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1 Introduction

Experiments, in which subjects play relatively simple finite normal form or
extensive form games, often focus on testing what one might call economic
theory. Economic theory in such cases can be said to be the combination
of game theory and, importantly, the assumed one-to-one link between util-
ity and material pay-offs. Often the reaction to finding violations of this
economic theory is the introduction of preferences which not only depend
on a player’s material payoff but also perhaps other players’ material pay-
offs or even utilities. Often maintaining that players (who are assumed,
in contrast to us researchers, to know their co-players’ preferences) would
play some highly sophisticated notion of equilibrium (a prediction of game
theory), such as subgame perfection or sequential equilibrium for extensive
form games or an undominated equilibrium in normal form games.

Few experimental papers endeavor to test the predictions of game theory
on their own. However, what are the predictions of game theory really? One
prediction is that play will be in Nash equilibrium, but sometimes we even
refine that to Selten (1965)’s subgame perfect equilibrium or even Kreps and
Wilson (1982)’s sequential equilibrium in extensive form games and undom-
inated or Selten (1975)’s trembling-hand perfect equilibrium in normal-form
games. But does game theory really even predict Nash equilibrium behav-
ior? Justifying Nash equilibrium behavior or any of its refinement is very
hard. In a truly one-shot game even if we assume that players are ratio-
nal and have common knowledge of rationality we can only really expect
players to play some strategy within the set of rationalizable strategies, see
Bernheim (1984) and Pearce (1984). To then justify equilibrium behavior
we would have to argue that players’ beliefs are somehow aligned. In a truly
one-shot game, however, there is no reason to believe that this would be the
case. That is why, for instance, the coordination game is such an interesting
game, precisely because we often see that players are not able to coordinate
on a Nash equilibrium if the game is only played once.

We only have hope of further pinning down what players might be doing
in a game, beyond that they might play a rationalizable strategy, if the
game is played repeatedly by various people, so that learning (or evolution)
can take place. Models of learning were developed virtually at the same
time as Nash proposed his solution concept. Even Nash had an evolutionary
interpretation of his solution concept in mind (see e.g. Footnote 1 in Weibull
(1995)). These models, however, principally failed to provide justification
for equilibrium behavior.

There are then two main avenues of research. One is to find processes
which do lead to equilibrium behavior in some sense, and then question the
reasonability or plausibility of these processes after the fact. Alternatively
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one could just accept that equilibrium behavior can not be so easily jus-
tified and ask the question what can be justified instead. The two most
striking results in the second type of literature are due to Hurkens (1995)
and Ritzberger and Weibull (1996). In a stochastic best-reply model a la
Young (1993) Hurkens (1995) shows that the only candidates for stochasti-
cally stable states are those within Basu and Weibull (1991)’s CURB sets.
Using results of Balkenborg (1992) Hurkens (1995) furthermore shows that
a specially refined stochastic best-reply dynamic leads to play eventually
being within Kalai and Samet (1984)’s persistent retracts. Ritzberger and
Weibull (1996) show that under any general payoff-positive dynamics min-
imally asymptotically stable faces are spanned by pure strategy sets which
are closed under weakly better replies. Now these sets can be very large.

In this paper we are after the following. What is the smallest possible
set of states one could still call asymptotically stable under some plausible
dynamic? We restrict attention to best-reply dynamics as opposed to better-
reply dynamics. This is, of course, a reasonably strong assumption about the
rationality of individuals. We then go further, however, in asking whether
we could reasonably restrict players to play only a subset of best-replies.

We, in fact, study refinements of the best-reply correspondence which
satisfy 5 conditions. A refinement must be a subset of the best-reply corre-
spondence, be never empty valued, be convex-valued, have a product struc-
ture, and be upper hemi-continuous. Under certain mild conditions on the
normal form game at hand there is a unique minimal such refined corre-
spondence, which we characterize. This is in some sense the opposite ex-
ercise undertaken by Ritzberger and Weibull (1996). They find sets which
are asymptotically stable under a wide variety of deterministic dynamics,
while we here investigate sets which are asymptotically stable under only
the, in a well-specified sense, most selective of deterministic dynamics. In
this sense, we characterize the smallest faces which one could justifiably call
evolutionary stable. The main result of this paper is that these smallest
evolutionary stable faces coincide with Kalai and Samet (1984)’s persistent
retracts, which again coincide with Basu and Weibull (1991)’s CURB sets
adapted for the minimal refined best-reply correspondence. This result is
analogous to Hurkens (1995)’s result that persistent retracts are the only
candidates for stochastically evolutionary stable states in a particular sto-
chastic model of best-reply learning a la Young (1993). On the ”way” to this
result, in addition, we find a series of interesting results about the underly-
ing minimal refined best-reply correspondence, its fixed points, and notions
of rationalizability based on it. One striking result, for instance, is that a
pure fixed point of this minimal refined best-reply correspondence induces
a perfect Bayesian equilibrium in any extensive form with the given nor-
mal form as its induced normal form. This is somewhat reminiscent of the
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statement that a proper equilibrium (Myerson (1978)) induces a sequential
equilibrium in any extensive form with the given normal form.

The paper proceeds as follows. We first define the class of games we
study in section 2. We then define what we call a refinement of the best-
reply correspondence in section 3. In this section we also characterize the, in
the given class of games, unique minimal such refinement and to an extent
characterize its fixed-points. In section 4 we discuss the concept of ratio-
nalizability based on the refined best-reply correspondence and its relation-
ship to other notions of rationalizability and Dekel and Fudenberg (1990)’s
S∞W 1 elimination procedure. In section 5 we study the notion of a CURB
set (Basu and Weibull (1991)) for the refined best-reply correspondence and
prove that it coincides with Kalai and Samet (1984)’ notion of an absorbing
retract. In section 6 we discuss implications of the results of the previous
sections for extensive form games. Section 7 provides a micro-story, similar
in spirit to Björnerstedt and Weibull (1996), leading a deterministic differ-
ential inclusion based on the refined best-reply dynamics, before we finally
prove the main result in section 8.

2 Preliminaries

Let Γ = (I, S, u) be a finite n-player normal form game, where I = {1, ..., n}
is the set of players, S = ×i∈ISi is the set of pure strategy profiles, and
u : S → IRn the payoff function1. Let Θi = ∆(Si) denote the set of player
i’s mixed strategies, and let Θ = ×i∈IΘi denote the set of all mixed strategy
profiles. Let int(Θ) denote the relative interior of Θ, i.e. int(Θ) = {x ∈
Θ : xis > 0 ∀s ∈ Si ∀i ∈ I}, i.e. the set of all completely mixed strategy
profiles.

A strategy profile x ∈ Θ may also represent a population state in an
evolutionary interpretation of the game in the following sense. Each player
i ∈ I is replaced by a population of agents playing in player position i.
Player i’s (mixed) strategy xi ∈ Θ then represents the vector of proportions
of people playing the various pure strategies available to players in player
population i, i.e. xis denotes the proportion of players in population i who
play pure strategy s ∈ Si.

For x ∈ Θ let Bi(x) ⊂ Si denote the set of pure-strategy best-replies to x
for player i. Let B(x) = ×i∈IBi(x). Let βi(x) = ∆(Bi(x)) ⊂ Θi denote the
set of mixed-strategy best-replies to x for player i. Let β(x) = ×i∈Iβi(x).

The following definition can be found in Kalai and Samet (1984). Two
strategies xi, yi ∈ Θi are equivalent (for player i) if ui(xi, x−i) = ui(yi, x−i)

1The function u will also denote the expected utility function in the mixed extension
of the game Γ.
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for all x−i ∈ Θ−i = ×j 6=iΘj .
Let Ψ = {x ∈ Θ| B(x) is a singleton}. Throughout this paper we will

restrict attention to games Γ for which this set Ψ is dense in Θ. Let this set
of games be denoted by G∗. A game Γ 6∈ G∗ is given in Table 1. Player 1’s
best reply set is {A, B} for any (mixed) strategy of player 2. Hence, β(x) is
never a singleton and Ψ = ∅, which is obviously not dense in Θ. This is to
do with the fact that player 1 has two equivalent strategies.

C D

A 1,1 1,0

B 1,0 1,1

Table 1: A game in which Ψ is not dense in Θ.

Theorem 1 demonstrates that without equivalent strategies Ψ is dense
in Θ. The following lemma will be used in the proof of Theorem 1 and is
due to Kalai and Samet (1984).

Lemma 1 Let U be an open subset of Θ. Then two strategies xi, yi ∈ Θi

are equivalent (for player i) if and only if ui(xi, z−i) = ui(yi, z−i) for all
z ∈ U .

Theorem 1 Let Γ be without equivalent strategies. Then Ψ is dense in Θ;
i.e. Γ ∈ G∗.

Proof: Suppose Ψ is not dense in Θ. Then there is an open set U in Θ such
that for all y ∈ U the pure best-response set B(y) is not a singleton, i.e. has
at least two elements. Without loss of generality, due to the finiteness of S,
we can assume that there are two pure strategy-profiles si, ti ∈ Si such that
si, ti ∈ Bi(y) for all y ∈ U and some player i ∈ I. But then by Lemma 1, si

and ti are equivalent for player i. QED
Note that the opposite of Theorem 1 is not true. Consider two equivalent

strategies which are strictly dominated by another strategy. If these are the
only equivalent strategies in Γ then Ψ is still dense in Θ. However, the
following theorem is immediate.

Theorem 2 Let Γ be such that Ψ is dense in Θ. Let si ∈ Si be a best-reply
on an open subset of Θ. Then player i has no equivalent strategy to si in
Si.

Note that the restriction that a game should have no equivalent strategies
is not a severe one. In particular we are not ruling out games with weakly
dominated strategies.
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Definition 1 A strategy si ∈ Si is a strict never best reply if for every
x ∈ Θ there is a ti ∈ Si such that ui(si, x−i) < ui(ti, x−i).

In other words a strict never best reply si is such that si 6∈ Bi(x) for any
x ∈ Θ.

Definition 2 A strategy wi ∈ Si is a weak never best reply if for every
x ∈ Θ there is a ti ∈ Si, ti 6= wi such that ui(wi, x−i) ≤ ui(ti, x−i).

In other words a weak never best reply wi is such that if wi ∈ Bi(x) then
Bi(x) is not a singleton. Note that every game in G∗ has at least one strategy
for each player which is not a weak never best reply. Games not in G∗,
however, may be such that all strategies are weak never best replies2. A
weak never best reply is, in fact, a strategy which is weakly dominated by a
set of strategies, as defined in Balkenborg (1992).

Of course, if a strategy is strictly dominated then it is a strict never best-
reply. If a strategy is weakly dominated then it is a weak never best-reply.
The reverse is not true (see Example 5.7 in Ritzberger (2002) for a strategy
which is a strict never best reply but not strictly dominated).

3 Refined best-reply correspondences

A correspondence τ : Θ ⇒ Θ is a refined best-reply correspondence if

1. τ(x) = ×i∈Iτi(x) ∀ x ∈ Θ,

2. τi(x) ⊂ βi(x) ∀ x ∈ Θ, ∀ i ∈ I,

3. τi(x) 6= ∅ ∀ x ∈ Θ, ∀ i ∈ I,

4. τ(x) is convex-valued for all x ∈ Θ,

5. τ(x) is upper-hemi continuous at all x ∈ Θ.

Note that if β(x) is a singleton then so must be any τ(x) with τ(x) = β(x)
by properties 2 and 3. In games in G∗ we thus must have τ(x) = β(x) for
all x ∈ Ψ for any refined best-reply correspondence τ . If the best-response
at x, β(x) is a singleton, then it must be a pure strategy profile. For x 6∈ Ψ
the set τ(x) must include all pure strategies which are best responses to
some nearby x′ ∈ Ψ by property 53. For such x any τ(x) must then also

2Consider, for instance, the game in which every player has at least two strategies, yet
receives a payoff of 1, regardless of what other players choose.

3Strategies that are unique best replies to some x ∈ Ψ were called inducible in von
Stengel and Zamir (2004). We might call the pure strategy profiles in σ(x) the inducible

or indispensable best replies to x.
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include all convex combinations of all pure strategies in τ(x) by property
4. For games in G∗, therefore, the unique minimal such refined best-reply
correspondence, denoted σ : Θ ⇒ Θ, can be found in the following way. For
x ∈ Θ let

Si(x) = {si ∈ Si| ∃{xt}
∞
t=1 ∈ Ψ : xt → x ∧ Bi(xt) = si ∀t}.

The set Si(x) is in fact the set of pure semi-robust best replies as defined
by Balkenborg (1992). Let S(x) = ×i∈ISi(x). From the observations above
we then obtain the following theorem.

Theorem 3 Let Γ ∈ G∗. The unique minimal refined best-reply correspon-
dence is given by σ, defined such that for any x ∈ Θ, σ(x) = Θ [S(x)] =
×i∈I∆ (Si(x)).

Note that for games not in G∗ there may well be multiple minimal refined
best-reply correspondences. For the remainder of this paper we will study
games in G∗ only.

The next lemma is immediate.

Lemma 2 Let wi ∈ Si be a weak never best reply for player i. Then wi 6∈
Si(x) for any x ∈ Θ.

Proof: By the definition of a weak never best reply wi 6∈ βi(x) for any x ∈ Ψ,
but only strategies in βi(y) for some y ∈ Ψ can be in σi(x). QED

This, in turn, leads to an immediate theorem.

Theorem 4 Let Γ be a finite two-player game in G∗. Let x ∈ Θ be a fixed
point of the refined best-reply correspondence σ. Then xiwi

= 0 for every
weak never best reply wi ∈ Si.

Proof: Immediate from Lemma 2: Let x ∈ σ(x). By Lemma 2 wi 6∈ Si(x)
for any weak never best reply wi ∈ Si. But then no y ∈ Θ with yiwi

> 0 can
be in σ(x). QED

Selten (1975) introduced the concept of a (trembling-hand) perfect (Nash)
equilibrium. A useful characterization of a perfect equilibrium is given in
the following lemma, which is also due to Selten (1975) (see also Proposition
6.1 in Ritzberger (2002) for a textbook treatment).

Lemma 3 A (possibly mixed) strategy profile x ∈ Θ is a (trembling-hand)
perfect (Nash) equilibrium if there is a sequence {xt}

∞
t=1 of completely mixed

strategy profiles (i.e. each xt ∈ int(Θ)) such that xt converges to x and
x ∈ β(xt) for all t.
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Not every fixed point of σ is necessarily a trembling-hand perfect equilib-
rium, even in 2-player games. To see this consider the Game given in Table
2, taken from Hendon, Jacobson, and Sloth (1996). For this game σ and β
are identical. The mixed strategy profile x∗ = ((0, 1/2, 1/2); (1/2, 0, 1/2)) is
a Nash equilibrium, hence a fixed point of β, hence of σ, which, as Hendon,
Jacobson, and Sloth (1996) point out is not perfect. Indeed, while the two
pure strategies in the support of x∗

2, i.e. strategies D and F are not weakly
dominated, the mixture x∗

2 is weakly dominated by the pure strategy E. By
Theorem 3.2.2 in van Damme (1991) x∗, being weakly dominated, cannot
be perfect.

D E F

A 0,0 0,1 0,0

B 2,0 2,1 0,2

C 0,2 0,1 2,0

Table 2: A game in which a fixed point of σ is not perfect.

Theorem 5 Let Γ be a 2-player game in G∗. Then every pure fixed-point,
s ∈ S, of the refined best-reply correspondence, σ, is a perfect equilibrium.

Proof: Every pure fixed point of σ is undominated by Theorem 4. But
then in two-player games every undominated Nash equilibrium is (trembling-
hand) perfect (see Theorem 3.2.2 in van Damme (1991)).

The reverse of Theorem 5 is not true. Consider the game given in Table
3. In this game strategy A (and similarly D) is equivalent to the mixture of
pure strategies B and C (E and F respectively). However, A is a best-reply
only on a thin set of mixed-strategy profiles. In fact, A is best against any
x ∈ Θ in which x2E = x2F , the set of which is a thin set. By Theorem 2 this
game is in G∗. Now, in this game (A, D) constitutes a perfect equilibrium.
In fact every mixed strategy profile ((α, 1−α

2 , 1−α
2 ); (α, 1−α

2 , 1−α
2 )) is a perfect

equilibrium. In fact they are also all KM-stable. But none of these equilibria,
except the one with α = 0, are fixed points of σ, due to the fact that A (and
D) is only best on a thin set; it is in fact a weak never best-reply.

Theorem 5 cannot be generalized to general n-player games. To see this
consider the following characterization of fixed points of σ. For xi ∈ Θi let
C(xi) = {si ∈ Si|xisi

> 0} denote the carrier (or support) of xi.

Lemma 4 Strategy profile x ∈ Θ satisfies x ∈ σ(x) if and only if for all
i ∈ I and for all si ∈ C(xi) there is an open set U si ⊂ Θ, with x in the
closure of U si, such that si ∈ Bi(y) for all y ∈ U si.
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D E F

A 2,2 1,2 1,2

B 2,1 2,2 0,0

C 2,1 0,0 2,2

Table 3: A game in which a perfect equilibrium (and, in fact, KM-stable
equilibrium) is not a fixed point of σ.

Proof: Immediate.
Suppose x ∈ σ(x). Consider player i. Then for all si ∈ C(xi) let U si

denote this open set in which si is best. Now if
⋂

i∈I

⋂

si∈C(xi) U si 6= ∅, then
x is also trembling-hand perfect. However, this does not necessarily have to
be the case. We already saw this for the 2-player game given in Table 2. In
the fixed point of σ, x∗ = ((0, 1/2, 1/2); (1/2, 0, 1/2)), player 2 uses his pure
strategies D and F only. D is best in the open set UD = {x ∈ Θ|x1C > 1

2},
while F is best in the open set UF = {x ∈ Θ|x1B > 1

2}. These two sets
are such that there is no bigger open set with the same property and they
have an empty intersection. Hence, x∗ is not perfect. The extensive form
game in Figure 4 demonstrates that for games with more than 2 players this
phenomenon may even occur for pure fixed points of σ.

In section 5 we prove that CURB sets (Basu and Weibull (1991)) based
on σ give rise to absorbing retracts (Kalai and Samet (1984)) and minimal
such sets give rise to persistent retracts. In section 8 we show that these
persistent retracts are asymptotically stable under our refined best-reply
dynamic. So one might think that fixed points of σ will have some relation to
persistent equilibria (Nash equilibria in a persistent retract, Kalai and Samet
(1984)). This is not true, though. Note first that the mixed equilibrium in
the coordination game is not persistent and is a fixed point of σ. Consider the
game given in Table 4 taken from Kalai and Samet (1984). The equilibrium
(B, D, E) is perfect and proper but not persistent as Kalai and Samet (1984)
point out. It is also a fixed point of σ. To see this note that E is weakly
dominant for player 3 and that B and D are best (for players 1 and 2,
respectively) against all nearby strategy profiles in which player 2 chooses
strategy C with smaller probability than player 3 chooses F and player 1
chooses A with smaller probability than player 3 chooses F .

The game given in Table 5, taken from Kalai and Samet (1984), demon-
strates that there are persistent equilibria which are not fixed points of σ.
The strategy profile (A, C, E) is persistent (see Kalai and Samet (1984))
but is not a fixed point of σ. To see this note that player 1’s strategy A
is never best for nearby strategy profiles. The one pure strategy combina-
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C D

A 1,1,1 0,0,0

B 0,0,0 0,0,0

C D

A 0,0,0 0,0,0

B 0,0,0 1,1,0

E F

Table 4: A game in which a pure fixed point of σ is not persistent.

tion (of players 2 and 3) against which A is better than B is (D, F ) which
for nearby (to (A, C, E)) strategy profiles will always have lower probability
than the outcomes (C, F ) and (D, E) against which B is better than A.

4 σ-Rationalizability

A set R ⊂ S is a selection if R = ×i∈IRi and Ri ⊂ Si, Ri 6= ∅ for all i.
For a selection R let Θ(R) = ×i∈I∆(Ri) denote set of independent strategy
mixtures of the pure strategies in R. A set Ψ ⊂ Θ is a face if there is a
selection R such that Ψ = Θ(R). Note that Θ = Θ(S). Note also that
β(x) = Θ(B(x)) and σ(x) = Θ(S(x)).

For A ⊂ Θ let Bi(A) = {si ∈ Si|si ∈ Bi(x) for some x ∈ A} denote
the set of all pure best-replies for player i to all strategy profiles in set
A. Let βi(A) = ∆ (Bi(A)) denote the convex hull of this set Bi(A). Let

β(A) = ×i∈Iβi(A). For k ≥ 2 let βk(A) = β
(

βk−1(A)
)

. For A = Θ, βk(A)

is a decreasing sequence, and we denote β∞(Θ) =
⋂∞

k=1 βk(Θ). A pure
strategy profile s ∈ S is rationalizable if it is an element of the selection
R ⊂ S which satisfies Θ(R) = β∞(Θ) (Bernheim (1984) and Pearce (1984);
see also Ritzberger (2002), Definition 5.3 for a textbook treatment).

The same can be done with the refined best-reply correspondence σ.
For A ⊂ Θ let Si(A) = {si ∈ Si : si ∈ Si(x) for some x ∈ A} denote
the set of all pure refined best-replies for player i to all strategy profiles
in set A. Let σi(A) = ∆ (Si(A)). Let σ(A) = ×i∈Iσi(A). For k ≥ 2 let

σk(A) = σ
(

σk−1(A)
)

. For A = Θ, σk(A) is again a decreasing sequence,

and we denote σ∞(Θ) =
⋂∞

k=1 σk(Θ). A pure strategy profile s ∈ S is σ-

rationalizable if it is an element of the selection R ⊂ S which satisfies
Θ(R) = σ∞(Θ).

By the fact that σ(x) ⊂ β(x) for all x ∈ Θ we obviously have that
the set of σ-rationalizable strategies is a subset of the set of rationalizable
strategies. However, we can say more. Let Γ̃ = (I, S, ũ) denote the game
derived from Γ by defining ũi(si, s−i) = ui(si, s−i) − δ, for a fixed positive
δ, if si ∈ Si is a weak, and not strict, never best reply in Γ and ũi(si, s−i) =
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C D

A 0,0,0 0,0,1

B 0,1,0 1,0,1

C D

A 0,1,0 1,0,0

B 1,0,1 0,1,0

E F

Table 5: A game in which a pure persistent equilibrium in not a fixed point
of σ.

ui(si, s−i) otherwise. Every pure strategy which is a weak never best-reply
in Γ is, therefore, a strict never best reply in Γ̃. Let β̃ denote the best-reply
correspondence of Γ̃. Then we have the following lemma.

Lemma 5 For Γ̃ and β̃ defined as above we have σ(x) ⊂ β̃(x) for all x ∈ Θ.

Proof: Follows immediately from Lemma 2. QED
The refined best-reply set σ(x) may, for some games Γ and some x ∈ Θ,

be a proper subset of β̃(x). To see this consider the game given in Table
6, taken from van Damme (1991), Figure 2.2.1; see also exercise 6.10 in
Ritzberger (2002). In this game strategies D and F are strict never best
replies for players 2 and 3, respectively. There are no strategies which are
weak but not strict never best replies. Hence, β̃(x) = β(x) for any x ∈ Θ.
Player 1’s strategy B is (the unique) best strategy when player’s 2 and 3
play D and F , respectively. Both A and B are best when players 2 and 3
play C and E, respectively. However, for any (mixed) strategy profile, y ∈ Θ
in which players 2 and 3 play close to C and E, A is the unique best reply.
Hence, B 6∈ S1(x) for any x ∈ Θ for which x2C = 1 and x3E = 1. Therefore,
S1(x) = {A} is indeed a proper subset of B1(x) = {A, B} for any such x,
and, hence, σ(x) is a proper subset of β̃(x) for any such x. In fact, this
game is usually used to illustrate that in 3-player games an undominated
Nash equilibrium, (B, C, E), need not be perfect, as is indeed the case here.

Note that this is a general phenomenon: Pure strategies, which are equiv-
alent to mixed strategies, and, hence, are weak never best replies can never
appear in the refined best-reply correspondence.

Let β̃∞ be defined analogously to β∞. We call a pure strategy s ∈ S
Dekel-Fudenberg rationalizable (or DF-rationalizable4) if it is an ele-
ment of the selection R ⊂ S which satisfies Θ(R) = β̃∞(Θ).

4Dekel and Fudenberg (1990) in fact allow players to hold beliefs which are arbitrary
distributions over the set of possible opposition play. This gives rise to what one might
call Dekel-Fudenberg correlated rationalizability (see Ritzberger (2002), p.209, for a dis-
cussion of rationalizability versus correlated rationalizability; see also Börgers (1994) and
Brandenburger (1992) for epistemic conditions under which Dekel-Fudenberg correlated
rationalizability is obtained). A strategy is Dekel-Fudenberg correlated rationalizable if
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C D

A 1,1,1 1,0,1

B 1,1,1 0,0,1

C D

A 1,1,0 0,0,0

B 0,1,0 1,0,0

E F

Table 6: A game in which for some x ∈ Θ, σ(x) is a proper subset of β̃(x).

Theorem 6 Let Γ ∈ G∗. Every σ-rationalizable strategy for Γ is DF-
rationalizable.

The game in Table 6 illustrates that the set of σ-rationalizable strategies,
here {A} × {C} × {E}, may well be a proper subset of the set of DF-
rationalizable strategies, here {A, B} × {C} × {E}.

There are a variety of refinements of the concept of (uncorrelated) ratio-
nalizability of Bernheim (1984) and Pearce (1984). The ones we are aware of
are cautious rationalizability (Pearce (1984)), perfect rationalizabil-

ity (Bernheim (1984)), proper rationalizability (Schuhmacher (1999)),
trembling-hand perfect rationalizability, and weak perfect ratio-

nalizability (both Herings and Vannetelbosch (1999)).
Herings and Vannetelbosch (1999) study the relationship between all

these concepts. They find that perfect and proper rationalizability both im-
ply weakly perfect rationalizability and provide counter-examples to every
other possible set-inclusion. We do not want to go into the various defin-
itions here now, but will just point out how these concepts are related to
σ-rationalizability as defined in this paper.

In the game given in Table 3 all of the above refinements of rational-
izability yield the whole strategy set, while σ-rationalizability leads to the
smaller set {B, C} × {E, F}. In the game given in Table 7, trembling hand
perfect rationalizability yields, with {A} × {D}, a subset of the set of σ-
rationalizable strategies, {A, B} × {D, E}. In the game, derived from the
game in Table 7 by replacing C and F with strictly dominated strategies,
and not changing the payoffs other strategies obtain against C and F , the
set of cautiously rationalizable strategies, {A} × {D}, is a proper subset of
the set of σ-rationalizable strategies, again given by {A, B} × {D, E}. In
the reduced normal form game, given in Table 8, of the extensive form game
given in Figure 2, the set of properly rationalizable strategies, {A} × {F},

and only if it survives the Dekel-Fudenberg procedure (or S
∞

W -procedure), i.e. one round
of elimination of all pure weakly dominated strategies and then the iterated deletion of all
pure strictly dominated strategies. The set of Dekel-Fudenberg rationalizable strategies is
obviously contained in the set of correlated Dekel-Fudenberg rationalizable strategies.
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is smaller than the set of σ-rationalizable strategies, {A, B, C} × {D, F}.
While we thus have no systematic relationship between the concepts of cau-
tious, trembling hand perfect, proper, and σ-rationalizability, it may well be
the case that perfect and weakly perfect rationalizability, both as defined in
Herings and Vannetelbosch (1999), are, sometimes strictly, weaker criteria
than σ-rationalizability. This issue is open.

To illustrate that σ-rationalizability does not always allow the iterated
deletion of weakly dominated strategies, unlike trembling-hand perfect ra-
tionalizability, consider the game given in Table 7 from Samuelson (1992).
In this game strategies C and F are weakly dominated, and, hence, not σ-
rationalizable. In the reduced game without strategies C and F , strategies
B and E are now weakly dominated, and, hence, not trembling-hand perfect
rationalizable. However, B (the analogue holds for E) is a best reply against
completely mixed strategy profiles close to D, in which the weight on F is
greater than the weight on E. Hence, S1(x) = {A, B} for any such x ∈ Θ.
Hence, B is σ-rationalizable.

D E F

A 1,1 1,1 2,1

B 1,1 0,0 3,1

C 1,2 1,3 1,1

Table 7: A game in which the set of σ-rationalizable strategies includes an
iteratively weakly dominated strategy.

In some special contexts σ-rationalizability does allow the iterated dele-
tion of weakly dominated strategies. See section 6.

5 σ-CURB sets

The following definitions are due to Basu and Weibull (1991). A selection
R is a CURB set if B(Θ(R)) ⊂ R. It is a tight CURB set if, in addition
B(Θ(R)) ⊃ R, and, hence, B(Θ(R)) = R. It is a minimal CURB set if it
does not properly contain another CURB set.

Again we can define strong CURB sets in a similar fashion. A selection R
is a σ-CURB set if S(Θ(R)) ⊂ R. It is a tight σ-CURB set if, in addition
S(Θ(R)) ⊃ R, and, hence, S(Θ(R)) = R. It is a minimal σ-CURB set if
it does not properly contain another σ-CURB set.

Note that every CURB set is a σ-CURB set. In fact even every Basu
and Weibull (1991)’s CURB∗-set, a CURB set without weakly dominated
strategies, is a σ-CURB set. The game given in Table 6 illustrates that a
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σ-CURB set may well be a proper subset of even a minimal CURB∗-set. In
this game the unique minimal CURB∗-set (and minimal CURB set) is the
set {A, B} × {C} × {E}, while the unique minimal σ-CURB set is the set
{A} × {C} × {E}.

The following definitions are due to Kalai and Samet (1984). A set
Ψ ⊂ Θ is a retract if Ψ = ×i∈IΨi, where Ψi ⊂ Θi is nonempty, compact,
and convex. A set Ψ ⊂ Θ absorbs another set Ψ′ ⊂ Θ if for all x ∈ Ψ′ we
have that β(x) ∩Ψ 6= ∅. A retract Ψ is an absorbing retract if it absorbs
a neighborhood of itself. It is a persistent retract if it does not properly
contain another absorbing retract. Kalai and Samet (1984) show that, for
games without equivalent strategies, and, hence, for games in G∗, persistent
retracts have to be faces. The following theorem is proven in Balkenborg
(1992). We here give an alternative proof.

Theorem 7 Let Γ ∈ G∗. A selection R ⊂ S is a σ-CURB set if and only if
Θ(R) is an absorbing retract.

Proof: ”⇐”: Let the selection R ⊂ S be such that Θ(R) is an absorbing
retract, i.e. it absorbs a neighborhood of itself. Let U be such a neighbor-
hood of Θ(R). We then have that for every y ∈ U there is an r ∈ R such
that r ∈ B(y). For all r ∈ R let U r = {y ∈ U |r ∈ B(y)}. We obviously have
⋃

r∈R U r = U . Suppose R is not a σ-CURB set. Then there is a player i ∈ I
and a pure strategy si ∈ Si \Ri such that si ∈ Si(x) for some x ∈ Θ(R). By
the definition of Si we must then have that si ∈ β(y) for all y ∈ O for some
open set O whose closure includes x. But then, by the finiteness of R, there
is a strategy profile r ∈ R such that U r and O have an intersection which
contains an open set. On this set si and ri are now both best replies. But
then, by Lemma 1, si and ri are equivalent for player i, which, by Theorem
2, contradicts our assumption. ”⇒”: Suppose R ⊂ S is a σ-CURB set. Sup-
pose that Θ(R) is not an absorbing retract. Then for every neighborhood
U of Θ(R) there is a yU ∈ U such that β(yU ) ∩ Θ(R) = ∅. In particular
for every such yU there is a player i ∈ I and a pure strategy si ∈ Si \ Ri

such that si ∈ Bi(yU ). By the finiteness of the number of players and pure
strategies and by the compactness of Θ, this means that there is a conver-
gent subsequence of yU ∈ int(Θ) such that yU → x for some x ∈ Θ(R) and
there is an i ∈ I and an si ∈ Si \ Ri such that si ∈ Bi(yU ) for all such yU .
Now one of two things must be true. Either si is a best-reply in an open set
with closure intersecting Θ(R), in which case si ∈ Ri given the definition
of σ and a σ-CURB set, which gives rise to a contradiction. Or there is no
open set with closure intersecting Θ(R) such that si is best on the whole
open set, in which case there must be a strategy ri ∈ Ri which is such that
ri ∈ β(yU ) at least for a subsequence of all such yU , which again gives rise
to a contradiction. QED
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6 Extensive form games

In this section we investigate what the various concepts based on the refined
best-reply correspondence give rise to in extensive form games. We will look
at both the agent normal form as well as the reduced normal form.

We first consider extensive form games of perfect information (EFGOPI).
Note that the agent normal form of such games is in G∗ as long as no player
has 2 or more equivalent actions at any of her information sets (which here
are singletons, i.e. nodes). Not every normal form derived from even a
generic extensive form game of perfect information (GEFGOPI) is in G∗.
Consider the 1-player extensive form game, given in Figure 1, in which at
node 1 the player has two choices, L and R, where L terminates the game,
while R leads to a second node, where the player again faces two choices l
and r. The two pure strategies Ll and Lr are obviously equivalent. The
reduced normal form has been introduced to eliminate exactly this type of
equivalences. The reduced normal form of any GEFGOPI is again in G∗.

RL

2

1

r

1

l

0

1

Figure 1: A 1-player extensive form game.

Theorem 8 Let Γ ∈ G∗ be the agent normal form of a GEFGOPI. Then
only the subgame-perfect strategy profile is rationalizable.

Proof: Consider a final node. A strategy, available to the player, say, i at
this node, which is not subgame perfect is weakly dominated. Hence, it
can not be in Si(x) for any x ∈ Θ. So it is not in σ(Θ). Now consider
an immediate predecessor node to the above final node. A non-subgame
perfect strategy at this node can only be a best-reply if the behavior at the
following nodes is non-subgame perfect. For any x ∈ Θ in a neighborhood
of σ(Θ) this is still true. Hence, any such non-subgame perfect strategy at
this node can not be in σ2(Θ). This argument can be reiterated any finite
number of times. QED

Theorem 9 Let Γ ∈ G∗ be the agent normal form of a GEFGOPI. The only
fixed point of σ for this game is the (unique) subgame perfect equilibrium.

15



Proof: Every fixed point of σ is in the set of σ-rationalizable strategies. This
set, by Theorem 8, only consists of the subgame perfect equilibrium. QED

None of the above theorems is true for the reduced normal form. Con-
sider the centipede game (Figure 8.2.2 in Cressman (2003)) given here in
Figure 2. This game is a GEFGOPI and, hence, has a unique subgame
perfect equilibrium, which is (Lr, Rr). Note that this is, of course, also
the unique sequential (Kreps and Wilson (1982)) and unique weak perfect
Bayesian equilibrium.

RL

3, 0

1

R

4, 3

L

2

rl

1, 2

1

r

2, 4

l

0, 1

2

Figure 2: A centipede game.

The reduced normal form of this game is given in Table 8 where player
1’s strategies are A = Ll|Lr, B = Rl, and C = Rr, while player 2’s strate-
gies are D = Ll|Lr, E = Rl, and F = Rr. The set of σ-rationalizable
strategies is {A, B, C} × {D, F}, a lot more than just the subgame per-
fect strategy-profile. Also the non-subgame perfect, and, hence, non weak-
perfect Bayesian and non-sequential, Nash equilibrium (B, D) is a fixed point
of σ. So indeed, fixed points of σ in a given normal form game do not induce
sequential or even weak perfect Bayesian equilibria in every extensive form
game with this reduced normal form.

Also not every sequential equilibrium is necessarily a fixed point of σ.
The game given in Figure 3, Figure 13 in Kreps and Wilson (1982), has a
sequential equilibrium (L, r) which is not a fixed point of σ (it is not perfect).
Here the agent normal form and the reduced normal form are the same and
given in Table 9.

There are even extensive form games in agent normal form in which a
fixed point of σ is not a sequential equilibrium. Consider the game in Figure
4. The Nash equilibrium (A, R, r) is a fixed point of σ, but is not sequential
and, hence, not extensive form trembling hand perfect.

To see that (A, R, r) is a fixed point of σ we need to check that each
strategy choice is a best reply in an open set around (A, R, r). For player
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D E F

A 3,0 3,0 3,0

B 4,3 1,2 1,2

C 4,3 0,1 2,4

Table 8: The normal form game of the centipede game in Figure 2.

1’s choice A this is definitely true as A weakly dominates both B and C.
Player 2’s choice R is best as long as player 1 is sufficiently more likely to
tremble to C than to B. In fact the probability of C has to be at least twice
that of B. Player 2’s payoffs are unaffected by player 3’s choice. Player 3’s
choice r is best as long as player 1 trembles sufficiently more to B than to
C. In fact the probability of B has to be at least twice that of C. This
is true for whatever player 2 does. Hence, for each player’s strategy choice
there is an open set of strategy profiles around (A, R, r) against which the
player’s choice is a best reply. Hence, (A, R, r) is indeed a fixed point of σ.
However, these open sets (for players 2 and 3) are mutually exclusive. This
in turn means that there is no system of consistent beliefs for players 2 and
3 which make both choices R and r best replies simultaneously. Player 2’s
belief that sustains the (A, R, r) equilibrium is such that his first node has
conditional probability of at most 1/3. Player 3’s belief that sustains the
(A, R, r) equilibrium is such that her first node has conditional probability
of at least 2/3. But in a sequential equilibrium these two beliefs would have
to coincide. Thus this (A, R, r) is not sequential (and not trembling-hand
perfect).

The following theorem is reminiscent of the result that a proper equi-
librium (Myerson (1978)) of a normal form game induces a sequential equi-
librium in any extensive form with this normal form. The result here is,
however, only for pure strategy profiles, and states that any pure fixed point
of σ induces a (weak) perfect Bayesian equilibrium (see e.g. Definition 6.2 in
Ritzberger (2002)) in every extensive form game with this reduced normal
form.

Theorem 10 Let Γ ∈ G∗ be a normal form game. Then if a pure strategy
profile s is a fixed point of σ it induces a perfect Bayesian equilibrium in
any extensive form game with this normal form game as its reduced normal
form.

Proof: Let si be player i’s part of the pure strategy profile s. Given s is a
fixed point of σ we have by Lemma 4 that there is an open set U si ⊂ Θ with
its closure containing s, such that si ∈ Bi(y) for any y ∈ U si . But then there
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2

Figure 3: A game with a sequential equilibrium (L, r) which is not a fixed
point of σ.

is a sequence of completely mixed yt ∈ intΘ such that yt converges to s and
si ∈ Bi(yt) for all these yt. Being completely interior every such yt induces
a unique probability distribution over all nodes in all information sets of
every player. In particular also for player i. But then there is a unique
consistent belief for player i, µt, given yt. But then the sequence µt must
have a convergent subsequence, which converges to some feasible belief µ,
consistent with s wherever possible, and such that s is optimal given belief
µ. Hence, s is a perfect Bayesian equilibrium. QED

Whether this result is true for mixed fixed-points is not clear. The
difficulty here is that if say C(xi) contains two pure strategies, one may not
be able to find one belief µ justifying both pure strategies. It may be the
case that both pure strategies are justifiable, but only with different beliefs.
But then x would not be a perfect Bayesian equilibrium.

7 A micro model leading to the minimal refined

best-reply dynamics

In section 8 we will finally consider the refined best-reply dynamics

ẋ ∈ σ(x) − x, (1)

where σ is as in section 3. We discuss the properties of this dynamic in detail
in section 8. In this section we provide a micro-motivation for this refined
best-reply dynamic (1). To do this we first consider a micro model leading
to the best-reply dynamic process (2), similar in spirit to some of the models
in Björnerstedt and Weibull (1996); see also section 4.4 in Weibull (1995).
Suppose there is a continuum of agents for each player i ∈ I. Players only
play pure strategies. Then a (mixed) strategy-profile x ∈ Θ represents a
state in the following sense. For player population i ∈ I, xis denotes the
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l r

L 1,1 1,1

R 2,0 -1,-1

Table 9: The normal form game of the game in Figure 3.

proportion of agents in this population who play pure strategy s ∈ Si. Over
time agents review their strategies at a given rate, r = 1, which we will
assume fixed and the same for all agents in all populations. Any agent, in
any population, who is reviewing her strategy is assumed to switch to any
pure best reply against the current state x. If the agent is currently already
playing a best reply the agent may nevertheless switch to an alternative
best reply if there is one. Suppose s ∈ Si is such that s 6∈ Bi(x). Then
every reviewing s-strategist will switch away from strategy s to a best-reply,
while no other agent will switch to s either. Hence, ẋis = −xis. Now
suppose {s} = Bi(x), i.e. s is the unique best reply to current state x ∈ Θ.
Then every reviewing s-strategist will remain to be one, while every other
reviewing agent will switch to s. Hence, ẋis =

∑

t6=s xit = 1 − xis. Suppose,
finally, that s ∈ Bi(x) and Bi(x) is not a singleton. Then reviewing s-
strategists may or may not switch to something else, while all other reviewing
agents may or may not switch to s. For a moment let α ∈ [0, 1] denote the
fraction of reviewing agents, whatever their strategy, who switch to s. Hence,
ẋis = (1 − xis)α − xis(1 − α), which leads to ẋis = α − xis. Given α ∈ [0, 1]
can take on any value the combinations of the three cases above leads to the
specification in equation (2).

A similar micro story is also sketched in Gilboa and Matsui (1991). In
Gilboa and Matsui (1991)’s story, however, it is assumed that agents do not
exactly know the current state, or, as Gilboa and Matsui (1991) call it, the
current behavior pattern. In fact they assume that ”..., there is a limitation
[on the agents part] of recognizing the current behavior pattern ...” and that
agents choose a ”... best response to a possibly different behavior pattern
which is in the ε-neighborhood of the current one.” (Gilboa and Matsui
(1991), p. 863).

Let us here also assume that agents do not exactly know the current
state x ∈ Θ, but we will force them to hold a belief about the current state,
drawn from some distribution over the intersection of Θ and an ε-ball around
x. Agents then choose a best reply to their belief.

To make this precise, we assume that, at some time t, every reviewing
agent always holds a prior belief µ0 ∈ Θ about x where each agent’s µ0 is
independently drawn from a distribution F on Θ, where F is an arbitrary
distribution with a density that is positive almost everywhere, i.e. this
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Figure 4: A game in which there is a fixed point of σ in the agent normal
form which is not sequential (and, hence, not extensive form trembling hand
perfect).

density is 0 only on a set with Lebesgue-measure 0. This means there
is heterogeneity in agents’ prior belief. Every agent then learns what a
proportion of 1 − ε of all agents in every population are doing and updates
her belief accordingly. This updated belief µ1 then has a distribution which
has support only within an ε-ball, Ux

ε , around the true state x. This ε-ball is
with respect to the sup-norm, i.e. Ux

ε = {y ∈ Θ|||x−y||∞ ≤ ε}, where || · ||∞
denotes the sup (or max) norm. The density of this posterior distribution
is then positive almost everywhere within Ux

ε , i.e. within Ux
ε it is 0 only on

a set with Lebesgue-measure 0 again.
This means that strategies which are best replies to x only on a thin

set (Lebesgue-measure 0), such as Ψ ∩ Ux
ε , within the ε-ball around x will

only be chosen by a vanishing fraction of reviewing agents for all such prior
distributions F .

Assuming that the prior distribution is arbitrary (and potentially differ-
ent at every point in time), but satisfies the restrictions posed, and provided
that ε is small enough, exactly how small depends on the game, the induced
learning dynamics can again be written as (1).

8 The refined best-reply dynamics: Results

Gilboa and Matsui (1991), Matsui (1992) and Hofbauer (1995) introduced
the continuous time best reply dynamics, which modulo a time change is
equivalent to the continuous time version of fictitious play. This best-reply
dynamic is given by the differential inclusion

ẋ ∈ β(x) − x. (2)
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A solution to (2) is an absolutely continuous function x(t), defined for at
least t ≥ 0, that satisfies (2) for almost all t. 5 General theory guarantees
the existence of at least one solution ξ(t, x0) through each initial state x0.
In general, several solutions can exist through a given initial state. In some
games, there appear to be too many of them.

C D

A 1,1 1,1

B 1,1 0,0

Table 10: A game in which the BR dynamics seems to have ‘too many’
solutions.

For the game given in Table 10, within the component of NE any function
x(t) with −xi ≤ ẋi ≤ 1 − xi (i.e., which does not move too quickly) is a
solution while all nearby interior solutions move straight to AC. There is a
deeper reason for this seeming anomaly. To explain it we need to consider
payoff perturbations6.

The perturbed game, given in Table 11, has unique solutions (from most
initial conditions). The limits of these solutions, as ε → 0 must be solutions
of (2) of the unperturbed game, by elementary upper hemi-continuity (UHC)
properties. If we chose a sequence εn → 0 with ε2n > 0 and ε2n+1 < 0, we can
obtain any zig-zag solution in the limit. Hence these many irregular solutions
within the NE component are a consequence of continuous dependence and
payoff perturbations.

Only if the payoffs of the game are kept fixed, many of these solutions
become dispensable. The main reason for this is that for some states x some
of the best replies are dispensable, in fact leading to our refined best-reply
dynamic 1, reproduced here:

ẋ ∈ σ(x) − x, (3)

5Gilboa and Matsui (1991) and Matsui (1992) require additionally right differentiability
of solutions. Hofbauer (1995) argued that all solutions in the sense of differential inclusions
should be admitted. This is natural for applications to discrete approximations (fictitious
play, see Hofbauer and Sorin (2006)) or stochastic approximations, see Benaim, Hofbauer,
and Sorin (2005). Note that any absolutely continuous solution is automatically Lipschitz,
since the right hand side of (2) is bounded. Hofbauer (1995) also provides an explicit
construction of all piecewise linear solutions (for 2 person games) and provides conditions
when these constitute all solutions. See also Hofbauer and Sigmund (1998) and Cressman
(2003).

6On first glance it might be natural to dismiss all non-constant solutions through a
NE. But in the above game the solutions then violate the continuous dependence on
initial conditions - an extremely useful property.
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C D

A 1,1 1,1 + ε

B 1 + ε,1 0,0

Table 11: A perturbed game where solutions move away from AC.

Since the right hand side is UHC with compact and convex values, existence
of at least one Lipschitz-continuous solution ζ(t, x0) through each initial
state x0 is guaranteed.

The mathematical motivation to consider this dynamics is the classical
approach (due to Filippov, see Aubin and Cellina (1984)) to regularize a
differential equation with a piecewise smooth right hand side. In our case
this means, we view the best reply dynamics (refbrdyn) as a piecewise linear
differential equation, defined for x in the open dense set Ψ only. In this ap-
proach one considers at each point of discontinuity (i.e., x /∈ Ψ) the convex
hull of all limit points of nearby values. This leads to the smallest UHC
correspondence with compact convex values that contains the graph of the
given discontinuous single-valued function. Applying this idea to games (in
the class G∗) leads to σ and (1) instead of the classical best reply correspon-
dence β or (2).

In this section it is now shown that this refined best-reply dynamic con-
verges to the set of σ-rationalizable strategies, and that every σ-CURB set
is asymptotically stable under this dynamic. The proofs are the same as
the proofs of the statements that every solution of the best-reply dynamic
(2) converges to the set of rationalizable strategies and that every CURB
set is asymptotically stable under the best-reply dynamic. These results are
analogous to the results of Hurkens (1995), who for a stochastic learning
model a la Young (1993) showed that recurrent sets coincide with CURB
sets or persistent retracts depending on the details of the model.

Theorem 11 Let Γ ∈ G∗. Let R be the selection of S which spans the set
of σ-rationalizable strategies, i.e. Θ(R) = σ∞(Θ). Let si ∈ Si \ Ri. Then
ζisi

(t, x0) → 0 for any solution ζ to (1) for any initial state x0 ∈ Θ.

Proof: The proof is by induction on k, the iteration in the deletion process,
i.e. the k in σ∞(Θ) =

⋂∞
k=1 σk(Θ). Let Rk denote the selection of S which

spans σk(Θ), i.e. Θ(Rk) = σk(Θ). For k = 1 consider an arbitrary strategy
si ∈ Si \ R1

i . By definition then si 6∈ Si(x) for any x ∈ Θ. Hence its growth
rate according to (1) is ẋisi

= 0−xisi
, and, hence, xisi

shrinks exponentially
to zero. This proves the statement of the theorem for si ∈ Si \ R1

i . Now
assume the statement of the theorem is true for si ∈ Si \ Rk−1

i . I.e. for any
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such si we have that ζisi
(t, x0) → 0 for any solution ζ to (1) for any initial

state x0 ∈ Θ. Then for any such si and for any x0 ∈ Θ there is a finite T
such that ζisi

(t, x0) < ε for all t ≥ T . Now by the definition of σ, si ∈ Si\Rk
i

implies that si 6∈ Si (ζ(t, x0)) provided ε is small enough (or t large enough).
But then for all t ≥ T we again have that ẋisi

= 0 − xisi
and, hence, that

xisi
shrinks exponentially to zero. QED

Theorem 12 Let Γ ∈ G∗. Let R be a σ-CURB set. Then Θ(R) is asymp-
totically stable under (1).

Proof: By the definition of σ and a σ-CURB set we have that for any x ∈ U
where U is a sufficiently small neighborhood of Θ(R) it is true that for any
i ∈ I si ∈ Si(x) implies si ∈ Ri. Hence, for any x ∈ U we must have
that ẋisi

= −xisi
for all i ∈ I and si 6∈ Ri. But then we must have that

||ζ(t, x0) − Θ(R)||∞ shrinks exponentially to zero for all x0 ∈ U . QED
A corollary of Theorem 12, combined with Theorem 7, is that Kalai

and Samet (1984)’s persistent retracts are asymptotically stable under the
refined best-reply dynamic (1).

If a solution of the refined best-response dynamic converges it must,
of course, necessarily converge to a fixed point of the refined best-reply
correspondence, σ. There are fixed points of σ, however, which no solution
can converge to. For mixed equilibria this is very easy to see. Consider
the coordination game. The mixed Nash equilibrium is a fixed point of σ,
but no solution to the refined best-reply correspondence will converge to
this equilibrium, unless the initial value is exactly this equilibrium. There
are also pure fixed points of the refined best-reply correspondence which
(essentially) no solution can converge to. In fact the following is true.

Theorem 13 Suppose x∗ ∈ Θ is pure strategy profile and is such that there
is an open set O ⊂ Θ such that for every x ∈ O there is a solution ζ to (1)
which converges to x∗. Then x∗ ∈ σ(x∗) and x∗ is perfect.

This theorem is not true for mixed strategy profiles x∗ as the game in
Table 2 illustrates. Hendon, Jacobson, and Sloth (1996) demonstrate that
the best-reply dynamic, which in this game is the same as the refined best-
reply dynamic, does converge to the non-perfect mixed equilibrium x∗ =
((0, 1/2, 1/2); (1/2, 0, 1/2)) from a open set of initial values.

Also it is not true that the refined best-reply dynamic necessarily con-
verges to a persistent retract as the game given in Table 4 demonstrates.
The non-persistent equilibrium (B, D, E) is an attractor for an open set of
initial values.

Note that for some games there are sets which are proper subsets of per-
sistent retracts which are asymptotically stable. Consider the game given in

23



Table 7. The unique persistent retract is the set of σ-rationalizable strategies
σ∞(Θ) = ∆({A, B}) × ∆({D, E}). The set Ψ = {x ∈ σ∞(Θ)|x1Bx2E = 0},
which is not a retract, is also asymptotically stable. Note also that the
refined best-response correspondence of this game projected onto (or con-
strained to) the set ∆({A, B})×∆({D, E}) is exactly the same as the best-
response correspondence in the game given in Table 10. This suggests an
alternative interpretation why one might consider the full best-response dy-
namic for the game in Table 10. That the payoff perturbations are due to
the presence of strategies, not specified in the game, which, however, are
used with very small and unknown probability.
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