that includes the static benchmark as a special case, but also a robustness test: as the
length of the horizon increase, do the equilibria of the game with �nite-horizon converge to the
in�nite-horizon equilibrium? For simplicity, we state our results here only for the case in which
v (x) = x and c (x) = �x, with x > 0, only their extension to the case of general functions is
immediate.
Proposition 2: The equilibrium strategies of the �nite horizon game converge pointwise

to the equilibrium strategies in the in�nite-horizon game, as the length goes to in�nity. In
particular, the Perfect Bayesian equilibrium is essentially unique, and is in pure strategy. In that
equilibrium, the strategy of buyer i is associated with thresholds 0 < s0i < s1i < � � � < skii = 1.
The strategy �i has the following form:

� if vi � s0i , buyer i o¤ers a price bivi, and attracts all types up to civi for some ci � 1 and
bi � �. Thus, �i(vi) = civi.

� if vi 2 (ski ; s0i ), �i(vi) = slki�1 for some lk: buyer i o¤ers a price which does not depend on
the speci�c value of vi in that interval, and attracts all types up to s

lk
i�1.

4 Unobservable o¤ers

In this section, we maintain the assumption that all o¤ers are unobservable, or private.
For the sake of completeness, let�s �rst sketch a proof that an equilibrium exists. If no other

buyer ever submits an o¤er above �c, it is suboptimal for a player to submit such an o¤er. Hence,
for the purpose of equilibrium existence, we can limit the set of mixed (or behavior) strategies
to the setM([0; �c]) of probability distributions over the interval [0; �c], endowed with the weak-?
topology. The set of strategy pro�les is thus the countable productM([0; �c])N. It is compact and
metric when endowed with the product topology. Since the random outcome of buyer n�s choice
is not known to the seller unless he has rejected the �rst n�1 o¤ers, the buyer n�s payo¤ function
is not the usual multi-linear extension of the payo¤ induced by pure pro�les. We however follow
the standard proof. Let any buyer n be given, and denote x(p; �) the marginal type for the o¤er
p, given a strategy pro�le. It is jointly continuous in p and �. Hence, the set Bn(�) �M([0; �c])
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of best replies of buyer n to the strategy pro�le �, is convex-valued and upper hemi-continuous
in �. Using a �xed-point theorem, the existence of a (Nash) equilibrium follows.
We let an equilibrium � be given. The main result is the following.

Proposition 4.1 Trade eventually occurs, with probability one.

Proof: Given x 2 [x; 1], let Fn (x) denote the (unconditional) probability that the seller is of
type t � x and has rejected all o¤ers submitted by buyers i = 1; : : : ; n�1. Suppose for the sake of
contradiction that trade does not occur with probability one eventually, i.e. limn!1 Fn (x) 6= 0 for
some x < 1. In particular, the probability that the seller will accept buyer n�s o¤er, conditional
on having rejected the previous ones, converges to zero as n increases, hence the successive
buyers�equilibrium payo¤s also converge to zero.
Let F = limn!1 Fn. Choose x such that F (x) > 0 andZ x

x

�
v(t)� c(x)� �

2

�
dF (t) > 0: (1)

Note that
F (x)� Fn(x)

Fn(x)
is the probability that type x will accept an o¤er from some buyer

beyond n (conditional on having rejected all previous o¤ers). Since F (x) > 0, this probability
converges to zero, and the o¤er pn(s) with marginal type s thus converges to c(x). As a result,
pn(s) � c(s)+ �

2
for all n large and, using (1), buyer n�s equilibrium payo¤ is bounded away from

zero �a contradiction. �
Thus, o¤ers that are accepted by seller�s types arbitrarily close to one are eventually submit-

ted.
Proposition 4.1 holds irrespective of �. We now assume, without further notice, that � > ��.
We prove below that type 1 actually accepts an o¤er in �nite time with probability one. Thus,

there is a buyer who eventually o¤ers �c, which the seller accepts, irrespective of his type. We
introduce some notation. As before, given some equilibrium, Fn (x) denotes the (unconditional)
probability that the unit is of index t � x and that the seller has rejected all o¤ers submitted by
buyers i = 1; : : : ; n� 1. Set xn := inf fx : Fn (x) > 0g.
Buyer n�s strategy is a probability distribution over o¤ers in [c(x); �c]. We denote by Pn its

support7 and Tn the corresponding (closed) set of marginal types. That is, if buyer n�s strategy
has �nite support, x 2 Tn if and only if there exists an o¤er pn submitted by buyer n with
positive probability that the seller accepts if and only if his type is less than or equal to x.

Proposition 4.2 There exists n � 1, with 1 2 Tn. Let N0 denote the �rst of these stages. Then
Tn � fxN0 ; 1g, for all n � N0.
For each n > N0, buyer n�s equilibrium payo¤ is zero.

7That is, the smallest closed set with probability one.
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It is convenient to discuss here the case where x > x1. Note that a buyer who is called to
make an o¤er, gets a positive payo¤ when o¤ering �c. Hence, it follows from Proposition 4.2 that
the unique equilibrium outcome of the game is such that the �rst buyer o¤ers �c, which the seller
accepts. For such values of x, the equilibrium outcome is the same in both versions of the game
(but it di¤ers from that of the static case).

From now on, we will assume x � x1. Buyer N0�s equilibrium payo¤ is then also zero.
Thus, from stage N0 on, all equilibrium o¤ers are either winning o¤ers, or losing o¤ers. By

Proposition 4.1, one of these buyers eventually submits the winning o¤er �c. However, equilibrium
behavior after buyer N0 is essentially indeterminate. Indeed, as the next result states, any
equilibrium � can be modi�ed into an equilibrium where trade occurs in bounded time, or into
an equilibrium in which all buyers trade with positive probability.

Proposition 4.3 For every equilibrium �,

� There is an equilibrium ~�, with ~�nB = �nB for all n < N0, and xn = 1 for some n � N0.

� There is an equilibrium ~�, with ~�nB = �nB for all n < N0, and xn = xN0 for all n � N0.

Moreover, in�nitely many such equilibria exist. All these equilibria are payo¤-equivalent, for
the seller and the buyers alike.

Denote N0 the last buyer n who submits a serious o¤er below �c with positive probability.
Thus, all buyers n = N0 + 1; : : : ; N0 � 1 submit only losing o¤ers.
In the �rst phase of the equilibrium, all buyers trade with positive probability.

Proposition 4.4 No buyer n � N0 uses a pure strategy, except possibly buyer 1. All buyers
n � N0 submit a serious o¤er with positive probability.

Additional results on the nature of equilibrium strategies will be added later.
In the public case, competition between buyers prevent buyers n � 2 from getting positive

payo¤s. However, the �rst buyer buyer gets a positive payo¤ (independent of �). We do not
know whether a similar zero-payo¤ result holds in the private o¤ers version. In any case, all
equilibrium pro�ts are tiny and vanish rapidly, as the seller becomes in�nitely patient.

Proposition 4.5 The expected payo¤ to buyer n is at most

2

m
x2n+1(1� �)2

�
v
�
xn+1

�
� c

�
xn+1

��2
:

Thus, all equilibrium pro�ts are bounded by 2m�1(1��)2 sup jv�cj. Due to the term (1��)2,
the discounted sum of all buyers�pro�ts converges to zero, as the seller becomes more patient.
In addition, we prove that buyers with positive payo¤ are increasingly rare, as the seller becomes
more patient.
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Proposition 4.6 Let n1 < n2 be two buyers with positive equilibrium pro�t. One has

n2 � n1 �
�

1� �
ln

�
1 +

m

2Mc0

�
:

The e¢ ciency of the trading mechanism is directly related to the delay in trade �that is, to
E [�� ], where � is the �rst buyer o¤ering �c. As we now show, any equilibrium must exhibit a
non-trivial, but �nite, delay.

Proposition 4.7 There exist constants 0 < c1 < c2 < 1 and C > 0 such that, for all � � �� and
all equilibrium:

� N0 � C=(1� �);

� c1 � E [�� ] � c2.

c1 > 0 implies that the discounted delay remains �nite. c2 < 1 implies that the discounted
delay is non-trivial, even as the seller becomes more patient.
Non-trivial delay makes it di¢ cult to compare equilibrium payo¤s of the seller across versions.

However that the pro�t of the seller is bounded away from zero in the private case. By contrast,
the seller�s payo¤ is zero if x = xK+1, and depends continuously on x. Hence there are cases
in which the seller�s payo¤ is unambiguously higher in the private version. Whether or not this
holds in general is an open question.

4.1 Conjectures and Numerical Evaluations

We have been unable to explicitly solve for the equilibria of the game, except in special cases dis-
cussed below. As shown above, any equilibrium can be partitioned into two �phases�. Provided
that the �rst player�s payo¤ from submitting an o¤er accepted with probability one is negative,
there must be a �rst buyer (say, player N > 1) who must be precisely indi¤erent between submit-
ting a losing o¤er or submitting an o¤er accepted with probability one. From this point on, all
buyers randomize over those kinds of o¤ers, and as long as the latter o¤er is not submitted with
probability one by some buyer, the conditional beliefs of the seller do not change any more. The
�rst phase (up to player N � 1) is more complicated. In particular, all buyers but the �rst must
use a mixed strategy, with strictly positive probability assigned to at least two o¤ers. While it is
possible to rule out many con�gurations with simple considerations, a wide range of possibilities
remain; in fact, simple examples of multiple equilibria can be constructed.
There are many properties of equilibria that one may conjecture. One is (i) to look for an

equilibrium in which every buyer submits a losing o¤er with positive probability; a second is (ii)
to look for an equilibrium in which the expected o¤er is increasing over time; a third is (iii) to
look for an equilibrium in which every buyer randomizes over at most two equilibrium o¤ers.
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It is simple to show that it follows from either (i) and (ii) or from (i) and (iii) that the
equilibrium should be as follows: each buyer randomizes over two o¤ers. The lower one is a
losing o¤er (for all buyers but possibly for the �rst buyer) while the higher one is accepted by
all types up to xi, where xi is strictly increasing in i for i < N . (This randomization must be
strict up to buyer N � 1).
From numerical simulations, it appears that such equilibria exists for all � and �, but they

require that x be su¢ ciently high. See Figure 1. [Horizontal dotted lines are support of distribu-
tions, solid curves are payo¤s as the function of the marginal type accepting an o¤er; all Figures
omit buyers beyond N0]

4

3

2

1

x x1 x2 x3 1

rr
r r
r r
r r

Figure 1 ( not to scale)

For lower values of x, this does not work, because buyer 2 strictly gains from submitting an
o¤er accepted with small but positive probability. This problem can be remedied by assuming
instead that buyer 2�s lower o¤er is serious as well, so that only the low o¤er of buyers n � 3 is
a losing o¤er (in this revised conjecture, buyer 2�s payo¤ is still zero). Such equilibria exist, and
indeed, they can be constructed for lower values of x than is consistent with the �rst conjecture.
However, it is again necessary that x be su¢ ciently high, for otherwise the same problem arises
with buyer 4.
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It seems therefore natural to amend the conjecture further, by considering the case in which,
for a subsequence of the buyers in the �rst phase, the low o¤er is serious, while it is losing for
the others. (It is easy to see that no two consecutive buyers can belong to that subsequence).
Unfortunately, the resulting systems of equations is quite untractable. In the special case in
which � (1� �) > 1=2 > �

�
1� �2

�
, we could construct an equilibrium as depicted in Figure 2,

which is consistent with a more general conjecture along the lines of Figure 3.
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Figure 2 ( not to scale)

16



5

6

4

3

2

1

x x1 x2 x3 x4 x5 x6 x7 1r r
r r

r r
r r

r r
r r

Figure 3 : Conjecture ( not to scale )

�(1� �) > 1
2 > �(1� �2)

5 Proofs

5.1 Proof of Proposition 4.2

The next lemma is repeatedly used in the sequel.

Lemma 5.1 If xn+2 > xn+1, buyer n submits no o¤er in the interval (xn; xn+1). In particular,
xn+1 = xn, and buyer n�s equilibrium payo¤ is zero.

Proof : //in progress// For x > xn, let pn (x) denote the o¤er that buyer n must submit
for type x to be the marginal type. For x < xn+2, the hypothesis of the lemma implies that
pn (x) = (1� �) c (x) + C for some constant C. The (unconditional) payo¤ of buyer n from
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submitting an o¤er for which the marginal type is x is given by:Z x

x

(v (t)� pn (x)) dFn (t) :

Clearly, if v (x) = p (x) for some x > xn, o¤ering p (x) results in a strict loss, so in order to �nd
the maximizers of this payo¤, we can restrict attention to x such that v (x) > p (x). Since c0 is
bounded and v is strongly increasing, this implies that we can restrict attention to x above some
threshold �x, provided � is su¢ ciently close to one. Since Fn is convex (given the cream-skimming
property), it is piecewise continuously di¤erentiable on (xn;minSn+1), with derivative, on each
subinterval, given by:

dFn (x)

dt
(v (x)� p (x))� (1� �) c0 (x)Fn (x) ;

which is strictly increasing for all � su¢ ciently large, since v is strongly increasing, while Fn
is convex. Therefore, the payo¤ is strictly convex on each of those subintervals, a result that
holds more generally over (�x;minSn+1) since at all points this interval; D�Fn (x) < D+Fn (x).
Therefore, this payo¤ is �rst strictly negative and then strictly convex in x, so that it admits no
maximum in this interval. �

Proof of Proposition 4.2: From Proposition 4.1, we know that limn Fn (1) = 0. Fix some N
such that FN (1) < "=�c0, where �c0 > 0 is an upper bound on the derivative of c over [x; 1]. Let:

~Vn (x) :=

Z x

x

fv (t)� c (x)g dFn (t) :

Observe that ~Vn (x) is an upper bound to the (unconditional) payo¤ buyer n obtains when
submitting an o¤er for which x is the marginal type, with equality if and only if either it is a
losing o¤er (Fn (x) = 0), or a winning o¤er (x = 1).
We �rst prove that 1 2 Tn, for some n 2 N. Let�s argue by contradiction. In particular, the

highest o¤er �sN := maxn<N maxSn is lower than 1, and the function FN (x) is di¤erentiable on
the interval [�sN ; 1], with derivative equal to one. Hence, on that interval, ~VN is di¤erentiable and
its derivative equals:

~V 0
N (x) = v (x)� c (x)� FN (x) c

0 (x) ;

which is strictly positive. Therefore ~VN is strictly increasing on (�sN ; 1), so that buyer n�s payo¤
cannot be maximized on this open interval. Hence, any such buyer can only submit either
a winning o¤er �which is ruled out by assumption� or o¤ers for which the marginal type is
less than TN , implying that such all marginal types are bounded away from one, contradicting
Proposition 3.
Consider now the second statement. For the sake of contradiction, suppose that some buyer

n � N0 submits w.p.p. an o¤er in
�
c(xN0); �c

�
. Then, conditional on submitting a winning o¤er
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�c, the expected value of the unit is higher for buyer n+ 1 than for buyer n. Thus, buyer n+ 1�s
payo¤ is positive. By Lemma 5.1, it cannot be the case that buyer n+ 1 assigns probability one
to �c. Hence, buyer n+ 2�s equilibrium payo¤ is also positive �a contradiction to Lemma 5.1. �

5.2 Proof or Proposition 4.3

Denote � the (random) �rst buyer who o¤ers �c, and de�ne n� 2 N by �n�+1 � E[�� ] < �n�.
Consider the strategy pro�le ~� in which (i) ~�nB = �nB for all n < N0, (ii) all buyers n =
N0; : : : ; n� � 1 submit a losing o¤er, (iii) buyer n� o¤ers a winning o¤er �c with probability
E[�� ]� �n�+1

�n�
, and a losing o¤er otherwise, (iv) all buyers n � n� + 1 o¤er �c with probability

one.
By construction, for all buyers n < N0, and after any history hn�1 2 Hn�1, the o¤er pn(s)

with marginal type s is the same under the two pro�les � and ~�. Hence, for any such n, �nB is
a best-reply to ~�. It remains to check that no buyer n = N0; : : : ; n� �nds it pro�table to submit
a serious o¤er in the open (c(xN0); �c). For any such n, the expected payo¤ that type x obtains
from rejecting the o¤er is (�c � c(x))E

�
���nj� > n

�
. This continuation payo¤ is higher when

E
�
���nj� > n

�
is computed using ~� then when using �. Hence the marginal type for an o¤er in

(c(xN); �c) is lower under ~� than it is under �. Such a deviation cannot be pro�table under ~�, for
it would also be pro�table under �.
We turn to the proof of the second statement. We assume that the equilibrium is such

that Tn = f1g for some n, for otherwise the conclusion holds trivially. As above, we adjust
the probability of submitting �c, while keeping the optimal decision rule of the seller in stages
n = 1; : : : ; N0 � 1 unchanged.
Set N := inffn � N0 : Tn = f1gg, and denote by � the probability assigned to �c by buyer

N �1. We �rst check that this de�nition is meaningful when N = N0, and consider buyer N �1.
By Lemma 5.1, TN0�1 � fxN0�1; 1g. By de�nition of N0, it must be that buyer N0 � 1 assigns
probability one to a losing o¤er. Hence, � = 0 in that case.
Consider the strategy pro�le ~� in which (i) ~�nB = �nB for all n < N � 1, (ii) buyer N � 1

assigns probability ~� to �c, and submits a losing o¤er otherwise, (iii) all buyers n � N submit �c
with probability �, and a losing o¤er otherwise.
The parameters ~� and � are chosen so that (i) the expected discounted time E [�� ] is the

same under both pro�les � and ~�, and (ii) no buyer n � N �1 would �nd it pro�table to submit
a serious o¤er in (c(xN); �c).
Condition (i) writes

� + (1� �)� = ~� + (1� ~�) ��

1� �(1� �)
: (2)

Condition (ii) holds as soon as the payo¤
Z s

xN

fv(t)� pn(s)g dFN�1(t) is convex in s. A su¢ cient
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condition is

m� 2Mc0

�
1� ��

1� �(1� �)

�
> 0:

Provided � is close enough to one, the condition is satis�ed and the solution ~� to (2) is in (0; 1).
�

5.3 Proof of Proposition 4.4

We start with the second assertion. Assume that, for some n � N0, buyer n submits a losing
o¤er with probability 1. Then, n < N0 by the choice of N0, and buyer n�s equilibrium payo¤ is
zero. Denote n� > n the �rst buyer after n who submits a serious o¤er with positive probability.
Denote pn�(s) = maxPn� the highest o¤er of buyer n�, with marginal type s. Observe that s < 1,
hence pn�(s) < �c. As a consequence, the price pn(s) that buyer n needs to submit so that s is
indi¤erent between accepting and declining is strictly smaller than pn�(s). Observe also that the
expected value of the unit, conditional on an o¤er being accepted by all seller�s types less than s
is the same for buyer n and n�. Therefore, buyer n gets a strictly positive payo¤ from submitting
such an o¤er, a contradiction.
We now deal with the second assertion. Assume that, for some n � N0, buyer n�s strategy

is pure. By the previous paragraph, buyer n�s unique o¤er must be serious. Denote x < 1 the
marginal type for this o¤er. By Lemma 5.1, buyer n� 1 cannot submit any o¤er with marginal
type in (xn; x). This implies that the expected value conditional on the marginal type being equal
to x is the same both for buyer n and buyer n+ 1. Since buyer n�s o¤er is serious, buyer n� 1
must thus submit a losing o¤er with positive probability, and therefore have a zero equilibrium
payo¤. However, the o¤er he must submit such that the marginal type equals x is strictly less
than the unique o¤er submitted by buyer n (because of discounting), a contradiction. �

5.4 Proof of Proposition 4.5

For n 2 N, and x > xn, we denote �qn(s) the expected value of the unit for buyer n, conditional
on an o¤er with marginal type x being accepted:

�qn(x) =
1

Fn(x)

Z x

xn

v(t)dFn(t):

Plainly, xn � �qn(x) � x. Besides, �qn(x) � �qn+1(x), with equality if and only if buyer n submits
no serious o¤er with marginal type in (xn; x).

Proof of Proposition 4.5: We let here n be any buyer with positive pro�t. Note that
n � N0.
Since buyer n�s payo¤ is positive, xn+1 > xn. consider buyer n�s lowest o¤er, pn(xn+1), with

marginal type xn+1. For notational concision, we abbreviate xn+1 to x. The probability that
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this lowest o¤er is accepted is Fn(x). Conditional on it being accepted, buyer n�s surplus is
�q(x)� pn(x). Hence, buyer n�s equilibrium payo¤ is Fn(x) (�qn (x)� pn (x)). We �rst bound the
conditional surplus.
Since buyer n�s payo¤ is positive, buyer n + 1�s payo¤ must be zero, hence x � pn+1(x), for

otherwise buyer n+1 would obtain a positive payo¤when submitting a low, serious o¤er. Thus,

��qn(x) � �x � �pn+1(x) � pn(x)� (1� �)c(x):

This yields
�qn(x)� pn(x) � (1� �) (v (x)� c (x)) : (3)

We next bound the probability Fn(x) that the lowest o¤er is accepted. We will rely on the
inequality

�qn(x) � �v(x) + (1� �)c(x):

It is convenient to observe that Fn(x) =
Z x

xn

fn(t)dt, where fn(t) is the probability that type t

rejects the o¤ers from all buyers k < n.
Introduce the optimization problem P:

sup

Z x

xn

f(t)dt;

where the supremum is taken over all non-decreasing, [0; 1]-valued functions f , such thatZ x

xn

v(t)f(t)dt � (�v(x) + (1� �)c(x))

Z x

xn

f(t)dt:

We will prove that the value v� of P satis�es v� � 2=m(1� �)(v(x)� c(x)). Together with (3),
and since Fn(x) � v�, this will conclude the proof.
We analyze P by introducing an auxiliary problem P!:

sup

R x
xn
v(t)f(t)dtR x
xn
f(t)dt

;

where the supremum is taken over all non-decreasing, [0; 1]-valued functions f that satisfyZ x

xn

f(t)dt � ! (! � x � xn). The problem P! is some kind of dual to P. Existence of an

optimal solution to P!, and continuity of the value function V (!) follow from standard argu-
ments.
Plainly, one has v� � ! as soon as V (!) � �v(x)+ (1� �)c(x) �indeed, any optimal solution

to P! is then a feasible point for P. Hence,

v� = supf! : V (!) � �v(x) + (1� �)c(x)g: (4)
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Any solution f � to Pv� must satisfy the feasibility constraint
Z x

xn

f(t)dt � v� with equality, for

otherwise V (!0) would be equal to V (v�) for !0�, close enough to v�. Hence, f � is also a solution

to the problem sup

Z x

xn

v(t)f(t)dt, subject to the constraint
Z x

xn

f(t)dt = v�. Since v is strictly

increasing, f � is a step function, with f �(t) = 0 for t < x�, and f �(t) = 1 for t � x�. The value

of x� is determined by the constraint
Z x

xn

f(t)dt = v�: v� = x� x�, and

V (v�) =
1

x� x�

Z x

x�
v(t)dt:

Note that v(t) � v(x) � (x � t)m, hence V (v�) � v(x) � 1
2
(x � x�) = v(x) � m

2
. on the other

hand, by (4), V (v�) = �v(x) + (1� �)c(x), hence

v� � 2

m
(1� �)(v(x)� c(x));

as claimed. �

5.5 Proof of Proposition 4.6

The proof of Proposition 4.6 relies on the following inequality.

Lemma 5.2 For every a < b in [x; 1], and every non-decreasing function h : [x; 1]! [0; 1], withR b
a
h(t)dt > 0, one has

h(b)R b
a
h(t)dt

�
Z b

a

v(t)h(t)dt+
m

2

Z b

a

h(t)dt � v(b)h(b): (5)

Proof. The inequality is homogenous in h. We may thus assume that h(b) = 1.
We prove the statement for functions H that take �nitely many values. The result will then

follow using a density argument.
The proof goes by induction over the number of values in the range of H. To start the

induction, assume that h(t) = 1 for each t 2 [a; b]. Since v(t) � v(b)+m(t� b) for each t 2 [a; b],
one has Z b

a

v(t)dt � v(b)(b� a)� m(b� a)2

2
:

Hence, the left-hand side of (5) is at most v(b)� m
2
(b� a) + m

2
(b� a) = v(b).

Assume that (5) holds for every a < b, provided the range of h contains at most n points.

Let h =
nX
k=0

xk1[yk;yk+1)(�), where 0 � x0 � � � � � xn = 1 and a = y0 < y1 < � � � < yn = b.
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For given x1; : : : ; xn; y0; : : : ; yn, the left-hand side if (5) is a function of x0, which we denote
 (x0). We prove below that  is convex. This will imply that  (x0) � (1� x0

x1
) (0) + x0

x1
 (x1).

Since, for both x = 0 and x = x1, the range of h contains at most n points, one has  (0) � v(b)
and  (x1) � v(b), hence the result follows.
The second term in  (x0) is linear, hence we only prove the convexity of

�(x0) :=
1R b

a
h(t)dt

�
Z b

a

v(t)h(t)dt =

Pn
i=0 xi

R yi+1
yi

v(t)dtPn
i=0 xi(yi+1 � yi)

:

Observe that

�0(x0) =
1

D2(x0)

(
nX
i=0

xi

�
(yi+1 � yi)

Z y1

y0

v(t)dt� (y1 � y0)

Z yi+1

yi

v(t)dt

�)
;

where D(x0) =
nX
i=0

xi(yi+1 � yi).

Since, v is increasing, one has

1

y1 � y0

Z y1

y0

v(t)dt <
1

yi+1 � yi

Z yi+1

yi

v(t)dt; for i � 1;

hence �0(x0) is increasing in x0.

Lemma 5.3 Let n 2 N, and x > xn in Tn be given. Then D
+p(x) � m

2
:

Proof. Write Fn(x) =
Z x

xn

fn(t)dt. If he submits an o¤er pn(s) with marginal type s, buyer

n obtains a payo¤ equal to Z s

xn

fn(t)(v(t)� pn(s))dt:

Since fn is right-continuous, and pn is convex, the integral has a right-derivative at x, equal to

fn(x)(v(x)� p(x))�D+p(x))

Z x

xn

fn(t)dt:

Since x 2 Tn is a serious o¤er, the right-hand side is non-positive and v(x) � pn(x) � �qn(x).
Hence,

fn(x)

 
v (x)�

R x
xn
v(t)f � n(t)dtR x
xn
f(t)dt

!
�D+p(x)

Z x

xn

fn(t)dt � 0:

The conclusion follows, using Lemma 5.2.
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