

Figure 2(a): The β that maximizes $U^{A}{}_{\beta}$ (the payoff of player A under conventional arbitration) equals $\frac{1}{2}$; the marginal cost MC_{CO} exceeds the marginal benefit MB. The marginal cost MC_{FO} is lower than MC_{CO}, so β that maximizes $V^{A}{}_{\beta}$ (the payoff of player A under final-offer arbitration) may be higher than $\frac{1}{2}$.

Figure 2(a): The β that maximizes $U^{A}{}_{\beta}$ (the payoff of player A under conventional arbitration) equals 1; the marginal cost MC_{CO} is very close to 0, and it falls below the marginal benefit MB. The marginal cost MC_{FO} is higher than MC_{CO} (except a neighborhood of 1/2) so β that maximizes $V^{A}{}_{\beta}$ (the payoff of player A under final-offer arbitration) may be lower than 1.

Figure 1(a): The determination of the equilibrium offers π_A and π_B in the final-offer arbitration game for a given β in the pooling equilibrium in which each agent plays the best-response to her opponent's offer.

Figure 1(b): The determination of the equilibrium offers π_A and π_B in the final-offer arbitration game for a given β in the pooling equilibrium in which agent A plays the bestresponse to her opponent's offer assuming that F^{β} is cdf of the arbitrator's peak points and agent B plays the best-response to her opponent's offer assuming that $F^{1/2}$ is cdf of the arbitrator's peak points. Notice that β increases by $\Delta\beta$, the upward-sloping curve moves by $(1+2c)\Delta\beta$. Since the downward-sloping curve does not move,

and since

$$\Delta(\pi_{\rm A}+\pi_{\rm B})/2 < (1+2c)\Delta\beta$$
,

$$\Delta(\pi_{\rm B}-\pi_{\rm A})/2 < 0,$$

$$\Delta\pi_{\rm B} = \Delta(\pi_{\rm B}-\pi_{\rm A})/2 + \Delta(\pi_{\rm A}+\pi_{\rm B})/2 < (1+2c)\Delta\beta.$$