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Abstract

I develop a formal model which illustrates a fundamental limita-
tion of adaptive processes: improvements tend to come in the form of
kludges. A kludge is a marginal adaptation that compensates for, but
does not eliminate fundamental design inefficiencies. When kludges
accumulate the result can be perpetually sub-optimal behavior. This
is true even in a model of evolution in which mutations of any size
occur infinitely often with probability 1. This has implications for tra-
ditional defenses of both positive and normative methodology.
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1 Introduction

In July of 2004, Microsoft announced that the release of Vista, the next gen-
eration of the Windows operating system, would be delayed until late 2006.
Jim Allchin famously walked into the office of Bill Gates and proclaimed,
“It’s not going to work.” Development of Windows had become unman-
ageable and Allchin decided that Vista would have to be re-written essen-
tially from scratch.

Mr Allchin’s reforms address a problem dating to Microsoft’s
beginnings. . . . PC users wanted cool and useful features quickly.
they tolerated – or didn’t notice – the bugs riddling the soft-
ware. Problems could always be patched over. With each patch
and enhancement, it became harder to strap new features onto
the software since new code could affect everything else in un-
predictable ways.1

The Alternative Minimum Tax was introduced by the Tax Reform Act
of 1969. It was intended to prevent taxpayers with very high incomes from
exploiting numerous tax exemptions and paying little or no tax at all. Over
time, the shortcomings of the AMT as a solution to the proliferation of ex-
emptions have begun to appear. However, over this same time, the federal
tax and budgeting system has come to depend on the AMT to the point
that many observers think that changing the AMT, without complicated
accompanying adjustments elsewhere, would be worse than leaving it as
is.

Flat fish inhabit the sea floor. When their ancestors moved to the sea
floor, they adapted by changing their orientation from swimming “up-
right” to on their sides. This rendered one eye useless so by a further adap-
tation, many of today’s species of flatfish migrate one eye to the opposite
side of their body during development.

As beautifully documented the film The March of the Penguins, emperor
penguins spend a nearly 9 month breeding and nurturing cycle which in-
volves walking up to 100 KM away from any food source in order to avoid
predators. The problem for penguins is that they are birds, and hence lay
eggs; but they are flightless birds, so they find it inconvenient to move to
areas where the eggs can be easily protected. They adapted not by recti-

1“Code Red: Battling Google, Microsoft Changes How it Builds Software.” The Wall
Street Journal, Robert Guth, September 2005.
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fying either of these two basic problems,2 but instead by compensating for
them by an extremely costly and risky behavior.

Each of these examples represents a kludge: an improvement upon a
highly complex system that solves an inefficiency but in a piecemeal fash-
ion and without addressing the deep-rooted underlying problem. There
are three ingredients to a kludge. First the system must be increasing in
complexity so that new problems arise that present challenges to the in-
ternal workings of the system. Second, a kludge addresses the problem by
patching up any mis-coordination between the inherited infrastructure and
the new demands. Third, the kludge itself– because it makes sense only in
the presence of the disease it is there to treat– intensifies the internal ineffi-
ciency, necessitating either further kludges in the future or else eventually
a complete revolution.3

Microsoft Windows is a complex system whose evolution is guided by
a forward-looking dynamic optimizer. It is not surprising therefore that,
after two decades worth of kludges that accompanied the expansion from
DOS to Windows to 32 bit and evenutally 64 bit architecture, revolution
was the final solution. In the case of the US Tax Code, or for that matter any
sufficiently complex body of contracts that govern interactions among di-
verse interests, while the evolution may be influenced by forward-looking
considerations, full dynamic optimization is more tenuous as a model of
the long-run trade-offs.

But the story is very different for flat fish and penguins, and, to come
to the point, for human brains, whether we are considering the evolution
of the brain across generations or the development of the decision-making
apparatus within the life a single individual. Here, progress is adaptive.
An adaptive process is not forward-looking and certainly not governed by
dynamic optimization. An adaptive process inherits its raw material from
the past, occasionally modifies it by chance (mutation or experimentation),
and selects among variants according to success today.

Nevertheless there is the possibility, not completely fanciful, that an
adaptive process can produce complex systems that perform as well to-
day as those that were designed by an optimizer given the same set of raw
materials. Indeed, there is a tradition in economics that accepts the dis-
tinction between adaptation and optimization, but rationalizes a positive

2Incidentally, it has happened in evolutionary history that oviparous (egg-laying)
species have adapted to vivipary (giving birth to live offspring.) Some species of sharks
are important examples. Vivipary enables a long internal gestation so that the developing
offspring is protected and nourished within the body of the mother.

3See wikipedia for the history and pronunciation of the word kludge.
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methodology based on unfettered optimization by an appeal to this un-
written proposition.4

In this paper I present a model intended to suggest that this hope was
a longshot at best. I analyze a simple single-person decision problem. An
organism is a procedure for solving this problem. I parameterize a fam-
ily of such algorithms which includes the optimal algorithm in addition to
algorithms that perform less well. An adaptive process alters the organ-
ism over time, favoring improvements. I show conditions under which no
matter how long the adaptive process proceeds, an engineer, at any point
in time, working only with the raw materials that presently make up the
organism, could eliminate a persistent structural inefficiency and produce
a significant improvement. In the model, kludges arise naturally and are
the typical adaptations that improve the organism. A kludge always im-
proves the organism at the margin, but also increases both its complexity
and its internal complementarity and as a by-product makes it harder and
harder for adaptation to undo these inefficiencies in the future.

In the model, a resource is available at a randomly determined location.
The organism evolves a procedure for collecting and processing informa-
tion about the location. Two trade-offs govern the design of the optimal
organism. First, a fixed number of computational steps must be allocated
between estimation of the location and exploitation of the resource. More
precise estimates come at the expense of reduced intensity of exploitation.
Second, the organism must evolve the optimal protocol for processing the
information. The pitfall is that the organism may adapt an inefficient proto-
col which requires too many processing steps to achieve a given precision.
The cost is reduced intensity. However, once this inefficient protocol is in
place, future evolution (modeled as expansion of computational power)
continues to ”invest” in it making it increasingly difficult to re-optimize.

The problem in the model is not due to “local optima.” The model ad-
mits arbitrarily large mutations with positive probability, so they occur in-
finitely often. Given enough time, the process would escape any non-global
static optimum. Indeed I present a benchmark model (see 1) in which
there is an artificial upper bound on the complexity of the organism. In
this model the optimally adapted organism eventually appears with prob-
ability 1. Also, the effect is not due to altered evolutionary incentives that
come from strategic interactions with other agents. The model analyzes the
performance of a single agent solving an isolated decision problem.

4The classic defense is Friedman (1966).
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Structurally inefficient decision-makers present a problem not just for
positive methodology, but normative as well. Much of welfare economics
is founded on revealed preference and agent sovereignty. The principle
is that the choices we observe reveal what benefits the agent. But when
the adaptive process creates a wedge between the underlying objective it
is designing the agent to satisfy and the agent’s actual observed behavior,
there is a corresponding wedge between revealed preference and true pref-
erence. Put differently, if we grant that there is some underlying objective
that guides the adaptive process, then at best we can view the organism as
an agent whose efforts at achieving that objective are the result of a second-
best solution designed by nature, the principal. We can no better infer that
underlying objective from the choice behavior of the organism than we can
identify the distorted choices made by an incentivized agent with the prin-
cipal’s first-best solution.5

2 Overview of the Model and Results

An organism is designed to solve a fixed decision problem, instances of
which are presented to the organism repeatedly over time. The decision
problem has the following interpretation. A resource is available at a cer-
tain location. The location is realized independently in each period. Signals
which reveal the location of the resource are available to the organism. The
problem for the organism is to input these signals, interpret them, and then
choose a location in attempt to exploit the resource. The fitness of the or-
ganism is determined by the distance between the actual location of the
resource and the location chosen.

The organism is described by an algorithm for inputing and processing
signals. The components of this algorithm adapt over time according to
a general evolutionary process which selects for improvements in overall
fitness. We describe the long run behavior of this evolutionary process.

2.1 The Decision Problem

One aspect of the environment is fixed throughout. An infinite sequence
λ = λ1, λ2, . . . ∈ {−1, +1}∞ is determined at the beginning of time accord-
ing to an i.i.d. process with Prob(λj = 1) = l > 1/2. We will refer to λ as
the environment.

5Indeed, this metaphor is behind the methodology of Samuelson and Swinkels (2006)
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In each period of the process, a location θ ∈ [−1, +1] is selected. Condi-
tion on θ, an infinite sequence τ = τ1, τ2, . . . is selected in i.i.d. fashion from
{−1, +1}∞ with probability

Prob(τj = 1) =
θ + 1

2
.

Next, a sequence σ = σ1, σ2, . . . of signals is produced by setting

σj = τjλj for all j.

Thus, σ is an infinite sequence from {−1, +1}∞ which is an encoding of the
raw data τ using the environmental “key” λ. If λj = −1, then we say that
the jth signal is inverted. The organism will have available a sample of the
physical signal σ. The problem it faces as it evolves is to learn about the
environment λ so that in each period it can infer the raw data τ. The raw
data can then be used to estimate the location of the resource in that period.

We view the organism as an algorithm for locating and exploiting the
resource. The organism will be parameterized by the total number of steps
it is able to perform. This number x will be called the complexity of the
organism. Each use of the following operations requires a single step: ob-
serving a signal σj, multiplying the signal by −1, applying a decision rule
which selects a location based on the processed data, and taking an ac-
tion to exploit that location. Therefore, an organism of complexity x which
uses l steps to select a location, can use the remaining steps to take actions.
The total payoff to the organism is the sum of the payoffs from each action
taken.

Locating the Resource In each period, the organism processes a sample
consisting of the first k signals from σ. The parameter k is called the precision
of the organism. The probability distribution which governs θ is such that
the true conditional expected value of θ based on a sample of σ1, . . . , σk has
the following simple formula

θ̄k := E(θ|σ1, σ2, . . . , σk) =
1

k + 2

k

∑
n=1

λnσn.

(See section 3 for the details of how the distribution of θ is specified.)
The above formula is the one that would be used by an optimally ad-

pated organism of precision k. We now consider a broader class of organ-
isms, each associated with its own estimation formula. An organism of
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precision k is defined by a sequence π1, . . . , πk which encodes the algo-
rithm used by the organism to process signals. Specifically, upon observing
sample σ1, . . . , σk, it is assumed that the organism produces the following
estimate of θ.

β(k, π) =
1

k + 2

k

∑
j=1

πjσj. (1)

If πj = −1 then the organism spends one computation step to invert
the input σj. Let |π| := |{j : πj = −1}| denote the total number of these
pre-processor steps.

We can think of the sequence π as part of the genetic code of the organ-
ism. Obviously when π = λ, the organism is using the optimal formula.

Exploiting the Resource Once the organism has observed and processed
the sample σ1, σ2, . . . , σk to form its estimate, it earns fitness by choosing a
locataion a ∈ [−1, 1] to exploit. The organism’s decision rule a tranlates the
estimate β into a location a(β). The payoff to exploiting location a when
the resource is located at θ is defined to be

u(a, θ) = 2aθ − a2.

Notice that an optimally adapted organism who observes the sample
σ1, σ2, . . . , σk would maximize fitness by choosing

a = E (θ | σ1, σ2, . . . , σk) = θ̄k

In fact there are two types of organisms which implement this optimal strat-
egy. A positively-aligned organism is one with πj = λj for j = 1, . . . , k and
decision rule a+ where

a+(β(k, π)) = β(k, π).

A negatively-aligned organism is one with πj = −λj for j = 1, . . . , k and
decision rule a− where

a−(β(k, π)) = −β(k, π).

Both types of organism select the conditional expected fitness maximizing
location given a sample size of k. Any other organism of equal precision
chooses an inferior location.

I will say that an organism is positive or negative depending on whether
it uses a+ or a−. Because these are the only potentially optimal decision
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rules, I will keep the model simple by assuming that a+ and a− are the
only decision rules. Nothing would change if the model were extended to
include a richer set of possible decision rules. Say that input j is aligned or
misaligned according to whether the product sign(a)πjλj is equal to +1 or
−1. With this terminology, e.g. a positively aligned organism is a positive
organism for which all inputs are aligned.

Fitness An organism of complexity x which has precision k, and uses |π|
steps to process inputs, has x− k− |π| − 1 steps remaining to take actions.
This number, denoted i, is called the intensity of the organism. The total
payoff of the organism in a period when the resource is located at θ and the
signal is σ is equal to the sum of the payoffs of each action:

i
[
2a(β(k, π))θ − β(k, π)2]

The fitness of the organism is defined as the expected value of this payoff
with respect to the distributions of θ and σ.

So, while positive and negatively aligned organisms of the same pre-
cision select the same location a(β(k, π)), they typically require a different
number of steps to do it and therefore they will differ in the intensity i with
which they are able to exploit the resource. This means that, for a given
total complexity x, only one of these two types of organism will achieve
the maximum fitness.

The diagrams in Figure 1 illustrate the optimal organism for a fixed
complexity x. The “budget” lines capture the tradeoff between intensity
and precision for positively- (dashed) and negatively- (solid) aligned or-
ganisms respectively. Adding the jth unit of precision requires a sacrifice
of one or two units of intensity, depending on the alignment and the value
of λj. This yields the following budget equations

x = i + k

(
3
2
− 1

k

k

∑
j=1

λj

2

)

for positive alignment and

x = i + k

(
3
2

+
1
k

k

∑
j=1

λj

2

)

for negative alignment. The “indifference curve” is the set of pairs (i, k)
which achieve the same fitness.
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(a) Low x. Negative alignment (solid line)
is optimal.

(b) Higher x. Budget lines shift upward and
now positive alignment is optimal.

Figure 1: Optimal organism for a fixed level of complexity x.

Figure 1(a) shows a case in which the optimal organism is negatively
aligned. As the organism increases in complexity, the budget lines shift
up, potentially switching the alignment of the optimal organism. This is
illustrated in Figure 1(b). Indeed, the optimal alignment depends on the
sign of the moving average

L(k) :=
1
k

k

∑
j=1

λj > 0.

If it is positive, then the fraction of inverted signals up to k is greater than
1/2, and the optimal organism will be positively aligned. The negatively
aligned organism is optimal in the alternative case.

Recall that we have assumed that l > 1/2. This implies that for suf-
ficiently complex organisms, positive alignment is optimal. A convenient
way to visualize this is to consider k sufficiently large so that L(k) ≈ 2l − 1
and the two budget lines are approximately

x ≈ i + k (2− l)
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and
x ≈ i + k (1 + l) .

This is illustrated in Figure 2.

Figure 2: Optimal alignment for large k.

Kludge Note that for sufficiently complex organisms, positive alignment
yields a greater budget. Once this is the case, any negatively aligned organ-
ism is attempting to implement the optimal decision rule via an inefficient
protocol. For this reason and reasons developed further below, we refer to
such an organism as a kludge.

Definition 1. Suppose that the fraction of inverted signals up to k exceeds 1/2,
i.e.

1
k

k

∑
j=1

λj > 0.

Then we say that a negatively aligned organism with precision k is a kludge.

We can quantify the inefficiency of a kludge of complexity x. A switch
to positive alignment would produce an organism of the same precision
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but strictly higher intensity. Indeed the intensity and therefore the fitness
can be increased by a number which (on average) increases linearly in k.

However, this measure may be hard to interpret as it depends on a car-
dinal interpretation of payoffs. As an alternative, let us define the follow-
ing ordinal concept of inefficiency of an organism. Say that the organism
is asymptotically structurally inefficient if there is a given component of the
organism (here, a subset of tokens) such that at point in time, and forever
thereafter, this component should be altered as a part of some improvement
to the organism, but nevertheless the component remains fixed forever.6

2.2 The Adaptive Process

The organism is completely specified by the tuple O = 〈k, π, i, a〉. Over
time, the organism will adapt. I adopt a simple model of mutation and nat-
ural selection designed to capture the effects of a general class of adaptive
processes. The specific assumptions are chosen mostly for expositional and
analytical convenience.

Each period t, the organism Ot is evaluated according to its overall fit-
ness V(Ot). With positive probability, a mutation occurs which results in
a variant O′ of the organism. If the variant O′ produced by a mutation is
more fit, i.e. V(O′) > V(Ot), then the variant replaces the existing ver-
sion and survives to date t + 1, that is Ot+1 = O′. If not, then the existing
version survives, i.e. Ot+1 = Ot.

Mutations come in two varieties. With probability q, the organism in-
creases in complexity. It keeps the analysis simple to assume that when
complexity increases it it increases by two, and the two additional compu-
tational steps are allocated optimally taking as given the existing allocation.
On the other hand, with probability (1− q) the organism does not increase
complexity, but some (possibly empty) subset of existing computational
steps are re-allocated.

One simple and natural model of this latter component of the mutation

6A virtue of this definition is that it excludes “marginal inefficiencies” where at any point
in time some inefficiencies are present, but every inefficiency, once it appears, is eventually
eliminated. For example, we may imagine that the most recently developed features of the
organism might begin in an inefficient state, but eventually as the organism matures, these
features are improved to their optimal state and align optimally with the rest of the organ-
ism. By contrast, asymptotic structural inefficiency identifies persistent mis-alignments.
It would be desirable to sharpen the definition even further by considering dynamic effi-
ciency issues. Without going into the details of such a definition, I note that the kludges in
this paper represent static as well as dynamic inefficiencies. Positively aligned organisms
grow in intensity and precision faster than kludges.

10



process would be as follows. Think of each of the x steps as a gene. There
is a fixed mutation probability µ > 0 and each gene is subject to muta-
tion with independent probability µ. When a gene other than a mutates,
it can take on any value (input step, action step, preprocessor for input
j) with some fixed positive probability. When the gene for a mutates, it
changes sign. This model is useful for building intuition but far less struc-
ture is required. In the process of proving the main result we will establish
a general class of mutation probabilities that deliver identical results (see
Definition 2.)

2.3 Analysis

The main result of the paper is

Theorem 1. Suppose µ < 1/6. When q > 0 there is a positive probability that the
organism will be forever kludged and thus asymptotically structurally inefficient.

In the remainder of this section, I will give an informal sketch of the
proof. Recall that we have assumed that l > 1/2. The parameter l deter-
mines the probability that each λj = +1. As discussed above, what matters
for the optimal design of the organism is the sign of the moving average

L(k) =
1
k

k

∑
j=1

λj > 0.

Because l > 1/2, with probability 1 there will exist some k̄ such that L(k)
will be positive for all k > k̄. Let us consider a path in which for values of
k immediately preceding k̄, the value of L(k) is negative.

Imagine that the organism has precision k < k̄ and that the organism
is optimally adapted. The scenario described thus far arises with positive
probability.7 An optimally adapted organism will be negatively aligned
when L(k) < 0. When q > 0, an optimally adapted organism can im-
prove by increasing in complexity. In particular, its precision will continue
to increase beyond the threshold k̄. Once beyond that point, the organism
is no longer optimally adapted. The additional information obtained by
increased precision will be processed according to a protocol that is ineffi-
cient. Nevertheless these incremental improvements are optimal given the
organism’s pre-existing structure. The organism improves by applying a
kludge.

7Even if the organism does not begin the process optimally adapted, there is always a
positive probability at any date that a sufficiently large mutation occurs to make it so.
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Because, L(k) will be positive forever after k̄, this negatively aligned
protocol will remain inefficient forever. The question is whether the organ-
ism will ever become positively aligned, and thus optimally adapted, or
remain a kludge forever, i.e. asymptotically structurally inefficient. Two
forces are at work in opposite directions. First, the necessary mutation al-
ways occurs with positive probability. On the other hand, the organism
improves by increasing complexity and we will show that a consequence
of this is that the size of the change necessary for re-alignment increases,
correspondingly decreasing its probability.

To analyze this model, consider the following simplified stochastic pro-
cess. Let the states of the process correspond to the levels of overall com-
plexity x of the organism. At each state, three transitions are possible. With
probability q, the value of x increases by two. With probability (1− q)ηx,
the value of x is unchanged. Finally, with the remaining probability, the
process terminates. Figure 3 illustrates. We set the initial value to be x̄, the
complexity of the organism at the stage in which its precision crosses k̄.

Stop

Figure 3: Stochastic Termination Process.
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A drastic mutation is any mutation of sufficient size to profitably change
the organism’s alignment. We shall set (1 − ηx) so that it bounds from
above the probability that a kludge of complexity x will undergo a dras-
tic mutation. Then, we can use this simplified process to place a lower
bound on the probability that the organism remains kludged indefinitely.
That probability will be no smaller than the probability that the simplified
process never terminates.

I show that this probability is positive if and only if

∑
x

(1− ηx) < ∞.

Next I show that the probability of a drastic mutation is determined by
the precision k of the organism. Let M(k) denote this probability. Say that a
kludged organism O is an optimal kludge if O maximizes V(O′) among all
negatively aligned organisms O′. Let us denote by k(x) the precision of an
optimal kludge which has complexity x.8 Then we can change variables

∞

∑
x=x̄

(1− ηx) =
∞

∑
x=x̄

M(k(x))

=
∞

∑
k=k̄

C(k)M(k)

where C(k) := |{x : k(x) = k}|.
There are two steps to showing that this series converges. First, the

probabilities of drastic mutations shrink very quickly. I show that the prob-
ability of a drastic mutation is bounded above by a function M̄(k) and

lim sup
k

M̄(k + 1)
M̄(k)

< 1. (2)

Second, along the optimal growth path of a kludge, the number of steps
C(k) the organism spends at a fixed level of precision k does not grow too
fast. In particular, C(k) is bounded by a function C̄(k) and

lim
k

C̄(k + 1)
C̄(k)

= 1. (3)

Because it contains the key intuition for the result, I focus the discussion
here on Equation 2. Let O∗ be an optimal kludge with intensity i∗ and pre-
cision k∗. As long as no drastic mutation has yet occured, the organism will

8The value k(x) is found by a discrete “first-order” condition as illustrated in Figure 1.
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remain an optimal kludge: additional computational steps from increased
complexity will be allocated optimally.

Let us define the effective precision of an organism O = 〈k, π, i, a〉 as
follows.

k̃(O) =
k

∑
j=1

sign(a)πjλj

Note that a positively aligned organism is equivalent to a positive organism
whose precision is equal to its effective precision. Furthermore, the fitness
of a positive organism with effective precision k̃ is no greater than that of a
positively aligned organism with precision k equal to k̃. Indeed, when k̃ is
strictly less than k, it is because some inputs are misaligned (πj 6= λj), and
each of these misaligned inputs ”cancels out” the benefit of one properly
aligned input. The number of ”un-canceled” inputs is the effective preci-
sion k̃.

Figure 4: The optimal kludgeO∗. The axes have been rescaled. The asymp-
tote represents the minimum intensity of any organism which achieves at
least the fitness of O∗.
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Figure 4 illustrates the situation. The optimal kludge O∗ achieves the
maximum fitness among all points on the budget-line for negative align-
ment. The horizontal axis is now the effective fitness of an organism. A
necessary condition for an organism to achieve a higher fitness than O∗ is
for the (effective fitness, intensity) pair to lie above the budget line. It is
convenient to normalize the axes by dividing by k∗, yielding Figure 4.

As illustrated, the indifference curve has a horizontal asymptote. It rep-
resents the minimum intensity of any organism which achieves a higher
fitness than O∗. A key result is that the (normalized) difference between
this minimum intensity and the intensity of an optimal kludge is bounded
by a constant, α. That is, increasing the effective precision to infinity is
not worth sacrificing more than αk∗ units of intensity. Underlying this cal-
culation is the observation that when the organism’s estimate is already
very precise, additional units of precision reduce the variance of the esti-
mate (and thereby increase the per-action payoff) by at most a second-order
magnitude.

Clearly, a drastic mutation requires that the organism switch to the pos-
itive decision rule. However, if a mutation changes only the decision rule
from negative to positive, the intensity is unchanged and the organism’s
effective precision drops to −k∗, which in the normalized coordinate sys-
tem is a horizontal movement to the point −1. See Figure 5. Therefore a
drastic mutation requires accompanying changes that increase the effective
precision. There are three types of mutations that can increase effective
precision.

1. Change an action step into an input step.

2. Change a pre-processor step to an input step.

3. Change a pre-processor step to an action step.

To find a drastic mutation, we must find some combination of these
which results in an overall improvement over O∗. Refer to Figure 5. Each
mutation of type 1 moves one unit down and one unit to the right. Type
2 mutations move three steps to the right, and type 3 mutations move two
steps to the right and one step upward. A drastic mutation is a path which
combines these movements and moves (at least) beyond the dashed budget
line.

I show that paths consisting entirely of type 1 mutations cannot consti-
tute a drastic mutation. The reason is illustrated in Figure 5. Moving along
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Figure 5: Paths to improvement. After the change in alignment, the (nor-
malized) effective precision is -1. The downward sloping, horizontal, and
upward sloping paths represent the three types of mutations.

the downward sloping line reaches the budget line only after crossing be-
low the asymptote. Thus, the necessary increases in effective precision cost
too much in terms of sacrificed intensity when using only mutations of type
1. Any drastic mutation must therefor involve some mutations of types 2
and 3. In fact I show that there is a constant ∆ such that a drastic mutation
to a kludge with precision k∗ must involve at least ∆k∗ mutations of either
type 2 or type 3. The constant ∆ is found by identifying the path to the
budget line which minimizes the number of these mutations. That path,
illustrated in the figure, uses mutations of type 1 to reach the asymptote
and mutations of 2 and then ∆k∗ mutations of type 2.

The proof is now concluded by applying a large-deviation result. We
have shown that the probability of a drastic mutation is no greater than the
probability that a proportion ∆ of the “genes” from the set of pre-processor
genes, of which there are at most k∗. When each gene has an independent
probability µ < ∆ of mutating, a standard result from large-deviation the-
ory is that this probability shrinks to zero exponentially fast as k∗ increases.
This immediately implies Equation 2, and establishes the theorem once we
calculate that ∆ > 1/6. In fact, we can see from this sketch why the result
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does not depend on the independent mutation model. Any distribution
of mutations that satisfies such a large-deviation condition will deliver the
same conclusion.

3 The Details

The Dirichlet Process The Dirichlet family of distributions is a conve-
nient framework for modeling the organism’s inference problem. We be-
gin by reviewing some details about Dirichlet priors and multinomial sam-
pling. A Dirichlet measure on the set [0, 1], is parameterized by a pair z
of non-negative integers (z−, z+). We denote it by Dz. Consider a sam-
pling process in which first, a probability p is secretly drawn from the prior
Dz and then data from {−1, +1} are sampled in i.i.d. fashion with p being
the probability of observing the value 1. Suppose that the value −1 was
observed y− times and the value 1 was observed y+ times. This yields a
posterior distribution over p. The Dirichlet process Dz has the following
properties, where z̄ = z+ + z−.

1. The unconditional expectation is

EDz =
z+

z̄

2. The variance is

var Dz =
z+z−

(z̄)2 (z̄ + 1)

3. Conditional on a sample y = (y−, y+), the Bayesian posterior is

D(z+y).

Thus, a Dirichlet prior updated on the basis of observations from any finite
sample remains in the Dirichlet family.

We fix D = D(1,1) and specify that the location θ is drawn from the
distribution

F = 2D− 1

so that

E(θ|σ1, σ2, . . . , σk) =
1

k + 2

k

∑
n=1

λnσn. (4)
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Thus, a fully adapted organism who knew the environment λ would use
the formula on the right-hand-side to estimate the location from a sample of
size k of signals. Recall that θ̄k denotes this Bayesian estimate of the location
based on k observations. (Dependence on the specific observations is left
implicit in the notation.)

Also, given that the unconditional expectation of θ is equal to zero, vari-
ances have a simple form

var(θ̄k) = Eσ

(
θ̄2

k
)

. (5)

and the variance of the estimate increases monotonically in the precision

var
(
θ̄k−1

)
< var

(
θ̄k
)

< var (θ) = 1/3

for all k. The following lemma records some additional useful facts about
the process that will be used later.

Lemma 1. For any level of precision k,

var(θ̄k)− var(θ̄k−1) =
1− var(θ̄k−1)

(k + 2)2

and
var(θ)− var(θ̄k) <

1
k + 3

Proof. From Equation 4,

θ̄k =
(

k + 1
k + 2

)
θ̄k−1 +

τj

k + 2
,

so

var(θ̄k) = E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τj

k + 2

)(
k + 1
k + 2

)
θ̄k−1 +

1
(k + 2)2

]

= Eτ1,...,τj−1 E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τj(k + 1)
(k + 2)2

)
θ̄k−1 +

1
(k + 2)2 |τ1, . . . , τj−1

]

By the properties of the Dirichlet process , E(τj|τ1, . . . , τj−1) = θ̄k−1, so

= Eτ1,...,τj−1

[
1

(k + 2)2 +
2(k + 1) + (k + 1)2

(k + 2)2 θ̄2
k−1

]
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and we have

var(θ̄k)− var(θ̄k−1) = E
[

1
(k + 2)2 −

(
1− 2(k + 1) + (k + 1)2

(k + 2)2

)
θ̄2

k−1

]
= E

[
1

(k + 2)2 −
1

(k + 2)2 θ̄2
k−1

]
=

1− var(θ̄k−1)
(k + 2)2

To show the second part, note that

var(θ)− var(θ̄k) =
∞

∑
j=k

var(θ̄j+1)− var(θ̄j)

=
∞

∑
j=k

1− var(θ̄j)
(j + 3)2

<
∞

∑
j=k+3

(
1
j

)2

<
1

k + 3

Actions and Payoffs The organism attempts to exploit the resource by
choosing actions a ∈ [−1, 1]. Each action taken earns payoffs

u(a, θ) = 2aθ − a2.

A fully adapted organism who observes σ1, σ2, . . . , σk would optimally
choose

a = E (θ | σ1, σ2, . . . , σk) = θ̄k

and obtain conditionally expected payoff

E
(
2θ̄kθ − θ̄2

k
∣∣ σ1, σ2, . . . , σk

)
= θ̄2

k

for each action taken. Recall that the number of actions taken is defined as
the intensity of the organism. Thus, the total unconditional expected payoff
(fitness) of a fully adapted organism with precision k and intensity i is

i · var
(
θ̄k
)

.
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3.1 The Organism

If an organism with precision k could be designed in a single step in or-
der to maximize expected fitness, for each action it takes it would earn
payoff var(θ̄k) . In this section we describe a general class of algorithms
(organisms) for solving the decision problem. Within this class there are
algorithms which implement the optimal decision rule and algorithms that
do less well. The organism is described by a list of instructions (its “genetic
code”) for collecting, processing, and acting on information.

Tokens There is a collection of tokens which are labeled. The number of to-
kens is x, the complexity of the organism. There is one distinguished token,
the alignment token, which is labeled with either + or −. The sign of the
alignment token indicates which decision-rule a the organism uses. Each
he remaining tokens can be labeled in one of three ways, ∗, ◦, or −j where
j is a positive integer. Tokens labeled ∗ are action tokens and the number of
these tokens is the intensity of the organism. That is, the organism will take
a number of actions equal to the number of action tokens. The remaining
tokens dictate how the organism inputs and processes information.

Each token labeled with ◦ is an input token and the number of these
tokens is the precision of the organism. That is, the organism will observe
a number of signals equal to the number of input tokens. Finally a token
labeled −j is a pre-processor token and it indicates that the value of the jth
input should be multiplied by −1.

The organism locates the resource by collecting a sample of size k, chang-
ing the sign of each input j for which a pre-processor token is present,
adding these together and normalizing. Specifically, if we represent the
pre-processor steps by

πj =

{
−1 if j ∈ π

1 otherwise,

then the estimate is

β(k, π) =
1

k + 2

k

∑
j=1

πjσj.

and the expected fitness of the organism is

V(O) = iEθEσ1,σ2,...,σk

[
aβ(k, π)θ − β(k, π)2 ∣∣ θ

]
.
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Mutation and Natural Selection Each period, with probability q, the or-
ganism increases in complexity by adding two new tokens. The labels on
these tokens will be chosen to maximize the fitness of the resulting organ-
ism, taking as given the existing configuration of tokens. In the comple-
mentary event (probability (1 − q)) a mutation occurs and some (possi-
bly empty) subset of existing tokens are re-labeled. A selected token is
re-labeled with each label having equal probability, with the proviso that
the alignment token must be labeled with +or −, and no other token has
these labels. We assume that tokens are selected according to a probabil-
ity measure which satisfies monotonicity (larger sets have weakly smaller
probability) and the following large-deviation condition.

Definition 2. Let Mx be a probability distribution over subsets of x tokens. We
say that the family of distributions {Mx}x∈N satisfies a large-deviation condition
if there exists µ ∈ (0, 1) and a function δ : (µ, 1]×N → (0, 1) such that if T is
any subset of {1, . . . , x}, and m ≥ µ, then the probability under Mx of selecting
a mutation set which includes more than a fraction m of elements from T is no
greater than δm(|T|) and

lim sup
N

δm(N + 1)
δm(N)

≤ β(m) < 1.

This is a large-deviation property which limits the probability of select-
ing a large fraction m (greater than µ) of tokens from any given large subset.
This probability must shrink to zero at a rate which is asymptotically faster
than some β(m) < 1. Note that by a standard result from large-deviation
theory, the independent mutation model discussed previously is a special
case.

3.2 Analysis

First, we consider an instructive benchmark case in which q = 0. In this
case, the complexity of the organism is fixed and cannot increase. Then,
because the mutation probabilities are strictly positive, with probability 1
the organism will be optimally adapted after some finite timespan.

Benchmark with q = 0 Consider an arbitrary organism O of complexity
x. Let O∗ be an optimal organism of the same complexity. There is a lower
bound on the probability of a mutation large enough to transform any such
O intoO∗. In the worst case, a change to the entire genetic structure will be
required and the probability of such a large mutation is strictly positive by
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assumption. When q = 0, the organism will never increase in complexity
and so this remains forever a lower bound on the probability of reaching
an optimally adapted organism in a single step. It follows that with proba-
bility 1 the optimal organism will appear eventually. Moreover an optimal
organism can never be replaced if the complexity of the organism cannot
increase.

Proposition 1. When q = 0, with probability 1 the organism is eventually opti-
mally adapted, regardless of the initial complexity.

The proposition shows that any asymptotic inefficiency that arises when
q > 0 is not due to a simple problem of local optima. The model allows for
arbitrarily large mutations at any point in time. Thus, any improvement, of
any fixed size, if available for sufficiently long, will eventually be realized.
On the other hand, this argument does not apply to improvements which
require larger and larger mutations. Potentially, the organism can gradu-
ally improve at the margin by increasing in complexity, all the while inten-
sifying the complementarity among its components. This would mean that
substantial improvements decline in probability. Whether such improve-
ments will be realized will depend on the rate at which this probability
declines.

Proof of Theorem 1 The remainder of the paper fills in the details of the
proof sketched previously.

With probability 1, there exists a date after which positive alignment
is optimal. With positive probability the organism is an optimal kludge
at at that date. The conditional probability that this remains true forever
thereafter is bounded below by the probability that the process depicted in
Figure 3 never terminates. Let us calculate that probability. A standard tool
from the theory of countable-state Markov chains9 indicates an analysis of
the following system of equations in unknowns Z0, Z2, . . ..

Z0 = qZ2 + (1− q)(ηx̄)Z0

Z2 = qZ4 + (1− q)(ηx̄+2)Z2

...
Zx = qZx+2 + (1− q)(ηx̄+x)Zx

...

9See (Billingsley, 1995, Theorems 8.4 and 8.5)
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If the system can be solved by a bounded sequence Zx, then the probability
is strictly positive that the system will never terminate.

We can set Z0 = 1 and then solve the system recursively, first writing

Zx+2 =
(

1− (1− q)ηx̄+x

q

)
Zx

for each x, or

Zx+2 =
(

1− (1− q)(1− ηx̄+x)
q

)
Zx

then recursively substituting to obtain

Zx+2 =
x

∏
n=2

[
1− (1− q)(1− ηx̄+n)

q

]
.

We wish to show that lim Zx < ∞ which is equivalent to the convergence
of the following series.10

∞

∑
n=x̄+2

(1− q)(1− ηn)
q

.

which is convergent iff ∑(1− ηn) < ∞. So our focus is on the probability
of a drastic mutation as a function of the complexity of the organism.

We can write
∞

∑
x=x̄

(1− ηx) =
∞

∑
k=k∗

C(k)M(k) (6)

where C(k) is the number of steps the process remains at a fixed level
of precision k.

Suppose that an organism has intensity i and precision k. Then if the
organism is an optimal kludge the following inequality must be satisfied.

i
[
var(θ̄k)− var(θ̄k−1)

]
> var(θ̄k−1).

The left-hand side is the marginal increment to fitness from an increase in
precision, while the right-hand side is the marginal increment to fitness
from instead increasing intensity. In fact, when λj = −1, two tokens are re-
quired to increase precision, so in that case the left-hand side must exceed

10Note that for any sequence of positive numbers Rn, 1 + ∑x
1 Rn ≤ ∏x

1(1 + Rn) ≤
exp(∑x

1 Rn).
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twice the right-hand side. An optimal kludge with precision k will increase
intensity until it reaches the smallest level i which satisfies the correspond-
ing inequality. It follows that the organism will increase its the level of
precision from k− 1 to k as soon as

i =
(

1 + 1λj=−1

) var(θ̄k−1)
var(θ̄k)− var(θ̄k−1)

(up to an integer,) and thus will spend at most

C(k) ≤ 2 var(θ̄k)
var(θ̄k+1)− var(θ̄k)

− var(θ̄k−1)
var(θ̄k)− var(θ̄k−1)

steps of the process with precision k.
Applying Lemma 1, we have

C(k) ≤ C̄(k) :=
2 var(θ̄k)

1− var(θ̄k)
(k + 3)2

<
2 var(θ)

1− var(θ)
(k + 3)2

so that

lim
C̄(k + 1)

C̄(k)
= lim

(k + 4)2

(k + 3)2 = 1.

With this result, we can prove that the series in Equation 6 converges
by showing

lim sup
k

M̄(k + 1)
M̄(k)

< 1. (7)

I show Equation 7 as a consequence of the following lemma which is the
central result about the model.

Lemma 2. An optimal kludge with precision k∗ > 14 can be improved only by a
mutation that includes at least the following fraction of the pre-processor tokens.

2
3
− 1

2

(
k∗ + 3

k∗

)
.

Proof. (Preliminary. The proof covers the case of l = 1.) The effective preci-
sion of a positive organism is

k̃(O) =
k

∑
j=1

πjλj
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Note that a positively aligned organism is equivalent to a positive organism
whose precision is equal to its effective precision. Moreover, the fitness of
a positive organism with effective precision k̃ is no greater than that of a
positively aligned organism with precision equal to k̃. To see this, note first
that for any even number z the estimator

1
k̃ + z + 2

k̃

∑
j=1

λjσj

is strictly worse than the optimal estimator from a sample of size k̃ (see
Equation 4). And when z = 2, we can show that the above estimator
is strictly better than the estimate produced by an organism of precision
k̃ + 2 and effective precision k̃. The difference between the two estimators
is that the latter incorporates two additional inputs, one of which is mis-
aligned. When the signals from these two inputs have the same sign, the
two estimators produce identical estimates. When the signals from these
two inputs have opposite signs, the displayed estimator produces the op-
timal estimate while the latter does not. Now by induction, we can show
that the displayed estimator is strictly better for any even number z.

Because O∗ is an optimal kludge, the intensity and precision satisfy the
“first-order condition”

i∗ ·
[
var θ̄k∗+1 − var θ̄k∗

]
< 2 var θ̄k∗ .

Applying Lemma 1 and rearranging,

i∗ < 2
[

var θ̄k∗

1− var θ̄k∗

]
(k∗ + 3)2 .

Let us define α by the following equation. It gives the maximum amount
by which intensity can be reduced and still produce a drastic muation.

(i∗ − αk∗) var θ = i∗ var θ̄k∗

αk∗ var θ < 2
[

var θ̄k∗

1− var θ̄k∗

]
(k∗ + 3)2 (var θ − var θ̄k∗

)
Applying lemma 1,

α <
2

1− var θ

k∗ + 3
k∗

. (8)
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By the definition of an optimal kludge, a mutation results in an im-
provement only if the alignment is changed. Once the alignment is changed,
the effective precision of the organism is −k∗. Therefore, in order for a mu-
tation to result in an improvement, it must include accompanying changes
that raise the effective precision. Recall the three types of mutations that
can increase effective precision.

1. Change an action token into an input token.

2. Change a pre-processor token to an input token.

3. Change a pre-processor token to an action token.

To prove the lemma, we search for the path to improvement which in-
volves the fewest mutations of types 2 and 3. We first show that mutations
involving only changes of type 1 will not improve upon O∗. Each change
of type 1 reduces intensity by one unit and increases effective precision by
one unit. Refer to Figure 5, reproduced below. Mutations of type 1 move
along the solid line with slope -1. It improves uponO∗ only if it moves past
the intersection point with the dashed budget line.

Noting that the slope of the solid line is -1 and the slope of the budget
line is -2, the vertical coordinate of their intersection is i∗

k∗ − 4. When k∗ >
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14, this is below the horizontal asymptote and hence no organism with such
a low intensity could achieve a fitness higher than that of O∗. It follows
that when k∗ > 14, no mutation consisting only of changes of type 1 can
improve.

Next we can rule out paths that involve mutations of type 3. Any im-
provement must move from the solid line to the right of the budget line.
Each type 3 step moves two units to the right and one unit upward. By
comparison, each type 2 step moves three steps to the right. Because of the
relative slopes of the two lines, type 2 steps close the gap more quickly.

Thus, in trying to find an improvement we can confine to paths that
involve only mutations of type 1 and 2. Among these paths, we calculate
the minimum number of type 2 steps required for an improvement. Any
improvement must reach the budget line before falling below the horizon-
tal asymptote of the indifference curve. Thus, the horizontal distance is
bounded below by the minimum among points above the asymptote of the
distance between the solid line (which is where the initial type 1 steps land)
and the budget line. Because of the relative slopes of these lines, this min-
imum is obtained at the asymptote where the horizontal distance, denoted
∆ in the figure, is equal to 4−α

2 . (Moving a distance 4− α upward from the
intersection point puts this much distance between the two lines because
of their relative slopes.) Applying Equation 8, ∆ is at least

1
2

[
4−

(
2

1− var θ

)(
k∗ + 3

k∗

)]
= 2−

(
1

1− var θ

)(
k∗ + 3

k∗

)
which, multiplied by k∗ gives the total increase in effective precision result-
ing from the horizontal type 2 steps. Recalling that var θ = 1/3 and each
type 2 step increases effective precision by 3, the total number of type 2
steps required is

k∗

3

[
2− 3

2

(
k∗ + 3

k∗

)]
and since the total number of pre-processor tokens is at most k∗, this yields
the statement of the lemma.

Based on the lemma, we can bound M(k) by the probability that a large
fraction of the pre-processor tokens are selected for mutation. We apply the
large-deviation property (recall Definition 2.) Pick m to satisfy

µ < m < 1/6.

Suppose that for an organism of complexity x, the set of tokens sub-
ject to mutation will be selected from a distribution Mx which satisfies a
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large deviation condition and monotonicity: larger subsets have smaller
probability. Then since there are no more than k pre-processor tokens, the
probability that a fraction m of these are selected for mutation is no greater
than δm(k). We therefore set M̄(k) = δm(k). By Lemma 2, M(k) < M̄(k)
and since µ < m, the large deviation property implies

lim sup
N

M̄(k + 1)
M̄(k)

≤ β(m) < 1,

concluding the proof of Equation 7 and the Theorem.
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