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Abstract

Players in a game are said to coordinate their behavior if they jointly choose strategies.

(The idea goes back to von Neumann [19, 1928] and von Neumann-Morgenstern [21, 1944].)

Correlation in behavior arises if players choose their strategies independently, but the choices

are conditioned on observations of correlated signals (Aumann [1, 1974]). This note establishes

an impossibility result: Under certain conditions, some coordinated behavior in a game cannot

be derived from correlated behavior. The result rests on an impossibility theorem from the

hidden-variable program in quantum mechanics (Hardy [9, 1992]-[10, 1993], following Bell [3,

1964]). We explain the connection.

1 Introduction

Coordination and correlation are closely related concepts in game theory. The idea of coordinated

behavior—which goes back to von Neumann [19, 1928] and von Neumann-Morgenstern [21, 1944]—

is that two or more players in the game jointly choose a strategy profile. Aumann [1, 1974]

introduced the idea of correlated behavior. Here, we think of the players as choosing their strategies

independently, but the choices may be conditioned on correlated “signals” that they observe.

In this note we ask: Can all coordinated play in a game be understood as correlated play?

Aumann [2, 1987, p.16] expressed the idea this way:
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In games with more than two players, correlation may express the fact that what 3, say,

thinks that 1 will do may depend on what he thinks 2 will do. This has no connection

with any overt or even covert collusion between 1 and 2; they may be acting entirely

independently. Thus it may be common knowledge that both 1 and 2 went to business

school, or perhaps to the same business school; but 3 may not know what is taught there.

In that case 3 would think it quite likely that they would take similar actions, without

being able to guess what those actions might be.”

To examine this argument, we write down a condition to ensure that, while they may observe

correlated signals, players 1 and 2 choose their strategies independently. This is basically a condi-

tional independence requirement. Then, starting with a general (dependent) probability assessment

over player 1’s and player 2’s strategy choices, we ask whether this assessment can be generated by a

set-up satisfying our condition. If yes, we can say that the apparent coordination between players 1

and 2 can be understood as arising from correlation. If no, then it seems that coordination may—at

least sometimes—be a primitive notion of behavior, where players act jointly.

Our game-theory question is closely connected to hidden-variable analysis in quantum mechanics.

Indeed, our main result is an adaptation of a “no-go” theorem on hidden variables (Hardy [9, 1992],

[10, 1993]). After the fact at least, the connection is not surprising. The hidden-variable program in

quantummechanics concerns the question of whether ‘behavior’ of particles can be made independent

by adding variables to the analysis. Adding signals to a game is a similar maneuver. We explain

the connection more precisely later.

2 The Question

Figure 1 depicts a situation where, prima facie, an observer (or a third player) thinks that Ann and

Bob are coordinating their choices of strategy. The probability assessment shown assigns probability
1
2 to the event that Ann and Bob coordinate on U and L, and probability 1

2 to the event that they

coordinate on D and R.

L R

U 1/2 0 

0 1/2D

Ann

Bob

Figure 1

Following Aumann [1, 1974], such assessments are often explained as compatible with indepen-

dent play by adding “signals” to the given game (formally, payoff-irrelevant moves by Nature). For

example, in Figure 2, a coin is tossed. Both players observe the coin toss, but each then chooses
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a strategy independently. The observer thinks that: (i) if the coin lands Heads, Ann chooses U

and Bob chooses L; and (ii) if the coin lands Tails, Ann chooses D and Bob chooses R. The

observer’s (degenerate) conditional probabilities are shown. (Note the identification of moves in

the two subtrees in Figure 2. This is the basis for viewing the assessments in Figures 1 and 2 as

equivalent.)
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Figure 2

A natural question is then: Can all assessments in a game be explained in this fashion?

Not surprisingly, the answer depends on the answers to two other questions: What kinds of

variables is it permitted to add to a game? And what conditions might be placed on such variables?
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We suppose that, prior to the given game, Nature chooses a point (ωa, ωb) from some finite

product space Ωa ×Ωb, and Ann (resp.Bob) observes the component ωa (resp. ωb).1 See Figure 3

for an example.

Returning to Figure 1, in the format of Figure 3 we would set Ωa = {ωa, ωa} and Ωb =

{ωb, ωb}. The observer’s assessment on the bigger game would then be given by p(U,L,ωa, ωb) =

1Since we later establish an impossibility result, finiteness of Ωa and Ωb is, admittedly, a restriction. But this
does allow us to avoid any measure-theoretic issues.
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p(D,R,ωa, ωb) = 1
2 .

In general, let Sa (resp. Sb) be Ann’s (resp. Bob’s) strategy set. The condition we impose on

our analysis is:

p(sa, sb|ωa, ωb) = p(sa|ωa)× p(sb|ωb), (1)

whenever p(ωa, ωb) > 0. This is a conditional independence-like requirement. Here is an easy fact

(it is a special case of a result in Brandenburger-Friedenberg [5, 2004, Proposition 5.1]):

Proposition 1 Under condition (1), if p(ωa, ωb) = p(ωa) × p(ωb) for all ωa, ωb, then p(sa, sb) =

p(sa)× p(sb) for all sa, sb.

Proof. We have

p(sa, sb) =
∑

{(ωa,ωb):p(ωa,ωb)>0}

p(sa, sb|ωa, ωb)p(ωa, ωb) =

∑

{(ωa,ωb):p(ωa,ωb)>0}

[p(sa|ωa)× p(sb|ωb)]p(ωa, ωb) =

∑

{ωa:p(ωa)>0}

p(sa|ωa)p(ωa)×
∑

{ωb:p(ωb)>0}

p(sb|ωb)p(ωb) = p(sa)× p(sb),

as required.

Taking the contrapositive, this says that if the observer assesses Ann’s and Bob’s strategy choices

as dependent (not independent), then he must assess their signals as dependent. So, condition (1)

guarantees that correlation in play comes from correlation in signals.

Sa × Sb

Ωa × Ωb (= Sa × Sb)

·

·

·

(sa, sb)

(sa, sb)

Weight

q(sa, sb)

Figure 4

Starting with any matrix game2 Sa × Sb and any assessment q on Sa × Sb, it is always possible

to find spaces Ωa and Ωb and a measure p on Sa × Sb × Ωa × Ωb, such that p agrees with q on

Sa×Sb and satisfies (1). Just set Ωa = Sa and Ωb = Sb, and put p on the diagonal, as in Figure 4.

(This is a standard game-theoretic construction, going back to the “revelation principle” (Myerson

[17, 1986]).

2Strictly, game form, since we don’t specify payoffs.
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But does this construction work for more complicated games? In particular, we will consider a

case where the underlying game itself already contains moves by Nature. Here is an example:
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Note carefully that this is not the same as Figure 3. Here, we depict an underlying game, which

happens to involve moves by Nature. These are depicted as (ϕa, ϕb), (ϕa, ϕb), (ϕa, ϕb), (ϕa, ϕb),

and we use ϕ rather than ω to distinguish these moves from moves by Nature in an augmented game

(as in Figure 3).3

3 An Impossibility Result

Suppose in Figure 5 the observer has an assessment q satisfying:

q(ϕa, ϕb), q(ϕa, ϕb), q(ϕa, ϕb), q(ϕa, ϕb) > 0, (2)

q(U,L, ϕa, ϕb) = q(U,R,ϕa, ϕb) = q(D,L,ϕa, ϕb) = 0, (3)

q(U,L, ϕa, ϕb) > 0. (4)

(We write “U” for the pair of strategies (U,U) and (U,D), and similarly for other terms in (3) and

(4).)

We will show that, under certain conditions, there is no space Ωa × Ωb (where Ann observes

ωa and Bob observes ωb) and measure p, such that p agrees with q on the underlying game. The

interpretation will be that we can’t explain the assessment in terms of correlated signals.

The conditions we impose are first:

p(sa, sb|ϕa, ϕb, ωa, ωb) = p(sa|ϕa, ωa)× p(sb|ϕb, ωb), (5)

whenever p(ϕa, ϕb, ωa, ωb) > 0. This is the conditional independence-like condition as before. The

3John Asker has suggested the nice terminology: Nature makes the chance moves (ϕ) in the underlying game,
while Fate makes the extra chance moves (ω) in the augmented game.
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difference is that now we take account of the fact that Ann observes both ϕa (from the underlying

game) and ωa (from the augmented game), and likewise for Bob.

Second, we impose:

p(ϕa, ϕb, ωa, ωb) = p(ϕa, ϕb)× p(ωa, ωb). (6)

This says that (the observer assesses that) Nature’s moves in the underlying game are independent

of her moves in the augmented game. For example, in the underlying game, Ann and Bob might

each privately toss a coin. (This would be denoted as ϕa vs. ϕa for Ann, and ϕb vs. ϕb for Bob.)

Whatever process—of external signals etc.—the observer has in mind that is captured in the space

Ωa ×Ωb should then, presumably, be viewed as independent of the coin tosses.

Note carefully: We don’t say that the independence condition must always hold (this would be

unreasonable), only that there are scenarios (such as the above) where the observer’s assessment

would naturally satisfy the condition. This is enough for us, since we are about to establish an

impossibility result.

Theorem 1 There is no probability measure p which satisfies (5) and (6) and agrees with q, where

q satisfies (2), (3), and (4).

Proof. Suppose, contra hypothesis, there is a space Ωa×Ωb and a measure p satisfying (5) and (6),

such that p agrees with q. Then

0 = q(U,L|ϕa, ϕb) = p(U,L|ϕa, ϕb)

=
∑

{(ωa,ωb):p(ϕa,ϕb,ωa,ωb)>0}

p(U,L|ϕa, ϕb, ωa, ωb)p(ωa, ωb|ϕa, ϕb)

=
∑

{(ωa,ωb):p(ϕa,ϕb,ωa,ωb)>0}

[p(U |ϕa, ωa)× p(L|ϕb, ωb)]p(ωa, ωb|ϕa, ϕb)

=
∑

{(ωa,ωb):p(ωa,ωb)>0}

[p(U |ϕa, ωa)× p(L|ϕb, ωb)]p(ωa, ωb),

where the first line uses (2) and (3), the third line uses (5), and the fourth line uses (2) and (6)

(twice). Letting M = {(ωa, ωb) : p(ωa, ωb) > 0}, we have shown that

p(U |ϕa, ωa)× p(L|ϕb, ωb) = 0 on M . (7)

Similar arguments using q(U,R|ϕa, ϕb) = 0 and q(D,L|ϕa, ϕb) = 0 respectively, yield

p(U |ϕa, ωa)× p(R|ϕb, ωb) = 0 on M , (8)

p(D|ϕa, ωa)× p(L|ϕb, ωb) = 0 on M . (9)

From (7), for every (ωa, ωb) ∈M , either p(U |ϕa, ωa) = 0 or p(L|ϕb, ωb) = 0 (or both). Suppose

p(U |ϕa, ωa) = 0. Then p(D|ϕa, ωa) = 1, so that p(L|ϕb, ωb) = 0, by (9). Similarly, if p(L|ϕb, ωb) =
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0, then p(R|ϕb, ωb) = 1, so that p(U |ϕa, ωa) = 0, by (8). We see that for every (ωa, ωb) ∈M , either

p(L|ϕb, ωb) = 0 or p(U |ϕa, ωa) = 0 (or both). But then

p(U,L|ϕa, ϕb) =
∑

{(ωa,ωb):p(ωa,ωb)>0}

[p(U |ϕa, ωa)× p(L|ϕb, ωb)]p(ωa, ωb) = 0,

whereas, by (2) and (4), p(U,L|ϕa, ϕb) > 0. Contradiction.

Some comments on the result:

i. The conditions are tight. If we ask only for condition (5), we can build an augmented

structure with a measure agreeing with q on the underlying game. To do so, set Ωa = Sa×Φa and

Ωb = Sb × Φb, and define p by a diagonal construction like that in Section 2. For condition (6)

only, just take Ωa and Ωb to be singletons. (See Brandenburger and Yanofsky [6, 2007, Theorems

5.1-5.2] for more general existence results of this type.)

ii. What matters for the impossibility result is that the extra moves ω (Fate) and the underlying

moves ϕ (Nature) are assessed as independent (condition (6)). It doesn’t matter whether the ω-

moves come before or after the ϕ-moves.4 (In Figure 3, the extra moves were shown as coming

before the underlying game.)

iii. We could imagine a more general augmented structure, viz. Sa × Sb × Φa × Φb × Ω, for

some (finite) space Ω, and partitions Ha (resp. Hb) of Ω for Ann (resp. Bob). If, in the augmented

game, Nature chooses a point ω, Ann (resp. Bob) observes the member of Ha (resp. Hb) containing

ω. We show in an appendix that, under analogs to conditions (5) and (6), the impossibility result

still holds.

4 Discussion

Here we discuss some background to the impossibility result, and also its interpretation.

a. Theorem 1 is an adaptation to the game setting of a version—due to Hardy [9, 1992], [10,

1993]—of Bell’s Theorem (Bell [3, 1964]) in quantum mechanics (QM). Here is a typical QM set-up

(taken from an illustration in Laloë [12, 2001]):

Source SDetector with 

setting a

Outcome A = +1

Outcome A = -1

Detector with 

setting b

Outcome B = +1

Outcome B = -1

Figure 6

A source S emits two particles. Ann performs a measurement a on one of the particles, while

Bob performs a measurement b on the other particle. In a typical case, the possible outcomes A of

4Ariel Rubinstein kindly suggested this point.
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Ann’s measurement might be either +1 or −1, and likewise for Bob. (This would be the spin of the

particle in the direction measured.) The interesting case is when the two particles are “entangled.”

For example, it might be that if Ann measures spin +1 in a certain direction, Bob must measure

spin −1 in the same direction, and vice versa.

We see that our ϕa, ϕb, sa, sb correspond to a, b, A, B, respectively.5 Of course, this is a formal

correspondence only (more on this in Subsections d. and e. below).

The question in QM is whether entanglement can be understood as reflecting the presence of extra

variables—what in QM are called hidden variables. Einstein-Podolsky-Rosen [7, 1935] produced a QM

set-up (our Figure 1 is similar as a game model) which they used to argue for the need to “complete”

QM—e.g., via hidden variables. (Think of Figure 2 as a “completed” game model.) The general

question in QM is usually posed under conditions exactly analogous to (5) and (6). Condition (5) is

called locality, and says that the correlation between the particles is indeed due to hidden variables

(like our ωa and ωb) and not ‘direct.’ Condition (6) says that the process determining the hidden

variables is independent of what measurements are conducted on the particles. Bell’s Theorem

([3, 1964]) shows that there are correlations in QM that cannot be explained via hidden variables

satisfying these conditions.

b. The situation in game theory is analogous. We gave a game (Figure 5) and an assessment

on that game (any assessment satisfying (2)-(4)). For this game, there is no augmented game—

with signals—and assessment on the augmented game, where this assessment satisfies (5) and (6)

and agrees with the original assessment on the underlying game. In short, the correlation in the

assessment on the original game cannot be explained as arising from the presence of extra variables.

c. Let us interpret this result, along the lines set out at the beginning of this note. The result

says that coordinated behavior in a game cannot necessarily be understood as independent behavior

in an augmented game with signals. Not all behavior can be reduced to individual behavior.

Coordination must be viewed, at least sometimes, as a primitive.

d. But just what kind of coordination is needed in our game of Figure 5? More precisely, what

must an observer with an assessment satisfying (2)-(4) assume about how Ann and Bob play this

game?

The key would seem to be that the observer thinks that Ann and Bob can communicate after

their observations (of ϕa or ϕa, and ϕb or ϕb). In the QM set-up, the particles can’t communicate

at the point of measurement (they may be far away from each other). This is why entanglement

is indeed a “spooky” effect (to use Einstein’s famous term). But in game theory, perhaps such

communication is simply part of what is meant by coordination among players. Still, there are

some subtleties.

Figure 7 is Figure 5 repeated, with a check or a cross at a terminal node in accordance with

5There is a distinction. The space A is {+1,−1}, not {+1,−1}{a,a
′,...}. Likewise for B. These are simply the

spaces of possible outcomes of measurements—there isn’t a concept of “strategy” for the particles. Note carefully: This
is not to say that the hidden variables ωa, ωb can’t specify how the particles would respond to various measurements.
Indeed, this is exactly their role.
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(2)-(4). We suppose that if Ann observes ϕa and Bob observes ϕb, some process of coordination

then takes place between them, which results in a coordinated choice which is not (U,L). Likewise

with the other three cases.
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Figure 7

But what if, for example, after observing ϕa and ϕb respectively, Ann and Bob decide on (U,L)?

Does the fact that we write U and not U tell Bob that Ann observed ϕa and not ϕa? If so,

should the tree reflect this extra information? One response is that this information needn’t be

transmitted. This is because the analyst (who might be the observer) needs the bar notation to

represent the game, but the players do not. They can just say: “Let’s play Up and Left.” Even

if the information is transmitted, we don’t think this causes any difficulties for our scenario. Ann

and Bob simply decide on (U,L), and that is that.

A second potential puzzle: After observing ϕa and ϕb, Ann and Bob do not play (U,L). (More

precisely, this is what the observer thinks.) After observing ϕa and ϕb, Ann and Bob do not

play (U,R). Can there be a difference in Bob’s component of the (coordinated) choice, when his

observation doesn’t change? One answer is simply that, since we are imagining some process of

coordination, all we can say is that the output of this process depends on both inputs, and there

is no separability. But we can also give a more concrete answer. Perhaps, after observing ϕa,

Ann says to Bob: “If you choose Left, I won’t choose Up.” After observing ϕa, Ann says something

different: “If you choose Right, I won’t choose Up.” Does this transmit information again (since

Ann says different things in the two cases)? Perhaps, but, again, we don’t think this would cause

any difficulties for our scenario.

All this said, we don’t want to commit to details of the coordination process. We simply want

to say that the situation in Figure 7 is conceptually coherent.

e. A very different possibility is that the observer thinks that Ann and Bob employ “quantum

strategies.” Ann makes one of two measurements, with prescribed probabilities, on one of a pair

of entangled particles. Bob does the same on the other particle. Each pegs his/her choice on the

outcome of the measurement. Hardy [9, 1992], [10, 1993] gives the precise physical set-up that
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would lead an observer to have the assessment of Figure 7. No coordination between Ann and

Bob—at least, no coordination in the course of the game—would be needed.

This approach is in line with the interesting and growing literature on “quantum games.” (Eisert-

Wilkens-Lewenstein [8, 1999] and Meyer [16, 1999] are early papers. Landsburg [15, 2005] and La

Mura [14, 2005] study in detail Nash and correlated equilibria respectively. There are many other

papers.6) Still, we think we can make the argument that correlation and coordination are already

distinct in a classical setting (as in d. above).

f. Finally, what if someone adheres to a very strict non-cooperative view of a game, and prefers

to rule out the type of coordination in d.? In short, what if someone says that coordination is okay

only if it arises from correlation? Then we have learned something else: We may want to restrict

attention to assessments consistent with our conditions (5) and (6). We believe this would lead to

a new theory of correlation in games (which we have not yet explored).

g. On a historical note, von Neumann [20, 1932, 1955] initiated the hidden-variable program in

QM, and gave an impossibility argument. In fact, his argument is now known to use too-strong

assumptions (Bell [4, 1966]). It is the modern impossibility results of Bell [3, 1964], Kochen-Specker

[11, 1967], and others that are now considered decisive. Still, von Neumann’s position was clear,

as in the often-quoted: “[T]he present system of quantum mechanics would have to be objectively

false, in order that another description of the elementary processes than the statistical one [i.e., in

order that a hidden-variable description] be possible” ([20, 1955, p.325]).

The question in this note can be phrased as: Can extra variables in game theory explain all

coordination? Our answer is no. To the best of our knowledge, von Neumann never (directly)

asked this question in game theory.7 But, just perhaps, the negative answer fits with what was

clearly his sensibility in game theory. From his [19, 1928] paper on—including a large part of von

Neumann-Morgenstern [21, 1944]—von Neumann’s interest was in coordinated rather than purely

non-cooperative behavior in games. For example, we find in [21, 1944, p.221]: “[W]e wish to

concentrate on the alternatives for acting in cooperation with, or in opposition to, others, among

which a player can choose.”

Appendix

We consider an augmented structure Sa × Sb ×Φa ×Φb ×Ω for some finite space Ω, partitions Ha

(resp. Hb) of Ω for Ann (resp. Bob), and a measure µ. If Nature chooses a point ω, Ann (resp. Bob)

observes the member Ha(ω) of Ha (resp. the member Hb(ω) of Hb) containing ω.

6More like the current note, Lambert-Mogiliansky, Zamir, and Zwirn [13, 2003] and Temzelides [18, 2005] apply
QM formalism but not quantum devices to decisions and games.

7Jean de Valpine brought to my attention that there are some references—of a philosophical kind—to quantum
mechanics in von Neumann-Morgenstern [21, 1944, pp.3, 33, 148, 401].
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The analogs to conditions (5) and (6) are now:

µ(sa, sb|ϕa, ϕb,Ha(ω) ∩Hb(ω)) = µ(sa|ϕa,Ha(ω))× µ(sb|ϕb,Hb(ω)), (A1)

whenever µ(ϕa, ϕb,Ha(ω) ∩Hb(ω)) > 0, and

µ(ϕa, ϕb,Ha(ω) ∩Hb(ω)) = µ(ϕa, ϕb)× µ(Ha(ω) ∩Hb(ω)). (A2)

Define an augmented structure of the form in the text by forming the quotient spaces

Ωa = {ha : ha ∈ Ha},

Ωb = {hb : hb ∈ Hb},

and building a measure p on Sa × Sb ×Φa ×Φb ×Ωa ×Ωb by

p(sa, sb, ϕa, ϕb, ha, hb) = µ(sa, sb, ϕa, ϕb, ha ∩ hb).

It is immediate that p and µ agree on Sa × Sb × Φa × Φb, and that (5) holds if (A1) holds and

(6) holds if (A2) holds.
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