Figure 2(a): The \(\beta \) that maximizes \(U^A_{\beta} \) (the payoff of player A under conventional arbitration) equals \(\frac{1}{2} \); the marginal cost \(MC_{CO} \) exceeds the marginal benefit \(MB \). The marginal cost \(MC_{F-O} \) is lower than \(MC_{CO} \), so \(\beta \) that maximizes \(V^A_{\beta} \) (the payoff of player A under final-offer arbitration) may be higher than \(\frac{1}{2} \).
Figure 2(a): The β that maximizes U^{A}_{β} (the payoff of player A under conventional arbitration) equals 1; the marginal cost MC_{CO} is very close to 0, and it falls below the marginal benefit MB. The marginal cost MC_{F-O} is higher than MC_{CO} (except a neighborhood of 1/2) so β that maximizes V^{A}_{β} (the payoff of player A under final-offer arbitration) may be lower than 1.
Figure 1(a): The determination of the equilibrium offers π_A and π_B in the final-offer arbitration game for a given β in the pooling equilibrium in which each agent plays the best-response to her opponent's offer.
Figure 1(b): The determination of the equilibrium offers π_A and π_B in the final-offer arbitration game for a given β in the pooling equilibrium in which agent A plays the best-response to her opponent's offer assuming that F^β is cdf of the arbitrator's peak points and agent B plays the best-response to her opponent's offer assuming that $F^{1/2}$ is cdf of the arbitrator's peak points. Notice that β increases by $\Delta \beta$, the upward-sloping curve moves by $(1+2c)\Delta \beta$. Since the downward-sloping curve does not move,

$$\Delta (\pi_A + \pi_B)/2 < (1+2c)\Delta \beta,$$

and since

$$\Delta (\pi_B - \pi_A)/2 < 0,$$

$$\Delta \pi_B = \Delta (\pi_B - \pi_A)/2 + \Delta (\pi_A + \pi_B)/2 < (1+2c)\Delta \beta.$$